

Facilitating Developer-User Interactions
with Mobile App Review Digests

Abstract
As users are interacting with a large of mobile apps
under various usage contexts, user involvements in an
app design process has become a critical issue. Despite
this fact, existing apps or app store platforms only
provide a limited form of user involvements such as
posting app reviews and sending email reports. While
building a unified platform for facilitating user
involvements with various apps is our ultimate goal, we
present our preliminary work on handling developers’
information overload attributed to a large number of
app comments. To address this issue, we first perform
a simple content analysis on app reviews from the
developer’s standpoint. We then propose an algorithm
that automatically identifies informative reviews
reflecting user involvements. The preliminary
evaluation results document the efficiency of our
algorithm.

Author Keywords
Mobile apps; app review; comment classification; user
involvements; user-centered design

ACM Classification Keywords
I.5.2 [Design Methodology]: Classifier design and
evaluation; H.1.2 [User/Machine Systems]: Human
factors

Copyright is held by the author/owner(s).

CHI 2013 Extended Abstracts, April 27 – May 02, 2013, Paris, France.

ACM 978-1-4503-1952-2/13/04.

Jeungmin Oh
Department of Knowledge
Service Engineering,
KAIST, Daejeon, Korea
jminoh@kaist.ac.kr

Daehoon Kim
Department of Knowledge
Service Engineering,
KAIST, Daejeon, Korea
daehoonkim@kaist.ac.kr

Uichin Lee
Department of Knowledge
Service Engineering,
KAIST, Daejeon, Korea
uclee@kaist.ac.kr

Jae-Gil Lee
Department of Knowledge
Service Engineering,
KAIST, Daejeon, Korea
jaegil@kaist.ac.kr

Junehwa Song
Department of Computer
Science,
KAIST, Daejeon, Korea
junesong@kaist.ac.kr

Introduction
User involvements in software design have been one of
the important issues in software engineering [1, 2].
Understanding user needs and usage contexts would be
the key factors in increasing the potential utility/value
to the end users. For this reason, practitioners often
perform various forms of user involvements across the
development lifecycle including customer interviews,
usability testing, beta deployment, and end user
support

However, the widespread use of smartphone apps has
significantly changed the traditional software
development environment. App design is mostly utility-
driven, and rapid prototyping with a limited form of
user involvements is often performed. Further, usage
patterns of mobile apps are quite unique as opposed to
existing software (e.g., short session time of mobile
apps); and usage context also varies widely (e.g., at
home, on the move). In this environment, we think
that facilitating user involvements will help the
developers to better understand user needs and usage
context.

Existing apps and app store platforms often rely on a
passive form of user involvement (e.g., posting app
reviews in app stores or sending emails to the
developers). In the case of open source apps,
sometimes a bug tracking system is used to promote
participation of grassroots developers (e.g., Bugzilla for
Firefox for Andriod). This means that user participation
is mostly passive (i.e., unilateral communication) and
fragmented (across different app stores and locales).
Likewise, developers are challenged with a large
volume of app comment streams (from different app

stores using heterogeneous devices/OSs, and with
possibly different languages).

While building a unified platform for facilitating user
involvements with various apps is our ultimate goal, as
a first step, we focus on mitigating developers’
information overload attributed to a large number of
app comments. In the field of software engineering,
there have been several studies on summarizing bug
reports in often source software (e.g., Debian) [3, 4],
but our work differs as we consider end-user feedback
posted in app stores. In this paper, we investigate how
developers and users interact within an app store
environment. We present a method of filtering mobile
app reviews to reduce the information overload of
developers.

Developer-User Interaction
To get a basic understanding of how developers and
users interact, we conducted a survey (n=100) on
user’s motivation and behavior. The survey was
administered to randomly chosen smartphone users via
a survey research company. The majority of
participants are in their 20s (55%), and 22% are under
20. 18%, 2%, 2% and 1% are in their 30s, 40s, 50s
and 60s respectively. 40% are males.

Q1 (common) “How do you react when you want to
communicate with app designer regarding a mobile
app?”
Figure 1 shows that users are more likely to take a
passive action such as deleting apps rather than to
perform active actions such as writing an app store
review or sending an email to the developer. To find
the reason for this behavior, we asked an additional
question both for active and passive groups separately.

Figure 1. “How do you react when
you want to communicate with app
designer regarding a mobile app?”

Figure 2. “Which methods do you use
to communicate with developer?”

Q2 (active group) “Which methods do you use to
communicate with developers?” (multiple answer)
In addition to four original selections, which we derived
by interviewing graduate students in the authors’
department, we allow participants to report any other
channels in a free-text format, but we didn’t find any
other channels. As shown in Figure 2, the result reveals
that the most popular channel is writing app store
reviews as we expected, but the traditional methods
like phone calls or BBS are used.

Q3 (passive group) “What are your reasons for reacting
passively?” (multiple answer)
Like the previous question, we gave optional open-
ended text field to find out unknown reason of
passiveness and we identified ‘tiresome’ from
comments of four users. As shown in Figure 3, most
users expected the inquiry would take long time to be
responded or receive no response. It also indicates that
a non-negligible portion of recipients were not even
aware of which channel to use.

To summarize, users would like to communicate with
developers using app store reviews. Additionally, the
reasons why the user passively reacts were mainly due
to low responsiveness.

Filter for Classifying App Store Review
Since per app review in app stores (e.g., Google Play,
Apple App Store) is not mainly designed for reporting
bugs as in bug tracking systems, it contains not only
informative feedback but also simple expressions like a
user’s sentiment. Due to a large volume of app
comments, developers spend a significant amount of
time on checking reviews without any meaningful issue,
for example “What an awesome app, comes in handy

so many times a day. thank you”, which is just mere
expression of satisfaction. In this sense, a filter for
classifying reviews which are less informative for
developers could play an important role to save
developer’s time and energy, which otherwise could be
used for quality/timely feedback.

To build a model that filters out uninformative
comments, we used the following steps: (1) automated
crawling publicly accessible reviews, (2) manual coding
sampled reviews to decide whether each review
contains issues from the developer’s standpoint, (3)
model construction/training/evaluation using the
annotated dataset.

Data Collection
We collected public reviews of 24,000 applications in
Google Play. Since Google Play doesn’t provide the
entire list of apps in search result, we put two digit
combinations of alphanumeric characters as a search

Figure 3. “What are your reasons for reacting passively?”

query for building a list of apps. We crawled the
reviews from November 21 to 28, 2012, and the total
number of reviews is 1,711,556. Each review contains
an app’s name, category, rating (in 5-levels), posting
date, device, title and text.

Manual Coding by Developers
We performed preliminary content analysis and derived
three issue categories as shown in Table 1. The
categorization was done thoroughly in developers’
standpoint because the readers of comments include
people who are directly involved with software design
and production. The issues consist of three categories
as described in Table 1. We then classified 2,800
reviews into these issue categories and analyzed it in
terms of rating and word counts to attain some insights
into the patterns of app reviews. This data set was
randomly chosen to avoid bias toward specific
applications as follows: 20 reviews from 10 applications
in 14 categories. The categories are determined by the
raters who have mobile app programming experiences
more than 1 year.

The coding results are presented in Figure 4. The
reason why the sum of occurrences is not the same as
the original number is that we excluded non-English
and unreadable comments. The results reveal that 66%
of reviews (1851 out of 2785) are uninformative for
developers. The inter-rater agreement with Cohen’s
Kappa coefficient measured as 0.9025 indicating good
agreement.

We also plotted the number of reviews in terms of word
counts in Figure 6. It shows that there is a significant
gap between the frequency of the overall comments

and informative comments with respect to the word
counts.

Issue Keyword Count
To find a set of keywords related to informative
comments, we firstly ran Latent Dirichlet Allocation
(LDA) on informative comments. However the result
was unrecognizable even though it was examined by
two developers. This means that existing automatic
topic classifications like LDA cannot be directly used for
finding informative comments. The reason why it fails
is that the length of a comment is too short for
producing topic keywords (mean=18.27 words).

Instead we devised a new method of extracting the
keyword set implying informative comments. As a first
step, we preprocessed the comment data using Natural
Language ToolKit (NLTK) [5]: tokenize the word and
apply stemming in order to clean the word set from

Category Description

Functional
Bug

Functional bug of an
app; e.g., “Black
screen issue on the
Galaxy S3”

Functional
Demand

Functional demands
about the features that
a user wishes to have.
e.g., “This seriously
needs a postcode
search! It’s a must for
any navigation app.
Apart from that seems
to work fine”

Non-
functional
Request

Non-functional request
or complaint such as
design and content
related issues: e.g.,
“We want another car
and more stages and
more gas in high way
map.”

Figure 4. Distribution of categories including review
without issue (marked as 'n/a')

review. We define SetIssue as a set of words that appear
in informative comments, and SetNon-Issue as a set of
words that appear in uninformative comments. We also
define the sets’ occurrence functions of a given word as
occurIssue(word) and occurNon-Issue(word). Thus, we can
define SetIssue-freq(k) an SetNon-Issue-freq(k) as follows.

 SetIssue_freq(k)={word | log(occurIssue(word)) ≥ k ×

log(occuraverage) and word ⊂ SetIssue}

 SetNon-Issue_freq(k)={word | log(occurNon-Issue(word)) ≥

k × log(occuraverage) and word ⊂ SetNon-Issue}

The reason why we apply a log function is that the
occurrence distribution follows a power-law distribution.
These two sets stand for the frequent word subsets of
SetIssue and SetNon-Issue. Then we calculate SetIssue-Only

which only frequents in SetIssue, but do not frequent in
SetNon-Issue as follows.

 SetIssue-Only = SetIssue_freq(k) - SetNon-Issue_freq(k)

We empirically chose k = 0.5. When we chose k = 0.6,
two coders agree that the result misses some of the
very important words; e.g., ‘complaint’ or ‘trouble’; in
contrast, when k = 0.4, the result includes too many
commonly-used words.

We generate a new measure called Issue Keyword
Count which indicates how many words a review

includes within SetIssue-Only. We assume that the more
the number of informative keywords, the higher the
value of information.

Building a model
Based on the coded data set, we trained a SVM
classifier to determine whether a given comment is
informative or not. Since the main goal of our model is
to reduce developers’ efforts to check all meaningless
messages, we set our class variable to predict as a
binary value indicating whether a comment is
informative, instead of predicting an exact issue
category.

For implementation, we used python LIBSVM 3.14 [6].
We tested three features, namely rating, word count
and informative keyword count.

Evaluation
We performed a 5-fold cross validation on 2,785
samples to evaluate the model. Table 2 shows the
result of our model. It turns out that the model performs
very well with high precision and recall. According to the
prediction result described in Table 2, rating which partly
represents sentiment and informative keyword count is
the key feature. The result also implies that our model
operates regardless of applications because we sampled
reviews equally from various applications from every
category.

Figure 6. Distribution of word count

Figure 5. Distribution of rating

SetIssue-Only of our data set

 ['update', 'text', 'rest', 'through',
'clos', 'nam', 'slow', 'const',
'tablet', 'delet', 'brows', 'send',
'wer', 'going', 'black', '4', 'photo',
'hap', 'els', 'hat', 'ic', 'crash', 'big',
'watch', 'disappoint', 'bit', 'thes',
'restart', 'mod', 'wont', 'bar',
'bas', 'level', 'button', 'each', 'whil',
'droid', 'tel', 'back', 'everytim',
'horr', 'fail', 'wo', 'click', 'er',
'freez', 'review', 'landscap', 'xper',
'7', 'rec', 'pls', 'mem', 'screen',
'plz', 'reason', 'otherw', 'phone',
'wtf', 'fiv', 'post', 'wait', 'last',
'turn', 'menu', 'iphon', 'confus',
'col', 'pop', 'sometim', 'doesnt',
'miss', 'select', 'smal', 'crap',
'log', 'support', 'upgrad', 'long',
'next', 'avail', 'anym', 'interfac',
'until', 'buy', 'forc', 'screen.',
'uninstal', 'bug', 'annoy',
'account', 'hour', 'default',
'remov', 'un', 'ui', 'ful', 'control',
'almost', 'lock', 'sad', 'cant', 'rid',
'seem', 'again', 'end', 'min',
'receiv', 'siz', 'check', 'ent',
'useless', 'pag', 'instead', 'complet',
'poor', 'map', 'though', 'mess',
'lag', 'paid', 'alert', 'wrong', 'kil',
'why', 'icon', 'mobl', 'alarm', 'caus',
'pay', 'latest']

* k=0.6, bold words are strongly issue-
related words by two raters

Table 1. Result of classification (F1 : rating / F2 : word count
/ F3 : issue keyword count)

Conclusion and Future Work
We studied the role of user involvements in mobile app
development by studying app comments in an app
store. Our survey results of smartphone users show
that the most popular interaction channel with
smartphone users is app review sections in the app
store, and thus, end users are fairly passive in terms of
user involvements during the app development lifecycle.
We also analyzed the content of app comments and
showed that there are mainly three comment types
from the developers’ standpoint: functional bugs, and
functional demands, and non-functional requests.
Further, to lower the information overload due to a
large volume of app review streams, we proposed a
simple approach of automatically identify informative
comments. Our preliminary analysis results show that
the method achieves fairly high precision and recall.

In the future, we plan to propose and implement a
unified software architecture that can facilitate
developer-user interactions. We will also improve the
performance of our model by using better classification
algorithms, and adding more functions (e.g., topic
classification). Further, a longitudinal field study of a
user-centered design process is needed to better
understand the importance of user involvements for
mobile apps.

Acknowledgements
This research was supported by the SW Computing
R&D Program of KEIT (2012,10041313, UX-oriented
Mobile SW Platform) funded by the Ministry of
Knowledge Economy.

References
[1] Michael Gallivan. The user-developer
communication process: a critical case study. Blackwell
Publishing Ltd (2003).
[2] Mark Keil, Erran Carmel. Customer-Developer Links
in Software Development. Communication of the ACM
(1995).
[3] Sarah Rastkar, Gail C. Murphy. Summarizing
software artifacts: a case study of bug reports.
ACM/IEEE International Conference on Software
Engineering (ICSE 2010).
[4] Lotufo, R., Z. Malik, and K. Czarnecki. Modelling
the `Hurried' Bug Report Reading Process to
Summarize Bug Reports. Proceedings of the
International Conference on Software Maintenance
(ICSM 2012).
[5] Natural Language ToolKit (NLTK). http://nltk.org.
[6] C.-C. Chang and C.-J. Lin. LIBSVM : a library for
support vector machines, ACM Transactions on
Intelligent Systems and Technology, 2:27:1--27:27,
2011.

Features Precision Recall F-measure

Random 0.3512 0.4790 0.4053

F1 0.8624 0.7306 0.7910

F2 0.6506 0.4984 0.5644

F3 0.8698 0.7033 0.7778

F1+F2 0.8591 0.7795 0.8174

F1+F3 0.8672 0.8224 0.8442

F1+F2+F3 0.8981 0.8165 0.8553

