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Complex event processing (CEP) is a computational intelligence technology capable of analyzing big data streams for event
pattern recognition in real time. In particular, this technology is vastly useful for analyzing multicriteria conditions in a pattern,
which will trigger alerts (complex events) upon their fulfillment. However, one of the main challenges to be faced by CEP is how to
define the quantitative analysis to be performed in response to the produced complex events. In this paper, we propose the use of
the MEdit4CEP-CPN model-driven tool as a solution for conducting such quantitative analysis of events of interest for an
application domain, without requiring knowledge of any scientific programming language for implementing the pattern
conditions. Precisely, MEdit4CEP-CPN facilitates domain experts to graphically model event patterns, transform them into a
Prioritized Colored Petri Net (PCPN) model, modify its initial marking depending on the application scenario, and make the

quantitative analysis through the simulation and monitor capabilities provided by CPN tools.

1. Introduction

Complex event processing (CEP) [1] is a computational
intelligence technology used to analyze and correlate big
data streams in order to detect situations of interest in real
time. Events can be generated from other ones by matching
the so-called event patterns, which are templates describing
the conditions to be met to recognize such situations.
CEP fits in event-driven service-oriented architectures
(SOA 2.0), in which the communications between appli-
cations and services are conducted by the complex events
produced upon pattern detection. The event patterns to be
detected for a particular application domain are imple-
mented by using event-processing languages (EPLs) [2].
The MEdit4CEP approach [3] was proposed to help domain
experts with this implementation. This framework provides
an editor with graphical modeling capabilities for easily
specifying the CEP domain, event patterns and action
definitions. This approach generates Esper EPL code [4]

from the graphical models. Moreover, MEdit4CEP was
extended by using the Prioritized Colored Petri Net
(PCPN) formalism [5], and the new version was called
MEdit4CEP-CPN [6, 7]. In this framework, graphic event
pattern models are automatically transferred into its
graphical PCPN counterpart, which is transferred again
into a compatible PCPN code interpretable by CPN Tools
[8] to execute the event patterns, with the aim to perform
the semantic validation of them. Thus, this approach offers
the advantage of providing a graphical model to perform
such a validation: users benefit from a better understanding
of the internal semantics of the model through visual
simulation of the model, where they can see its dynamic
behavior and locate possible errors, for instance, in a
certain condition, operation, time window, etc. Therefore,
users not only observe whether there are differences be-
tween expected and actual outputs, but they can also in-
spect the internal dynamics of pattern execution when
these differences occur.
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Although CEP is so powerful for recognizing complex
events in real-time big data streams, domain experts must
face how to define the quantitative analysis to be performed
in response to the produced complex events. These quan-
titative analysis studies are carried out to evaluate existing or
planned scenarios, to compare alternative scenarios or to
find an optimal scenario. In particular, we will focus on time-
dependent scenarios since CEP systems consist of event
streams flowing in time.

The main aim of this paper is, therefore, to demonstrate
how MEdit4CEP-CPN can be used for conducting such
quantitative analysis of events of interest for an application
domain, without requiring knowledge of any scientific pro-
gramming language for implementing the pattern conditions.
Thereby, end users are provided with an all-in-one tool for
graphically modeling event patterns, transforming them into
a PCPN model, modifying its initial marking depending on
the application scenario, and making the quantitative analysis
through the monitor capabilities provided by CPN Tools.
Obviously, the use of CPN Tools requires some knowledge
from users in order to conduct the quantitative analysis, at
least for modifying the initial marking of the produced CPN
model and then executing the simulations to obtain the re-
sults. As indicated in our plans for future work, we intend to
alleviate this problem by enriching our graphical model for
event pattern design in order to be able to set the initial
conditions (event flow) at design time and adding the option
to automatically execute the produced CPN. The obtained
output would then be transformed into the corresponding
complex events in the output flow.

The quantitative analysis will be done by simulation and
will involve statistical investigation of output data (complex
events), exploration of large data sets, proper visualization of
those output data, and the validation of simulation exper-
iments. The outputs obtained from the simulations depend
on the input data (simple events) that feed the system. These
input data are set up stochastically, according to a specific
scenario model. Thus, appropriate statistical techniques can
be used for both designing and interpreting simulation
experiments.

The structure of the paper is as follows. Section 2 depicts
a general background describing the technologies and tools
used in this work. Section 3 specifies the different steps
followed in this work to perform the quantitative analysis. A
case study about the sick building syndrome is then pre-
sented in Section 4, with a quantitative analysis using our
methodology. Section 5 presents the related works, and a
comparative study with our framework. Finally, Section 6
presents the conclusions and lines of future work.

2. Background

In this section, we introduce the main technologies used in
this work, CEP and Colored Petri Nets (CPNs), and a brief
description of the MEdit4CEP-CPN tool.

2.1. Complex Event Processing. CEP is a technology that
captures, analyzes, and correlates large amounts of simple
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events with the ultimate goal of detecting relevant or sit-
uations of interest in a particular domain. Captured events
are data that can flow through information systems, be
provided by devices such as sensors, or come from social
networks, among others. Such data are called simple events
because they are characterized by being mainly raw data.
The possibility of processing such simple events will allow
us to infer information with a greater degree of semantic
knowledge, thus obtaining the so-called complex events.
For instance, for a stockbroker, the fact that the shares of a
certain company fall 2% may be insignificant; however, that
in a short period of time, both the shares fall 2% and also
news about the low solvency of the company are published
in a newspaper of economy; it could mean that it would be
appropriate to sell the shares as soon as possible. In this
case, the simple events would be that within a period of
time t, the shares of the company x drop at least 2% and
there is a negative news about the company in economic
press. The complex event would be the recommendation of
immediate sale. This way, in a given context, we will be able
to detect the situations that are specifically relevant in that
context or application domain. In order to do this, as
Figure 1 shows, it will be necessary to previously define a
series of event patterns specifying the conditions that
simple input events must satisfy to detect such a situation.
These patterns are defined and deployed in a CEP engi-
ne—software used to match these patterns on the incoming
event flows, capable of analyzing the data and providing
situations of interest detected in real time. The main ad-
vantage of CEP compared to other traditional event
analysis software is the added ability to process large
amounts of data and notify situations of interest detected in
real time, allowing reduction of considerably the latency in
decision making. This decision making capability relies on
the architecture where the CEP engine is deployed,
allowing the system either to perform certain actions or to
enact certain measures.

As previously mentioned, CEP is a technology that can
be very useful in several application domains such as fi-
nancial systems, health care, energy optimization, online
sales and marketing, business intelligence, security, and
transportation, among many others, since CEP objective is
to offer a general paradigm to be applied to a great variety of
systems [1, 9-14]. However, a deep knowledge of the ap-
plication domain is required to be able to define the patterns
that may be relevant to that domain depending on the simple
events that can be obtained in the system. Companies have
normally domain experts and computer science experts, but
these skills usually do not fall on the same person and the
definition of patterns in the language provided by CEP
engines is not trivial. For this reason, in the past, we pro-
posed MEdit4CEP [3].

MEdit4CEP was defined and implemented for the
purpose of providing a tool for CEP pattern definitions
appropriate for domain experts with no particular pro-
gramming skills. Thus, MEdit4CEP is a model-driven so-
lution for real-time decision making in SOA 2.0 that
provides a graphical modeling editor for CEP domain
definition and a graphical modeling editor for event pattern
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definition, as well as automatic code generation and de-
ployment from the patterns modeled by the domain expert.

2.2. Petri Nets and Quantitative Analysis. A Petri Net (PN) is
defined as a bipartite-directed graph which has two types of
nodes, places (depicted as circles) and transitions (depicted
as rectangles), connected using arcs between either places
and transitions (pt-arcs) or transitions and places (tp-arcs)
[15]. Places of a Petri Net are used to represent system states
and conditions, and a transition represents an action or an
event producing a change in the system state.

Definition 1 (Petri Net). A Petri Net is a triple (P,T,F),
where P is the set of places, T is the set of transitions, X =
PUT is the set of nodes, and FC (PxT)U (T x P) is the
set of arcs. For any node x € X (place or transition), we
define the preconditions and postconditions of x, denoted by
*x and x°, respectively, as follows: *x = {y € X |(y,x) € F},
x*={y e X|(x,y) € F}.

The dynamic evolution of a PN is captured by the so-
called markings. A marking of a PN is a function
M : P — IN, which assigns a natural number to each place.
This number is usually indicated as a set of dots inside the
place or by a number beside the place, and it is called the
number of tokens on the place. This number can be used for
instance to indicate the number of events that must be
processed or the number of processes in a queue.

A natural number (arc weight) is used to label a pt-arc.
This number indicates how many tokens are required to fire
(execute) an outgoing transition, by default, one. Tp-arcs also
have a weight associated, which specifies how many tokens
will be produced at the outgoing place when the transition is
executed. A transition ¢ can then be fired (enabling condi-
tion) when all its precondition places have at least as many
tokens as the weight of the arc that connects them to ¢. The
firing of a transition ¢ removes from its precondition places a
number of tokens equal to the weight of the pt-arc (p,t)
connecting them and inserts new tokens on its postcondition
places, according to the weights of those tp-arcs.

Petri nets are untimed and tokens do not carry any
information. CPN [16] is a PN extension which incorporates
data and time, allowing to model complex data structures
attached to tokens. Thus, places have an associated color set
(a data type), indicating the set of permitted token colors at a
given place.

CPN Tools [8] is a widely used tool that allows us to create,
edit, simulate, and analyze CPNs. The notation described
below is the one used in this tool. In CPNs, we can have places
with no attached information (color set UNIT), as in the plain
model. But we can have other color sets, such as the set of
integer numbers INT, a Cartesian product of two or more color
sets as INT2 =INT xINT, INT3 =INT x INT x INT,
and a string (STRING). Each token has then an attached data
value (color), which belongs to the corresponding place color
set.

In CPN Tools, the current number of tokens on every
place is drawn in green beside the place circle, and the
specific colors of these tokens are indicated using the no-
tation m'v, meaning that we have m instances of color v.
When we have several tokens on a place with different
values, we use the symbol “++” to represent the union of
them.

Arcs can have inscriptions (arc expressions), constructed
using variables, constants, operators, and functions, whose
evaluation matches the color set of the attached place. For a
transition t with variables y1, y2,... in its input arc ex-
pressions, a binding of t is an assignment of specific values to
each of these variables. A transition ¢ is then binding enabled
if there is a binding such that the evaluation of each input arc
expression of t matches the corresponding tokens (with the
same values) in the corresponding input place.

We can have guards associated to transitions, which can
be used to restrict their firing. Guards are predicates con-
structed by using the variables, constants, operators, and
functions of the model. For a guarded transition to be
fireable, the evaluation of the guard must be true with the
selected binding. A priority can also be associated to a
transition. When two or more transitions can be fired
(executed) at a given time, the transition with the highest



level of priority is fired first. A CPN with priorities is called a
prioritized CPN (PCPN). Specifically, we use the following
priorities: P_HIGH, P_NORMAL, P_LOW, P_LOW,,
P_LOW,, ... P_.LOW,, (for a certain n € IN) and P_.MIN,
following this decreasing order of priority.

CPN Tools allows us to split the model into pages, which
is a useful feature to deal with large models. In this case, both
substitution transitions and fusion places can be used to
conform the whole model. Substitution transitions allow us
to create hierarchical models, in which some transitions
represent the actions enclosed in other CPN pages, while
tusion places are places that are used in different pages, i.e.,
the places identified by a same fusion label are functionally
the same place.

Example 1. Let us consider the PCPN depicted in Figure 2.
Places InputEv and OutEv have INT2 as color set and
ProcSqn and SqOut have INT as color set. The initial
marking of both places ProcSqn and SqOut is 1'1 (one
integer token with value 1). Place InputEv represents a flow
of input events of a system that must process these events
producing as output a flow with those events whose value is
greater than 2 (place OutEv). Each event is represented by a
Cartesian product of 2 integers (colorset INT2), in which
the first component stands for the event number and the
second component for the event value (integer). The
initial marking of place InputEv is M =1'(1,1)+
+1'(2,4) + +1'(3,0) + +1' (4,9), as shown in the figure.
Transitions are labeled with their associated guard and
priority information (P_NORMAL if empty), and arcs are
labeled with their corresponding expressions. All the
variables used in the expressions (n,m,v,k) are integers.

In this PCPN, place SqOut allows us to number se-
quentially the events produced on OutEv. Place ProcSqn acts
as a sequence counter so as to process the event tokens on
InputEv in order. Transition selcond must be fired when we
have one token (n, v) on InputEv with a sequence number n
equal to that indicated on ProcSqn that fulfills the condition
v> 2. Transition selcond updates the sequence number on
ProcSqn, by increasing it by one unit. Otherwise, when
transition selcond cannot be fired, transition incr_sq is fired
in order to increase the sequence number on ProcSqn, but it
will stop firing when the sequence number on ProcSqn is
greater than the maximum sequence number on InputEv.

The final marking obtained on the place OutEv is
therefore M' =1'(1,4) + +1'(2,9) for the initial marking
indicated in the figure. The final marking on ProcSqn is 1'5
and on SqOut is 1'3, and place InputEv keeps its initial
marking.

Quantitative analysis in CPNs allows us to obtain rel-
evant performance indexes of the system modeled. For
instance, this analysis is used to obtain average response
times, throughput, queue lengths, etc. In our case, the
quantitative analysis can be used both to validate the event
patterns defined and also to obtain predictive information by
feeding the system with different event scenarios. Quanti-
tative analysis using CPNs is usually based on simulations in
order to obtain the measures of interest for the modeled
scenario. This simulation-based quantitative analysis is
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performed through a number of lengthy simulations of a
CPN model, during which data are collected from the oc-
curring binding elements, firing of transitions, and markings
reached so as to obtain estimates of measures of interest; in
our case, the expected outputs of the system. This in-
formation is gathered by repeating the same experiment
(simulation) a number of times, using the replication ca-
pabilities of CPN Tools and then using the monitoring
capabilities of CPN Tools to extract the relevant data from
the simulations. Specifically, we use place content break
point and data-collector monitors, which allow us to de-
termine whether a place becomes marked and extracts
numerical data during simulations, respectively. For in-
stance, these monitors can be used to count the number of
times a specific transition has been fired across a simulation,
to extract the marking of some specific places of the CPN
model or to obtain the first instant at which a specific
transition was fired.

Thus, the quantitative analysis is basically based on the
monitor and replication capabilities of CPN Tools, which
provides us with a report and log files which can be analyzed
by using other well-known statistical computing tools, such
as R, Matlab, and SPSS.

As an illustration, let us consider the CPN depicted in
Figure 2. It might be of interest to know how many times
transition selcond is fired, i.e., the amount of tokens gathered
at place OutEv. Figure 3(a) shows the binder tools palette of
CPN Tools for monitoring purposes, and Figure 3(b) shows
the monitor that has been defined to count the number of
firings of transition selcond. In this case, as it can be seen
from the example, the result obtained by applying the
monitor was 2.

Experiments can then be produced for different sce-
narios by modifying the initial marking, which can also be
randomly generated so as to produce synthetic scenarios.
For instance, we could define a function M_init to pro-
duce a random initial marking with n tokens for place
InputEv in Figure 2 using a discrete uniform distribution,
as follows:

funM_init(n) = if (n = 0)then nil else 1’ (n, discrete (1, 6))
++M_init(n—1).
(1)
To reproduce the experiments, we can use the replica

capabilities provided by CPN Tools. The following expres-
sion simulates m times this example:

CPN'Replications.nreplications m. (2)

The outputs obtained for these experiments using these
stochastic initial markings can then be analyzed with the
statistical computing tools mentioned above.

2.3. MEdit4CEP-CPN. As previously explained, this tool
was introduced in [6] as an extension of MEdit4CEP [3]
to deal with the semantic validation of the modeled
patterns.
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In particular, MEdit4CEP-CPN mainly consists of a do-
main-specific modeling language (DSL) and a graphical mod-
eling editor for automatically transforming event pattern models
into PCPN graphical models. Then, these models are validated
and transformed into codes executable by Petri nets software.

This DSL was implemented using the Epsilon languages
[17] for model-to-model transformation, model validation,
and template-based code generation. Additionally, Epsilon
EuGENia [18], a front-end for the graphical modeling
framework, was used for implementing the editor. More
details about the implementation can be found in [6].

Figure 4 illustrates the 7 phases, explained below, a user can
follow to accomplish not only the semantic validation of the
modeled patterns but also to be able to perform a quantitative
analysis of the complex event properties in the studied scenarios.

2.3.1. Event Pattern Model Definition. In phase 1, the tool
user is expected to graphically define the event patterns to be
detected in a particular application domain.

2.3.2. Event Pattern Model Syntactic Validation. Once an
event pattern has been modeled (phase 1), thanks to the use
of the presented editor, the user can automatically validate
the pattern syntax (phase 2). The editor will check whether
the model conforms to the ModeL4CEP metamodel. Af-
terwards, the errors to be fixed before continuing will be
shown. As of this phase, we can accomplish a semantic
validation through PCPNs (phases 3, 4, 5, and 6); otherwise,
phase 7 can be performed with the aim of automatically
transforming the model into EPL code.

2.3.3. Event Pattern Model Transformation to PCPN Model.
In phase 3, the event pattern models are automatically
transformed into a PCPN model. In order to provide such a
functionality, the editor has been provided with a meta-
model for PCPN and a set of model-to-model trans-
formation rules that we have defined and implemented for
this purpose. Thus, a PCPN conforming to the named
metamodel is generated.
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2.3.4. PCPN Model Syntactic Validation. Once the PCPN
model has been automatically generated, in phase 4, do-
main experts may modify the PCPN according to their
needs. For instance, they might be interested in editing the
initial marking to check other particular scenarios of their
interest. Then, after the PCPN edition, (1) it is checked
whether the new model conforms to the PCPN metamodel
and (2) whether the validation rules are satisfied through a
syntactic validation. The errors that should be fixed before
continuing with the following phase would be shown at this
stage.

2.3.5. PCPN Model Transformation to PCPN Code. In phase
5, the PCPN model is automatically transformed into
executable PCPN code (PCPN code refers to a pro-
prietary PCPN file format that can be executed by a
specific software); a set of model-to-text transformation
rules have been defined and implemented for this
purpose.

2.3.6. Semantic Validation and Quantitative Analysis.
The expert in charge of simulating and analyzing the PCPN
will then feed the net with an arbitrary number of initial
markings (stream of events) in phase 6. This way, it will be
possible to check if the event pattern is semantically correct,
as well as a quantitative analysis will be carried out (see
Section 3). In the case a semantic error is detected, we should
return to phase 1.

2.3.7. Pattern Model Transformation to EPL Code and
Deployment. Finally, in phase 7, the event pattern model is
automatically transformed into EPL code and deployed in
the CEP engine in question. In this work, we are generating
code for the Esper CEP engine, but new transformation rules
for other CEP engines of interest may be easily created and
integrated in the proposed editor.

Therefore, we can conclude that, we have a top-down
approach in which users can graphically define what they
want to model (event patterns) and the proposed system
automatically provides the implementation code. In this
way, according to the capabilities associated to phases 5 and
6, MEdit4CEP-CPN allows us to infer additional meaningful
information and to obtain predictive results about the an-
alyzed pattern by feeding the system with different initial
scenarios (markings).

3. Quantitative Analysis of Complex Events

CEP is a new class of event-processing solution which in-
tegrates into standard middleware architectures and enables
event processing to be embedded in any standard enterprise
application. This new service technology brings the power of
event-driven insight into any industry and any end user. But
sometimes, it is not easy to be used by domain experts. In
this sense, MEdit4CEP-CPN was created to reach the next
objectives in the CEP scope:

(i) Creation of user-friendly models for facilitating
domain experts the task of defining event patterns

(ii) Syntactic and semantic model validation through
model-driven techniques and CPN Tools, re-
spectively, without requiring deep knowledge on
CEP or PCPN formalism

(iii) Model-to-model and model-to-text transformations
for automatically transforming the event pattern
models into both PCPN models and EPL code and
also the PCPN models into code executable by CPN
Tools

(iv) Plug-in based solution, what will allow us to easily
extend it with additional capabilities such as glass
box and black box testing techniques for testing
models, or predictive analytics for predicting future
scenarios by analyzing the historical data

In this paper, we focus on phase 6 (semantic validation
and quantitative analysis), briefly described in Section 2.3,
which receives as an input the automatically generated
PCPN code executable by CPN Tools. In this paper, more
specifically, we define and carry out the particular phases
that must be followed to conduct the quantitative analysis of
the system under study (see Figure 5).

3.1.6(a) Scenario Configuration. The initial marking (M) of
the generated PCPN is initialized with an ordered flow of
simple events (F =e;,e,,es,...), representing a specific
scenario. This event flow can be introduced manually or
generated automatically by using deterministic or proba-
bility distribution functions provided by CPN Tools. Note
that the automatic data generation is very convenient for
analysis purpose.

3.2. 6(b) Deterministic Quantitative Analysis. The PCPN is
then executed using CPN Tools in order to obtain the
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corresponding output (detected complex events). Thus, this
phase allows us to conduct the semantic validation as well as
the quantitative analysis with a deterministic input event
flow.

3.3. 6(c) Stochastic Quantitative Analysis. Alternatively to
phase 6(b), the initial marking M, is obtained using sto-
chastic input event flows, according to different scenarios,
and the PCPN is then executed using simulations and the
monitor capabilities provided by CPN Tools.

Therefore, the analysis of different scenarios is per-
formed in phase 6, in which we feed the PCPN with initial
markings that simulate the scenarios to be studied. In
particular, we can produce the initial markings by using
either deterministic functions that simulate specific situa-
tions or using probability distributions that produce sto-
chastic values reproducing scenarios of interest. For
instance, a normal distribution could be used to produce
increments in a temperature measure, an exponential dis-
tribution to represent the users arriving at a hospital
emergency room, and so on. In this case, when using sto-
chastic initial markings, CPN Tools allows us to replicate the
execution of a CPN by automatically producing the initial
markings, and the monitor capabilities can then be used to
collect the relevant data from the simulations.

4. Case Study: Sick Building Syndrome

As an illustration of the methodology described in the
previous section, we consider a scenario of events related to
the sick building syndrome (SBS), which is considered by the
World Health Organization (WHO) [19] as a group of
symptoms that people suffer in a building for no apparent
reason. Some of the SBS symptoms are nose, throat, and eye
irritation; itching, dry and red skin; dry mucous membranes
sensation; mental fatigue; and headaches, and dizziness, and
nausea. These symptoms tend to increase in severity as
people spend more time in the building but get reduced over
time or even disappear when people are away from the
building. Apart from this health problem, people’s work
performance becomes obviously affected, with a corre-
sponding loss of productivity. The SBS is widespread and
may occur in hospitals, offices, apartment houses, nurseries,
schools, and so on. Although the cause of SBS is unclear,
some main factors related to indoor air quality (IAQ) are
chemicals emissions from different sources, particles, radon,
pets and pests, microbes, temperature, humidity, and
ventilation.

In this sense, the WHO provides the guidelines [20] for the
protection of public health from risks for some selected pol-
lutants commonly present in indoor air, including the carbon
monoxide, which is the pollutant that we consider in this work.



These are the recommendations related to indoor ex-
posures of CO:

(i) 100 mg/m? for 15 minutes (assuming light exercise
and that such exposure levels do not occur more
often than one per day)

(ii) 35mg/m’ for 1 hour (assuming light exercise and
that such exposure levels do not occur more often
than one per day) (30 mg/m? is also recommended
in some European Agencies such as https://www.
anses.fr/fr/system/files/ AIR2004etVGO03Ra.pdf)

(iii) 10 mg/m?® for 8hours (arithmetic mean concen-
tration and light-to-moderate exercise)

(iv) 7mg/m?® for 24 hours (arithmetic mean concen-
tration, assuming that the exposure occurs when
people are awake and alert, but not exercising)

Let us consider, for instance, a school as the specific
indoor scenario, where children stay in a classroom for 5h/
day. We then focus on the second recommendation: a
nonhealthy indoor air quality corresponds to an average
level greater than or equal to 35mg/m? of CO for 1hour.

Next, we follow the phases described in Section 2.3
together with the new phases proposed in this paper (see
Section 3) in order to make the quantitative analysis of the
complex events detected for this scenario by using MEdi-
t4CEP-CPN and CPN Tools.

4.1. Phases 1-5: Event Pattern Model Definition, Syntactic
Validation, and Transformation to PCPN Model, as well as
PCPN Model Syntactic Validation and Transformation to
PCPN Code. The domain considered for this hypothetical
scenario consists of CO measurements gathered every
5minutes in a specific classroom. Thus, a simple event
consists of a measure for the CO pollutant, the classroom
identifier where the measure was gathered and the time-
stamp of the measure. We consider the event time stamps as
integers (in minutes), classrooms identifiers as strings, and
CO values as real numbers. Using MEdit4CEP-CPN, we can
easily define this domain (CO event type). Figure 6(a) depicts
the domain modeled and syntactically validated with
MEdit4CEP-CPN, and Figure 6(b) shows its automatic
translation to EPL code.

Patterns can be easily modeled and syntactically vali-
dated using the tool. Figure 7(a) shows the CO_Avg-modeled
pattern, which computes the CO pollutant average during
the last hour, while Figure 7(b) shows its automatic trans-
formation into EPL code. In the same way, Figure 8(a) shows
the CO_Unhealthy modeled pattern, to detect and recognize
situations in which the average computed with CO_Avg is
greater than or equal to 35 mg/m?, and Figure 8(b) shows its
transformation into EPL code.

Using our MEdit4CPN-CPN tool again, the CO_Avgand
CO_Unbhealthy event patterns are automatically transformed
into their corresponding PCPN models consisting of four
different pages (see [6] for a complete description of these
transformations): two pages for the pattern transformation
to obtain the CO pollutant average and the condition to

Scientific Programming

Oco create schema CO(timestamp integer,
[ imestamp classroomId string, value double);
ﬂ classroomid

ﬂva!ue

(a) (b)

FiGUre 6: Modeled domain. (a) Domain in MEdit4CEPCPN. (b)
Domain in EPL.

establish whether the threshold value of 35 mg/m? has been
reached or not (see Figures 9 and 10, respectively) and two
pages for simple and complex events (see Figures 11 and 12,
respectively). The corresponding CPN Tools declarations are
also shown in Listing 1.1. For simplicity, we consider in the
PCPN model that one unit time corresponds to 5 minutes,
therefore tp_CO_Avg =12 in Listing 1.1.

4.2. Phase 6(a): Scenario Configuration. Similarly to Example
1, the initial marking in place CO_in contains the tokens that
represent the input events (see Figure 13). In this case, these
events represent the CO values that have been measured. In
the scenario considered, for the initial marking of the CO_in
place, we start with a CO value of 3.0 mg/m3 . This value is
then increased by a value of 0.5 mg/m? every 5 minutes.

4.3. Phase 6(b): Deterministic Quantitative Analysis. After
executing the PCPN model by running a simulation, a value
of 30.25 mg/m? is reached after 60 time units (300 minutes)
in the CO_Avg place (see Figure 14), so the CO_Unhealthy
place is empty, because no complex event has been produced
corresponding to this situation. As a consequence, in this
scenario and with the values produced by this specific
simulation, the threshold value of 35 mg/m® was not
reached as the average level of CO computed in the con-
sidered period of time.

4.4. Phase 6(c): Stochastic Quantitative Analysis. This phase
consists in simulating different scenarios by modifying the
initial marking with stochastic input event flows, thus
obtaining the quantitative results for those scenarios. CPN
Tools provides a simulator engine, which allows us to au-
tomatically replicate simulations of a scenario using its
monitor capabilities. This is an important advantage of using
CPN Tools: we can obtain relevant performance measures
through simulation experiments, using the monitor features
of CPN Tools. As previously mentioned, monitors are used
to observe, inspect, or control simulations. In particular, we
use data-collector monitors, which are used to extract nu-
merical data from a PCPN. The numerical data obtained are
then used to compute the statistic information.

To accomplish this objective, we use synthetic data that
represent different scenarios. Thus, a new CPN Tools page was
included in the PCPN model to produce the initial markings
for different scenarios (Phase 6(a)), starting from a certain
value of CO pollutant and increasing it by using a probability
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FIGURre 7: CO_Avg event pattern. (a) CO Avg in MEdit4CEP-CPN. (b) CO Avg in EPL.
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: select al.timestamp as timestamp,
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FiGUure 8: CO_Unhealthy event pattern. (a) CO Unhealthy in MEdit4CEP-CPN. (b) CO Unhealthy in EPL.
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Ficure 9: CO_Avg page.



10

Scientific Programming

[sq=n]

l(sq, t, var_timestamp, var_classroomId, var_value)
CO_Avg_inP

incr_seq

Y

[ Fusion CO_Avg |
CO_Avg

(n, t, var_timestamp, var_classroomld, var_value)

(sq, t, var_timestamp, var_classroomld, var_value)

(#, t, var_timestamp, var_classroomld, var_value)

1'(1)

1) [var_value = 35.0] Y
10 sq+1
every_cond
5q

INT

INT

(sq, t, var_timestamp, v4r_classroomld, var_value)

CO[_Unhealthy Jout
[ Fusion CO_Unhealthy |
CO_Unhealthy

Figure 10: CO_Unhealthy page.
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Ficure 11: Events page.
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FIGUure 12: Complex events page.

distribution (see Figure 15). In this figure, transition tinitial
fires 61 times in order to produce 61 events on place CO_in
(we produce 61 events to allow the sliding time window to be
processed for the first 60 events because we need the clock to
reach the value 61). With each firing, the CO value (repre-
sented with the variable xx) on place initial is updated, by
increasing it with a value obtained from a uniform distri-
bution with arguments f1 and f2 (xx + uniform (f1, 2)). By
changing the initial CO value, the parameters and/or the
probability distribution function, we can easily generate
different scenarios.

We now apply the monitor features of CPN Tools, which
allow us to observe, inspect, control, or modify a simulation
of a CPN. We consider two situations of interest in this
work. The first checks whether the scenario reaches an
unhealthy situation and the second the time of the first
occurrence of this unhealthy situation. For this purpose, two
monitors are specified, respectively. The first monitor
(reach_place_unhealthy) is a place content break point
monitor, and it will indicate us if there is at least one token in
place CO_Unhealthy of Figure 14, and the second one
(time_first_unhealthy) is a data-collector monitor, which
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(1) (* Standard priorities *)
(2) val P_MAX=10;
(3) val P_HIGH =100;
(4)  val P_NORMAL = 1000;
(5)  val P_LOW = 10000;
(6)  val P_MIN = 20000;
(7) (* Standard declarations *)
(8)  colset INT =int;
(9)  colset STRING = string;
(10)  colset REAL =real;
(11)  colset BOOL =bool;
(12)  colset UNIT =unit;
(13)  colset TIME = time;
(14)  colset INTINF = intinf;
(15) (* Declarations for domain: SBS_CO *)

(17)  (* vars_for_event: CO *)

(18) var var_timestamp: INT;

19) var var_classroomlId: STRING;
(20) var var_value: REAL;

(21)  var n, t, t1: INT;

(24)  (* vars_for_complexevent: CO_Avg *)
(25) var var_avg: REAL;

(28)  var var_unhealthy_value: REAL;
(29) (* Total color set for: CO_Avg *)

(31) (* Pattern auxiliary variables *)

(32) wvar m, sq, k, tt, x, m1, m2, ¢, sm: INT;
(33) var M1, M2, SM, av: REAL;

(34) (* Sliding time interval declarations: *)
(35) val tP_CO_Avg=12;

(36) (* Pattern auxiliary variables *)

(37) (* Declarations initial marking *)

(38)  colset INT3 =product INT * INT * INT;
(39) var xx:REAL;

(40)  val co0=3.0;

(41)  wval f1=0.5;

(42) val 2=0.5;

(16)  colset CO =product INT * INT * INT % STRING * REAL;

(22) (* Declarations for complex events domain: SBS_CO *)
(23)  colset CO_Avg=product INT * INT * INT * STRING * REAL;

(26)  colset CO_Unhealthy = product INT * INT * INT % STRING * REAL;
(27) (* vars_for_complexevent: CO_Unhealthy *)

(30)  colset Totals_ CO_Avg=product INT * INT % STRING * REAL * REAL % INT * REAL * REAL;

ListinG 1: CPN Tools declaration.

indicates us the time at which the place was reached for the
first time. Both monitors are shown in Figure 16. In the first
monitor, we only indicate the name of the place that will stop
the execution if it becomes marked (CO_unhealthy), while in
the second monitor, we need to write a predicate indicating
the stop condition and an Observer function to obtain the
time at which the execution stopped.

Once, the initial configuration is established, we can use
the CPN Tools simulator engine to automatically replicate
the experiment » times so as to obtain performance results.
For instance, we can replicate it 100 times by using the
following code:

CPN'Replications.nreplications 100. (3)

Next, we introduce a specific case study, shown in
Table 1, with 9 different scenarios. The objective of this study

is to examine the probability of reaching an unhealthy
condition before the 300 minutes. In these scenarios, the
initial value for CO in all the simulations is (3.0 mg/m?) and
100 replications have been used to obtain the results. As an
illustration, in the third row corresponding to the third
scenario, each time the CO value is updated in the initial place
(see Figure 15), its value is increased by an arbitrary increment
between 0.5 and 0.65. Therefore, the parameters for the
uniform distribution function uniform (f1, f2) are established
to f1 =0.5and f2 = 0.65. In this experiment, only 4% of the
simulations reached an unhealthy situation. Notice that when
the increment arguments are f1 =0.5and f2 =0.72 (last
row in the table), we always obtain an unhealthy situation
(100%).

Other distribution functions can be considered as well. For
instance, we can consider a normal distribution normal (f1, f2)
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FiGure 13: Initial marking in the event page.
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CO_Avg CO_Unhealthy

FIGURE 14: Final marking page.

to produce the events in the initial marking, as well as con-  parameters f1 = 1.5and f2 = 0.25, 0.5, and 0.75, an unhealthy
sidering the initial value of CO of 3.0 mg/m®. In particular, in situation is always reached before 300 minutes. However, the
the scenarios obtained for the normal distribution with  time to reach this situation varies depending on the value of
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FIGURE 15: Initial marking page.
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¥Nodes ordered by pages
[ ¥ CO_Unhealthy '
CO_Unhealthy_out (place)

vtime_first_unhealthy
¥Type: Data collection

oTimed
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¥ Predicate
Tun pred (bindelem) =
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fun predBindElem (CO_Unhealthy'every_cond (1,
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| predBindElem _ = false
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predBindElem bindelem
\end
¥ Observer
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et
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| obsBindElem _ = ~1

in

obsBindElem bindealem
.end J
¥ Init function

fun init () =
NONE

¥ Stop
fun stop () =

NONE

FIGURE 16: Monitors used in the scenario of Figure 13.

these parameters. Therefore, the objective now is to determine
the time at which the unhealthy condition is reached. To study
this circumstance, we proceed as in the previous case, by
performing 100 replications with the values for parameters f1
and f2 indicated above. Figure 17 shows the results obtained
using a box plot (the central mark in red indicates the median,
and the bottom and top edges of the blue box indicate the first
and third quartiles, respectively). The whiskers (discontinuous
lines drawn in black from the box) extend to the most extreme
data points not considered outliers, where the outliers are
plotted using the “+” symbol in red).

TaBLE 1: Results obtained taking different values to increase the CO
level.

Scenario Initial Increment Probability (%)
1 3 0.5 (fixed) 0
2 3 Uniform (0.5, 0.6) 0
3 3 Uniform (0.5, 0.65) 4
4 3 Uniform (0.5, 0.67) 41
5 3 Uniform (0.5,0.68) 67
6 3 Uniform (0.5, 0.69) 88
7 3 Uniform (0.5,0.7) 91
8 3 Uniform (0.5,0.71) 99
9 3 Uniform (0.5,0.72) 100

Notice that we have chosen a synthetic scenario to il-
lustrate the applicability of our methodology, i.e., we start
with a specific value for the CO value and we use different
distributions to produce the event information for the next
300 minutes. Other arrangements can be considered, by
modifying the initial value and/or the distribution used to
change the values in credible values throughout the time.
Obviously, the interest of using CPNs and CPN Tools lies in
the possibility of using the automatic simulator engine and
the monitor capabilities to make performance studies and
obtain predictive results of the system behavior.

Finally, the model could be enriched by including the
actions that should be taken to deal with the situations
detected. As an example, for a detected unhealthy situation
(CO average is greater than 35 mg/m? for 1 hour), we could
consider as possible actions to start the air conditioner, open
some windows, start some fans, etc. These actions could
actually be included in the PCPN model as transitions that
would be executed in the case that these conditions were
satisfied. Furthermore, we could also use real data obtained
from sensors in order to simulate a scenario with this
pollution information. Thus, with the results obtained, we
could predict unhealthy situations and then start the fans or
the air conditioners before they occur.

5. Related Work

Over recent years, some collective computational in-
telligence technologies and tools have emerged in response
to the demands for analyzing big data. Among them, the
CEP technology is essential for analyzing the complexity of
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FIGURE 17: Box plot obtained for different scenarios.

multicriteria that could generate an alert [21], extracting
meaningful events. However, the implementation of event
pattern conditions can become a handicap for users who are
experts on the domain but not in the involved technology.
Moreover, conducting the generation of data for semanti-
cally validating those patterns is a cumbersome task. To solve
these problems, on one hand, some works have proposed the
use of Petri nets for conducting the semantic validation of
event patterns, while others use Model-Driven Engineering
(MDE) techniques for making the CEP technology closer to
any user. We propose the combination of both approaches.

Regarding works using the Petri Net formalism, Offel
etal. [22] show that formal methods as Petri nets can help in
the design and implementation of CEP systems which are
underdeveloped, but they are in the process of developing
tool support for the envisioned verification of CEP systems.
Weidlich et al. [23] used PCPNs with time in order to define
a model of event-processing networks. The Event-Processing
Network (EPN) architecture is presented, and a general
translation of this concept, an example implemented in the
ETALIS framework [24], is also presented.

Ahmad et al. [25] describe a methodology modeling CEP
using Timed Net Condition Event System (TNCES) [26]. An
application to a Manufacturing Line is also presented as an
example. NCES is a Petri Net derived formalism based on
Condition Event Systems to model discrete event dynamic
systems. NCES is extended with time in TNCES, which is
based on timed-arc Petri nets [27-29]. Thus, the main
difference to our work, other than the Petri Nets formalism
used, is that we integrate the PCPN translation into the
MEdit4CEP tool, so as to automatically obtain the PCPNs
from the event pattern graphical specification created by
using this tool.

Other authors like Metzger et al. [30] analyze the CEP
systems under the verification perspective applying model
checkers. As an example, the authors perform incremental
verifications using Petri Nets as models for the Tapaal tool,
a bounded model checker. The approach used in this work
to deal with the state explosion problem is to gradually
increase the size of the model, which is a different approach

to analyze CEP systems instead of using the quantitative
analysis. Cugola and Margara [31] have defined the TESLA
language, which is a complex event specification language,
based on a metric temporal logic. TESLA is a highly ex-
pressive and flexible language in a rigorous framework,
offering content and temporal filters, negations, timers,
aggregates, and fully customizable policies for event se-
lection and consumption. Ericsson et al. [32] have defined a
prototype tool REX, with support for specifying both CEP
systems and correctness properties in a high-level graphical
language. CEP applications are then transformed into
timed automata, and the UPPAAL tool [33] is used for
automatic verification. Agrawal et al. [34, 35] have also
defined a timed automata formalization of complex event
systems. They present the Sase+pattern language, which
defines a precise semantics in terms of timed automata with
similar results to the work introduced in TESLA. Cugola
and Margara have also proposed CAVE tool [36] with the
purpose of assisting domain experts in the definition of a
set of reliable rules for a CEP application. In particular, this
tool analyzes the behavior of a CEP application trans-
forming the property checking rules into basic constraints
solving problems. Additionally, they have also presented a
survey [37] of the existing Information Flow Processing
(IFP) systems, including CEP systems, activa databases, etc.
They show the different approaches and mechanisms
adopted in these IFP systems to deal with the event flow
processing.

Rewriting logic and the Maude language [38] have been
also used to specify and analyze CEP systems. Burgueio et al.
[39] propose a framework for the specification of CEP
applications, allowing developers to formally analyze and
prove properties of their CEP programs. An encoding of
CEP concepts and mechanisms to Maude is provided, and
several analysis are presented, both covering the static
properties of the CEP patterns and the statistical simulation
of such systems. Garci-a-Lopez et al. [40] have implemented
the CEPA tool for the transformation of CEP programs to
Abstract Syntax Trees (AST) capturing the pattern de-
pendencies, with the goal to check and correct two particular
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TaBLE 2: Modeling/analysis approaches based on formal methods.

Underlying formalism

Approach Objective Modeling Model validation Transformation
and tool

MEdit4CEP- Sen;znﬁiccirllds?luar;t;::gf ag:li)ll}\r]sm Colored Petri nets & Graphical Syntactic analysis of Automatic to EPL

CPN [6] gtap Y ngls Y CPN Tools P graphical models and PCPN

CEP in General formal analysis script Rewriting logic and . .

Maude [39] supported by Maude Maude Textual Syntactic analysis Manual

CEPA [40] Rule acyclicity anq race condition Graph theory Textual Syntactic analysis of Automatic to AST

checking textual models

REX [32] Property verification Timed automata  Graphical Using UPPAAL AutoTstté;z;lmed

CAVE [36] Property verification énd Ad hoc CEP language  Textual Constraint solver Automatvf to
performance analysis configurations

properties of CEP systems: rule acyclicity and rule race
conditions.

Concerning the quantitative analysis of complex
events, Tendick et al. [41] focus on the use of statistical
methods for the CEP technology for making decisions in
real time, providing additionally a comparison of com-
puting techniques in widespread use for real-time data.
Other approaches like Rajsiri et al.’s work [42] and the one
presented here focus on studios via simulations. Rajsiri
et al. present a business process editor and simulator
developed on the basis of an event-driven business process
modeling approach using the BPMN 2.0 formalism. This
work dealt with the problem of the business processes
simulation taking an even-driven perspective into account
to observe the system behavior; however, users cannot
automatically replicate scenarios. In addition, there are
also several tools for performance evaluation of CEP ap-
plications by simulations, for instance, CEPSim [43] is a
simulator for CEP and Stream Processing (SP) systems in
cloud environments which allows us to analyze the per-
formance and scalability of user-defined queries and to
evaluate the effects of various query processing strategies.
Mendes et al. [44] have developed FINCoS, which is a set of
benchmarking tools for load generation and performance
measuring of event-processing systems, so as to make
performance evaluation on CEP platforms independently
on their structural differences or the workload employed.
Along the same lines, Li and Berry [45] have also de-
veloped a benchmark of complex event-processing systems
focusing on complex event-processing functional behav-
iours: filtering, transformation, and event pattern de-
tection. They also show the factors that influence
performance measurements.

As a summary, Table 2 shows a comparison of our pro-
posal (MEdit4CEP-CPN) with the most representative men-
tioned modeling/analysis works based on formal methods.

It also deserves special mention the CEP engine pro-
posed by Cugola and Margara [46], T-REX, based on the
TESLA language that combines expressiveness and effi-
ciency. T-REX middleware provides an efficient event de-
tection algorithm based on automata to interpret TESLA
rules. This work could be used in conjunction to our pro-
posal through the inclusion of additional transformations to
generate TESLA rules.

Regarding to works considering metamodels of PN,
Gomez et al. [47] proposed a metamodel for PNs in the
domain of biological data processing. The models conforming
to this metamodel are then transformed into the XML code
executable by CPN Tools. This work shows some limitations
with respect to our proposal. Among them, PN modeling is
close to CPN Tools concepts, and a tree model editor is used
to produce the models. In addition, a CPN model can only
have one page, and priorities are not considered. Additionally,
Westergaard et al. [48] implemented Access/CPN, a frame-
work providing CPN Tools with two interfaces. One is written
in Standard Markup Language, which is useful for analysis
methods. The other interface is written in Java and provides
an object-oriented representation of CPN models, whose
object model (metamodel) is implemented by using Eclipse
Modeling Framework (EMF). However, the latest version
released is not actually up-to-date and, although the latest
version available from Subversion (https://svn.win.tue.nl/
repos/cpntools/AccessCPN/trunk/) has better support for
4.0 features of CPN Tools, it is still not complete, as stated by
Westergaard. In addition, Petri Net modeling is addressed by
using a tree model editor (not a graphical one with nodes and
links), as in the work by Gomez et al. [47].

6. Conclusions and Future Work

In this paper, we have illustrated the use of the MEdit4CEP-
CPN approach for the complex event analysis through a case
study based on the sick building syndrome. The event
patterns have been graphically modeled with MEdit4CEP-
CPN and then automatically transformed into both EPL and
CPN code. Additionally, CPN Tools have been used to make
quantitative analysis of events produced for this case study.
Given the flexibility provided by MEdit4CEP-CPN, this
analysis could be applied to other cutting-edge real-world
case studies, such as eHealth [49], robotic [50] and mobile
edge, and cloud computing applications [51].

As shown in the related work, there are many works using
CPNs to model CEP-based languages, but to the best of our
knowledge, they do not provide end users with an all-in-one
graphical tool with the following goals: (1) modeling CEP
domains and event patterns in a user-friendly way by dragging
and dropping elements on a canvas, (2) validating the pattern
syntax, (3) automatically transforming the graphical patterns
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into a CPN model, (4) automatically transforming the CPN
model to the XML code executable by CPN Tools and vali-
dating the pattern semantics, (5) automatically generating the
Esper EPL code and deploying it in a particular event-based
system, and (6) providing a quantitative analysis of complex
events through the CPN Tools executable model automatically
generated by the tool. Let us observe that the MEdit4CEP-
CPN model-driven approach presented in this paper provides
support for all of these functionalities.

As future work, we plan to add additional features and
functionalities to MEdit4CEP-CPN, such as further EPL
operators and new transformation techniques. Since the use
of CPN Tools requires some knowledge from users in order
to conduct the quantitative analysis, at least for modifying
the initial marking of the produced CPN model and to
execute the simulations to obtain the results, we intend to
alleviate this problem by enriching our graphical model for
event pattern design. This will make it possible to set the
initial conditions (event flow) at design time and adding the
option to automatically execute the produced CPN. The
obtained output would then be transformed into the cor-
responding complex events in the output flow.

Data Availability

The obtained PCPN model and simulation data used to
support the findings of this study have been deposited in
the Mendeley repository (DOI: 10.17632/kfrkyzdxnv.1).
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