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Abstract 
As users are interacting with a large of mobile apps 
under various usage contexts, user involvements in an 
app design process has become a critical issue. Despite 
this fact, existing apps or app store platforms only 
provide a limited form of user involvements such as 
posting app reviews and sending email reports. While 
building a unified platform for facilitating user 
involvements with various apps is our ultimate goal, we 
present our preliminary work on handling developers’ 
information overload attributed to a large number of 
app comments. To address this issue, we first perform 
a simple content analysis on app reviews from the 
developer’s standpoint. We then propose an algorithm 
that automatically identifies informative reviews 
reflecting user involvements. The preliminary 
evaluation results document the efficiency of our 
algorithm.  
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Introduction 
User involvements in software design have been one of 
the important issues in software engineering [1, 2]. 
Understanding user needs and usage contexts would be 
the key factors in increasing the potential utility/value 
to the end users. For this reason, practitioners often 
perform various forms of user involvements across the 
development lifecycle including customer interviews, 
usability testing, beta deployment, and end user 
support   

However, the widespread use of smartphone apps has 
significantly changed the traditional software 
development environment. App design is mostly utility-
driven, and rapid prototyping with a limited form of 
user involvements is often performed. Further, usage 
patterns of mobile apps are quite unique as opposed to 
existing software (e.g., short session time of mobile 
apps); and usage context also varies widely (e.g., at 
home, on the move). In this environment, we think 
that facilitating user involvements will help the 
developers to better understand user needs and usage 
context.  

Existing apps and app store platforms often rely on a 
passive form of user involvement (e.g., posting app 
reviews in app stores or sending emails to the 
developers). In the case of open source apps, 
sometimes a bug tracking system is used to promote 
participation of grassroots developers (e.g., Bugzilla for 
Firefox for Andriod). This means that user participation 
is mostly passive (i.e., unilateral communication) and 
fragmented (across different app stores and locales). 
Likewise, developers are challenged with a large 
volume of app comment streams (from different app 

stores using heterogeneous devices/OSs, and with 
possibly different languages).  

While building a unified platform for facilitating user 
involvements with various apps is our ultimate goal, as 
a first step, we focus on mitigating developers’ 
information overload attributed to a large number of 
app comments. In the field of software engineering, 
there have been several studies on summarizing bug 
reports in often source software (e.g., Debian) [3, 4], 
but our work differs as we consider end-user feedback 
posted in app stores. In this paper, we investigate how 
developers and users interact within an app store 
environment. We present a method of filtering mobile 
app reviews to reduce the information overload of 
developers.  

Developer-User Interaction 
To get a basic understanding of how developers and 
users interact, we conducted a survey (n=100) on 
user’s motivation and behavior. The survey was 
administered to randomly chosen smartphone users via 
a survey research company. The majority of 
participants are in their 20s (55%), and 22% are under 
20. 18%, 2%, 2% and 1% are in their 30s, 40s, 50s 
and 60s respectively. 40% are males. 

Q1 (common) “How do you react when you want to 
communicate with app designer regarding a mobile 
app?” 
Figure 1 shows that users are more likely to take a 
passive action such as deleting apps rather than to 
perform active actions such as writing an app store 
review or sending an email to the developer. To find 
the reason for this behavior, we asked an additional 
question both for active and passive groups separately. 

Figure 1. “How do you react when 
you want to communicate with app 
designer regarding a mobile app?” 

Figure 2. “Which methods do you use 
to communicate with developer?” 



 

Q2 (active group) “Which methods do you use to 
communicate with developers?” (multiple answer) 
In addition to four original selections, which we derived 
by interviewing graduate students in the authors’ 
department, we allow participants to report any other 
channels in a free-text format, but we didn’t find any 
other channels. As shown in Figure 2, the result reveals 
that the most popular channel is writing app store 
reviews as we expected, but the traditional methods 
like phone calls or BBS are used.  

Q3 (passive group) “What are your reasons for reacting 
passively?” (multiple answer) 
Like the previous question, we gave optional open-
ended text field to find out unknown reason of 
passiveness and we identified ‘tiresome’ from 
comments of four users. As shown in Figure 3, most 
users expected the inquiry would take long time to be 
responded or receive no response. It also indicates that 
a non-negligible portion of recipients were not even 
aware of which channel to use. 

To summarize, users would like to communicate with 
developers using app store reviews. Additionally, the 
reasons why the user passively reacts were mainly due 
to low responsiveness.  

Filter for Classifying App Store Review 
Since per app review in app stores (e.g., Google Play, 
Apple App Store) is not mainly designed for reporting 
bugs as in bug tracking systems, it contains not only 
informative feedback but also simple expressions like a 
user’s sentiment. Due to a large volume of app 
comments, developers spend a significant amount of  
time on checking reviews without any meaningful issue, 
for example “What an awesome app, comes in handy 

so many times a day. thank you”, which is just mere 
expression of satisfaction. In this sense, a filter for 
classifying reviews which are less informative for 
developers could play an important role to save 
developer’s time and energy, which otherwise could be 
used for quality/timely feedback.  

To build a model that filters out uninformative 
comments, we used the following steps: (1) automated 
crawling publicly accessible reviews, (2) manual coding 
sampled reviews to decide whether each review 
contains issues from the developer’s standpoint, (3) 
model construction/training/evaluation using the 
annotated dataset.  

Data Collection  
We collected public reviews of 24,000 applications in 
Google Play. Since Google Play doesn’t provide the 
entire list of apps in search result, we put two digit 
combinations of alphanumeric characters as a search 

Figure 3. “What are your reasons for reacting passively?” 



 

query for building a list of apps. We crawled the 
reviews from November 21 to 28, 2012, and the total 
number of reviews is 1,711,556. Each review contains 
an app’s name, category, rating (in 5-levels), posting 
date, device, title and text. 

Manual Coding by Developers 
We performed preliminary content analysis and derived 
three issue categories as shown in Table 1. The 
categorization was done thoroughly in developers’ 
standpoint because the readers of comments include 
people who are directly involved with software design 
and production. The issues consist of three categories 
as described in Table 1. We then classified 2,800 
reviews into these issue categories and analyzed it in 
terms of rating and word counts to attain some insights 
into the patterns of app reviews.  This data set was 
randomly chosen to avoid bias toward specific 
applications as follows: 20 reviews from 10 applications 
in 14 categories. The categories are determined by the 
raters who have mobile app programming experiences 
more than 1 year.  

The coding results are presented in Figure 4. The 
reason why the sum of occurrences is not the same as 
the original number is that we excluded non-English 
and unreadable comments. The results reveal that 66% 
of reviews (1851 out of 2785) are uninformative for 
developers. The inter-rater agreement with Cohen’s 
Kappa coefficient measured as 0.9025 indicating good 
agreement. 

We also plotted the number of reviews in terms of word 
counts in Figure 6. It shows that there is a significant 
gap between the frequency of the overall comments 

and informative comments with respect to the word 
counts. 

Issue Keyword Count 
To find a set of keywords related to informative 
comments, we firstly ran Latent Dirichlet Allocation 
(LDA) on informative comments. However the result 
was unrecognizable even though it was examined by 
two developers. This means that existing automatic 
topic classifications like LDA cannot be directly used for 
finding informative comments.  The reason why it fails 
is that the length of a comment is too short for 
producing topic keywords (mean=18.27 words). 

Instead we devised a new method of extracting the 
keyword set implying informative comments. As a first 
step, we preprocessed the comment data using Natural 
Language ToolKit (NLTK) [5]: tokenize the word and 
apply stemming in order to clean the word set from 

Category Description 

Functional  
Bug 

Functional bug of an 
app; e.g., “Black 
screen issue on the 
Galaxy S3” 

Functional 
Demand 

Functional demands 
about the features that 
a user wishes to have. 
e.g., “This seriously 
needs a postcode 
search! It’s a must for 
any navigation app. 
Apart from that seems 
to work fine” 

Non-
functional  
Request 

Non-functional request 
or complaint such as 
design and content 
related issues: e.g., 
“We want another car 
and more stages and 
more gas in high way 
map.” 

Figure 4. Distribution of categories including review 
without issue (marked as 'n/a') 



 

review. We define SetIssue as a set of words that appear 
in informative comments, and SetNon-Issue as a set of 
words that appear in uninformative comments. We also 
define the sets’ occurrence functions of a given word as 
occurIssue(word) and occurNon-Issue(word). Thus, we can 
define SetIssue-freq(k) an  SetNon-Issue-freq(k) as follows. 

 SetIssue_freq(k)={word | log(occurIssue(word)) ≥ k × 

log(occuraverage)   and word ⊂ SetIssue} 

 SetNon-Issue_freq(k)={word | log(occurNon-Issue(word)) ≥ 

k × log(occuraverage)   and word ⊂ SetNon-Issue} 

The reason why we apply a log function is that the 
occurrence distribution follows a power-law distribution. 
These two sets stand for the frequent word subsets of 
SetIssue and SetNon-Issue. Then we calculate SetIssue-Only 

which only frequents in SetIssue, but do not frequent in 
SetNon-Issue as follows.  

 SetIssue-Only =  SetIssue_freq(k) - SetNon-Issue_freq(k) 

We empirically chose k = 0.5.  When we chose k = 0.6, 
two coders agree that the result misses some of the 
very important words; e.g.,  ‘complaint’ or ‘trouble’; in 
contrast, when k = 0.4, the result includes too many 
commonly-used words. 

We generate a new measure called Issue Keyword 
Count which indicates how many words a review 

includes within SetIssue-Only. We assume that the more 
the number of informative keywords, the higher the 
value of information. 

Building a model 
Based on the coded data set, we trained a SVM 
classifier to determine whether a given comment is 
informative or not. Since the main goal of our model is 
to reduce developers’ efforts to check all meaningless 
messages, we set our class variable to predict as a 
binary value indicating whether a comment is 
informative, instead of predicting an exact issue 
category. 

For implementation, we used python LIBSVM 3.14 [6]. 
We tested three features, namely rating, word count 
and informative keyword count.   

Evaluation 
We performed a 5-fold cross validation on 2,785 
samples to evaluate the model. Table 2 shows the 
result of our model.  It turns out that the model performs 
very well with high precision and recall. According to the 
prediction result described in Table 2, rating which partly 
represents sentiment and informative keyword count is 
the key feature.  The result also implies that our model 
operates regardless of applications because we sampled 
reviews equally from various applications from every 
category. 

Figure 6. Distribution of word count 

Figure 5. Distribution of rating 



 

SetIssue-Only of our data set  

 ['update', 'text', 'rest', 'through', 
'clos', 'nam', 'slow', 'const', 
'tablet', 'delet', 'brows', 'send', 
'wer', 'going', 'black', '4', 'photo', 
'hap', 'els', 'hat', 'ic', 'crash', 'big', 
'watch', 'disappoint', 'bit', 'thes', 
'restart', 'mod', 'wont', 'bar', 
'bas', 'level', 'button', 'each', 'whil', 
'droid', 'tel', 'back', 'everytim', 
'horr', 'fail', 'wo', 'click', 'er', 
'freez', 'review', 'landscap', 'xper', 
'7', 'rec', 'pls', 'mem', 'screen', 
'plz', 'reason', 'otherw', 'phone', 
'wtf', 'fiv', 'post', 'wait', 'last', 
'turn', 'menu', 'iphon', 'confus', 
'col', 'pop', 'sometim', 'doesnt', 
'miss', 'select', 'smal', 'crap', 
'log', 'support', 'upgrad', 'long', 
'next', 'avail', 'anym', 'interfac', 
'until', 'buy', 'forc', 'screen.', 
'uninstal', 'bug', 'annoy', 
'account', 'hour', 'default', 
'remov', 'un', 'ui', 'ful', 'control', 
'almost', 'lock', 'sad', 'cant', 'rid', 
'seem', 'again', 'end', 'min', 
'receiv', 'siz', 'check', 'ent', 
'useless', 'pag', 'instead', 'complet', 
'poor', 'map', 'though', 'mess', 
'lag', 'paid', 'alert', 'wrong', 'kil', 
'why', 'icon', 'mobl', 'alarm', 'caus', 
'pay', 'latest'] 

* k=0.6, bold words are strongly issue-
related words by two raters 

Table 1. Result of classification (F1 : rating /  F2 : word count 
/ F3 : issue keyword count) 
 
Conclusion and Future Work 
We studied the role of user involvements in mobile app 
development by studying app comments in an app 
store. Our survey results of smartphone users show 
that the most popular interaction channel with 
smartphone users is app review sections in the app 
store, and thus, end users are fairly passive in terms of 
user involvements during the app development lifecycle. 
We also analyzed the content of app comments and 
showed that there are mainly three comment types 
from the developers’ standpoint: functional bugs, and 
functional demands, and non-functional requests. 
Further, to lower the information overload due to a 
large volume of app review streams, we proposed a 
simple approach of automatically identify informative 
comments. Our preliminary analysis results show that 
the method achieves fairly high precision and recall. 

In the future, we plan to propose and implement a 
unified software architecture that can facilitate 
developer-user interactions. We will also improve the 
performance of our model by using better classification 
algorithms, and adding more functions (e.g., topic 
classification).  Further, a longitudinal field study of a 
user-centered design process is needed to better 
understand the importance of user involvements for 
mobile apps. 
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Features Precision Recall F-measure 

Random 0.3512 0.4790 0.4053 

F1 0.8624 0.7306 0.7910 

F2 0.6506 0.4984 0.5644 

F3 0.8698 0.7033 0.7778 

F1+F2 0.8591 0.7795 0.8174 

F1+F3 0.8672 0.8224 0.8442 

F1+F2+F3 0.8981 0.8165 0.8553 


