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Abstract

60 GHz millimeter-wave networks represent the next fron-

tier in high-speed wireless access technologies. Due to

the use of highly directional and electronically steerable

beams, the performance of 60 GHz networks becomes

a sensitive function of environment structure and reflec-

tivity, which cannot be handled by existing networking

paradigms. In this paper, we propose E-Mi, a frame-

work that harnesses 60 GHz radios’ sensing capabilities

to boost network performance. E-Mi uses a single pair

of 60 GHz transmitter and receiver to sense the environ-

ment. It can resolve all dominant reflection paths be-

tween the two nodes, from which it reconstructs a coarse

outline of major reflectors in the environment. It then

feeds the reflector information into a ray-tracer to pre-

dict the channel and network performance of arbitrarily

located links. Our experiments on a custom-built 60 GHz

testbed verify that E-Mi can accurately sense a given

environment, and predict the channel quality of differ-

ent links with 2.8 dB median error. The prediction is

then used to optimize the deployment of 60 GHz access

points, with 2.2× to 4.5× capacity gain over empirical

approaches.

1. Introduction

The unlicensed millimeter wave (mmWave) band, cen-

tered at 60 GHz and spanning 14 GHz spectrum [1], rep-

resents the most promising venue to meet the massive

surge in mobile data. Recently proposed mmWave net-

work standards, like 802.11ad [2], provision multi-Gbps

connectivity for a new wave of applications such as cord-

less computing and wireless fiber-to-home.

Despite the huge potential, 60 GHz networks face a

number of challenges unseen in conventional low-freq-

uency networks: due to ultra-high carrier frequency, the

60 GHz radios are extremely vulnerable to propagation

loss and obstacle blockage. To overcome such limitation,

60 GHz radios commonly adopt many-element phased-

array antennas to form highly directional, steerable beams,

which leverage reflections to steer around obstacles. De-

pendence on directivity and reflection, however, makes

the network performance a sensitive function of node

placement and environmental characteristics (e.g., geo-

metrical layout and reflectivity of ambient surfaces).

To elucidate the challenge, we set up two laptops with

Qualcomm tri-band QCA6500 chip (2.4/5/60GHz) [3],
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Figure 1: Normalized throughput of same-distance 60

GHz and 2.4 GHz links over different node placements.

and randomly place them over 16 different locations. For

each link, we measured the normalized throughput, i.e.,

the none-line-of-sight (NLOS) throughput when a human

obstacle stands in between, divided by the LOS through-

put. Fig. 1 plots the CDF across links. We observe up to

3× throughput gap when the same-distance 60 GHz link

is placed at different locations, versus 1.4× for the 2.4

GHz link, implying that 60 GHz’s NLOS performance is

much more sensitive to environment. We found that the

60 GHz transmitter can more effectively detour block-

age, if it is placed near a concrete wall that acts like a

mirror. Obviously, reflectors in the environment have a

crucial impact on 60 GHz performance.

Of course, one may not always be able to alter the

environment. However, we argue that, by judiciously

placing 60 GHz access points (APs) within a given en-

vironment, we can substantially improve network cov-

erage and robustness to blockage. To this end, one may

conduct a blanket site-survey and search for the capacity-

maximizing AP location, but the search space becomes

formidable because of the numerous beam directions and

human blockage patterns. In this paper, we propose E-

Mi, a system that can automatically “sense” (model) the

major reflectors in the environment from a 60 GHz ra-

dio’s eyes, and predict the performance of arbitrarily lo-

cated links. The prediction can in turn help optimize AP

placement to maximize network capacity and robustness.

The core challenge in E-Mi is: how to sense the en-

vironment using mmWave radios which can only mea-

sure the received signal strength (RSS) and phase be-

tween each other? Conventional environment mapping

approaches (e.g., stereo camera and laser radar [4–8])

need dedicated hardware and do not capture environment

properties specific to mmWave. In contrast, E-Mi lever-

ages the well known sparsity of mmWave channels [9–

11]: from the 60 GHz radios’ eyes, there are usually only

a few dominating reflectors in practical environment. E-

Mi samples the environment by fixing the Tx radio, and
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moving the Rx to a few locations. At each location, the

radio channel comprises one LOS path, and many NLOS

ones. By measuring the RSS/phase, E-Mi traces back

all NLOS propagation paths, uses a geometrical model

to locate where the paths hit reflectors, and eventually

reverse-engineers the location and reflectivity of domi-

nating reflectors. Such environment information is then

fed into a ray tracing engine, which can predict the wire-

less channel quality of arbitrarily located Tx/Rx.

E-Mi’s reflector learning is predicated on the accu-

rate tracing of propagation paths, which itself is an open

challenge. Specifically, E-Mi needs to disentangle all

the NLOS paths for each Rx location, and estimate each

path’s angle of arrival (AoA), angle of departure (AoD)

and length. This differs from the vast literature of phased-

array localization algorithms that only exploit the LOS

path [12, 13]. E-Mi solves the problem using a multi-

path resolution framework (MRF), which resolves dif-

ferent paths’ angles/lengths by creating “virtual beams”

by post-processing the measured RSS/phase.

We have implemented E-Mi on a 60 GHz testbed. Our

experiments demonstrate that E-Mi can accurately re-

solve NLOS propagation paths, with an average error of

3.5◦, 3.5◦, and 0.4 m, for AoA, AoD and path length, re-

spectively. By simply sampling 15 receiver locations in

an office environment, E-Mi can effectively predict the

link quality of other unobserved locations, with median

RSS error of 2.8 dB and AoA(AoD) error 4.5◦(5.7◦).
E-Mi can be a convenient toolset to predict site-specific

RSS distributions and assist 60 GHz network deployment

and configuration. In this paper, we apply E-Mi to one

case study to answer the following question: How to de-

ploy the 60 GHz APs to maximize the average network

capacity and improve resilience to blockage? Our experi-

ments show that an E-Mi-augmented deployment obtains

2.2× to 4.5× median throughput gain over empirical ap-

proaches. E-Mi also makes the 60 GHz network more ro-

bust, reducing median throughput loss from around 700

Mbps to 20 Mbps under random human blockage.

To summarize, the main contributions of E-Mi include:

(i) A multipath resolution framework that allows a pair

of 60 GHz Tx and Rx to trace back the 〈AoA, AoD, length〉
of all NLOS paths, simply via RSS/phase measurement.

(ii) An reflector localization scheme that can locate

where the reflectors “bend” propagation paths, and then

recover the layout/reflectivity of dominant reflectors.

(iv) Applying the sensing information to predicting the

channel quality of arbitrarily located Tx and Rx, which in

turn helps optimize the AP deployment, achieving multi-

fold capacity gain and robustness under human blockage.

2. Related Work

Wireless network planning/profiling. Wireless net-

work planning is a classical problem that has been rely-

ing on empirical solutions for decades. RF site survey,

despite its tedious war-driving procedure, is still widely

adopted by enterprise WLAN and cellular network plan-

ning tools [14, 15]. Recent work used roaming robots

[16] or sparse sampling [17] to access the RSS distri-

bution under a given AP/basestation deployment. But

these approaches hardly shed lights on how to plan a

new/better deployment.

Active planning can overcome the limitation by using

ray-tracing. Earlier study of 60 GHz channel statistical

characterization [18] unveiled that 60 GHz signals have

predictable spatial structure in an environment. But they

require precise mapping of dominant reflectors. Such a

map is not always available and is sensitive to environ-

mental change (e.g., placing a new cabinet). E-Mi es-

sentially circumvents this hurdle by allowing mmWave

radios to directly construct the environment map.

Radio-based environment sensing. The simultane-

ous localization and mapping (SLAM) problem has been

extensively studied in robotics [19–21]. Typical SLAM

systems need to roam a robot, and map the environment

based on dead-reckoning and visual images. Such sys-

tems are predicated on two factors: (i) precisely con-

trolled robotic movement and blanket coverage, to gen-

erate an extensive point-cloud representation of the sur-

vey area. (ii) environment sensors, such as sonar, stereo

camera and LIDAR [22], to explicitly locate landmarks

or obstacles. The elusive nature of wireless signals pro-

hibits us from meeting the same requirement. It involves

nontrivial human efforts to label the reflectivity of each

reflector. Besides, the reflectivity may be hardly avail-

able if an object contains compound materials. State-of-

the-art radio-based SLAM [5,23] can only achieve local-

ization accuracy of around 5 meters, far from enough to

predict the spatial performance of a wireless network.

Recent work [7,24,25] adopted mmWave radars to ex-

plicitly scan the environment. By continuously moving

the radar in front of the obstacle’s body, they can iden-

tify the shape/reflectivity. In contrast, E-Mi leverages the

sparsity of 60 GHz signal structure, so as to locate all

dominant reflectors with only a few sampling locations.

Localization using antenna arrays. Antenna array

has demonstrated tremendous potential in localization,

especially because it can identify AoA using signal pro-

cessing algorithms like MUSIC [26] and ESPRIT [27].

Recent systems [12,13,28] renovated such algorithms to

localize a client via multi-AP triangulation. In contrast,

E-Mi uses mmWave phased-array to handle the more chal-

lenging problem of recovering NLOS propagation paths

and locating reflectors. A side benefit of E-Mi is that it

can locate a node using a single AP (Sec. 5) and there-

fore build a spatial distribution map of possible client lo-

cations, which can in turn help optimize the AP deploy-

ment (Sec. 9).
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Figure 2: The MRF identifies the 〈AoA, AoD, length〉
in three steps: (1) Identify the dominant AoA and AoD;

(2) Pair AoA and AoD directions that belong to the same

path; (3) Estimate the length of each path.

Sensor-assisted protocol adaptation. E-Mi is partly

inspired by the principle of sensor-assisted communica-

tions. Nanthapuri et al. [29] proposed to discriminate

various networking context (e.g., mobile vs. static) us-

ing external sensors, and adapt the protocols accordingly.

Ravindranath et al. [30] applied a similar principle to as-

sisting link-level rate adaptation, etc.. BBS [31] lever-

aged a WiFi antenna array to estimate the signal’s AoA

and facilitate the 60 GHz radio beam steering. Beam-

Spy [32] detects human blockage and adapts its beam to a

new direction without beam scanning. In contrast to this

line of research, E-Mi uses 60 GHz radios themselves as

sensors to reconstruct the reflectors and predict the site-

specific RSS distribution to guide AP deployment.

3. E-Mi: An Overview

E-Mi samples the RSS/phase between a pair of 60 GHz

AP and client (also denoted as Tx and Rx), and uses

the samples as input to two major modules: (i) Multi-

path resolution framework (Sec. 4), which estimates the

geometry, i.e., 〈AoA, AoD, length〉, of each propagation

path and also discriminates their RSS/phase. (ii) Domi-

nant reflector reconstruction (Sec. 5): which locates the

reflecting points (i.e., spots where the paths hit the re-

flector), and reconstructs the layout/reflectivity of domi-

nating reflectors, forming a coarse environment map. A

network planner can feed E-Mi’s reconstruction result to

a 60 GHz ray-tracing engine, and identify the AP lo-

cations that lead to higher capacity/robustness (Sec. 9).

This essentially supersedes the laborious war-driving in

traditional wireless site survey [15].

E-Mi requires the Tx and Rx to be equipped with phas-

ed-arrays of practical size (default to 16-element, as in

typical 802.11ad radios [33]). It does not need a custom-

ized PHY layer—It only requires the channel state, which

is a portable function on many commodity WiFi devices

[34] and expected to be available in the 802.11ad prod-

ucts. Although E-Mi works in a constrained environment

that can be illuminated by Tx’s signals, the Tx can be

moved to different positions to extend its coverage.

When scanning the wireless channel, E-Mi places the

Tx and Rx well above the ground, so that they only “see”

dominant reflectors like walls and furnitures. They af-

fect the average-case network performance which are of
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Figure 3: Isolating individual antenna’s signals on an

analog phased array, by switching across different weight

vectors.

utmost interest for network planners. In case such re-

flectors change their locations, we can accommodate the

changes by rerunning E-Mi.

4. Multipath Resolution Framework (MRF)

The MRF estimates the 〈AoA, AoD, length〉 of domi-

nating paths between the Tx and Rx. As illustrated in the

Fig. 2, the AoA and AoD are determined by the relative

positions of dominant reflector, Tx and Rx, and indepen-

dent of the beam pattern of phased arrays. To estimate

these intrinsic parameters, a naive solution is to use beam

scanning: the Tx/Rx may steer over all possible combi-

nations of beam directions, and find the ones with high

RSS. However, a 60 GHz phased-array can only steer to

a set of discrete directions (e.g., a 16-element one can

only steer between beams with 22.5◦ separation [35]).

The discrete beam scanning prevents us from measuring

the signal angle precisely. Moreover, unlike horn anten-

nas, phased-arrays have imperfect directionality — be-

sides the main beam, their antenna pattern bears many

sidelobes which interfere the AoA/AoD estimation.

E-Mi’s MRF introduces three mechanisms (Fig. 2) to

meet the challenges. (i) We first estimate the dominating

AoD and AoA directions, originating from Tx and end-

ing at Rx, respectively. We adapt a classical signal angle

estimation algorithm to 60 GHz phased arrays, which en-

ables super-resolution (i.e., finer resolution than discrete

steering by generating a continuous angular spectrum,

and unaffected by the imperfect beam shape of phased

arrays). (ii) We design a virtual beamforming (vBeam)

scheme that pairs the AoD and AoA directions belong-

ing to the same NLOS path. (iii) We employ a multi-tone

ranging scheme to estimate the total length of each path.

4.1 Estimate Path Angles Using Phased Arrays

Conventional multi-antenna receivers can estimate sig-

nal AoA using angular spectrum analysis, which sin-

gles out the arrival angles with strong signal strength

[12,13]. However, such analysis needs to isolate the sig-

nals on each antenna element using digital phased arrays

(Fig. 3(a)). Practical 60 GHz radios use analog phased

arrays (Fig. 3(b)), which have a single input/output, com-

prising a weighted sum of individual antenna’s signals

that obfuscate each antenna’ signals.
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To overcome this limitation, a natural way is to vary

the weights and obtain a system of equations to solve for

individual signals. Suppose there are N elements on the

receiving phased array, and S = [S1, S2, · · · , SN ]T de-

notes the signals on the N individual antenna elements.

When the phased array imposes row vector of weight

w1 on its antenna elements, the received signal becomes

y1 = w1S. Suppose the array switches across N dif-

ferent weight vectors to receive the same signals by N
times. The weights constitute a 2-D matrix WR = [w1;
w2; · · · ;wN ] with each row being a weight vector. Then,

the N output signals form a vector: Y = WRS. So, one

can simply use S = W
−1
R Y to recover S, and hence

isolate the signals on each antenna element. Fig. 3(c)

illustrates an example where N = 4.

In practice, the weight vectors in a 60 GHz phased ar-

ray are built into hardware and can only be selected from

a predefined group, called codebook. The key question

is: can we find a set of weight vectors to form a matrix

WR that is invertible? The answer is positive: we can

find the weight matrix from 60 GHz codebook that is

orthogonal (i.e., WRW
H
R = I , where (·)H denotes the

conjugate transpose), and hence invertible. The beam-

forming codebook ensures orthogonality between weight

vectors because it will maximize the isolation across dif-

ferent beam patterns [35, 36].

To estimate the AoD, a symmetrical operation is needed

at the Tx. Suppose the Tx phased array has M antenna

elements, then it uses M different sets of weights to trans-

mit the signals by M times, which similarly constitute a

transmit matrix WT. We populate S into an N -by-M
matrix. Each element (i, j) of S represents the signals

on i-th Rx antenna, when the j-th Tx antenna element

is triggered. Then, the received signals of analog-array

becomes: Y = WRSW
H
T . Each column/row in matrix

Y contains received signals measured using a specific

transmitting/receiving weight vector. By way of a simi-

lar orthogonality argument as the Rx, we can recover S

as follows: S = W
H
R YWT.

Isolation of individual antenna’s signals allows us to

apply MUSIC [37], an eigen angle analysis algorithm

to jointly estimate the AoA/AoD, in the same way as in

digital phased arrays [12]. MUSIC can achieve a scal-

able resolution with more antenna elements and extricate

the discrete beam shape of phased arrays. Specifically,

we measure the preamble signals sent/received by stan-

dard 60 GHz radios [2], which are sent repeatedly across

packets, and across different Tx/Rx beam patterns. We

isolate the preamble signals sent/received by different

Tx/Rx antenna elements. Then, we run MUSIC to com-

pute the angular spectrum, essentially the likelihood of

signals coming from different angles. Finally, we find

the peaks in the angular spectrum that are larger than

the noise floor and take the corresponding directions as

AoAs/AoDs of dominating paths.

A few additional operations are worth noting: (i) Since

each AoD is pairwise to an AoA w.r.t. the same dominant

reflector, we remove the excessive AoA/AoD estimations

of smaller eigenvalue, and make sure the number of AoA

and AoD values are equal. (ii) To ensure the consistency

of reference direction, i.e., 0 degree, in the measurement,

the antenna’s orientation can be simply kept at a fixed

direction, or be compensated by motion sensors in the

mobile device. (iii) MUSIC is adopted only for AoA

and AoD estimation. The RSS estimation and AoA/AoD

pairing of each path is accomplished by the virtual beam-

forming, which will be detailed next.

4.2 Virtual Beamforming: Match Path Angles

E-Mi’s virtual beamforming (vBeam) algorithm serves

two purposes: First, the AoAs and AoDs identified above

do not have a pairwise mapping. The vBeam can pair up

the AoA and AoD values that belong to the same path.

Second, the received signals S are a mix from all prop-

agation paths. To estimate the length of each path (Sec.

4.3), their signals have to be separated from each other.

The basic idea is to process the received signal matrix

S offline and emulate Tx/Rx beamforming towards spe-

cific directions. This allows us to generate arbitrary beam

patterns, bypassing the codebook constraint of phased ar-

rays. Then, vBeam uses a beam matching metric to sin-

gle out each pair of AoD and AoA directions that belong

to the same path.

Beam generation: vBeam generates weight vectors

of specific beam patterns and applies them to signals from

different antenna elements. Whereas the weight vectors

can be computed using conventional delay-sum beam-

former [38], vBeam applies a beam-nulling technique in-

stead, which beamforms to the desired AoA/AoD direc-

tions while nulling signals from other AoA/AoD direc-

tions. This effectively steers the phased-array’s sidelobes

toward directions from which there is no signal coming,

and thus helps suppress irrelevant signals.

Suppose the AoA and AoD identified above are de-

noted by vectors Θ = [θ1, θ2, . . . , θK ] and Φ = [φ1, φ2,
. . . , φK ], with K being the number of dominant paths.

Denote ar(θi) and at(φi) as column weight vectors that

beamform toward AoA/AoD angle θi and φi. Take the

Rx-side as an example, the nulling beam vector anull
r

(θi),
which beamforms to θj for j = i and nulls other θj for

j 6= i, can be directly derived from ar(θi) by [39].

Beam matching: Suppose vBeam beamforms towards

AoA angle θi and AoD angle φj using the foregoing ap-

proach. In order to determine whether θi and φj belong

to the same propagation path, we design a beam match-

ing metric F, which manifests a high value if and only if

θi and φj match to the same path. F is computed by:

F[i, j] = E[|a
null
r

(θi)Sa
null
t

(φj)
H |2], ∀ 1 ≤ i, j ≤ K,
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Algorithm 1 Virtual Beamforming

1: procedure vBeam(Θ, Φ, S)
2: for i = 1:K, j = 1:K do ✄ Loop for Rx and Tx arrays

3: F [i, j] = E[|anull
r

(θ̂i)Sa
null
t

(φ̂j)
H |2] ✄ Beamform RSS

4: end for

5: for i = 1:K do ✄ Beam matching
6: [I row, I col]← max subscript(F) ✄ Subscript of

maximum
7: F[I row, :]← 0; F[:, I col]← 0;

8: Θ̂[i]←Θ[I row]; Φ̂[i]←Φ[I col]
9: end for

10: return Θ̂ and Φ̂ ✄ pairwise AoA and AoD
11: end procedure

where the inner part of above equation applies the virtual

beams to signal matrix S, and outer expectation com-

putes the corresponding RSS. Since it is difficult to find

an absolute gauge threshold, E-Mi adopts an iterative al-

gorithm (Algorithm 1). It starts with the largest metric

and takes the corresponding AoA/AoD as a pair. Then it

removes values of pairwise AoA/AoD from the row and

column of the matching matrix F and repeats above pro-

cedure to find the next largest matching metric. This ap-

proach works well for paths of different signal strengths.

Once vBeam identifies all the pairwise AoA/AoD, it

can isolate path i’s signal S
path

i
by projecting the entire

signal matrix S towards path i’s AoA and AoD:

S
path

i
= a

null
r

(Θ̂[i])Sanull
t

(Φ̂[i])H , (1)

where Θ̂ and Φ̂ are matrices of the pairwise AoA and

AoD. E-Mi then further estimates the RSS of signal iso-

lated from each path.

4.3 Multi-Tone Ranging: Estimate Path Length

E-Mi estimates each path i’s length by processing its

signals S
path

i
, using a multi-tone ranging mechanism. Mo-

dern communication systems such as 60 GHz 802.11ad

commonly adopt OFDM, which modulates signals across

different frequency tones (called subcarriers). The phase

of each subcarrier can be measured using built-in channel

estimators. Suppose a subcarrier has frequency f1, then

its phase increases linearly with propagation path length

d, following 2πf1d/c. Our multi-tone ranging leverages

the phase divergence among OFDM subcarriers, caused

by their frequency difference. Given two subcarriers with

frequency f1 and f2, their phase divergence at distance

d equals ∆ϕ = 2π(f2 − f1)d/c, where c is light speed.

f1, f2 are known and ∆ϕ can be measured. So we can

easily map ∆ϕ back to d.

To improve resilience to channel noise, E-Mi harnesses

diversity from many subcarriers in 802.11ad-like com-

munication systems. Suppose we have isolated the pream-

ble signal S
path

i
along path i (Sec. 4.2). Suppose L sub-

carriers are located at frequencies f1, f2, · · · , fL, and the

Rx-measured phase values are ϕ1, ϕ2, . . . , ϕL. Then we

estimate path i’s length via the following optimization

framework:

d∗ = argmax
d

|
∑L

i=1e
j(ϕi−

2πfid

c
)|. (2)

The RHS of Eq. (2) computes the difference between

measured phase and theoretical phase over distance in

the phaser domain. Essentially, the optimal distance es-

timation d∗ leads to the closest match between these two

sets of phase values.

In practice, due to the carrier frequency offset (CFO)

between Tx and Rx, the subcarriers will bear unknown

phase shifts, which contaminate the phase measurement.

We cannot apply the standard CFO compensation tech-

nique [40] in this case because it will simultaneously nul-

lify the phase divergence. We address this problem us-

ing a reference calibration scheme. Specifically, we first

separate the Tx and Rx by a known distance d0 and mea-

sure the phase value ϕi(d0) of each subcarrier i. When

the Tx/Rx moves to a new (unknown) distance d, the

CFO can be canceled by computing their phase differ-

ence: ϕi(d) − ϕi(d0) = 2πf(d−d0)
c

. Substituting ϕi by

ϕi − ϕi(d0), Eq. (2) can be reformulated as:

d∗ = argmax
d

|
∑L

i=1e
j(ϕi−ϕi(d0)−

2πfi(d−d0)

c |. (3)

We note that the phase divergence has an aliasing ef-

fect: if the phase difference between two subcarriers ex-

ceeds 2π, it will wrap and cause ambiguity. To maxi-

mize the unambiguous ranging distance, we should max-

imize the cycle length of phase divergence, or equiva-

lently minimize the frequency separation between sub-

carriers (denoted as fmin). The unambiguous range is

thus determined by c
fmin

. For 802.11ad, fmin equals the

separation between adjacent subcarriers, i.e., 5.156 MHz

[2], or equivalent to up to 58.18 m unambiguous ranging

distance, which is sufficient for indoor scenarios.

5. Dominant Reflector Reconstruction

The 〈AoA, AoD, length〉 of all propagation paths form

a set of spatial constraints, allowing E-Mi to locate the

reflecting points, i.e., points where dominant reflectors

“bend” the propagation paths. Consequently, E-Mi can

geometrically reconstruct reflectors’ position, orientation,

and reflectivity.

5.1 Locating Reflecting Points in Environment

To locate the reflecting points, E-Mi first pinpoints the

Rx relative to the Tx, based on the 〈AoA, AoD, length〉
constraints. Fig. 4 shows an example. Suppose we ob-

tained the 〈AoA, AoD, length〉 of a single path. Then any

point along line segment AB satisfies the same 〈AoA,
AoD, length〉 constraint, and is likely to be the Rx posi-

tion. Therefore, a single path cannot pinpoint the Rx. But

we can resolve the ambiguity by adding another path: the

intersection between line segment AB of one path and

segment A′B′ of another path pinpoints the Rx location.

Practical environment may encounter more than two

paths. Denote path i’s 〈AoA, AoD, length〉 as θ̂i, φ̂i and
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d̂i. Following Fig. 4, we can use a simple geometry to

represent the intersection formed by all line segments:

µix+ νiy = γi, (4)

with µi =sin(θ̂i) + sin(φ̂i), νi = −(cos(θ̂i) + cos(φ̂i))

γi =xtx(sin(θ̂i) + sin(φ̂i))− ytx(cos(θ̂i) + cos(φ̂i))

+ d̂i(sin(φ̂i) cos(θ̂i)− cos(φ̂i) sin(θ̂i))

where (xtx, ytx) and (xrx, yrx) are the Tx and Rx po-

sition, respectively. Assuming the Rx position is inter-

sected by N line segments, Eq. (4) can be rewritten in a

matrix format:

ΓX = P, (5)

where X = [xrx, yrx]
T , Γ = [µ1, . . . , µK ; ν1, . . . , νK ]T ,

and P = [γ1, . . . , γK ]T . In practice, due to residual er-

ror of measurement, line segments may not intersect on

a single point. We thus reformulate Eq. (5) as a least-

square optimization problem:

X∗ = argmin
X

||P − ΓX||2, (6)

where X∗ estimates the Rx position with minimum error.

Unfortunately, our initial experimental tests found the

optimization alone works poorly due two practical fac-

tors: (i) The 〈AoA, AoD, length〉 estimation (Sec. 4) con-

tains residual errors, especially for long-range and weak-

RSS paths. Such errors may cause intersecting line seg-

ments to be close to parallel, which significantly ampli-

fies the Rx location error. (ii) The MRF (Sec. 4) may cap-

ture high-order reflections that do not follow the model

in Fig. 4. Such mismatch may deviate the estimation ar-

bitrarily away from the real position.

E-Mi introduces two mechanisms to overcome above

challenges.

(1) Weighting the residual error. We first reformu-

late the optimization problem in Eq. (6) to account for

MRF’s residual errors. The inner term of Eq. (6) calcu-

lates the difference between matrices ΓX and P . Since

different paths’ geometries have different residual errors,

we weight the paths according to the confidence level in

MRF’s estimation, based on the following observation:

those paths of shorter length (thus higher RSS) tend to

have less error. Thus, we can use the inverse of path

length as the weight. Besides, we need to minimize the

sum of distance from Rx position to all line segments,

which requires normalization by a coefficient
√

µ2

i + ν2i

[41]. The final weight value for path i is:

wi =
1

di

√

µ2

i + ν2i

,

which consists of the inverse of path length and the nor-

malization factor. Stacking the weights into a vector W =
diag(w1, . . . , wK), the optimization problem Eq. (6) can

be rewritten as X∗ = argminX ||W (P−ΓX)||2, which

can be solved by standard least-square algorithms.

(2) Filtering higher-order reflection. To constrain

the problem within the geometrical model of first-order

reflection (Fig. 4), we should exclude any higher order

reflection paths in the optimization. Our key observa-

tion is that line segment intersections of higher-order re-

flections tend to randomly distribute and exhibit a larger

deviation since they do not fit into the geometry model

for the first-order reflection. Therefore, we apply a K-

means clustering algorithm to filter out the p% most sig-

nificantly deviated line segments that most likely belong

to the higher-order reflection. The choice of p value de-

pends on the amount of higher-order reflections. We pre-

fer a larger p value in a highly reflective environment,

and otherwise a smaller p. Yet, we find E-Mi is not sen-

sitive to it because most indoor environments have com-

parable number of dominant reflectors, and an empirical

value (e.g., p = 20) would suffice.

After determining the client position, the locations of

reflecting points (xi
ref, y

i
ref) can be estimated by:

xi
ref − xr

yiref − yr
= tan(θ̂i),

xi
ref − xt

yiref − yt
= tan(φ̂i), (7)

which solves a set of equations following simple geome-

try in Fig. 4.

5.2 Reconstructing Dominant Reflector Layout
and Reflectivity

E-Mi reconstructs the dominant reflector geometry (ori-

entation/location/length) and reflectivity, by sampling the

wireless channel across a sparse set of Rx locations, and

locating the corresponding reflecting points following the

above steps. It creates a 2-D cross section of the environ-

ment corresponding to the horizontal plane of the Tx/Rx.

Extension to the 3-D case will be discussed in Sec. 10.

Reconstructing dominant reflectors’ geometry. Ide-

ally, we can move the Rx to many positions, each helping

to locate multiple reflecting points. A sufficient number

of reflecting points can form a pixel cloud that outlines

the reflector geometry. However, due to sparsity of the

propagation paths [9–11], collecting a dense pixel cloud

requires hundreds of Rx positions even for a small office.

To avoid such war-driving, we design a sparse recon-

struction method which only samples at a few positions.

We abstract the reflectors into two categories. Specular

218    14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Tx Tx’ (VS)

Rx’

Rx’’

RP

Tx Tx’ (VS)

Tx’’ (VS)

Tx’’’ (VS)

ScatterReflector

RP

Rx’’’

Rx’

Rx’’

Rx’’’
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tual source (VS), used to recover the geometry and loca-

tion of specular/diffusive reflectors.

reflectors: a large continuous surface, e.g., wall and cabi-

net, upon which mmWave signals experience specular re-

flection [7]; Diffusive reflectors: small-size objects, e.g.,

pillar and computer screen, which scatter signals towards

a wide range of angles [42].

(i) Locating specular reflectors. We model a specular

reflector as a continuum of planar segments, each with

different reflectivity or orientation. According to the law

of reflection, signals that are reflected by a specular re-

flector look like emitting from a virtual source (Fig. 5).

Given the 〈AoA, AoD, length〉 and reflecting point loca-

tion of one propagation path, we can use simple geome-

try to pinpoint the virtual source (VS) position relative to

the real TX position, following the law of reflection.

Ideally, each specular segment should have a single

VS even as the Rx moves and creates different reflection

paths. Yet due to the MRF’s residual errors, the VSs es-

timated at different Rx positions do not exactly overlap,

but fortunately they tend to form a cluster (Fig. 5). We

apply the clustering algorithm [43] to isolate the clusters

and use each cluster center to represent one VS. Once a

reflector segment’s VS is identified, its position and ori-

entation is readily determined via a mirror-partitioning

between the real source and VS. Further, we extend the

reflector segment, and take the size of geometrical shape

from pixel cloud as constraint to determine the length of

each reflector segment. An example experiment will be

provided in Sec. 8.2 to elucidate the procedure.

(ii) Locating diffusive reflectors. Observing that a dif-

fusive reflector corresponds to densely concentrated re-

flecting points (Fig. 5), we can also apply the clustering

algorithm on the reflecting points and use the centers of

resulting clusters to represent the diffusive reflectors. Yet

this will be interfered by dispersive reflecting points cre-

ated by specular reflectors. Fortunately, based on the pre-

vious step, we can identify and exclude such interfering

points. Specifically, we identify them based on their Eu-

clidean distance to the specular reflectors. Threshold is

set to 3× the variance of reflector position error, which

can isolate a majority of specular reflecting points.

Estimating reflection loss. We now describe how E-

Mi models reflection loss, the major distorting factor when

signals hit the reflector. Other factors such as diffraction

may also vary the signal strength but the effect is mi-

nor [44]. E-Mi separately models the reflection loss of

each path it has identified. Three factors contribute to the

propagation loss: free-space pathloss, oxygen absorption

Ol and reflection loss Rl, i.e.,

RSS = Pt +Gt +Gr −
(

20 log10(d) +Ol +Rl

)

,

where d is the path length. Pt, Gt, Gr represent the Tx

power and Tx/Rx antenna gain. The Ol almost remains

a constant for distance of tens of meters [36]. For each

path, d and RSS are known from MRF (Sec. 4). Thus,

to obtain Rl, we need to obtain the constant parameters

Pt, Gt, Gr, which may not be available in practice. In

addition, the constant value Ol is unknown either.

We address this issue by using the LOS path as refer-

ence calibration to cancel those unknown factors. First,

we can isolate the LOS path’s signals from NLOS paths’

signals by metrics such as shortest path length and strong-

est RSS. We then estimate the reflection loss of each

NLOS reflecting path via a simple subtraction:

Rl = RSSLOS −RSSref − 20 log10(dref/dLOS), (8)

where RSSLOS, RSSref and dLOS, dref are RSS and path

length for LOS and reflected path. Since each reflect-

ing segment/point may have multiple estimations corre-

sponding to multiple reflection paths, we take the average

as its final reflection loss.

6. Parametric Ray-tracing: Predict Link
Performance

Ray-tracing is a fine-grained way to model wireless

signal propagation in both indoor and outdoor environ-

ment [45, 46]. It tracks the details of how each signal

path is attenuated over distance and reshaped by reflec-

tors. Measurement studies demonstrated that, given a

precise physical description of reflectors, the signal pat-

tern predicted by ray-tracing is reasonably close to real

measurement in both LOS and NLOS scenarios [47].

E-Mi employs a parametric ray-tracing engine, whose

input is the aforementioned layout/reflectivity for domi-

nant reflectors constructed directly from the 60 GHz ra-

dios’ eyes. We develop E-Mi’s ray-tracer following the

classical approaches in [48,49], which models the signal

propagation in a 2-D domain using a geometrical/optical

tracing. The ray-tracer captures the attenuation and re-

flection effects along all paths, and recursively traces a

path until it attenuates by more than 30 dB. In addition,

the ray-tracer accounts for the angle-dependent antenna

gain patterns from phased-arrays. The gain patterns can

be obtained from either phased-array simulators or hard-

ware specification. After synthesizing signals from all

paths, the ray-tracer outputs the final RSS and converts it

to bit-rate following a standard 802.11ad rate table [11].

7. Implementation

We prototype E-Mi on a custom-built 60 GHz software-

radio testbed, which uses WARP [50] to generate and
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process baseband waveforms under the control of a host

PC. The digital signals are converted to/from analog thro-

ugh a high-speed DAC/ADC, and carrier-modulated by

the Pasternack PEM-003 60 GHz RF front-end [51].

The PHY layer metrics (e.g., channel state informa-

tion) in commercial 60 GHz radios, though internally

available to the radio vendors, are still not opened to the

public yet. The recently developed phased-arrays in 60

GHz software radios [52] can only support a small num-

ber of elements. Therefore, we reproduce the effects of

a 60 GHz circular phased array using the time-lapse syn-

thesis method, which follows the way that a phased array

modulates, weights and transmits wireless signals. We

mount a 60 GHz omni-directional antenna MI-WAVE

267V (with 360◦ azimuth and 40◦ elevation beamwidth)

[53] onto Axis360 [54], a programmable motion control

system (Fig. 6). The Axis360 rotates the antenna to dis-

crete positions along a circle, each position correspond-

ing to one antenna element on a real circular array. The

array dimension follows empirical recommendations in

antenna design [39]. The radius of a 16-element circular

array is 6.4 mm, with 2.5 mm (half-wavelength) between

adjacent elements. This time-lapse synthesis approach

has been adopted and verified by previous works [55,56].

To synthesize a pair of Tx/Rx phased-arrays, we ap-

ply beamforming weights (based on a standard 802.11ad

codebook [35]) and then combine the measurement from

all elements within the Rx circular array. Since E-Mi

runs in static environment, this time-lapse approach can

realistically reproduce a real phased-array where all el-

ements are excited concurrently. Besides, each element

of a phased array antenna is expected to have a close to

omnidirectional coverage in horizon plane [57]. Fig. 6

depicts an example Tx phased-array gain pattern gener-

ated by this time-lapse approach, and measured using a

3.4◦ horn receiver. Despite the measurement speed of

our platform is slow currently owing to the mechanical

antenna rotation, a full-fledged 60 GHz device, that has

the electronic phased array antenna, can transmit a wire-

less packet at tens of microseconds. The overall sensing

time of each location will be at millisecond-level.

We implement E-Mi’s major modules (Sec. 3) within

Concrete walls Drywalls Pillar/Monitor

Figure 7: Dominant reflectors in an office environment.

the software-radio’s host PC. Due to limited bandwidth,

our platform cannot send 802.11ad-compatible pream-

bles for channel estimation. Instead, the Tx sends five

orthogonal tones from 3 MHz to 15 MHz as baseband

signals, modulated by 60.48 GHz carrier frequency. This

does not obstruct our validation because the narrow band

implementation can be considered as only utilizing a few

subcarriers in the 2 GHz wide band. When an 802.11ad-

compatible device is available, E-Mi can be easily ex-

tended to conduct MRF and dominant reflector recon-

struction across orthogonal subcarriers over a wideband.

For evaluation purpose, we also use the beam-scanning

method to acquire the ground-truth 〈AoA, AoD, length〉,
similar to Rappaport et al. [9]. We use a pair of Tx/Rx

radios equipped with directional horn antennas of 3.4◦

beamwidth [58]. With Axis360, the Tx antenna sweeps

the horizontal plane at a step of 3◦. Meanwhile, the Rx

measures the wireless channel and steers to next step af-

ter the Tx completes a full scanning.

8. Experimental Validation

8.1 Effectiveness of Multipath Resolution

To verify the MRF (Sec. 4), we set up a pair of Tx

and Rx, each synthesizing a 16-element phased-array.

We conduct experiments in a 90 m2 office environment,

which represents a typical indoor environment. The dom-

inating reflectors involve 2 drywalls, 2 concrete walls and

1 pillar (Fig. 7). We fix the Tx and randomly move Rx

over multiple locations. The result is compared against

the ground-truth AoA, AoD (measured using the oracle

beam scanning, Sec. 7) and path length (measured using

a laser ranger). The ground-truth measurement reveals

each link has 3 to 5 dominating propagation paths.

Success rate of AoA/AoD detection: Recall that

MRF needs to detect and then pair each AoA/AoD that

belongs to the same path (Sec. 4). Our measurement

shows that MRF correctly detects 89% and 82% of AoAs

and AoDs, and almost 100% of the correctly detected

AoAs/AoDs are correctly paired. MRF fails to detect

AoA/AoD of some paths primarily because their reflected

signal strength is too weak – We find the RSS of uniden-

tified paths is typically 16 dB lower than the LOS path.

In other words, the detection failure is not critical since

they will have a limited impact on link performance.

Accuracy in resolving AoA/AoD: Fig. 8 depicts how
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accurately E-Mi can resolve the AoA/AoD of all the mul-

tipaths that it successfully detects. We observe that the

estimated direction closely matches the true direction.

On average, the AoA/AoD error is only 3.5◦ and the

90-th error is 8◦. Considering that the beam-switching

granularity of a 16-element phased-array is 22.5◦ [35],

the accuracy of AoA/AoD estimation indeed bypasses the

granularity constraint of codebook-based beamforming

and achieves super-angular resolution. We expect the

accuracy can be improved by larger phased-arrays, due

to more entries in the received signal matrix (Sec. 4).

For comparison, we also run the codebook-based beam-

scanning method (Sec. 4). We found its success rates in

detecting AoA, AoD and pairing the AoA/AoD is only

64.4%, 66.7% and 53.3% respectively. And the average

estimation error of AoA and AoD are 21.0◦ and 22.1◦,

respectively. The fundamental reason lies in the afore-

mentioned sidelobe problem (Sec. 4). This experiment

further verifies the necessity and effectiveness of the vir-

tual beamforming method in MRF, which pairs up AoA

with AoD while nullifying sidelobes.

Accuracy of path length estimation: We run E-Mi’s

multi-tone ranging mechanism over all detected paths.

The scatter plot in Fig. 9 shows the estimated length v.s.

true length. E-Mi achieves an average error of only 0.4 m

and 90-th error of 1 m. The LOS paths (typically < 4 m)

tend to have smaller estimation error (0.23 m on average)

than NLOS reflection paths due to better RSS. E-Mi can

achieve this ranging accuracy using even a relative small

bandwidth because the vBeam algorithm (Sec. 4.2) can

isolate the signals from different paths. This accuracy is

sufficient for most 60 GHz applications since the predic-

tion metrics (AoA/AoD and signal strength) are not very

sensitive to the range measurement error (by the Friis

law, 1 m error only causes less than 2 dB path loss devia-

tion). It is expected that the ranging error will further re-

duce (Sec. 4.3) in practical 802.11ad radios with 1.7 GHz

bandwidth. To summarize, this microbenchmark verifies
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Reflector color Reflection loss Reflector color Reflection loss

—— drywall 15.87 dB —— concrete wall 8.60 dB

—— drywall 13.83 dB —— drywall 20.56 dB

—— concrete wall 5.50 dB —— pillar/monitor 1.24 dB

Table 1: Estimated reflection loss on different reflectors.

that the multi-tone ranging precision in E-Mi is sufficient

to support dominant reflector reconstruction, even when

using our low-end communication hardware.

8.2 Effectiveness of Dominant Reflector Recon-
struction

Following the setup in Sec. 8.1, a static Tx executes

the algorithm in Sec. 5.1 to locate the reflecting points for

each given Rx position. We move the Rx to 15 uniform

positions to reconstruct the dominating reflectors.

Accuracy in localizing reflecting points. Since the

reflecting point location has a linear, deterministic rela-

tion with the Rx position (Sec. 5.1), we mainly focus on

evaluating the latter, whose ground truth is obtained via

a laser range finder BOSCH DLE40.

Fig. 10 (a) plots the CDF of localization error. E-Mi

can locate the Rx position with mean/90-th error of 0.38

m and 0.6 m, which is even smaller than the path length

estimation, because we apply the minimum least square

method that leverages the redundant information of mul-

tiple reflected paths to reduce the estimation error. In-

deed, when we intentionally eliminate the LOS paths, the

performance (“NLOS only”) drops due to lower path di-

versity. The results verify that E-Mi’s reflecting point lo-

calization algorithm indeed achieves high precision based

on the MRF. More paths provide more diversity and hence

higher accuracy.

Performance of dominant reflector reconstruction.

Recall that, given an estimation of the Rx’s and reflecting

points’ positions, the dominant reflector reconstruction

locates the virtual source, specular reflector, and diffu-

sive reflector, respectively. Fig. 10 (b) puts together the

output from each step, and shows the final reconstruction

output based on 15 Rx sampling positions. We observe

that the output closely matches the ground truth: 4 walls

(specular reflectors) and one pillar/monitor (diffusive re-

flector). In effect, even the geometrical size of the re-

flectors matches the ground truth well with less than 0.3

m error. Table 1 lists the estimated reflection loss. The

two concrete walls have 10+ dB lower loss than the two

drywalls. And the metal pillar/monitor shows even lower
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loss. Intuitively, this matches with the reflectivity of ma-

terials at 60 GHz [59]. We have also evaluated E-Mi in

the cross of a corridor (Fig. 11) and observed a similar

level of accuracy in positioning the dominant reflectors.

In summary, E-Mi can effectively identify the geom-

etry, locations and distinguish the reflectivity of major

reflectors from the 60 GHz radio’s eyes.

Accuracy of link performance prediction. We now

feed the reconstructed reflector geometry/reflectivity into

the parametric ray-tracing engine, and predict the spatial

channel for another set of 15 randomly located Tx/Rx

pairs. Following the ground-truth measurement (Sec. 7),

we found these links have 66 paths in total. Fig. 12

showcases example results from two randomly selected

links. We observe that the predicted AoA/AoD patterns

are highly consistent with the ground truth. The miss-

ing spot (e.g., AoA 30◦/AoD 40◦) is caused by reflec-

tion that is not captured by the Tx/Rx during MRF. We

found such spots correspond to signal paths with negligi-

ble RSS and hence little impact on network performance.

Also, adding more Rx position samples can incremen-

tally reduce the probability of prediction loss.

Fig. 13 plots the channel prediction error over all prop-

agation paths among all links. The average and 90-th er-

rors of path length are 0.64 m and 1.41 m. The average

AoA and AoD prediction errors are 4.5◦ and 5.7◦, and

90-th errors are 12.2◦ and 10.0◦, respectively. These re-

sults verify that E-Mi can accurately predict the AoA/AoD

and path length of unobserved locations, based on a num-

ber of sparse samples.

Fig. 14 further shows the predicted v.s. measured RSS

among all paths and the corresponding CDF. We observe

that among all paths and links, E-Mi’s median RSS pre-

diction error is only 2.8 dB. The scatter plot in Fig. 14

further shows that locations with higher RSS benefits

from higher prediction accuracy, since it mainly involves
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Figure 15: Experiment in a complicated printing room.

LOS paths that follow the Friis pathloss model more closely.

Even though E-Mi’s prediction is imperfect, we show

that it can already become a salient tool for network de-

ployment and protocol optimization (Sec. 9).

Scalability in complicated environment. We explore

the scalability and generality of E-Mi in two steps. First,

we collect ground-truth channel profile in a printing room

– a more complicated environment (Fig. 15) than the of-

fice. Fig. 16 (a) and (b) compare the channel profiles

(high RSS corresponding to the AoAs/AoDs created by

dominant reflectors). Although the printing room hosts a

much larger number of objects, the number of dominant

reflectors remains similar (∼ 6). Our close examination

reveals that the dominant directions mainly come from

the metal shelf, glass window and concrete wall, etc.,

i.e., large objects with strong reflectivity. On the other

hand, wooden shelf, desk, and small structures on the

wall, barely contribute to the RSS. In both environments,

the 6 most dominant reflections account for > 95% of

the total RSS. This experiment demonstrates that even in

a complicated environment, the 60 GHz channel remains

sparse, i.e., only a few dominant reflectors determine the

channel quality. Thus, to predict the channel, E-Mi only

needs to capture and model a few dominant reflectors.

Second, we investigate how many sampling locations

are needed to reconstruct the dominant reflectors. We

simulate an 8×10 m2 room environment with four con-

crete walls. The Tx is placed at the center and Rx ran-

domly moves over 5 ∼ 30 locations in each test. Across

tests, different number of planar reflectors are placed ran-

domly around the Tx/Rx locations. We use the ray trac-

ing to obtain the ground-truth 〈AoA, AoD, length〉. Fig. 17

(a) depicts the average error between E-Mi’s reconstructed

reflector positions and ground truth. Generally, more

dominant reflectors requires more sampling positions. Yet,

even for an 8-reflector environment, E-Mi only needs 20

sampling locations to ensure an accuracy of around 0.2

m. Since the number of dominating reflectors tends to be
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Figure 16: Spatial channel profile of (a) a printing room

with many reflectors and (b) an office environment.
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Figure 17: (a) Reflector location error vs. number of Rx

sampling positions. (b) Client throughput CDF under a

2-AP architecture.

sparse, the amount of on-site sampling needed in E-Mi

is still substantially lower than that of a site-survey. Be-

sides, the reflector accuracy depends on the radio’s sens-

ing position, and it tends to be more accurate if the radio

can see stronger reflected paths from a reflector. Fortu-

nately, this location sensitivity will be averaged out when

the number of sensing positions is sufficiently large.

9. Case Study of E-Mi

In this section, we present an example application which

uses E-Mi to predict 60 GHz network performance and

optimize the AP placement. E-Mi can also be applied

to other scenarios, e.g., device localization and environ-

ment mapping. Yet, exploring E-Mi in a broader range

of areas is beyond the scope of this work.

9.1 Environment-Aware 60 GHz AP Deployment

Measurements (Sec. 1 and [11]) showed that the per-

formance of 60 GHz networks is a sensitive function of

location and reflector position, specifically w.r.t.

(i) Coverage: The spatial RSS distribution of a 60

GHz AP tends to be unevenly distributed, even among

same-distance links, due to two unique factors: (a) High

directionality: The AP’s phased-array antenna can only

generate a discrete set of directional beam patterns, which

typically point to unevenly distributed spatial angles [11,

36]. (b) Ambient reflections: Different reflectors cause

RSS to distribute unevenly, e.g., receivers close to strong

reflectors tend to benefit from high RSS [11].

(ii) Robustness: i.e., resilience of the network under

blockage. 60 GHz links tend to be frequently disrupted

due to inability to diffract/penetrate human body. Beam-

steering alleviates the problem, but whether the resulting

reflection path can detour blockage highly depends on

the geometry/reflectivity of environment [11, 60].

To address the environment sensitivity, we propose to

use a multi-AP architecture to cover a constrained en-

vironment. Through a central controller, the APs can
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Figure 18: (a) Coverage improvement over alternative

strategies. (b) Throughput loss under random blockage.

tightly cooperate with each other. When experiencing

poor throughput or blockage, a client can immediately

switch to an alternative AP. The architecture itself is not

new, but in 60 GHz environment, it needs to meet one

key challenge: For a set of APs under a given environ-

ment, how to deploy them optimally so as to maximize

the coverage and robustness to blockage?

We employ E-Mi to answer this question. The basic

idea is to predict the AP locations that provide best cov-

erage and robustness to a typical set of client spots. The

client spots are locations at which clients tend to con-

centrate. The client spots can be manually specified by

users within E-Mi’s environment map (e.g., Fig. 10 (b)).

Alternatively, the E-Mi AP can divide the environment

map into grids, implicitly sense clients’ locations over

time (Sec. 5.2), and incrementally build clients’ spatial

distribution. Client spots can be defined as grids where

the dwelling probability exceeds a threshold (e.g., 0.05).

To maximize coverage, we define the performance met-

ric D as the mean bitrate among W given client spots.

Suppose each client is associated to the AP with highest

bitrate. Then, for each combination of AP locations,

D =
1

W

∑W
i=1

argmax{j=1,··· ,A} T(RSS)ij , (9)

where RSSij represents the RSS from AP j to client i. A
is the number of APs, and T (·) maps RSS to the achiev-

able bitrate using the 802.11ad rate table [32]. The can-

didate AP position can either fall in the grids or be man-

ually specified by users within E-Mi’s environment map.

To find the best multi-AP deployment, we simply use E-

Mi to predict the performance of all candidate position

combinations and select the one that maximizes D.

For a given multi-AP deployment, we further define

the robustness metric as E = D
′

/D, where D
′

is the

mean bitrate under blockage. Using E-Mi, we can “re-

hearse” the impact of human body blockage without field

war-driving. Since human body is aquaphobic [11, 36,

61], the blockage may annihilate one or more paths. So

we can use ray-tracing to derive D
′

by averaging the bi-

trate resulting from blockage of random movement. We

repeat the procedure over candidate AP position combi-

nations and single out the best. The optimized AP loca-

tion essentially maximizes the number of paths to each

client. The more reachable paths will make the network

more resilient to blockage because radios can immedi-

ately reestablish the link upon blocking via another path.
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9.2 Experimental Verification

We evaluate the E-Mi-based AP deployment with dom-

inant reflectors in Fig. 10 (b). We set 24 random client

spots and divide the environment into 20 equal sized grids.

The center of each grid is considered as a candidate AP

position. We compare E-Mi with random deployments

and an empirical approach that puts APs in four corners

to maximize coverage. Since our experiments have al-

ready validated the accuracy of the ray tracing method,

we reuse ray tracing to evaluate the RSS from an AP

to client. The RSS is then mapped to bit-rate and link

throughput following [11]. Consistent with Sec. 8.1, each

AP/client has a 16-element phased array, with 32 code-

book entries and beamwidth of 22.5◦.

Coverage: Fig. 17 (b) plots the CDF of clients’ through-

put under 2-AP deployment. For Random, the through-

put is averaged across all AP locations. We observe that

E-Mi gains substantial advantage from its environment-

awareness, with median throughput improvement of 2.24×
over Random, and 4.54× over Corner. Moreover, E-Mi

consistently delivers higher capacity for all clients, i.e., it

does not sacrifice fairness. The results manifest the inef-

fectiveness of empirical approaches, which are unaware

of the impact of dominant reflectors on 60 GHz network

performance. Even with 2 APs, E-Mi can optimize AP

placement and boost network capacity to 1.4× compared

with a single-AP deployment.

We further evaluate E-Mi in 30 different environment

topologies, created by intentionally adding reflectors (up

to 10), with random orientations, inside the environment.

Fig. 18 (a) shows that, given a single AP, E-Mi has 2.2×
average capacity gain over the empirical deployment, and

up to 4× gain in certain environment that is observed

to feature heterogeneous reflector placement. More APs

can offset the environment heterogeneous, and hence de-

grade E-Mi’s gain slightly.

Robustness: Under the same topology as Fig. 17 (b),

Fig. 18 (b) plots the CDF of throughput loss across all

clients under random human blockages (created by ran-

domly moving at different locations inside the environ-

ment). Owing to its awareness of reflectors, E-Mi’s me-

dian throughput loss is only around 20 Mbps, in com-

parison to 700 Mbps to 830 Mbps in the empirical ap-

proaches. The normalized throughput gain of our op-

timization is consistent with the measurement (Fig. 1)

using commercial 60 GHz devices.

We also found that the coverage-maximizing deploy-

ment may differ from the robustness-maximizing one. In

practice, one may use a weighted balance between the

metrics, based on how likely the blockage is to happen.

10. Discussion and Future Work

Using E-Mi in commodity phased-arrays: Our eval-

uation used a virtual array of 16 omni-directional an-

tenna elements to synthesize a phased-array. Commod-

ity phased-arrays may have a limited field-of-view an-

gle, and their beams reside within half-space (180◦) [33].

However, as long as the codebook and gain pattern are

available (usually specified by device manufacturers), E-

Mi’s multipath resolution framework is applicable. In

addition, we can flip the phased-arrays’ orientation to en-

sure full-space coverage.

From 2-D to 3-D sensing: Our E-Mi design places

the Tx/Rx on the same height and senses a 2-D cross-

section. Extending E-Mi to the 3-D case involves some

new challenges, e.g., resolving AoA/AoDs along both

azimuth and elevation dimensions. However, the main

design principles of E-Mi can still apply. Notably, the

geometry of dominant reflectors along the vertical di-

mension (mostly floors and ceilings) is much simpler and

easier to estimate. A user can even directly provide the

height information to assist E-Mi in estimating the dom-

inant reflectors in 3-D. We leave such exploration to fu-

ture work.

Sensing complicate-structured environment: E-Mi

abstracts the 2-D environment as a composition of lines

(for specular reflectors) and spots (for diffusive reflec-

tors). The abstraction is accurate if the radio environment

is sparse, i.e., dominated by large reflectors like walls

and furnitures (e.g., cabinet, bookshelf, and refrigerator).

Environmental sparsity in turn causes channel sparsity,

which has been observed by many 60 GHz measurement

studies [9, 18, 62, 63]. Nonetheless, E-Mi cannot cap-

ture complicated structures. These structure may violate

the channel sparsity assumption and exacerbate higher

order reflections. E-Mi does not attempt to capture mo-

bile structures either, as clarified in Sec. 3.

11. Conclusion

We present E-Mi as a sensing-assisted paradigm to fa-

cilitate 60 GHz networks, whose performance is highly

sensitive to reflectors. E-Mi senses the environment from

60 GHz radios’ eyes. It “reverse-engineers” the geom-

etry/reflectivity of dominant reflectors, by tracing back

the LOS/NLOS paths between a pair of 60 GHz nodes.

Through case studies and testbed experiments, we have

demonstrated how such environment information can be

harnessed to predict 60 GHz network performance, which

can in turn augment a broad range of network planning

and protocol reconfigurations.
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