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Abstract 

Single site catalysts can present high activity and selectivity in many catalytic reactions. The synthesis 

of these materials by impregnation from strongly oxidising aqueous solutions or pH-controlled 

deposition often leads to low metal loadings or a range of metal species. Here, we demonstrate that 

simple impregnation of the metal precursors onto activated carbon from a low boiling point, low polarity 

solvent, such as acetone, results in catalysts with an atomic dispersion of cationic metal species. We 

show the generality of this method by producing single site Au, Pd, Ru and Pt catalysts supported on 

carbon in a facile manner. With single site Au/C being validated commercially to produce vinyl 

chloride, we show this facile synthesis method can produce effective catalysts for acetylene 

hydrochlorination in the absence of highly oxidising acidic solvents.  

 

Table of Content text 

Acetylene hydrochlorination using Au/C is an example of a large-scale industrial process that uses 

single atom catalysts. We show that single atom catalysts can be prepared by impregnation of a metal 

salt from acetone with comparable activity to catalysts prepared using acidic and oxidising solvents or 

additional ligands. 
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The development of heterogeneous catalysts containing stabilised single cationic metal species has 

resulted in materials that have high metal utilisation, increased selectivity and high efficiency.1,2 

Compared to nanoparticle catalysts in reactions such as alkyne hydrogenation3,4, C-C coupling5 and 

numerous electrochemical processes,6,7 single site catalysts (SSCs) have promising reactivity. The facile 

synthesis of these materials is crucial to fully exploit their potential on a larger scale. While many 

heterogeneous catalysts contain a varied population of metal nanostructures including nanoparticles, 

clusters and atomic species,8 the facile targeted synthesis of isolated metal atoms remains a challenge 

as methods are not currently readily scalable for commercial application.9-11 . 

Many studies have implicated cationic Au as the active species for acetylene hydrochlorination and 

hence these materials are an important example of SSCs.15 Currently, 13 Mtpa of VCM are produced 

by acetylene hydrochlorination using HgCl2 on activated carbon, which poses significant environmental 

concerns as up to 0.6 kg Hg is lost per tonne of VCM produced.12 The recently ratified Minamata 

convention (http://www.mercuryconvention.org/)  dictates that all new VCM plants must use mercury 

free catalysts and in the near future all industrial plants must switch to mercury free alternatives. 

Recently Au/C has been validated commercially as a replacement for the existing catalyst systems,12,13 

and the active species is an atomically dispersed cationic gold chloride.14 Au SSCs have been prepared 

using aqua regia as solvent, but lack stability under reaction conditions,15 but using an aqueous Au-

thiosulfate complex leads to a stable potential Au SCC for this process.  

In this study, we show that it is possible to prepare highly dispersed metal catalyst materials 

containing Ru, Pd, Pt and Au using a simple methodology in the absence of highly oxidising acidic 

solvents, by impregnation from a low boiling point, low polarity solvent such as acetone. We show that 

gold catalysts prepared in this way have comparable activity for acetylene hydrochlorination to catalysts 

prepared with acidic and oxidising solvents and that previous correlations of the activities with the 

standard electrode potential of the cation can be reproduced with this new preparation method. 

 

Results and Discussion 

 The preparation of SSCs is often carried out in aqueous solutions by deposition or impregnation 

methods.16,17,18 This limits the choice of precursor to water soluble metal salts – preventing the use of 

organometallic metal salts containing organic ligands. In addition, the potential of utilising solvents 

with lower boiling points than water to reduce the catalyst drying temperature could reduce the 

likelihood of sintering of the highly dispersed species. To explore this we initially prepared 1wt% Pd, 

Pt, Ru and Au/C materials through a facile wet impregnation method using Pd, Pt, Ru acetylacetonates, 

which have limited solubility in aqueous solutions, and chloroauric acid as precursors using acetone as 

solvent.  

http://www.mercuryconvention.org/
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Characterisation of the materials by X-ray diffraction, Figure 1a, shows the absence of 

diffraction patterns consistent with metallic or metal oxide crystallites suggesting high metal 

dispersions. In addition, XPS analysis (Figure 1b-d) of the Pt (4f7/2), Pd (3d5/2) and Ru (3d5/2) regions of 

the respective fresh materials suggests that Pt and Pd are present in the +2 oxidation state (with binding 

energies of 73.0 and 337.9 eV respectively) while Ru is in the +3 oxidation state (with binding energy 

of 281.9 eV). This confirms the retention of the expected oxidation state of the metal and suggests 

deposition of the intact acetylacetonates complexes.19, 20 XRD and XPS analysis of the carbon support 

are reported in supplementary figures 1 and 2 which show that the carbon surface contains less than 5 

at% oxygen, mostly C-O-C/C-OH/C=O functional groups. To probe the Au speciation in the fresh Au/C 

we conducted Au L3-edge (11.92 keV) X-ray absorption spectroscopy (XAS). As has been previously 

reported, cationic Au species can undergo significant photoreduction during XPS analysis, leading to 

over representation of Au(0) content in this class of catalyst.21 Due to its lower X-ray absorption cross-

sections at high incident photon energy, XAS can be considered a less destructive technique for highly 

dispered Au-Cl catalysts. Analysis of the normalised white line intensity corresponding to Au 2p3/2 → 

5d primary transitions can be used as a direct probe of 5d occupancy of Au species in the catalyst.14 

Comparison of white line intensity with standards for Au(III) (1.1) and Au(I) (0.6), allows quantitative 

determination of the nature of the cationic Au species present in the catalysts.22,23    

The FT-EXAFS (Figure 1e) analysis of the Au/C materials prepared by acetone impregnation 

reveals an intensity consistent with isolated Au chloride species with no evidence of metallic Au-Au 

interactions, supporting a high dispersion of cationic species. This is confirmed by EXAFS and linear 

combination fitting (LCF) of the XANES region (supplementary figure 3a). The results suggest that the 

metal is cationic with a mixture of Au chloride species with 23% Au(III) : 77% Au(I). EXAFS fitting 

of the fresh Au/C catalyst, using models comprising Au-O, Au-Cl or mixtures of Au-Cl/O were 

compared, with no satisfying fit for anything other than Au-Cl, with a CN of 2.3(1) (supplementary 

figure 3b). Therefore, there is no compelling evidence for Au-O containing speciation or anchoring of 

Au through surface oxygen species. Similar analysis of the Pt L3-edge, Pd K-edge and Ru K-edge 

respectively was carried out. The analysis of the XANES region of the 1wt.%Pd(acac)2/C material 

(supplementary figure  4a) confirms the presence of Pd(acac)2 species with no intensity consistent with 

Pd-Pd interactions in the FT-EXAFS. (supplementary figure 4b). Similar results have been obtained for 

1wt.% Pt(acac)2/C material (supplementary figure  5a and b) and for the 1wt.% Ru(acac)3/C 

(supplementary figure 6a and b), where the acac complex has also been deposited intact. Fitting of the 

Pt, Pd and Ru EXAFS data further proves intact metal complex deposition, with metal-O and metal-C 

CNs and path lengths being comparable to those of metal acac standards (supplementary table 1). 

Characterisation of the 1wt.% Au/C-Acetone catalyst by high angle annular dark field-scanning 

transmission electron microscopy (HAADF-STEM) revealed the Au speciation to be predominatly 

atomically dispersed Au species, as well as some occasional dimeric Au species and sub- nanometer 
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clusters, with no evidence at all of larger Au crystallites. A representative image is shown in Figure 1f, 

which closely resembles the 1wt.% Au/C-aqua regia catalyst extensively studied previously for the 

acetylene hydrochlorination reaction.14 Similar high metal dispersions can be observed in the 

corresponding HAADF-STEM images for the Pd/C, Pt/C and Ru/C catalysts (supplementary figures  

7a-f).   

We conducted systematic studies into Au/C catalyst synthesis by this facile method for the 

acetylene hydrochlorination reaction. The preparation of Au/C catalysts via wet impregnation of 

HAuCl4 from aqueous solution results in Au nanoparticles after the sample has been dried at 140 °C for 

16 h under a flow of N2, which have little activity towards acetylene hydrochlorination.15 The reduction 

of HAuCl4 is facilitated partly by the reducing nature of the carbon support material, which can contain 

oxidisable surface groups, and the reduced stability of HAuCl4 in aqueous solutions according to the 

Au-Cl-H2O Pourbaix diagram.24 As HAuCl4 is highly soluble in many organic solvents, in addition to 

acetone, we prepared catalysts using a wide range of solvents. Supplementary table 2 lists all the 

solvents used in this study, together with their boiling points and polarity.25 Typically, catalysts were 

dried for 16 h at 5 to 10 °C higher than the boiling point under a flow of N2. Wherever possible extra 

dry solvents were used in the preparations (denoted as (dry)).  

Steady state acetylene hydrochlorination activity (GHSV = 17,600 h-1) is reported in Figure 2a 

for catalysts prepared with a series of C1 – C4 alcohols. As the alcohol chain length increased, and 

consequently as the polarity of the solvent decreased, the activity of the catalysts increased, from 3% 

conversion for catalysts prepared in aqueous solvents to a value of 20% conversion for samples prepared 

in C4 alcohols. Ketones such as acetone and 2-butanone, in addition to ethers such as THF, ethyl acetate 

and diethyl ether, were tested to investigate the effect of decreasing the polarity further, resulting in a 

slight increase in conversion to 23 %. The well-studied aqua regia prepared Au/C catalyst gave a steady 

state conversion of 18 %, meaning that the catalysts prepared by simple wet impregnation of HAuCl4 

from low polarity, easy to handle, solvents such as acetone, 2-butanol and THF performed better than 

the catalyst prepared in highly acidic oxidising conditions. All catalysts tested displayed a high 

selectivity to VCM (>99 %). 

The plateau of activity at 20-24 % when decreasing the polarity of the impregnation solvents 

represents a practical limit of dispersion that can be achieved.14 XRD patterns for samples prepared with 

varying solvent polarities are displayed in Figure 2b. Wet impregnation from aqueous solutions results 

in reflections at 2θ angles of 38°, 44°, 64° and 77° which correspond to the face-centred cubic structure 

of metallic Au with an average crystallite size of ca. 20 nm as determined by the Scherrer equation. 

These features are also present in catalyst samples prepared with high polarity solvents, with reflections 

indicating average nanoparticle sizes of 18 to 24 nm. The intensity of these reflections systematically 

decreases as the polarity of the solvent decreases. The samples with the highest activities show very 
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weak or un-detectable diffraction patterns corresponding to metallic Au, indicating high dispersions 

and supporting the hypothesis that Au nanoparticles are not the active species for this reaction.     

As the solvents used are not strongly acidic or oxidising, the reason for the high activity could 

arise from: (i) the hydrophilic/hydrophobic nature of the solvents, providing increased wetting of the 

carbon support materials leading to higher dispersions; (ii) lower drying temperatures preventing Au 

agglomeration; (iii) the complete absence of water in the catalyst preparation; or (iv) stabilisation of the 

Au in high oxidation states in the absence of water. We investigated the use of low polarity solvents 

with high boiling points such as DMF, DMSO and cyclohexanone. Table 1 reports the polarity, boiling 

points and drying temperatures along with acetylene conversion values. While all the catalysts prepared 

with high boiling point (>120 °C) solvents performed better than the catalyst prepared in aqueous 

solution, they were not as active as the samples prepared with low boiling point solvents (<120 °C) 

suggesting that the drying temperature is also a parameter effecting the performance of the catalysts as 

well as the reducibility of the solvent at that specific drying temperature. XRD analysis (supplementary 

figure 8) shows that the catalysts prepared at high drying temperatures contained Au nanoparticles, 

which is consistent with their lower activity. To probe if drying temperature was the only variable 

determining high activity and dispersion, catalysts prepared with acetone were dried at 45, 65 and 140 

°C for 16 h. As reported in Table 1, these catalysts showed comparable activity to the sample prepared 

with acetone dried at 45 °C, which demonstrates that effective catalysts can be prepared with low 

polarity solvents and low drying temperatures. This suggests that it is the increased wettability of the 

impregnation solution on the carbon support, coupled with mild drying conditions that effectively 

anchors single highly dispersed Au species, rather than speciation being solely dictated by the drying 

temperature. Adding increasing amounts of water (5-50 vol.%) to the extra dry acetone decreased the 

activity of the as-prepared catalyst as shown in Figure 2c, until at 50 vol.% the activity resembled that 

of samples prepared in aqueous solution. This measured reduction in activity correlated well with the 

development of reflections from metallic Au in the recorded XRD patterns, (Figure 2d). This confirms 

the negative impact of the presence of water on the preparation of highly dispersed Au catalysts in the 

absence of strong oxidising/acidic agents or strongly co-ordinating ligands.  

A time-on-line study to compare the activity of the low polarity Au/C-acetone catalyst with the 

Au/C-aqua regia material and high polarity Au/C-H2O catalyst, supplementary figure 9, shows the high 

stability of the Au/C-Acetone catalyst under reaction conditions. There is a small (3 %) increase in 

conversion in the first 100 min, indicating a possible minor change in the Au oxidation state and a 

minimal induction period, followed by a further 140 min of steady conversion. The Au/C-aqua regia 

catalyst displays a pronounced induction period due to changes in Au oxidation state, which have been 

previously studied via in situ XAS, resulting in a 15 % difference in conversion over the same time. 

The oxidising aqua regia solvent, which has been used historically in the academic literature, resulted 

in a catalyst with a lower final conversion than that of the more benign acetone-prepared catalyst. This 
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strongly suggests that the likely different functionality of the carbon supports can play a key role in 

determining the induction periods of these catalysts, through either stronger Au anchoring or facilitating 

more facile changes in oxidation state. As noted in previous work,14 the Au present on Au/C-H2O is 

largely unreactive, being predominantly Au(0), hence this catalyst maintains a low (2 %) conversion 

throughout the test. 

We have previously demonstrated that 0.1wt.% Au-S2O3/C catalysts, prepared from gold-(I)-

thiosulphate on carbon extrudates, have high activity and productivity for acetylene hydrochlorination.12 

Catalysts were therefore also prepared at a 0.1wt.% Au loading using HAuCl4 in acetone to compare 

the performance of these materials at low gold loadings. Under testing using undiluted gas feeds (HCl: 

C2H2 = 1.2:1, HCl flow = 60 ml min-1 , C2H2 flow = 50 ml min-1, GHSV = 1737 h-1,  bed volume = 3.8 

ml), the Au-S2O3/C material gave 23% conversion at 130 °C, and a maximum of 56% conversion at 

180 °C. A 0.1wt.% Au/C catalyst prepared from HAuCl4 in acetone gave similar activities (27% 

conversion at 130 °C and 52% at 180 °C) after 24 h of reaction. This is consistent with both materials 

containing highly dispersed gold cations. At 1wt.% loading the Au/C prepared from Au(I) thiosulphate 

also gave comparable performance in acetylene hydrochlorination to the acetone prepared material. 

The X-ray absorption spectra at the Au L3-edge of the Au/C-Acetone catalyst before and after 

reaction for 4 h were recorded, analysed and compared to that for the Au/C-aqua regia catalyst. The 

three Au/C catalysts initially reveal signficantly different post-edge features in comparison to a metallic 

Au foil, Figure 3a. This supports the XRD and STEM analysis that no extended metallic Au structures 

are present in the fresh catalysts prepared with acetone or aqua regia. In particular, the normalised white 

line height of the fresh samples prepared with acetone and aqua regia suggest that both catalysts are a 

mixture of Au(I) and Au(III) species, with the acetone catalyst being slightly more Au(I) rich than the 

comparable samples prepared using  aqua regia, based on a lower normalised white line height intensity 

(ca. 0.66 for Au/C-Acetone and ca. 0.78 for Au/C-aqua regia, Figure 1a). Three different Au standards 

were used to perform a LCF analysis of the Au L3-edge XANES: Au(III) (KAuCl4/[AuCl4]–), Au(I) 

([AuCl2]–), and a Au-foil standard spectra, Figure 3b. The LCF confirms the cationic nature of the Au 

in the acetone derived catalyst, with the Au predominantly existing in the Au(I) oxidation state (77%). 

This is similar in nature to the catalyst prepared using aqua regia albeit with a different distribution of 

Au(I) – (57%) and Au(III) – (43%). After 5 h of use, a small contribution from Au(0) could be detected 

in the Au/C-Acetone catalyst, indicating some minor instability of the cationic Au species. It has been 

postulated that the reduction of Au species is responsible for catalyst deactivation, the stability observed 

in the acetylene hydrochlorination tests suggests that this agglomeration takes place during the heating 

ramp to reaction temperatures and not during the reaction itself. Extended X-ray absorption fine 

structure (EXAFS) data for the fresh Au/C-Acetone and Au/C-aqua regia catalysts (Figure 3c and 

supplementary table 3) had Au-Cl distances and coordination numbers of 2.31(8) Å and 2.58(8) 

respectively, consistent with the mixed Au(III)/Au(I) determined by XANES. A lack of long-range 
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order and no characteristic Au-Au distances were also observed in the EXAFS for both catalysts, when 

compared to the Au foil standard, again in agreement with the XRD and the HAADF-STEM analysis. 

An increase in intensity of the Fourier transform at distances corresponding to those of the Au foil was 

observed in the used catalyst, in conjunction with a decrease in Au-Cl bond length to 2.0(1) Å and 

appearance of a Au-Au CN of 1.6, consistent with the formation of small amounts of Au(0). These 

Au(0) species have previously been demonstrated to be large (>1 nm) and inactive for acetylene 

hydrochlorination.26 LCF analysis of the XANES of the used catalyst (Figure 3b) confirms the presence 

of 14% Au(0). 

To determine the stability of the Au/C-Acetone catalyst, a prolonged reaction was performed. 

After 4 h of reaction, the catalyst was cooled to room temperature under a flow of Ar, left sealed for 16 

h, heated under an Ar flow and then tested under reaction conditions for a further 3 h. The same test 

was performed with the Au/C-aqua regia material for comparison. This test, illustrated in Figure 4, 

shows the stability of the Au/C-Acetone catalyst, maintaining a conversion between 19-20 % for over 

5 h, indicating that after the first 100 min of reaction the Au oxidation states and dispersion remained 

relatively stable. Supplementary figure 10 shows the XRD pattern of the Au/C-Acetone catalyst after 7 

h of reaction, compared with that of the fresh material and the catalyst used for 4 h. The characteristic 

reflections of Au nanoparticles increased slightly in size after 7 h suggesting the slow sintering of the 

catalyst at extended reaction times. Furthermore, due to the lack of catalyst deactivation it is likely that 

this Au(0) forms during the heat-up or initial stages of the reaction before stabilisation.27 In order to 

confirm this point, in situ XRD of the Au/C-Acetone catalyst (supplementary figure 11a) has been 

performed while heating the sample under an inert atmosphere up to 250 °C; Au reflections could be 

observed upon reaching a temperature of 190 °C. A similar analysis was performed on the other 

supported metal catalysts (Pt/C, Pd/C and Ru/C) (supplementary figure11 b, c and d), which 

demonstrated their relative thermal stabilities under an inert atmosphere. To further probe the thermal 

stability of these catalysts, samples prepared with Pd and Ru acetylacetonate in acetone were compared 

to catalysts prepared from the respective chloride procurers in either acidic or aqueous impregnation 

solvents. After heating to 450 °C under a N2 atmosphere XRD (supplementary figure 12) shows that 

the Pd sample remains highly dispersed in the case of the acac/acetone preparation but undergoes 

agglomeration from a highly dispersed catalyst in the case of the chloride containing precursor. In both 

cases Ru was able to be dispersed with high thermal stability in the materials prepared from both 

Ru(acac)3 and RuCl3.   

The correlation in activity of a range of carbon supported metal chlorides with standard 

electrode potential has previously been reported by Liu et al 15 using catalysts prepared with highly 

oxidising and acidic impregnation solvents at reaction temperatures of 180 oC. Analysis of the acetone 

prepared Au catalysts by LCF of XANES spectra (corresponding EXAFS fitting in supplementary table 

4 and correlation between CNs determined by XANES and EXAFS in supplementary figure 13 and 14) 
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at various reaction stages (Figure 5a) shows that the catalyst remains stable upon heating to 180 °C 

under Ar. On exposure to HCl at this temperature an increase in Au(III)-chloride is observed which is 

stable on initial exposure to the acetylene hydrochlorination reagents. After 240 mins, the proportion of 

Au (I) and Au (III) chloride is significantly changed with a minor Au(0) contribution being observed. 

Analysis of the analogous Pd, Pt and Ru catalysts by ex-situ EXAFS (supplementary figure 13 and 

tables 5-7) revealed that the metal acetylacetonates were stable to heating to 180 °C under Ar with no 

indication of metal agglomeration. On introduction of reactants, the acetylacetones were converted to 

dispersed metal chlorides and remain in that state for the 240 min reaction time. HAADF-STEM 

(supplementary figure 15) imaging shows that the isolated cation sites remain intact, apart from a few 

sub-nanometer clusters visible for the Pd/C and the Ru/C samples, and XPS shows that these species 

remain as oxidised metal centers (supplementary figure 16).  As shown in Figure 5b, a linear correlation 

is observed between the steady state productivity and the standard electrode potential, demonstrating 

the generality of this new preparation method in being able to produce analogous catalytic trends to the 

previously reported family of catalysts prepared in highly acidic and oxidising solvents.  

 

Hence we show it is possible to prepare effective Au/C acetylene hydrochlorination catalysts 

consisting of atomically dispersed cationic Au species by a simple wet impregnation method using low 

polarity solvents with low boiling points. This method allows the facile preparation of Au SSCs in 

addition to highly dispersed Ru/C, Pd/C and Pt/C with relatively high metal loadings which allows the 

potential of these materials to be fully exploited by removing the need to deal with highly acidic waste 

during catalyst preparation opening the possibility to produce these catalysts without the need for water 

soluble metal salts.  
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Methods 

Catalyst Preparation 

All carbon-supported gold catalysts were prepared via a wet impregnation method previously 

reported.3 Activated carbon was initially ground to obtain a powder (150 – 200 mesh). The gold 

precursor, HAuCl4·3H2O (Alfa Aesar, 20 mg, assay 49%) was dissolved in the required solvent (2.7 

ml). The gold precursor solution was added dropwise, with stirring, to the activated carbon (0.99 g) in 

order to obtain a catalyst with a final metal loading of 1 wt.%. The resulting powder was dried at 5-10 

°C higher than the boiling point of the solvent used, for 16 h under a flow of N2. The catalysts prepared 

using different solvents were denoted as Au/C-(solvent) and, wherever possible, extra-dry solvents 

sealed in nitrogen were used. The Ru/C, Pt/C and Pd/C catalysts were prepared by the same wet 

impregnation procedure. In this case, Ru(III) acetylacetonate (Aldrich), Pd(II) acetylacetonate (Aldrich) 

and Pt(II) 2,4-pentanedionate (Alfa Aesar) were used as precursors. 

 

Catalyst Testing 

Catalysts were tested for acetylene hydrochlorination in a fixed-bed polyimide (Kapton) 

microreactor (O.D. 6 mm, length 20 cm) contained within a heating block powered by two heating 

cartridges inside the block. The temperature was controlled by a Eurotherm controller with a type K 

thermocouple positioned in the centre of the heater block. C2H2/Ar (5.01% balanced in Ar, BOC) and 

HCl/Ar (5.05% balanced in Ar, BOC) gases were dried, using moisture traps, prior to introduction to 

the reactor. In all cases, the reactor was purged with Ar (99.99% BIP, Air Products) prior to admitting 

the hydrochlorination reaction mixture. The reactor was heated to 200 °C at a ramp rate of 5 °C min-1 

and held at this temperature for 30 min, all under a flow of Ar (50 ml min-1). The reaction gas mixture 

of C2H2/Ar (23.56 ml min-1), HCl/Ar (23.76 ml min-1) and additional Ar (2.70 ml min-1) was introduced 

into the heated reactor chamber containing catalyst (90 mg) at a total gas hourly space velocity (GHSV) 

of ~17,600 h-1, keeping the C2H2: HCl ratio at a constant value of 1: 1.02. Typical time-on-stream 

experiments were conducted for 240 min. The gas phase products were analysed on-line using a Varian 

450 GC equipped with a flame ionisation detector (FID). Chromatographic separation and identification 

of the products was carried out using a Porapak N packed column (6 ft × 1/8″ stainless steel). 100 % 

C2H2 conversion gives a VCM productivity of 35.33 mol kgcat
-1 h-1 under the reaction conditions used. 

The experimental error in acetylene conversion was 1 % for repeat tests. 

 

Catalyst Characterization  

Powder X-ray diffraction (XRD) spectra were acquired using an X’Pert Pro PAN Analytical 

powder diffractometer employing a Cu Kα radiation source operating at 40 keV and 40 mA. The spectra 
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were analysed using X’Pert High Score Plus software. The mean crystallite size of the metallic gold 

nanoparticles, where possible, were determined using the Scherrer equation assuming a spherical 

particle shape and a K factor of 0.89 at the reflection arising from the set of (111) Au planes, at 2θ = 

38°. The diffractograms of the catalysts were compared to the following reference files: Pd (00-001-

1201), PdO (03-065-5065), Pt (01-080-3828), PtO(01-085-0714) and Au(01-071-4614). 

X-ray absorption fine structure (XAFS) spectra for all the Au/C samples were recorded at the 

Au L3 absorption edge, in transmission mode, at the B18 beamline of Diamond Light Source, Harwell, 

UK. The measurements were performed using a QEXAFS set-up with a fast-scanning Si (111) double 

crystal monochromator. The Demeter software package (Athena and Artemis) was used for XAFS data 

analysis of the Au/C absorption spectra in comparison to standards and relative to a Au foil.  

Materials for examination by scanning transmission electron microscopy (STEM) were dry 

dispersed onto a holey carbon TEM grid. These supported fragments were examined using BF- and 

HAADF-STEM imaging modes in an aberration corrected JEOL ARM-200CF scanning transmission 

electron microscope operating at 200kV. This microscope was also equipped with a Centurio silicon 

drift detector (SDD) system for X-ray energy dispersive spectroscopy (XEDS) analysis. 

XPS was carried out using a Thermo Scientific K-alpha photoelectron spectrometer with 

monochromatic Al Kα radiation. The resulting spectra were processed in CasaXPS and calibrated 

against the C(1s) line at 284.7 eV. 

 

Data availability 

 Data supporting the results presented here, including how to access them, can be found in the 

Cardiff University data catalogue at http://doi.org/10.17035/d.2020.0098831512 
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Figure 1 – Characterisation of Ru, Pd, Pt, Au / C catalysts prepared by impregnation of metal 

precursors from acetone. a, X-ray diffraction patterns of the Ru, Pt, Pd and Au catalysts made by wet 

impregnation with dry acetone. b-d, XPS analysis of the Pt 4f7/2, Pd 3d 5/2 and Ru 3d5/2 regions of the 

Pt/C, Pd/C and Ru/C catalysts. e, FT-EXAFS and f, HAADF-STEM image of the 1wt.% Au/C material 

made by wet impregnation with dry acetone. 

Figure 2 – Characterisation and testing of a series of Au/C catalysts prepared by impregnation of 

the metal precursor from different solvents. a, Steady state acetylene conversion of 1wt.% Au/C 

catalysts versus solvent polarity for materials prepared by wet impregnation of HAuCl4 from various 

alcohol (⚫), ketone (▲), ether (⧫) and aqueous solvents (■); the dotted line indicates the activity of the 

conventionally prepared aqua regia catalyst. The experimental error in the measurements was 

calculated as a standard deviation determined by repeated tests b, X-ray diffraction patterns of fresh 

1wt.% Au/C catalysts prepared with these various solvents. c, Steady state acetylene conversion of 

1wt.% Au/C catalysts prepared by wet impregnation of HAuCl4 from extra dry acetone with the addition 

of various amounts of water. d, X-ray diffraction patterns of fresh 1wt.% Au/C catalysts prepared with 

various acetone/water mixtures.  

Test conditions: 90 mg catalyst, 23.5 mL min-1 C2H2, 23.7 mL min-1 HCl and 2.70 mL min-1 Ar, 

temperature 200 °C. 

Figure 3 – Au L3-edge XAS characterisation of the Au/C-Acetone catalyst. a, Au L3-edge XANES 

of 1wt.% Au/C-Acetone catalyst prior to reaction (fresh) and after 5 h of reaction (used), 1wt.% 

Au/C-aqua regia and various Au standards materials (Au foil, Au2O3, KAuCl4/[AuCl4]- and [AuCl2]– 

from difference spectra calculated in reference 23. b, Linear combination fitting of the Au speciation 

from the Au L3-edge XANES of the 1wt.% Au/C-aqua regia (fresh), 1wt.% Au/C-Acetone (fresh) 

and 1wt.% Au/C-Acetone (used) catalysts - Au standards used: Au(III)/[AuCl4]-, Au(I)/[AuCl2]- and 

Au(0)/Au Foil. The error in the Au speciation was calculated by ATHENA during the linear 

combination fitting process.  c, Fourier transform of the k3-weighted χ EXAFS data of 1wt.% Au/C-

Acetone (fresh) and 1wt.% Au/C-Acetone (used), 1wt.% Au/C-aqua regia (fresh) and references 

(KAuCl4, Au2O3 and Au foil). 

Figure 4 – Catalytic performance of the Au/C-Acetone catalyst. Two-day time-on-line acetylene 

hydrochlorination activity profiles of the Au/C-Acetone (▲) and Au/C-aqua regia (■) catalysts.  

Test conditions: 90 mg catalyst, 23.5 mL min-1 C2H2, 23.7 mL min-1 HCl and 2.7 mL min-1 Ar, 

Temperature 200 °C. 

Figure 5 – Characterisation and Testing of Ru, Pd, Pt, Au / C catalysts prepared by impregnation 

of metal precursors from acetone. a, Linear combination fitting (LCF) of the Au speciation from the 

Au L3-edge XANES of the 1wt.% Au/C-acetone catalyst at different stages of its lifetime, (i.e., fresh, 

at different times-on-line and under different gas environments). The error in the Au speciation was 
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calculated by ATHENA during the linear combination fitting process.  b, Correlation between steady 

state activities of acetylene hydrochlorination at 100 min of reaction with the standard electrode 

potential of the constituent catalyst metals. Standard electrode potentials of the metal chloride salts are 

used as sourced from reference 16. The experimental error in the measurements was calculated as a 

standard deviation determined by repeated tests 
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Table 1 – Acetylene conversion values for catalysts prepared with a series of low polarity, high boiling 

point solvents.  

Test conditions: 90 mg catalyst, 23.5 mL min-1 C2H2, 23.7 mL min-1 HCl and 2.7 mL min-1 Ar, 

Temperature 200 °C. 

 

Catalyst Polarity 
(ET(30))24 

Boiling Point (°C) Drying Temperature 
(°C) 

Acetylene 

Conversion (%) 
Au/C-DMSO 45.0 189 195 14 
Au/C-DMF 43.8 154 160 8 

Au/C-Cyclohexanone 40.8 155 160 3 
Au/C-Acetone 42.2 56 45 20 

   65 20 
   140 22 

 

 




