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Abstract

Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified
reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission
electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption
spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be
easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability.
In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be
obtained under mild conditions.

Introduction
The preparation of a highly dispersed nanosphere with
the desired properties has been intensively pursued not
only for the fundamental scientific interest of the nano-
materials, but also for their wide technological applica-
tions. Up to the present, different methods, such as the
Stöber method, a layer-by-layer deposition, a sol-gel
process, or a hydrothermal method, etc., have been
developed to prepare a highly dispersed nanosphere
[1-5]. Various monocomponent nanospheres including
SiO2, Fe2O3, CuO, ZnS, or metal materials Au and Pt
could be successfully obtained [4-8]. These materials
showed good properties during utilization in gas sen-
sors, biomedicine, electrochemistry, catalysis, etc.
Furthermore, for the demand of the application, much
effort has been devoted to prepare a bi- or multicompo-
nent nanocomposite [9-14]. Among these materials,
silica was often utilized as a carrier to disperse the active
phase on its surface or in its matrix because silica can
not only be easily obtained from several precursors, but
also remains stable in most chemical and biological

environments. What’s more is that the rapid develop-
ment of the modern nanotechnolgy has supplied flexible
methods to modulate the morphology and structure of
silica, which could be adopted for the preparation of the
SiO2-based nanocomposite [15,16].
Cobalt oxide system or cobalt-silicon mixed oxide is a

widely studied system in material domain, which could
be used as catalyst for many reactions involving hydro-
gen transfer, such as methane reforming, oxidation of
hydrocarbon, Fischer-Tropsch synthesis, and hydrogena-
tion of aromatics [17-22]. For the bi-component cobalt-
silicon mixed oxide, it was acknowledged in the recent
studies that the preparation method could show an
obvious effect on the type and dispersion of cobalt
oxide species, and thus on the catalytic performance of
the derived catalysts [23-25]. For the traditional two-
step method, silica was firstly prepared as a support,
and then, cobalt species were introduced through ion-
exchange, impregnation, or grafting techniques. Com-
pared with this method, one-step condensation method
owns it’s predominance in that it allows a better control
of the textural properties of the silica matrix and a more
effective dispersion of cobalt oxide in the matrix on a
nanometric scale.
From a particle-preparation point of view, microemul-

sion method is such a good method to prepare a uni-
form-sized nanosphere [26-29]. The water nanodroplets
present in the bulk oil phase serve as nanoreactors to
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control the size and the distribution of the nanoparti-
cles. While for cobalt-silicon mixed oxide, it seems that
the uniform particle size distribution remains a delicate
task with the normal sol-gel method or microemulsion
methods [30-34]. In our previous work, a modified
reverse-phase microemulsion method was successfully
adopted to prepare a highly dispersed SiO2-based nano-
composite [35,36]. Herein, a similar method was used to
prepare cobalt-silicon mixed oxide materials, and the
obtained material presents as a kind of highly dispersed,
uniform-sized nanosphere. In the catalytic application,
this novel nanosphere showed a good activity for the
selective oxidation of cyclohexane to cyclohexanol and
cyclohexanone.

Experiment
Material preparation
Tetraethyl orthosilicate [TEOS] (99%), cobaltous acetate
[Co(OAc)2·4H2O] (99%), ethanol [C2H5OH] (99.5%),
acetone [C3H6O] (99.5%), cyclohexane [C6H12] (99.5%),
n-butyl alcohol [C4H9OH] (99.5%), and aqueous ammo-
nia [NH3·H2O] (28%) were obtained from Tianjin Ker-
mel Chemical Reagent Development Center, Tianjin,
China. Poly (oxyethylene) nonylphenol ether [NP-7]
(industrial grade) was purchased from Dalian Chemical
Ctl., Dalian, China. Cobalt oxide [Co3O4] (98%) denoted
as C-Co3O4 was purchased from Tianjin Institute of
Jinke Fine Chemical, Tianjin, China.
Firstly, two kinds of solution (solutions A and B) were

obtained, respectively. Solution A was composed of
15.05 g of NP-7, 35.05 g of cyclohexane, and 8.05 g of
n-butyl alcohol. Solution B was obtained with the addi-
tion of 2.00 g of NH3·H2O (16%) to the cobalt acetate
aqueous solution (0.13 g of Co(OAc)2·4H2O and 5.35 g
of deionized H2O). Microemulsion was obtained with
the blending of solutions A and B. After stirring for 15
min, to this microemulsion, 5.2 g of TEOS was added
slowly under stirring. After stirring was continued for
12 h, 10 ml of acetone was added to destroy the microe-
mulsion. It was then centrifugated, washed with hot
ethanol for three times, and dried at 353 K for 12 h.
This material was denoted as Co-SiO2.

Characterization
The microstructure of the material was examined by
transmission electron microscopy [TEM] on an FEI Tec-
nai G2 Spirit electron microscope (FEI Company, Hills-
boro, OR, USA) at an accelerating voltage of 100 kV.
The surface morphology was observed by scanning elec-
tron microscopy [SEM] on an FEI Quanta 200F micro-
scope (FEI Company, Hillsboro, OR, USA). The X-ray
powder diffraction [XRD] patterns were obtained using
Rigaku D/Max 2500 powder diffraction system (Rigaku
Corporation, Tokyo, Japan) with Cu Ka radiation with a

scanning rate of 5°/min. Fourier transform infrared [FT-
IR] spectra were collected between 4,000 and 400 cm-1

on a Bruker Tensor 27 FT-IR spectrometer (Bruker Cor-
poration, Billerica, MA, USA) in KBr media. Ultraviolet-
visible diffuse reflectance spectra [UV-Vis DRS] were
collected over a wavelength range from 800 to 190 nm
on a Shimadzu UV-2550 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) equipped with a diffuse
reflectance attachment. X-ray absorption spectroscopy
[XAS] measurement was performed at room tempera-
ture on the XAS Station of the U7C beam line of the
National Synchrotron Radiation Laboratory (NSRL,
Hefei, China).

Catalytic oxidation of cyclohexane
Catalytic reactions were performed in a 100-ml auto-
clave reactor with a Teflon insert inside in which 0.12 g
of catalyst, 15.00 g of cyclohexane, and 0.12 g of tert-
butyl hydroperoxide [TBHP] (initiator) were added.
When the reaction stopped, the reaction mixture was
diluted with 15.00 g of ethanol to dissolve the by-pro-
ducts. The reaction products were identified by Agilent
6890N GC/5973 MS detector and quantitated by Agilent
7890A GC (Agilent Technologies Inc., Santa Clara, CA,
USA) equipped with an OV-1701 column (30 m × 0.25
mm × 0.3 μm) and by titration. The analysis procedure
was the same with that in the literature [21,37]. After
the decomposition of cyclohexylhydroperoxide [CHHP]
to cyclohexanol by adding triphenylphosphine to the
reaction mixture, cyclohexanone and cyclohexanol were
determined by the internal standard method using
methylbenzene as an internal standard. The concentra-
tion of CHHP was determined by iodometric titration,
and the by-products acid and ester, by acid-base titra-
tion. All the mass balances are above 92%.

Results and discussion
TEM and SEM were utilized to study the morphology of
the material Co-SiO2. It can be observed in Figure 1a
and 1b that the obtained material Co-SiO2 presented as
a highly dispersed, uniform-sized nanosphere, which was
further proved by the characterization of SEM (Figure
1c). The distribution of the particle size was centered at
about 110 nm (Figure 1d). By comparison, in our pre-
vious work, the highly dispersed nanosphere could not
be obtained with the normal operation of blending two
microemulsions before adding a silicon source [38]. A
similar situation also happened during the preparation
of silica-supported cobalt materials [30,31]. As pointed
out by Boutonnet et al., there are two main ways of pre-
paring nanoparticles from the microemulsion method:
(1) by mixing two microemulsions, one containing the
precursor and the other, the precipitating agent; and (2)
by adding the precipitating agent directly to the
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microemulsion containing the metal precursor [26]. Dif-
ferent with the above two methods, in the present work,
the metal precursor was firstly prepared as an aqueous
solution of a cobalt ammonia complex, which acted as
the water phase in the microemulsion and could also
supply a base environment for the hydrolysis of TEOS.
No more bases are necessary to be added during the
preparation process. This method can also avoid the
blending of two microemulsions that might affect the
properties of the water droplet in the microemulsion
and then affect the morphology of the prepared materi-
als. With the same method, highly dispersed Cu-SiO2,
Ni-SiO2, and Zn-SiO2 nanospheres could also be suc-
cessfully prepared.
The composition of the material Co-SiO2 was primar-

ily recognized through the XRD pattern measurement,
which was shown in Figure 2. As a comparison, the pat-
tern of the C-Co3O4 was also supplied in which eight
peaks corresponding with the cubic structure of Co3O4

with the Fd3m space group can be clearly observed [21].

These peaks do not emerge in the pattern of Co-SiO2,
and it shows only a broad peak at 2θ = ca. 22°, which is
assigned to the amorphous silica. These results indicate
that Co species in Co-SiO2 are amorphous and/or the
particle size is too small [33].
The FTIR spectrum of the material Co-SiO2 is illu-

strated in Figure 3. Strong absorption bands at 1,090,
800, and 473 cm-1 agree well with the SiO2 bond struc-
ture. The band at 1,090 cm-1 was assigned to the asym-
metric stretching vibration of the bond Si-O-Si in the
SiO4 tetrahedron. The band at 800 cm-1 was assigned to
the vibration of the Si-O-Si symmetric stretching vibra-
tion. The band at 473 cm-1 is related to the bending
modes of the Si-O-Si bonds [37,39]. Besides these three
bands, one weak shoulder band emerged at 960 cm-1

that was usually attributed to the Si-OH stretching
vibration. The absorption bands at 3,440 and 1,635 cm-1

were caused by the absorbed water molecules [40]. For
the as-prepared sample without solvent extraction,
intense characteristic absorption bands associated with
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Figure 1 TEM (a, b), SEM (c), and particle size distribution (d) of Co-SiO2.
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C-H bond (about 1,500 and 3,000 cm-1) are evident for
the presence of the organic surfactant, which almost dis-
appeared for the spectrum of Co-SiO2. This indicates
that the surfactant could be totally removed with the
solvent extraction method.
UV-Vis DRS is a powerful characterization method to

study the coordination geometry of cobalt incorporated in
the materials, and the spectrum of Co-SiO2 was shown in
Figure 4. Between 450 and 750 nm, this spectrum displays
three absorption peaks (525, 584, and 650 nm), which can
be unambiguously assigned to the 4A2(F) ®

4T1(P) transi-
tion of Co(II) ions in tetrahedral environments [41,42].
Moreover, a broad band in the UV region centered at 224
nm is also observed. This has been assigned to a low-
energy charge transfer between the oxygen ligands and
central Co(II) ion in tetrahedral symmetry [43]. Besides the
above absorption, another broad absorption was centered

at 356 nm, which was assigned to Co(III) species [44]. It
could be found in the literature that Co(III) was usually
obtained through a heating treatment such as calcination
[21,32,33]. In the present work, however, Co(II) salt pre-
cursor was firstly converted to cobalt(II) ammonia complex
during the preparation process. The formation of a Co(II)
ammonia complex would decrease the standard potential
of Co(III)/Co(II) from 1.84 to 0.1 v, and then Co(III) ions
were formed via the automatic oxidation of the Co(II)
ammonia complex by dissolved dioxygen. As identified in a
previous study [42], the emergence of this absorption was
taken as a strong evidence for the presence of a distinct
Co3O4 phase. So, it can be deduced from the above results
that a Co3O4 phase exists in the material Co-SiO2.
In addition, from the characterization result of X-ray

absorption spectroscopy near-edge structure [XANES]
measurement (Figure 5), the information about the
valence state of cobalt ions could be further acknowl-
edged. It was believed that the main-edge should be
shifted to a higher energy with the mixing of Co(III)
with Co(II), and the distance between the pre-edge peak
and the main edge can be used to measure the oxidation
state of cobalt ions. Compared with the reference data,
Co-SiO2 has an edge position that is consistent with
cobalt ions aligning with Co3O4 that contains both oxi-
dation states, not with CoO or CoAl2O4 [45]. The main-
edge emerged at a higher energy (7,726.9 ev) for Co-
SiO2, and the distance between the pre-edge peak and
the main edge (Emain-edge - Epre-edge) reached 17.2 ev.
These situations are quite similar with those of Co3O4,
manifesting that cobalt ions in Co-SiO2 own a close
coordination environment with the cobalt ions in Co3O4

[45]. This is consistent with the result of UV-Vis DRS.
Selective oxidation of cyclohexane to cyclohexanone

and cyclohexanol (the so-called K-A oil) is the
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Figure 2 XRD pattern of Co-SiO2 (a) and C-Co3O4 (b).
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Figure 3 FTIR spectra of the as-prepared sample (a) and Co-
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centerpiece of the commercial production of Nylon.
Although many attempts have been made to develop
various catalytic systems for this reaction, it continues
to be a challenge [46-48]. The present industrial process
for cyclohexane oxidation is usually carried out above
423 K and 1 to approximately 2 MPa pressure without
catalyst or with metal cobalt salt as homogeneous cata-
lyst. For obtaining higher selectivity of K-A oil (about
80%), the conversion of cyclohexane is always controlled
by about 4% [48]. It is one of the lowest efficient tech-
nologies that have been put into application among the
present petrochemical domain. The main reason for the
low yield of K-A oil is that it is easily overoxidized to
the acids and further transformed to other by-products.
In the present work (Table 1), when Co-SiO2 was used

as catalyst for the selective oxidation of cyclohexane,
encouraging results were obtained. Under more mild
conditions (388 K, which is 35 K lower than that of the
industrial process), the conversion reached 6.0%, while
the selectivity of K-A oil reached as high as 85.7% at the

same time. As a comparison, the commercial C-Co3O4

could give a moderate activity with a conversion of 3.8%
and a K-A oil selectivity of 78.4%. In addition, compared
with the reported data, the predominance of the present
Co-SiO2 is evident. Under the same conditions, when
cobalt acetate was used, which was a homogeneous cata-
lyst being widely used in the industrial process, the con-
version was only 3.3% and the selectivity of K-A oil was
also below 80% [19]. Moreover, the activity of Co-SiO2 is
higher than that of the cobalt-containing mesoporous
silica [Co-HMS] system (Table 1). Through N2 physical
adsorption-desorption measurement, it could be
acknowledged that the BET surface area of Co-SiO2 is 60
m2/g and average pore size is about 17 nm, respectively,
which manifest that most of the pores come from the
aggregation of the nanospheres. So, the accessible cataly-
tic active sites of Co-SiO2 should exist all on the outer-
face of the nanospheres, which is contrary with the
situation for the porous materials such as mesoporous
silica or molecular sieves. For those porous materials,
most of the catalytic active sites exist on the interface of
the pore. Though the surface area of Co-SiO2 is much
lower than that of Co-HMS (682 m2/g) [37], the absence
of a long channel of inner pore may facilitate the fast dif-
fusion of the substrate and the oxygenated products.
Thus, the primary oxygenated products such as cyclohex-
anone and cyclohexanol are easily desorbed from the sur-
face of the catalyst, which would decrease the chance for
them to be overoxided. This might be the main reason
for the evident enhancement of the selectivity for K-A
oil. The deeper study of the relationship between the
structure of the material and the activity is underway.

Conclusions
With a modified reverse-phase microemulsion method,
highly dispersed cobalt-silicon mixed oxide nanosphere
was successfully prepared for the first time. The utili-
zation of cobalt ammonia complex as metal source is
favorable not only for controlling of the morphology,
but also for obtaining a high valence state cobalt with-
out calcination. These two factors are fascinating for
the catalytic application, and Co-SiO2 was found to act
as an efficient catalyst for the selective oxidation of
cyclohexane. Considering that many kinds of metal
ions can be converted to metal ammonia complex, we
can extend this method to prepare such highly dis-
persed SiO2-based nanocomposite, which might show
good application properties for its specific morphology
and structure.
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Table 1 Catalytic oxidation of cyclohexane over the
catalysts

Catalysts Conversion
(mol%)

K-A oil
(mol%)

Products distribution
(mol%) a

A K CHHP Acid Ester

Co-SiO2 6.0 85.7 45.7 40.0 0.3 10.3 3.7

C-Co3O4 3.8 78.4 50.4 28.0 9.3 10.8 1.5

Co(OAc)2
b

3.3 78.2 43.2 35.0 4.3 15.0 2.5

Co-HMS
b

4.8 76.9 39.6 37.3 0.4 15.6 7.1

Reaction was carried out with 0.12 g of catalyst and 0.12 g of TBHP in 15 g of
cyclohexane at 388 K for 6 h under 1.0 MPa O2.

a A, cyclohexanol; K,
cyclohexanone; CHHP, cyclohexylhydroperoxide; Acid, mainly adipic acid;
Ester, mainly dicyclohexyl adipate; K-A oil, A and K.b Results from Chen et al.
[19] under the same reaction conditions.
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