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Abstract

A superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite (rGO–Fe3O4) was

prepared via a facile and straightforward method through the solvothermal reaction of iron

(III) acetylacetonate (Fe(acac)3) and graphene oxide (GO) in ethylenediamine (EDA) and

water. By this method, chemical reduction of GO as well as the formation of Fe3O4

nanoparticles (NPs) can be achieved in one step. The Fe3O4 NPs are firmly deposited on the

surfaces of rGO, avoiding their reassembly to graphite. The rGO sheets prevent the

agglomeration of Fe3O4 NPs and enable a uniform dispersion of these metal oxide particles.

The size distribution and coverage density of Fe3O4 NPs deposited on rGO can be controlled

by varying the initial mass ratio of GO and iron precursor, Fe(acac)3. With an initial mass

ratio of GO and Fe(acac)3 of 5:5, the surfaces of rGO sheets are densely covered by spherical

Fe3O4 NPs with an average size of 19.9 nm. The magnetic-functionalized rGO hybrid exhibits

a good magnetic property and the specific saturation magnetization (Ms) is 13.2 emu g−1. The

adsorption test of methylene blue from aqueous solution demonstrates the potential application

of this rGO-Fe3O4 hybrid composite in removing organic dyes from polluted water.

S Online supplementary data available from stacks.iop.org/Nano/24/025604/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the initial fabrication by micro-mechanical cleavage [1],

graphene, a single-atom-thick sheet of hexagonally arrayed

sp2-bonded carbon atoms, has attracted tremendous interest

and shown great promise for potential applications in

nanoscience and nanotechnology [2–6]. With the unique

two-dimensional structure and the very high surface area [7],

it has shown that graphene is an ideal substrate for the

chemical deposition of many types of nanoparticles (NPs),

such as metal [8, 9], metal oxide [10], quantum dots [11–14]

and sulfides [15–18]. On one hand, the plate-like graphene

sheet prevents the anchored NPs from agglomeration and

enables their uniform dispersion while NPs separate graphene
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Scheme 1. Schematic illustration for the synthesis of rGO–Fe3O4 hybrid composite by a solvothermal reaction.

sheets and prevent their reassembly into graphite. On the

other hand, the decoration of NPs will combine their

desirable properties with the unprecedented properties of

graphene, such as electrical [19, 20], thermal [21], and

mechanical [22, 23] properties, making the as-prepared

graphene-based nanocomposites promising in a variety of

fields.

Currently, graphene–magnetic NPs hybrids are of great

interest because of their potential applications in energy stor-

age, enhanced optical limiting, magnetic resonance imaging

(MRI), drug delivery and environmental remediation [24–28].

Among the magnetic NPs, Fe3O4, which exhibits good

biocompatibility, strong superparamagnetism, low cost, and

low toxicity, has been brought into focus. The synthesis

of graphene–Fe3O4 (G–Fe3O4) hybrid nanocomposites with

controlled size and coverage density of magnetic particles

has long been of scientific and technological interest. The

strategies for the synthesis of G–Fe3O4 nanocomposites can

be broadly categorized into three methodologies. The first

strategy involves a two-step process, in which graphene

oxide (GO) generated through extensive oxidation of graphite

was chemically reduced and functionalized by a surfactant

or polymer, followed by the deposition of Fe3O4 NPs on

the reduced graphene oxide (rGO) sheets [26, 29, 30].

One problem associated with the reduction of GO is that

the removal of oxygen-containing groups makes rGO less

hydrophilic so that it tends to aggregate in solution due to

π–π stacking interactions. The introduction of surfactant or

polymer can improve the dispersion of rGO in solution [31].

However, the surfactant/polymer molecules will strongly

adsorb on the surface of the as-prepared nanocomposites,

severely reducing their material properties. The second

strategy is also a two-step process, yet the deposition of

Fe3O4 NPs is heavily reliant on the oxidized moieties

on GO sheets. For example, the iron ions were captured

by carboxylate anions via coordination and precipitation

by the addition of an alkaline solution, forming graphene

oxide–Fe3O4 (GO–Fe3O4) hybrid composites [27, 32–34].

Through chemical reactions between oxidized moieties on

GO and the functional groups on surface-modified Fe3O4

NPs, GO–Fe3O4 hybrids were also achieved [28, 35, 36]

However, GO is electrically insulating and thermally unstable,

seriously hindering the applications of GO–Fe3O4 hybrid

composites. By a subsequent reduction of GO in the presence

of chemical reducing agents or by heat treatment [37–41],

the oxygen-containing groups of GO were removed and

the GO–Fe3O4 hybrid could be transformed into reduced

graphene oxide–Fe3O4 (rGO–Fe3O4) hybrid. However, in

practical applications, some difficulties must be overcome to

improve the properties and broaden the applications of the

magnetic-functionalized rGO hybrid, as exemplified by the

detachment of Fe3O4 NPs from rGO sheets after the removal

of oxygen functional groups and the disruption of other parts

of the hybrid during the reduction of GO. The third strategy

can be classed as a ‘simultaneous’ methodology, in which

the chemical reduction of GO and the deposition of Fe3O4

NPs on the carbon basal plane are combined in one single

step [42–47]. This method is more efficient in preparing stable

and well-dispersed rGO–Fe3O4 hybrid composites. However,

since the synthesis was achieved by a simplified one-pot

reaction, both the size distribution and the coverage density of

magnetic NPs on rGO sheets were hard to control. Moreover,

in the absence of binding sites on the carbon matrix, the Fe3O4

NPs were directly anchored on the surfaces of rGO, resulting

in poor stability of the as-prepared rGO–Fe3O4 hybrid. A

more efficient and reliable synthetic method is still desired.

Here we develop a facile and straightforward method to

prepare rGO–Fe3O4 hybrid composites, which integrates both

the electrical conductivity of graphene and the superparam-

agnetism of Fe3O4 NPs. By this method, the reduction of

GO and the deposition of Fe3O4 NPs were simultaneously

achieved by a one-pot solvothermal reaction of GO and

iron (III) acetylacetonate (Fe(acac)3) in ethylenediamine

(EDA) and water at 200 ◦C, as schematically illustrated

in scheme 1. In comparison with the aforementioned

methods, the methodology presented in this work shows the

following advantages. (1) The one-pot chemistry is facile and

straightforward, in which the chemical reduction of GO and

the deposition of Fe3O4 NPs were simultaneously completed

in one single step. (2) The particle size and coverage density

of Fe3O4 NPs on the carbon matrix are directly controlled

by varying the initial mass ratio of GO and iron source,

Fe(acac)3. (3) The amino groups grafted on the surfaces of

rGO provide extra binding sites to Fe3O4 NPs, promising the

high stability of the as-prepared rGO–Fe3O4 hybrid.

2. Experimental details

2.1. Materials

Graphite was purchased from Nanjing XFNANO Materials

Tech Co., Ltd (Nanjing, China). Iron (III) acetylacetonate,

Fe(acac)3, (98%) was purchased from J&K Scientific Co.,

Ltd (Beijing, China). EDA was purchased from Sinopharm
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Figure 1. XRD patterns of GO (a) and the as-prepared rGO–Fe3O4

hybrid composites with different initial mass ratio of GO and
Fe(acac)3. (b) 9:1, (c) 7:3, (d) 5:5, (e) 3:7, (f) 1:9.

Chemical Reagent Co. Ltd (Shanghai, China) and was
redistilled before use. All other chemicals and solvents were
commercially available and used as received.

2.2. Preparation of GO

GO used in this work was synthesized via a modified
Hummers method [48]. Specifically, concentrated H2SO4

(46 ml 98%) was slowly added to a mixture of graphite (2.0 g)
and NaNO3 (1.0 g) in a round-bottom flask within an ice
bath. After that, KMnO4 (6.0 g) was gradually added and the
mixture was continuously stirred for 30 min. The ice bath
was then removed and the mixture was stirred for a further
5 h. After the addition of 92 ml deionized water, the solution
was stirred for 15 min and further diluted with 280 ml of
deionized water. Subsequently, 10 ml H2O2 (30%) was added
to reduce the residual KMnO4. The reaction was allowed to
react for 30 min, yielding a yellow solution. Then the mixture
was centrifuged at 8000 rpm to collect the solid products.
The obtained solid products were repeatedly dispersed in
deionized water, followed by centrifugation at 8000 rpm up
to 10 times to completely remove byproducts such as salts.
Finally, the obtained solid was dried in a vacuum oven at 60 ◦C
for 12 h, yielding a brown GO solid.

2.3. Synthesis of rGO–Fe3O4 hybrid composites via
solvothermal reactions

In a typical synthesis of rGO–Fe3O4 hybrid, a total amount
of 100 mg of GO and iron source Fe(acac)3 were dispersed
in 50 ml of EDA/water (in a volume ratio of 9:1) by mild
sonication. Then the mixture was transferred into a Teflon-line
autoclave. The autoclave was sealed and maintained at 200 ◦C
for 24 h. After the reaction, the autoclave was cooled down to
room temperature. The black solid products were collected by
an external magnetic field and copiously washed with water
and ethanol. When solvothermal reaction was performed with
the initial mass ratio of GO to Fe(acac)3 of 9:1, the obtained
solid products were collected by a centrifugation method
(12 000 rpm) because of the unsatisfied magnetic property.

2.4. Adsorption test of rGO–Fe3O4 hybrid composites
towards methylene blue (MB)

Analytical grade MB was used to prepared 100 ml stock

aqueous solution (0.6 mg ml−1), which could be further

diluted to the required concentrations. The adsorption

experiments were carried out in glass vials at room

temperature. Typically, 10 ml MB aqueous solution with

a known concentration and 5.1 mg rGO–Fe3O4 hybrid

composite were added into a 25 ml glass vial and then

intensely stirred at room temperature for 24 h. After the

removal of rGO–Fe3O4 composite by an external magnetic

field, the equilibrium concentration of MB was measured

with a UV–vis spectrometer at its maximum absorbance

wavelength (664 nm).

2.5. Characterization

The sizes and morphologies of products were characterized

by scanning electron microscopy (SEM, Hitachi S-4800)

and transmission electron microscopy (TEM, TECNAI F-30).

Powder x-ray diffraction (XRD) patterns were obtained on

a X’pert PRO diffractometer with Cu Kα radiation (λ =

1.5418 Å) and a graphite monochromator from 5◦ to 80◦ at a

scanning rate of 10◦ min−1. X-ray photoelectron spectroscopy

(XPS) was performed on a Quantum 2000 spectrometer,

with the Al Kα line used as the excitation source. The

magnetic properties of the rGO–Fe3O4 hybrid composite

were studied with a superconducting quantum interference

device (SQUID, MPMS-XL-7). The hysteresis loop of the

magnetization was obtained by varying H between +15 000

and −15 000 Oe at 300 K. Ultraviolet spectroscopy was

performed on a Shimadzu 2550 UV–vis spectrophotometer.

Magnetic resonance imaging (MRI) experiments on GO and

the magnetic rGO hybrid with concentrations increasing from

0 to 200 µg ml−1 in 1% agarose gel were performed on a

Varian 7.0-T MRI system. An extremity coil was used for the

data acquisition, using a FSE (Fast Spin Echo) sequence (TR:

5000 ms, TE: 100 ms).

3. Results and discussion

X-ray diffraction (XRD) patterns were used to investigate

the phase and structure of the starting GO and the

as-prepared products. As shown in figure 1(a), the XRD

pattern of GO exhibits a sharp peak at 2θ = 10.1◦,

indicating the characteristic (001) reflection. The rGO–Fe3O4

hybrid composites were synthesized at 200 ◦C for 24 h by

solvothermal method, using Fe(acac)3 as iron source and

EDA/water as solvent. On varying the initial mass ratio of

GO and Fe(acac)3, the as-prepared products display different

XRD patterns. Figure 1(c) shows the representative XRD

pattern of a hybrid prepared with the initial mass ratio of

GO and Fe(acac)3 of 7:3. It can be seen that the sharp

characteristic peak of GO disappears while a broad peak at

about 24.5◦ rises. Both the d002 value and the broadness

of this reflection are typical for the randomly restacking

of graphene sheets due to the loss of oxygen-containing

3
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Figure 2. TEM images with different magnifications (a), (b), SEM image (c) of the rGO–Fe3O4 hybrid composite prepared with an initial
mass ratio of GO and Fe(acac)3 of 7:3, and the corresponding size distribution of Fe3O4 NPs on the surfaces of rGO sheets (d).

functional groups in the reaction process. The positions and

relative intensities of the remaining diffraction peaks match

well with the standard XRD data of cubic Fe3O4 (JCPDS card

No. 86-1359). The observation in the XRD patterns confirms

the successful deposition of Fe3O4 NPs on the surfaces of rGO

sheets by the one-pot solvothermal reaction.
The sizes and morphologies of the as-prepared products

were further studied by TEM and SEM. Figures 2(a) and (b)

show representative TEM images of the rGO–Fe3O4 hybrid

composite prepared with an initial mass ratio of GO and

Fe(acac)3 of 7:3. The Fe3O4 NPs with an average size of

12.1 nm are well decorated on the surfaces of rGO sheets,

which are nearly flat and have a large area up to a micrometer

scale. The distribution of magnetic NPs is uniform and no

free Fe3O4 NPs are detected outside the range of the graphene

sheets. In the representative SEM image (figure 2(c)) of this

rGO–Fe3O4 hybrid composite, the graphene flakes exhibit a

slightly wrinkled surface and the Fe3O4 NPs appear as bright

dots. No obvious conglomeration of Fe3O4 NPs is observed.
XPS was also employed to analyze the starting GO

and the products of solvothermal reactions. The C 1s

high-resolution XPS spectrum of GO (figure 3(a)) contains

four typical components, corresponding to the carbon atoms

in four types of functional group: the nonoxygenated ring C

(284.5 eV), the C in C–O bond (286.3 eV), the C in carbonyl

(287.5 eV), and the C in carboxyl (O–C=O) (288.7 eV). This

indicates a fairly high degree of oxidation was carried out

during the Hummers method. After solvothermal reaction,

the relative intensities of the three components associated

with oxygen-containing functional groups decrease markedly,

suggesting that most of the oxygen functional groups have

been successfully removed (figure 3(b)). Moreover, the

deoxygenation of GO was also found to be accompanied

by nitrogen incorporation from the reaction solvent (EDA).

As seen in figure 3(d), a N 1s peak of amino groups at

about 400 eV appears in the XPS survey scan spectrum of

rGO–Fe3O4 hybrid composite. In the C 1s XPS spectrum

(figure 3(b)), the additional peak is correlated with the C

in the C–N bonds. The nucleophilic substitution reactions

between surface-exposed epoxy groups on GO sheets and

EDA account for the surface amination, as explained in detail

below [49, 50]. The amino groups grafted on rGO surfaces

show great promise in the Fe3O4 NPs engineering process.

In the Fe 2p high-resolution XPS spectrum (figure 3(c)), the

binding energies at 711.2 eV and 724.8 eV are related to

Fe 2p3/2 and Fe 2p1/2, respectively, which are very close to

the values of Fe3O4 published in the literature [43, 51, 52]. It

is noteworthy that no charge transfer satellite of Fe 2p3/2 at

about 720 eV is detected, indicating the formation of mixed

oxides of Fe(II) and Fe(III), such as Fe3O4 [51].
The above characterizations demonstrate the high

efficiency of our solvothermal method in the synthesis of

rGO–Fe3O4 hybrid composite. In order to investigate the

controllability and flexibility of this method on the size

and density distribution of Fe3O4 NPs on graphene sheets,

parallel experiments were conducted by changing the reaction

parameters, such as the initial feed ratio of reagents, the

reaction temperature, and the reaction time. It is found that

the initial mass ratio of GO and iron source Fe(acac)3 in

the synthesis process is essential in controlling the size

4
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Figure 3. High-resolution XPS spectrum of C 1s of GO (a), high-resolution XPS spectra of C 1s (b), Fe 2p (c) and survey scan (d) of the
rGO–Fe3O4 hybrid composite prepared with an initial mass ratio of GO and Fe(acac)3 of 7:3.

distribution of Fe3O4 NPs and their coverage density on the

surfaces of rGO.

As shown in figure 1, at a fixed reaction temperature

(200 ◦C) and fixed reaction time (24 h), when the initial mass

ratio of GO to Fe(acac)3 was varied from 7:3 to 5:5, 3:7

and 1:9, the intensities of Fe3O4 diffraction peaks become

more and more distinct (figures 1(c)–(f)), mainly due to

the increasing coverage of Fe3O4 NPs on graphene sheets.

Simultaneously, the (002) peak corresponding to the rGO

tends weaken gradually and cannot be detected for the hybrid

which was prepared with the initial mass ratio of GO and

Fe(acac)3 of 1:9 (figure 1(f)). This result suggests that the

graphene sheets can no longer stack with each other to form a

crystalline structure when the coverage of Fe3O4 NPs is dense

enough. On the other hand, when the mass ratio of GO to

Fe(acac)3 was varied from 7:3 to 9:1, the diffraction peaks

of Fe3O4 become too weak to detect (figure 1(b)), indicating

a very small amount of Fe3O4 NPs were formed and decorated

on graphene sheets in this condition.

Figures 4(a) and (b) show representative TEM images

of rGO–Fe3O4 hybrid composite prepared at fixed reaction

temperature (200 ◦C) and fixed reaction time (24 h), while the

mass ratio of GO and Fe(acac)3 was altered from 7:3 to 5:5.

It is concluded that the size of Fe3O4 NPs and the coverage

density of Fe3O4 NPs on graphene sheets are obviously

increased, which is consistent with the observation in the XRD

pattern (figure 1(d)). The surfaces of rGO are densely covered

by spherical Fe3O4 NPs with an average size of 19.9 nm.

In addition, the distribution of magnetic particles remains

monodispersed and uniform. No obvious vacancy on graphene

sheets is observed. Despite the high coverage of NPs on the

surfaces of rGO (close to saturation), the sheets remain flat,

and no curled or crumpled sheets are observed. As measured

from the high-resolution TEM (HRTEM) image (inset in

figure 4(b)), the lattice fringe spacing between two adjacent

crystal planes of the particle is 0.29 nm, corresponding to the

(220) lattice plane of a cubic structure of Fe3O4. In the SEM

image (figure 4(c)), the Fe3O4 NPs are firmly deposited on the

surfaces of rGO with larger size and higher density than that

obtained with the initial mass ratio of GO and Fe(acac)3 of

7:3.

When the initial mass ratio of GO and Fe(acac)3 was

further changed to 3:7 and 1:9, the size of Fe3O4 particles

was found to be considerably larger than that obtained with

mass ratio of GO and Fe(acac)3 of 7:3 and 5:5. Additionally,

obvious agglomeration of Fe3O4 is observed, as shown in

figures 5(a) and (b). This result is reasonable because more

Fe(acac)3 will generate more Fe3O4 to increase both the

size and number of Fe3O4 particles. However, as shown

in figures 4(a) and (b), when the initial mass ratio of GO

and Fe(acac)3 is 5:5, the surfaces of graphene sheets are

very close to saturation. As the number and size of Fe3O4

particles increase, the formed particles undergo aggregation

on graphene sheets because of the lack of deposition place.

These results further confirm the important role of the

graphene surface in the preparation of rGO–Fe3O4 hybrid, in

which the plate-like carbon basal plane prevents the deposited

Fe3O4 NPs from agglomeration and enable their uniform

dispersion. In fact, when the decomposition of Fe(acac)3 was

conducted in similar conditions excluding the addition of GO,
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Figure 4. TEM images with different magnification (a), (b), SEM image (c) of rGO–Fe3O4 hybrid composite prepared with the initial mass
ratio of GO and Fe(acac)3 of 5:5, and the corresponding size distribution of Fe3O4 NPs on the surfaces of rGO sheets (d). The inset in (b)
shows the HRTEM image of Fe3O4 NPs.

Figure 5. SEM images of rGO–Fe3O4 hybrid composites prepared with the initial mass ratio of GO and Fe(acac)3 of 3:7 (a), 1:9 (b),
9:1 (c), aggregated Fe3O4 NPs prepared from the controlled experiment excluding the addition of GO (d).

severe aggregation was found for the formed Fe3O4 NPs

(figure 5(d)). When the initial mass ratio of GO and Fe(acac)3

was changed to 9:1, only a small amount of Fe3O4 particles

with irregular shape were deposited on the surfaces of the

graphene sheets (figure 5(c)).

According to the above analysis, it is concluded that not

only were the crystallized Fe3O4 NPs effectively deposited

on the reduced graphene sheets through the high-temperature

decomposition of Fe(acac)3 but also the particle size and

coverage density could be successfully controlled by tuning

6
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the initial mass ratio of the reagents. It is known that the

particle size and size distribution are extremely important for

revealing the size-dependent properties of magnetic materials.

In our process, GO and Fe(acac)3 are firstly dispersed in

EDA/water by mild sonication, in which the iron precursors

are adsorbed on the surface of GO through the interaction with

oxygen-containing groups on GO sheet. The coverage density

of Fe3O4 NPs on the rGO surface increases with increasing

feed ratio of Fe(acac)3. This is likely due to the elevated

concentration of Fe(acac)3 increasing the amount of iron

precursor adsorbed on the surface of GO. In addition, when

the total mass of reactants is kept fixed (100 mg in this work)

while the iron precursor amount is increased, the available

GO surface is decreased. This further leads to an increasing

number of iron precursor on each GO sheet. At the beginning

of the solvothermal process, the pyrolysis of iron precursor

Fe(acac)3 generates a large number of monomers which are

believed to be active atomic or molecular iron species via

a series of complicated decomposition reactions and redox

reactions. As the concentration of monomer exceeds the

critical concentration, the monomers undergo aggregation

to form nuclei (clusters). Finally, after the burst-nucleation

process, the monomer concentration decreases, and the nuclei

gradually grow into Fe3O4 nanocrystals with the consumption

of monomer [53–55]. At higher concentrations of Fe(acac)3,

more iron precursors are adsorbed on the surface of GO.

In the subsequent solvothermal process, the burst-nucleation

and crystal growth mechanism have resulted in a higher

coverage density of Fe3O4 NPs on the surface of rGO, while

the Ostwald ripening of smaller particles accounts for the

formation of larger particles.

During the reaction process, the oxygen-containing

groups of GO, such as hydroxyl, carbonyl, epoxy and

carboxylic groups, were lost by heat treatment. Meanwhile,

as demonstrated in the literature, the deoxygenation of GO

was also related to the reduction ability of EDA to GO [56].

In fact, the EDA used in the solvothermal reaction has another

important role apart from its solvent role and reducibility to

GO: on account of the surface-exposed epoxy groups, the

surface modification of GO by EDA takes place easily through

the corresponding nucleophilic substitution reaction [49, 50,

56]. In this way, the EDA molecules were chemically grafted

to the GO surfaces by the formation of C–N bonds, which is

consistent with XPS analysis. The combination of chemical

reduction and surface modification of GO is of particular

importance in producing novel graphene-based composites. In

this study, the amino groups in EDA grafted on rGO surfaces

show great promise in the Fe3O4 NPs engineering process.

The magnetic NPs are firmly decorated on the surface of rGO.

The bonding in the rGO–Fe3O4 hybrid is believed to involve

covalent interactions between NH2 groups of EDA and Fe3O4

particles as well as van der Waals interactions.

The decomposition of iron precursor Fe(acac)3 at high

temperature has been widely used in the synthesis of iron

oxide NPs [54, 57]. In such process, polymeric or surfactant

stabilizers play an important role in controlling the formation

and morphology of magnetic NPs. However, due to the

large specific surface area, the reduced GO has a particular

advantage in loading magnetic NPs, effectively preventing the

agglomeration of magnetic NPs and enabling their uniform

dispersion. Moreover, the amino groups introduced by the

nucleophilic substitution reaction of EDA and epoxy groups

on GO surfaces provide extra binding sites to Fe3O4 NPs,

which further increases the stability of rGO–Fe3O4 hybrid

nanocomposites.

To verify the function of amino groups in the formation

of rGO–Fe3O4 hybrid, hydrazine-reduced GO [37] rather than

GO was used as starting material in the controlled experiment.

As shown in figure S1(a) (available at stacks.iop.org/Nano/24/

025604/mmedia), only few Fe3O4 NPs were found randomly

deposited on the surfaces of rGO sheets. It is reasonable,

because most of the oxygen-containing functional groups

including epoxy groups have been removed from the surfaces

of GO in the hydrazine reducing process. Therefore, the

surface amination through the reaction of EDA and epoxy

groups was obviously less in the solvothermal process. It is

disadvantageous for the deposition of Fe3O4 NPs. Conversely,

when EDA-reduced GO which has demonstrated the surface

amination [56] was used as starting material, the surfaces of

rGO were obviously covered by magnetic particles (figure

S1(b) available at stacks.iop.org/Nano/24/025604/mmedia).

In order to reveal the influence of reaction time and

reaction temperature on the formation of rGO–Fe3O4 hybrid

composites, time- and temperature-dependent controlled

experiments were performed with a fixed initial mass

ratio of GO and Fe(acac)3 of 5:5. As shown in figure

S2(a) (available at stacks.iop.org/Nano/24/025604/mmedia),

at 200 ◦C with the reduced reaction time of 0.5 h, the

surfaces of rGO sheets were uniformly covered with a

large number of monodispersed magnetic particles. This

result means that the formation of Fe3O4 NPs is a quick

process and can be completed within 0.5 h at 200 ◦C. When

the decomposition of Fe(acac)3 was performed at lower

temperatures for 24 h, such as 120 and 150 ◦C, the surfaces

of rGO sheets show similar deposition compared with that

at 200 ◦C (figures S2(b) and (c) available at stacks.iop.org/

Nano/24/025604/mmedia). However, the deposited Fe3O4

NPs exhibit poor crystallization, as shown in figure S2(d)

(available at stacks.iop.org/Nano/24/025604/mmedia), with

the low-intensity diffraction peaks of magnetite in the XRD

patterns. Moreover, as verified by the remained diffraction

peaks at 12◦–13◦, the reduction of GO is not complete under

these conditions.

The magnetization curve of rGO–Fe3O4 hybrid compos-

ite prepared with an initial mass ratio of GO and Fe(acac)3 of

5:5 was measured at 300 K, as shown in figure 6(a). It can be

seen that the magnetic hysteresis loop shows a typical S-like

curve, where the magnetic remanence is nearly zero. This

reveals that there is almost no remaining magnetization when

the external magnetic field is removed, suggesting that the

obtained rGO–Fe3O4 hybrid composite exhibits a superpara-

magnetic behavior at room temperature. The saturation mag-

netization is 13.2 emu g−1, which is smaller than the reported

value of bulk Fe3O4 of 92 emu g−1 [58]. This can be attributed

to the smaller particle size of Fe3O4 in the as-prepared

composite. However, as demonstrated in figure 6(b), the rGO

7
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Figure 6. Magnetic hysteresis loop of rGO–Fe3O4 hybrid
composite prepared with the initial mass ratio of GO and Fe(acac)3

of 5:5 (a), photographs of the rGO–Fe3O4 composite dispersion in
ethanol after sonication and its good response to a magnet (b),
T2-weighed MRI of GO (upper) and the rGO–Fe3O4 composite
(lower) at different concentrations in 1% agarose gel (c) (increasing
from left to right in each row: 0, 6.25, 12.5, 25, 50, 100,

200 µg ml−1).

hybrid composite exhibits a good response to an external mag-

net. Due to the excellent magnetic property, T2-weight MRI

of the magnetic-functionalized rGO hybrid was performed

and compared with that of GO. As shown in figure 6(c),

no concentration-dependent enhancement of contrast was

observed for the GO. However, as the concentration of the

hybrid increases, contrast enhancement is obviously observed.

The adsorption test of dye MB from aqueous solution

by the obtained rGO–Fe3O4 hybrid composite was studied

by UV spectra at 664 nm. The adsorption amount of MB

on rGO–Fe3O4 hybrid was investigated in different initial

MB concentrations with respect to the same amount of

rGO–Fe3O4 hybrid which was prepared with an initial mass

ratio of GO and Fe(acac)3 of 5:5. As shown in figure

S3 (available at stacks.iop.org/Nano/24/025604/mmedia), the

saturated adsorption amount of MB on rGO–Fe3O4 hybrid

is about 16.2 mg g−1. It is known that the π–π stacking

interaction between graphene sheet and MB plays an

important role in the adsorption of MB [59, 60]. The high

loading density of Fe3O4 on rGO sheets (figure 4) may

account for the relatively small adsorption of MB, since the

surface area of rGO has obviously been occupied by Fe3O4

NPs.

4. Conclusion

In summary, we have developed a facile and straightforward

method to prepare rGO–Fe3O4 hybrid composites through

solvothermal reaction of Fe(acac)3 precursor and GO in

EDA and water. The particle size and coverage density of

Fe3O4 NPs on the reduced graphene sheets can be controlled

by varying the initial mass ratio of GO and Fe(acac)3.

With an initial mass ratio of GO and Fe(acac)3 of 5:5, the

surfaces of rGO are densely covered by spherical Fe3O4 NPs

with an average size of 19.9 nm. The obtained rGO–Fe3O4

hybrid shows a superparamagnetic property and can be

removed by the force of external magnetic field. Thus,

the graphene-based magnetic nanocomposites, with excellent

magnetic property and high surface area, are expected to find

practical applications in various areas such as biomaterials

and environmental remediation.
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