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Graphene–molybdenum dioxide composites in several ratios have been prepared through a facile

synthesis method. Depending on the ratio, the as synthesized composites have either 2-dimensional

graphene sheets with MoO2 particles anchored to them or a clustered agglomerate morphology. The

composites have been characterised using Raman spectroscopy, X-ray diffraction, and electron

diffraction to confirm the monoclinic MoO2 phase that is present. Lithium storage properties of the as-

synthesised samples were tested in a coin-type half cell assembly to determine the relationship between

the ratio and the electrochemical performance. The sample with highest amount of MoO2 (78 wt%)

displayed the most promising lithium storage properties, with stable cycling performance at 0.2 A g�1

that shows negligible capacity loss over 50 cycles, retaining a capacity of 640 mA h g�1. The rate

capabilities were also tested, and show a capacity of 380 mA h g�1 at 2.0 A g�1, which is comparable to

the theoretical capacity of graphite and previously reported work on similar materials.

1. Introduction

Electrochemical energy storage has become an increasingly

important area of research in recent years. This is due to the

increasing demand for portable electronic devices that are pow-

ered by batteries. In addition, electric vehicles and power grid

storage have also become emerging markets for electrochemical

energy storage systems.1,2 Among all of these, lithium-ion

batteries (LIBs) are the most promising systems due to their high

power and energy density.3 Further improvement is required,

however, to fulfil the demands for high energy storage capacity.

One of the methods to improve the energy density of LIBs is to

find alternative active materials. The anode of conventional LIBs

is based on graphite, which has a theoretical capacity of 372 mA

h g�1. Much research has been conducted on using alternative

materials such as graphene,4–7 metals,8–14 and metal oxides.15–19

Graphene has the advantages of high electrical conductivity and

high theoretical capacity compared to graphite.20–22 On the other

hand, metals and metal oxides have higher gravimetric and

volumetric capacity compared to carbon materials. They suffer,

however, from large volume changes during lithium reactions. As

a result, many researchers are turning to composites of gra-

phene–metal23–25 and graphene–metal oxides26–31 to improve the

performance of anode materials.

Molybdenum dioxide (MoO2) is a good candidate anode

material due to its low electrical resistivity (8.8 � 10�5 U cm) and

high theoretical capacity (838 mA h g�1).32–39 Although MoO2 in

different morphologies has been previously studied, the long-

term cycling stability during lithium storage could be further

improved. This has led to studies on carbon–MoO2 composites,

which showed improved cycling stability.40–45 Carbon coating,

however, may not be an effective strategy to improve the cycling

stability and volume expansion of the active material. This is

because carbon coating on the surface of the active material may

not effectively release the stress during volume expansion and

thus may possibly slow down the kinetics of the lithium-ions

reaching the inner parts of the material. Furthermore, the carbon

coating layer may crack and pulverise, which then leads to

formation of dead volume in the electrode. Graphene is a flexible

2-dimensional sheet with electron clouds on both surfaces. It is

an excellent candidate to provide good electronic conductivity

and, at the same time, buffer the volume expansion of the MoO2.

Recently, Sun et al. reported on a hierarchical graphene–MoO2

structure which shows good cycling performance for up to 70

cycles.46 In this work, we report the facile synthesis of a gra-

phene–MoO2 composite, where two distinct morphologies were

obtained. Our synthesis method comprises a simple solution

mixing of precursors and subsequent thermal reduction, in which

samples were prepared in gram-scale quantities. Through

adjusting the ratio of precursors, a nanostructured graphene–

MoO2 composite with two different morphologies was syn-

thesised, namely a clustered agglomerate and 2-dimensional
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nanosheets anchored with MoO2 nanoparticles. In addition, to

the best of our knowledge, this is the first work investigating the

relationship between the graphene–MoO2 ratio and the lithium

storage performance.

2. Experimental methods

2.1 Synthesis of graphene oxide

Graphene oxide was prepared using a procedure similar to that

described in our previous works.23,26,47 In brief, 10 g of natural

graphite (Sigma Aldrich), 5 g of K2S2O8 (Sigma Aldrich), and 5 g

of P2O5 (Sigma Aldrich) were added to 30 ml concentrated

H2SO4 (Sigma Aldrich). The solution was heated to 80 �C and

thermally isolated for 6 hours. The solution was then carefully

diluted with de-ionised water, vacuum filtered, and washed until

the rinse water pH became neutral. The filtrate was dried under

vacuum at 40 �C overnight. The pre-oxidised graphite was then

oxidised using the Hummers method. 2 g of pre-oxidised graphite

and 1 g of NaNO3 (Sigma Aldrich) were added to 46 ml H2SO4

cooled to 0 �C in an ice bath. 6 g of KMnO4 (Sigma Aldrich) was

gradually added to the solution with vigorous stirring. The

temperature was carefully monitored to not exceed 20 �C. The
mixture was removed from the ice bath and heated at 35 �C for 2

hours. After that, 92 ml of de-ionised water was slowly added to

the mixture. After 15 minutes, 140 ml of warm water was added

in to terminate the reaction. 30% hydrogen peroxide was added

dropwise until the solution turned bright yellow and the bubbling

stopped. The mixture was then centrifuged and washed with

warm water until the pH of the upper layer was neutral. Then,

graphite oxide was re-dispersed in water and ultrasonicated at

40% amplitude for 2 hours. Finally, a dark brown solution was

obtained and was centrifuged at 3000 rpm to remove un-exfoli-

ated graphite oxide. The graphene oxide solution obtained was at

a concentration of 5 mg ml�1.

2.2 Synthesis of graphene–MoO2

Graphene–MoO2 composites were synthesized by a simple mix-

ing and reduction process, as described in Fig. 1. A calculated

amount of phosphomolybdic acid hydrate (PMA, Sigma

Aldrich) was added to the 5 mg ml�1 graphene oxide (GO)

solution, which was sonicated for 30 minutes and left to dry in a

Petri dish at 40 �C overnight. The resultant waxy solid was

collected, placed on a quartz boat, and then heated in a tube

furnace at 500 �C for 2 hours under 200 ml min�1 flow of 10% H2

in argon. A total of three samples with different ratios of gra-

phene oxide to phosphomolybdic acid were synthesized, namely,

GM13 (1 g GO and 3 g PMA), GM11 (1 g GO and 1 g PMA),

and GM31 (3 g GO and 1 g PMA). In each synthesis the amounts

of samples that were collected are about 1.7 g for GM13 and

GM31, and about 0.85 g for GM11. The syntheses have been

repeated at least twice. Graphene and MoO2 samples were

prepared using the same method for comparison, and they are

herein denoted as ‘‘pure-graphene’’ and ‘‘pure-MoO2’’.

2.3 Characterisation

Electrochemical characterisation of the samples was conducted

in 2032-type coin cells. The samples were firstly mixed thor-

oughly with acetylene black and polyvinylidene difluoride in an

8 : 1 : 1 ratio, respectively. N-Methyl-2-pyrrolidone was added

dropwise to the mixture to form a uniform slurry, which was then

coated onto 1 cm2 pieces of copper foil. Then, the resultant

electrodes were left to dry overnight in a vacuum oven at 80 �C.
The electrodes were then pressed under approximately 200 kg

cm�2 pressure before being assembled in an argon filled glove

box. Lithium foil was used as a counter-electrode, Celgard

polypropylene membranes were used as separators, and 1 M

LiPF6 in ethylene carbonate and diethyl carbonate (1 : 1 v/v) was

used as the electrolyte. All the cells were tested in the voltage

window of 0.01 to 3.0 V (vs. Li/Li+). The scan rate used for the

cyclic voltammetry (CV) test is 0.1 mV s�1.

Galvanostatic charge–discharge tests were performed on a

Land Battery Tester, and CV was performed on a CHI 660

electrochemistry workstation. X-ray diffraction (XRD) of the

samples was performed on a GBC MMA facility; transmission

electron microscopy (TEM) of the samples was performed on a

JEOL 2011 instrument; scanning electron microscopy (SEM)

was performed on a JEOL 7500; thermo-gravimetric analysis

(TGA) was performed on a Mettler Toledo TGA; and Raman

spectroscopy was performed on a JY HR 800 spectrometer with

a 632.81 nm HeNe laser.

3. Results and discussion

TGA analysis was performed on all the samples to determine the

actual weight ratios. All samples were heated in air at a rate of

10�C min�1. Weight losses of the samples are plotted against

temperature in Fig. 2(a), and the weight ratios from TGA are

tabulated in Table S1.† GM13, GM11 and GM31 contained

22 wt%, 40 wt% and 64 wt% of graphene respectively. For the

pure-MoO2 sample, a 10% weight increase was observed starting

from 300 �C, where MoO2 is oxidised to MoO3. A slight weight

loss was recorded below 120 �C for the pure-graphene sample,

which can be attributed to the loss of absorbed moisture. The

decomposition of graphene in air started at 500 �C, where a sharp
drop in weight can be observed. As for the composite samples,

similar patterns were observed, with a slight weight loss occur-

ring at low temperature (<120 �C), followed by decomposition of

the graphene (>400 �C) and a plateau after 600 �C. In addition,

the weight increase indicative of the oxidation of MoO2 toMoO3

was not observed from the TGA plots for the graphene–MoO2

composite samples. The black powder that we have initially put

into the platinum crucible turned white at the end of the analysis.

This is an indication that MoO2 (pure-MoO2 is dark blue in

colour) was oxidized and the weight remaining after 600 �C is

indicative of MoO3. The white powders were also tested on the
Fig. 1 Schematic representation of the synthesis procedure for gra-

phene–MoO2 composite.

This journal is ª The Royal Society of Chemistry 2012 J. Mater. Chem., 2012, 22, 16072–16077 | 16073
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XRD to confirm the MoO3 phase. A possible explanation is the

masking of weight increase due to oxidation of MoO2 to MoO3

by the weight loss of graphene decomposition at the same

temperature region. It should be noted, however, that increasing

the amount of MoO2 in the sample lowers the decomposition

temperature of the graphene. This might be due to the catalytic

effect of molybdenum oxides during the decomposition process.

Similar results have been reported previously for metal oxide–

graphene and metal oxide–carbon composites.48–50 Nevertheless,

further investigation is required to verify this phenomenon.

X-ray diffraction was performed to identify the composition of

the samples, and the diffraction patterns are plotted in Fig. 2(b).

The pure-MoO2 sample shows sharp peaks that match mono-

clinic phase MoO2 (ICDD 32-0671), which belongs to the P21/n

(no. 14) space group. It should be noted that as the ratio of

graphene increases, theMoO2 peaks appear more broadened and

the intensity decreases. This is an indication of a decrease in the

crystallite size of MoO2. In addition, a much broadened (001)

reflection of MoO2 is observed in the diffraction pattern of

GM31. This can be associated with the lower crystallinity, and

larger amount of graphene (>50 wt%) in the samples. Inspection

of the diffraction pattern of the pure-graphene sample shows

broad humps, which can be indexed to the (002) and (100)

reflections of graphite.

To further investigate the composition, the samples were

characterised by Raman spectroscopy. The spectrum of the pure-

MoO2 sample in Fig. 2(c) shows several peaks which are char-

acteristic of MoO2.
51 The spectrum of the graphene sample

shows two major peaks at 1322 cm�1 and 1590 cm�1, which

represent the D and G bands, respectively.7,23 On the other hand,

spectra of the composite samples show slight shifts towards

higher wave numbers. The D and G band maxima are at 1336

cm�1 and 1601 cm�1 respectively. In addition, the peaks associ-

ated with MoO2 were not observed in the spectrum of the

composites. Therefore, fresh samples were analysed again with

minimal laser exposure, while limiting the spectral range to below

1000 cm�1. As can be seen from Fig. 2(d), the spectrum of the

pure-MoO2 sample does not show any variation from the

previous scan. In contrast, the spectra of the composite samples

show peaks that do not match those of the pure-MoO2. This is

due to the nanosize nature of the MoO2 particles in the hybrid

samples, which are more susceptible to oxidation by laser irra-

diation than larger particles. This phenomenon has been repor-

ted by Camacho-Lopez et al., and it is associated with oxidation

of MoO2 to MoOx by laser irradiation.52

The surface morphology of the samples was characterised

using SEM, and the micrographs are presented in Fig. 3. Sample

GM31 (Fig. 3(a)) shows a similar structure to the corrugated

pure-graphene sample (Fig. S1(c)†), while sample GM13

(Fig. 3(g)) shows a particle like structure similar to that of the

pure-MoO2 (Fig. S1(a)†). A combination of corrugated sheets

and agglomerated particles can be observed on the surface of

GM11 (Fig. 3(d)). TEM was used to further study the

morphology of the samples. The graphene sheets of sample

GM31 (Fig. 3(b)) appear smooth. Energy dispersive X-ray

spectroscopy (EDS) was performed on the GM31 sheets to map

the molybdenum element, and the results are presented in

Fig. S2.† Elemental mapping of the sheets shows the element Mo

distributed across all the areas of the sheets. Using high resolu-

tion TEM (HRTEM), the MoO2 nanoparticles were resolved,

and an image is presented in Fig. 3(c). The particle size is about 2

� 0.5 nm (from 50 different particles in 3 different areas), and the

lattice spacing was measured to be 0.24 nm, corresponding to the

d-spacing of the (�211) plane. Graphene sheets of a few layer in

thickness can also be seen from the HRTEM image, and the d-

spacing (0.36 nm) of the (002) plane of the graphene is also

marked. A TEM micrograph of GM11 is shown in Fig. 3(e),

where the graphene sheets are densely populated by MoO2

nanoparticles. A selected area electron diffraction (SAED) image

is also presented in the inset of Fig. 3(e), and the diffuse rings can

Fig. 2 (a) Thermogravimetric analysis of the samples in air with a heating rate of 10�C per minute; (b) X-ray diffraction patterns of all the samples; (c)

Raman spectra from 100 cm�1 to 2000 cm�1; and (d) Raman spectra from 100 cm�1 to 1000 cm�1 with minimal laser exposure time.

16074 | J. Mater. Chem., 2012, 22, 16072–16077 This journal is ª The Royal Society of Chemistry 2012
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be indexed to the (�111) and (�312) planes. When investigated

under HRTEM, the nanoparticles (2.5 � 0.5 nm) can be seen to

be covering the surfaces of the graphene sheets. The lattice

spacing of the particles and of the sheets can be related to the d-

spacing of the (�211) plane of MoO2 and the (002) plane of gra-

phene, respectively, as indicated in Fig. 3(f). Both sample GM31

and sample GM11 show a 2-dimensional morphology of gra-

phene sheets, with MoO2 nanoparticles anchored on the surface.

There could be two explanations to the driving force for

anchoring MoO2 particles onto graphene sheets. The first is the

electrostatic attraction between the oxygen functional group and

the molybdenum ions. There are other reports on metal oxide

nanoparticles anchored on graphene sheets and the electrostatic

attraction was believed to be the main driving force.23,24,31

Secondly, phosphomolybdic acid is known to spontaneously

form a thin layer on carbon, pyrolytic graphite and carbon

nanotubes.53–55 The proximity of the precursors will encourage

anchoring of MoO2 particles on graphene sheets after thermal

reduction. On the other hand, sample GM13 (Fig. 3(h)) shows

large agglomerated particles with graphene sheets. Unlike the 2-

dimensional morphology of GM11 and GM31, GM13 is highly

aggregated and forms large clusters with the graphene sheets. We

could not determine the average particle size due to the aggre-

gation. The corresponding SAED pattern of the image is shown

in the inset of Fig. 1(h), where the rings can be indexed to the

monoclinic MoO2 phase, which is consistent with the XRD

results. The sample was then investigated at higher magnifica-

tion, and the micrograph is presented in Fig. 3(i). A large crystal

of MoO2 (>30 nm) can be seen in the image, and the lattice

spacing was measured as 0.24 nm, which corresponds to the (�211)

plane of MoO2. Graphene sheets and smaller particles of MoO2

(3 nm) can also be seen in the micrograph.

Lithium storage properties of the graphene–MoO2 composites

were investigated using the galvanostatic charge–discharge

method. The charging capacity of the samples at 200 mA g�1 over

50 cycles is plotted in Fig. 4(a). Among the composite samples,

GM13 exhibited the highest capacity of 640 mA h g�1, while

GM31 exhibited the lowest capacity of 380 mA h g�1, with GM11

retaining 510 mA h g�1 after 50 cycles. The differences in capacity

are mainly due to the content of MoO2 in the samples. This is

because the capacity of pure-MoO2 is higher than that of pure-

graphene. All three composite samples show better cycling

stability compared to the pure-MoO2 sample, and this can be

attributed to the buffering effect of the graphene sheets, which

prevents any serious pulverisation of MoO2. In addition, the

interesting feature of capacity increase can be observed for the

sample GM13 and the pure-MoO2 in the initial cycles. This

phenomenon can be related to the electrochemical milling effect

which occurs during lithium reactions with transition metal

oxides. It can also be seen as an activation process, where more

active sites inside the particles can be accessed by the lithium ions

after the size of individual particles is reduced through electro-

chemical cycling. Samples GM11 and GM31 do not show any

activation trend, due to the smaller particle size (<3 nm; Fig. 3(c)

and (f)). The composite samples were further tested for cycling

performance at higher rates, as shown in Fig. 4(b). At 1.0 A g�1,

sample GM13 showed the highest capacity (480 mA h g�1) after

100 cycles. Samples GM11 and GM31 retained 340 mA h g�1 and

270 mA h g�1, respectively, under the same conditions. The

cycling tests at 1.0 A g�1 also show the same trend as the tests at

0.2 A g�1, and this confirms that the capacity of the material

depends mainly on the composition.

The voltage profiles of all the samples tested at low rates are

presented in Fig. S3,† and the insets of the figures are the

Fig. 3 Scanning electron micrographs of (a) GM31, (d) GM11, and (g) GM13. Transmission electron micrographs of (b and c) GM31, (e and f) GM11,

and (h and i) GM13. The inset of (c) is the enlarged image of the area indicated by the white ring; insets of (e) and (h) are the corresponding electron

diffraction patterns.

This journal is ª The Royal Society of Chemistry 2012 J. Mater. Chem., 2012, 22, 16072–16077 | 16075
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coulombic efficiencies over 50 cycles. Pure-MoO2 shows the

highest first cycle efficiency (76%), where the irreversible reac-

tions are mainly due to the formation of the solid electrolyte

interphase (SEI) layer. On the other hand, pure-graphene shows

the lowest coulombic efficiency (58%) in the first cycle due to the

SEI formation and other irreversible lithium reactions with

defects and nanopores in the corrugated structure.7 As expected,

the initial coulombic efficiencies of the composite samples are

between those of the pure-graphene and the pure-MoO2 samples.

The efficiencies recorded for GM13, GM11, and GM31 are 75%,

68%, and 60%, respectively.

The lithium reaction mechanism can be interpreted from the

voltage profiles of each sample. However, for better under-

standing of the electrochemical reactions, cyclic voltammetry of

the samples was conducted at a slow scan rate of 0.1 mV s�1, and

the voltammograms are presented in Fig. S4.† The lithium

reaction of the pure-MoO2 sample can be observed from

Fig. S4(e).† At the first discharge, several broad humps appear

from 1.5 V to 0.01 V, which can be attributed to the lithium

reaction with MoO2 and the formation of the SEI. From the

second cycle, two distinct redox couples at 1.25 V/1.5 V and

1.5 V/1.75 V can be observed, which are highly reversible. They

can be attributed to the lithium reaction with MoO2, which is

accompanied by the monoclinic–orthorhombic–monoclinic

phase transition.32,46 For all three composite samples, a broad

hump centred around 1.5 V during charging, which may corre-

spond to the lithium reaction with MoO2, and a sharp peak

indicating lithium intercalation into graphene in the low voltage

region during discharging were observed from the CV profiles.

These results are consistent with the voltage profiles (Fig. S3†), as

no obvious plateaus are observed for the composite samples. One

of the possibilities that may contribute to the absence of sharp

redox peaks corresponding to lithium reactions with MoO2 is the

smaller particle size and the low crystallinity, as indicated from

the TEM analysis. Furthermore, the CV of the pure-MoO2 at the

50th cycle shows a similar profile to those of the composite

samples. The reduction in particle size and crystallinity may be

due to the effects of electrochemical milling, which has been

previously studied. Furthermore, the three composite samples

were tested for rate capabilities, as shown in Fig. 4(c), and the

capacity retention plot is shown in the inset. At the lower rates of

0.5 A g�1 and 1.0 A g�1, sample GM13 exhibited the highest

specific capacity, while at 1.5 A g�1, 2.0 A g�1, 2.5 A g�1, and

3.0 A g�1, sample GM11 exhibited the highest specific capacity.

As for the capacity retention, both GM13 and GM11 showed the

same percentage for 1.0 A g�1. At higher rates, GM11 had higher

capacity retention compared to GM13. This phenomenon is

most likely due to the higher graphene content in GM11, which

contributes to more efficient electron transfer to the active

material. In addition, the smaller MoO2 particle size also reduces

the lithium-ion pathways into the material. The same pattern can

also be observed when comparing GM11 and GM31 from 0.5 A

g�1 to 3.0 A g�1, where sample GM31 has superior capacity

retention. In addition, all three samples showed good capacity

recovery when the rate was lowered to 0.2 A g�1. Based on the

experimental results, we found that the amount of graphene

present in each composite sample plays a crucial role in deter-

mining the electrochemical performance and morphology of the

sample. With a lower graphene ratio (GM13), the nanoparticles

in the composite are larger and aggregated. The capacity is the

highest, however, when the sample is cycled at low rates due to

the higher contribution from MoO2. For the samples with a

higher ratio of graphene in the composite, the MoO2 particles

became smaller (<3 nm) and were found to be anchored on the

surface of the graphene sheets. Due to the smaller particle size,

better distribution, and higher content of graphene, the rate

performances of GM11 and GM31 are superior when compared

to GM13. Nevertheless, sample GM13 is a more suitable

composite for use as a Li-ion battery anode material due to its

higher capacity. Although the capacity retention is the poorest,

the capacity at 2.0 A g�1 (380 mA h g�1) is still comparable to that

of GM11, which is consistent with previously reported work on

MoO2–carbon systems,39–46 and the theoretical capacity of

graphite, which is the current anode material used in commercial

Li-ion cells.

Fig. 4 (a) Cycling performance of the graphene–MoO2 samples at 0.2 A

g�1; (b) cycling performance of the samples at 1.0 A g�1; and (c) rate

capability of the samples up to 3.0 A g�1; the inset of (c) is the capacity

retention of the samples at varying current densities.
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4. Conclusions

In summary, we have prepared several graphene–MoO2

composites through a facile synthesis method. When the gra-

phene ratio in the material was higher, the samples showed 2-

dimensional graphene sheets with MoO2 nanoparticles less than

3 nm in size anchored to them. When the ratio of graphene was

lower, the sample showed an aggregated morphology. Investi-

gation of the electrochemical performance of the graphene–

MoO2 composites reveals that the sample with the highest MoO2

ratio (GM13) has higher specific capacity and good cycling

performance at low rates. Although the capacity retention of

GM13 is poorer compared to the other composite samples, the

specific capacity at 2.0 A g�1 (380 mA h g�1) is comparable to that

of the commercial graphite anode material.

Acknowledgements

This work was funded by an Australian Research Council (ARC)

Discovery Project (DP1094261). The authors would like to thank

Dr Tania Silver at the University of Wollongong for critical

reading of the manuscript. In addition, the authors acknowledge

use of facilities within the UOW Electron Microscopy Centre.

Notes and references

1 B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928–
935.

2 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi,
J. P. Lemmon and J. Liu, Chem. Rev., 2011, 111, 3577–3613.

3 M. Armand and J. M. Tarascon, Nature, 2008, 451, 652–657.
4 E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and I. Honma,Nano
Lett., 2008, 8, 2277–2282.

5 P. Guo, H. Song and X. Chen, Electrochem. Commun., 2009, 11,
1320–1324.

6 C. Wang, D. Li, C. O. Too and G. G. Wallace, Chem. Mater., 2009,
21, 2604–2606.

7 G. Wang, X. Shen, J. Yao and J. Park, Carbon, 2009, 47, 2049–2053.
8 C.-M. Park, J.-H. Kim, H. Kim and H.-J. Sohn, Chem. Soc. Rev.,
2010, 39, 3115.

9 Z. P. Guo, E. Milin, J. Z. Wang, J. Chen and H. K. Liu,
J. Electrochem. Soc., 2005, 152, A2211–A2216.

10 H. K. Liu, Z. P. Guo, J. Z. Wang and K. Konstantinov, J. Mater.
Chem., 2010, 20, 10055–10057.

11 Z. P. Guo, Z. W. Zhao, H. K. Liu and S. X. Dou, Carbon, 2005, 43,
1392–1399.

12 D. Deng,M. G. Kim, J. Y. Lee and J. Cho,Energy Environ. Sci., 2009,
2, 818–837.

13 N.-S. Choi, Y. Yao, Y. Cui and J. Cho, J. Mater. Chem., 2011, 21,
9825–9840.

14 M.-H. Park, Y. Cho, K. Kim, J. Kim, M. Liu and J. Cho, Angew.
Chem., Int. Ed., 2011, 50, 9647–9650.

15 M. F. Hassan, Z. P. Guo, Z. Chen and H. K. Liu, J. Power Sources,
2010, 195, 2372–2376.

16 P. Balaya, H. Li, L. Kienle and J. Maier,Adv. Funct. Mater., 2003, 13,
621–625.

17 L. Yuan, Z. P. Guo, K. Konstantinov, P. Munroe and H. K. Liu,
Electrochem. Solid-State Lett., 2006, 9, A524–A528.

18 P. Zhang, Z. P. Guo andH. K. Liu,Electrochim. Acta, 2010, 55, 8521–
8526.

19 P. Zhang, Z. P. Guo, Y. Huang, D. Jia and H. K. Liu, J. Power
Sources, 2011, 196, 6987–6991.

20 A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183–191.
21 D. Li and R. B. Kaner, Science, 2008, 320, 1170–1171.

22 D. Li, M. B. Mueller, S. Gilje, R. B. Kaner and G. G. Wallace, Nat.
Nanotechnol., 2008, 3, 101–105.

23 K. H. Seng, Z. P. Guo, Z. X. Chen and H. K. Liu, Adv. Sci. Lett.,
2011, 4, 18–23.

24 G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim,
J. Mater. Chem., 2009, 19, 8378–8384.

25 J. K. Lee, K. B. Smith, C. M. Hayner and H. H. Kung, Chem.
Commun., 2010, 46, 2025–2027.

26 L. Li, Z. Guo, A. Du and H. Liu, J. Mater. Chem., 2012, 22, 3600–
3605.

27 C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li and
H. Liu, Carbon, 2012, 50, 1897–1903.

28 S.-M. Paek, E. Yoo and I. Honma, Nano Lett., 2009, 9, 72–75.
29 D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang,

L. V. Saraf, J. Zhang, I. A. Aksay and J. Liu,ACSNano, 2009, 3, 907–
914.

30 H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson,
Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 2010, 132, 13978–
13980.

31 Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li
and H.-M. Cheng, ACS Nano, 2010, 4, 3187–3194.

32 J. R. Dahn and W. R. McKinnon, Solid State Ionics, 1987, 23, 1–7.
33 L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu and R. Holze, J. Power

Sources, 2008, 179, 357–360.
34 L. C. Yang, Q. S. Gao, Y. H. Zhang, Y. Tang and Y. P. Wu,

Electrochem. Commun., 2008, 10, 118–122.
35 Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y.-S. Hu, K. R. Heier, L. Chen,

R. Seshadri and G. D. Stucky, Nano Lett., 2009, 9, 4215–4220.
36 D. Koziej, M. D. Rossell, B. Ludi, A. Hintennach, P. Novak,

J.-D. Grunwaldt and M. Niederberger, Small, 2011, 7, 377–
387.

37 B. Guo, X. Fang, B. Li, Y. Shi, C. Ouyang, Y.-S. Hu, Z. Wang,
G. D. Stucky and L. Chen, Chem. Mater., 2012, 24, 457–463.

38 Y. G. Liang, S. J. Yang, Z. H. Yi, J. T. Sun and Y. H. Zhou, Mater.
Chem. Phys., 2005, 93, 395–398.

39 Y. Sun, X. Hu, J. C. Yu, Q. Li, W. Luo, L. Yuan, W. Zhang and
Y. Huang, Energy Environ. Sci., 2011, 4, 2870.

40 Q. Cao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu and Y. I. Tang,
J. Mater. Chem., 2010, 20, 2807–2812.

41 Z. Wang, J. S. Chen, T. Zhu, S. Madhavi and X. W. Lou, Chem.
Commun., 2010, 46, 6906–6908.

42 W. Luo, X. Hu, Y. Sun and Y. Huang, Phys. Chem. Chem. Phys.,
2011, 13, 16735–16740.

43 L. Zhou, H. B. Wu, Z. Wang and X. W. Lou, ACS Appl. Mater.
Interfaces, 2011, 3, 4853–4857.

44 Y. Sun, X. Hu, W. Luo and Y. Huang, J. Mater. Chem., 2012, 22,
425.

45 Y. Xu, R. Yi, B. Yuan, X. Wu, M. Dunwell, Q. Lin, L. Fei, S. Deng,
P. Andersen, D.Wang andH. Luo, J. Phys. Chem. Lett., 2012, 3, 309–
314.

46 Y. Sun, X. Hu, W. Luo and Y. Huang, ACS Nano, 2011, 5, 7100–
7107.

47 G. Du, K. H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liu and
H. Liu, RSC Adv., 2011, 1, 690–697.

48 F. Pico, E. Morales, J. A. Fernandez, T. A. Centeno, J. Ibanez,
R. M. Rojas, J. M. Amarilla and J. M. Rojo, Electrochim. Acta,
2009, 54, 2239–2245.

49 J. T. Zhang, J. Z. Ma, J. W. Jiang and X. S. Zhao, J. Mater. Res.,
2010, 25, 1476–1484.

50 J. T. Zhang, J. W. Jiang and X. S. Zhao, J. Phys. Chem. C, 2011, 115,
6448–6454.

51 M. Dieterle and G. Mestl, Phys. Chem. Chem. Phys., 2002, 4, 822–
826.

52 M. A. Camacho-Lopez, L. Escobar-Alarcon,M. Picquart, R. Arroyo,
G. Cordoba and E. Haro-Poniatowski, Opt. Mater., 2011, 33, 480–
484.

53 M. H. Ge, B. X. Zhong, W. G. Klemperer and A. A. Gewirth, J. Am.
Chem. Soc., 1996, 118, 5812–5813.

54 A. Kuhn and F. C. Anson, Langmuir, 1996, 12, 5481–5488.
55 Z. P. Guo, D. M. Han, D. Wexler, R. Zeng and H. K. Liu,

Electrochim. Acta, 2008, 53, 6410–6416.

This journal is ª The Royal Society of Chemistry 2012 J. Mater. Chem., 2012, 22, 16072–16077 | 16077

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

W
ol

lo
ng

on
g 

on
 0

7 
D

ec
em

be
r 

20
12

Pu
bl

is
he

d 
on

 2
5 

Ju
ne

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2J
M

32
82

2D

View Article Online

http://dx.doi.org/10.1039/c2jm32822d

	Facile synthesis of graphene-molybdenum dioxide and its lithium storage properties
	Recommended Citation
	Authors

	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...

	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...
	Facile synthesis of graphenetnqh_x2013molybdenum dioxide and its lithium storage propertiesElectronic supplementary information (ESI) available: SEM...


