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Abstract

The development of new Web services through the composition of existing ones has

gained a considerable momentum as a means to realise business-to-business collabo-

rations. Unfortunately, given that services are often developed in an ad hoc fashion

using manifold technologies and standards, connecting and coordinating them in order

to build composite services is a delicate and time-consuming task. In this paper, we

describe the design and implementation of a system in which services are composed

using a model-driven approach, and the resulting composite services are orchestrated

following a peer-to-peer paradigm. The system provides tools for specifying composite

services through statecharts, data conversion rules, and multi-attribute provider selec-

tion policies. These specifications are interpreted by software components that interact

in a peer-to-peer way to coordinate the execution of the composite service. We report re-

sults of an experimental evaluation showing the relative advantages of this peer-to-peer

approach with respect to a centralised one.

Index Terms: Web service, Web service composition, Web service orchestration, dy-

namic provider selection, peer-to-peer interaction, statechart.

1 Introduction

Web services are gaining a considerable momentum as a means to architect and implement in-

tegrated enterprise applications, business-to-business collaborations [4, 9], and e-Government
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systems [20]. A Web service is essentially a semantically well defined abstraction of a set

of computational and/or physical activities involving a number of resources, intended to ful-

fill a customer need or a business requirement. A Web service allows applications and/or

other services to programmatically interact with, for example, information sources, applica-

tion programs, and business processes. An example of a Web service is a flight booking system

accessible through SOAP [36].

Web services can be composed with each other in the context of inter-organisational busi-

ness processes, leading to composite (Web) services [10]. Composite services allow organisa-

tions to form alliances, to outsource functionalities, and to provide one-stop shops for their

customers. An example of a composite service is a travel booking system integrating flight

booking, accommodation booking, travel insurance, and car rental Web services.

The aim of the work reported in this paper is to enhance the fundamental understanding of

how to facilitate the rapid and scalable composition of Web services. Specifically, it addresses

the following key issues related to service composition:

• Rapid composition: The why part of Web services composition is widely under-

stood [30]. However, the technology (i.e, the how part) to compose Web services in

appropriate time-frames has not kept pace with the growth and volatility of available

opportunities. Indeed, the development of integrated Web services is still largely ad-

hoc, time-consuming and requiring a considerable effort of low-level programming. This

approach is hardly applicable because of the volatility and size of the Web. More agile

approaches (e.g. model-driven) to service composition are therefore required.

• Adaptation to large and dynamic environments: The set of services to be com-

posed may be large and continuously changing. Consequently, approaches where the

development of a composite service requires the understanding of each of the under-

lying services are inappropriate. Instead, a divide-and-conquer approach should be

adopted, whereby services addressing similar customer needs (i.e. substitutable services)

are grouped together, and these groups take over some of the responsibilities of service

composition.

• Distributed orchestration: The orchestration of composite services in existing tech-

niques is usually centralised, whereas the participating services are distributed and au-

tonomous. A centralised orchestration model has several drawbacks with respect to scal-

ability and availability [11]. Given the highly dynamic and distributed nature of Web

services, we believe that novel techniques involving peer-to-peer orchestration of ser-
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vices will become increasingly attractive. In a peer-to-peer execution model, distributed

service components of similar capacity collaborate directly with each other without the

need to establish a hierarchical relationship between them. Peer-to-peer computing is

gaining a considerable momentum, as it naturally exploits the distributed nature of the

Internet [40].

The Self-Serv system [6, 7] described in this paper addresses these issues by providing mid-

dleware and tool support for facilitating the composition and orchestration of Web services.

In Self-Serv, Web services are composed using a model-driven approach, and the resulting

composite services are executed in a decentralised way within a dynamic environment. The

salient features and contributions of Self-Serv are:

• A language for process-based composition of Web services based on statecharts [24]:

a widely used formalism in the area of reactive systems, which is emerging as a stan-

dard for process modeling as it has been integrated into the Unified Modeling Lan-

guage (UML). Statecharts support the expression of control-flow dependencies such as

branching, merging, concurrency, etc. They also provide an implicit style for expressing

data-flow dependencies through the use of global variables.

• A concept of service community which provides a means to compose a potentially large

number of services in a flexible manner. Service communities are essentially containers

of substitutable services. They provide descriptions of desired services (e.g., providing

flight booking interfaces) without referring to any actual provider. Actual providers can

register with any community of interest to offer the desired service. At run-time, the

community is responsible for selecting the service offer that best fits a particular user

profile in a specific situation.

• A peer-to-peer orchestration model, whereby the responsibility of coordinating the ex-

ecution of a composite service is distributed across several software components called

coordinators. Coordinators are attached to each involved service. They are in charge of

initiating, controlling, monitoring the associated services, and collaborating with their

peers to orchestrate the service execution. The knowledge required at runtime by each

of the coordinators in a composite service (e.g. location, peers, and routing policies) is

statically extracted from the service’s statechart and represented in a tabular form. In

this way, the coordinators do not need to implement any complex scheduling algorithm.

The rest of the paper is organised as follows. Section 2 describes Self-Serv’s approach to

service composition, from the specification of control-flow and data-flow, to that of selection
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policies. Section 3 discusses the peer-to-peer orchestration approach and analytically com-

pares it to a centralised one. Section 4 describes the system architecture and implementation

of Self-Serv. Section 5 describes an experimental setup in which the deployment and execution

costs of the peer-to-peer approach are evaluated and compared to a centralised one. Finally,

Section 6 provides an overview of related work and Section 7 draws some conclusions.

2 Service Composition Model

Self-Serv distinguishes three types of services: elementary services, composite services, and

service communities. An elementary service is an access point to an application that does not

rely on another Web service to fulfill user requests. In the Self-Serv system, it is assumed that

every elementary service provides a programmatic interface based on SOAP and WSDL [32].

This does not exclude the possibility of using Self-Serv to integrate legacy applications, such

as those written in CORBA. However, for such applications to be composed with others using

Self-Serv, appropriate adapters should first be developed.

A composite service is an umbrella structure that brings together other composite and

elementary services that collaborate to implement a set of operations. The services brought

together by a composite service are referred to as its component services. An example of

a composite service would be a travel preparation service, integrating services for booking

flights, booking hotels, searching for attractions, etc.

The concept of service community is a solution to the problem of composing a potentially

large number of dynamic Web services. A community describes the capabilities of a desired

service without referring to any actual Web service providers. In other words, a community

defines a request for a service which makes abstraction of the underlying providers. In order to

be accessible through communities, pre-existing Web services can register with them. Services

can also leave and reinstate these communities at any time. At runtime, when a community

receives a request for executing an operation, it selects one of its current members, and

delegates the request to it.

Whether elementary, composite, or community-based, a Web service is specified by an

identifier (e.g., URL), a set of attributes, and a set of operations. The attributes of a ser-

vice provide information which is useful for the service’s potential consumers (e.g., public

key certificates). We do not consider the specification of richer abstractions such as service

conversations. For details about service conversation support in our approach, we refer the

reader to [3].
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2.1 Community Services

A community is an aggregator of service offers with a unified interface. It is intended as a

means to support the composition of a potentially large number of dynamic Web services.

The description of a community contains a set of operations that can be used to interact with

the community and its underlying members. These operations are described without referring

to the definitions of local services (i.e., members).

2.1.1 Service Registration

The registration of a service with a community requires the specification of mappings between

the operations of the service and those of the community. The following is an example of a

mapping:

source service Qantas Airway QAS target community Flight bookings FBS

operation mappings operation FBS.search flight() is QAS.search ticket();

operation FBS.book flight() is QAS.book ticket()

In this example, the operation search flight (resp., book flight) of the community

Flight bookings is mapped to the operation search ticket (resp., book ticket) of the

service Qantas Airway. A registration may concern only a subset of the operations of a

community. Thus, Web services have the flexibility to register only for the operations that

they can provide. For instance, the community Flight bookings provides operations for

searching (i.e, search flight) and buying (i.e., book flight) flight tickets. If a Web service

provides only one of these operations, then it will register only for the operation that it

provides.

A Web service can register with one or several communities. A community can be regis-

tered with another community. For example, the Web services Qantas Airway and Cathay

Pacific are registered with the community Flight bookings which is itself registered with

the community Intl Travel Arrangements.

2.1.2 Multi-Attribute Service Selection Policies

A community is associated with a scoring service that interprets a selection policy. A selection

policy specifies preferences over services of a community. It consists of a multi-attribute utility

function which has the form

U(s) =
∑

i∈SA

wi.Scorei(s)
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where:

• Scorei(s) is an attribute scoring function, which, given a value of an attribute i of the

service s, returns a score (a positive integer value). SA is the set of selection attributes.

• wi is the weight assigned to the attribute i.

The scoring service computes the weighted sum of service attribute scores using the weight

property of each selection attribute. It then selects the service which produces the higher

overall score according to the multi-attribute utility function. Selection attributes belong to

one of three categories: advertised, provider-supplied, and community-supplied. Advertised

attributes are the attributes that a service provider makes available at registration time (i.e.,

when the service becomes member of the community). For example, a service provider may

advertise the expected duration of an operation invocation. Provider-supplied attributes are

available from service providers only upon request. For instance, the price of a product can be

defined as being a provider-supplied attribute. Finally, community-supplied attributes are the

attributes that can be derived at the community level from past execution logs. For instance,

values of service quality attributes such as reliability and availability can be estimated based

upon past execution logs. Self-Serv supports a predefined set of generic attributes, and allows

developers to introduce new attributes. Table 1 lists the predefined attributes and their

corresponding scoring functions.

Quality Attribute Quality Functions
Execution Price qprice(s, op) represents the amount of money that a service requestor has to pay

for executing operation op of service s.
Execution Duration qdu(s, op) measures the expected delay in seconds between when a request to s

for executing operation op is sent and when results are received.
Reputation qrep(s) is a measure of its trustworthiness which depends on end-users experi-

ences of using the service s.
Reliability qrel(s) is the probability that a request to s is correctly processed within a

maximum expected time frame.
Availability qav(s) is the probability that a request to s is accessible.

Table 1: Service Quality Attributes.

A scoring function is provided for each selection attribute. For simplicity, we assume

that the value of each scoring function has been scaled to the interval [0..1] and that a

higher value indicates a better quality. For instance, the scoring function associated with the

attribute Execution Duration (ed for short) is Scoreed(s, op) = 1/qdu(s, op) (i.e, the higher

the execution duration is, the lower is the score). It should be noted that the method of
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estimating the value of a community-supplied attribute is not unique, neither is the set of

selection attributes.

Selection policies are provided by communities. Consumers can customise these policies by

providing weights for the selection attributes. A community may provide several alternative

multi-attribute utility functions which correspond to different selection policies. Consumers

choose policies depending on their preferences.

The automatic construction of attribute scoring functions is not addressed by Self-Serv.

This issue is in fact addressed by work in the area of preference-based product recommendation

systems [37]. In these systems, consumers specify their preferences via questionnaires. The

information extracted from these questionnaires is then used to construct attribute scoring

functions. Note that the focus of this paper is not on specifying selection policies. We mention

this aspect here for the sake of completeness. Our work on service selection is described

elsewhere [41].

2.2 Composite Services

The operations of a composite service are expressed as compositions of operations offered by

other Web services using statecharts [24]. The choice of statecharts as the language for cap-

turing the flow of operation invocations in Self-Serv is motivated by several reasons. First,

statecharts possess a formal semantics, which is essential for analysing composite service

specifications. Next, statecharts are a well-known and well-supported behaviour modelling

notation, and they are part of the Unified Modeling Language (UML). Furthermore, state-

charts offer most of the control-flow constructs found in existing process description languages:

sequence, branching, concurrent threads, and cycles. [19] shows that statercharts are suitable

for expressing typical control-flow dependencies. Specifically it is shown that statecharts can

capture a relatively high number of the workflow patterns identified in [1].

However, like any other process modelling languages (e.g. languages based on Petri nets,

process algebra, or transaction logic), statecharts have their relative advantages and draw-

backs. In particular, statecharts do not provide direct support for modelling the so-called

multiple instances patterns [1], that is, situations where multiple copies of the same activity

are executed simultaneously and these copies need to synchronize upon completion. Nonethe-

less, this characteristic is shared by several other proposals in this area, like the Business

Process Execution Language for Web Services (BPEL4WS) [14], which is currently emerging

as an implementation-level standard in the area of Web service composition. In any case,

the fundamental ideas behind our approach (e.g. peer-to-peer orchestration and late service
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selection through communities) can be applied to other process modelling languages than

statecharts, although the algorithms for composite service orchestration will differ depending

on the language chosen.

2.2.1 Overview of Statecharts

A statechart is made up of states and transitions. Transitions are labeled by ECA (Event

Condition Action) rules. The occurrence of an event fires a transition if (i) the machine is

in the source state of the transition, (ii) the type of the event occurrence matches the event

description attached to the transition, and (iii) the condition of the transition holds. When a

transition fires, its action part is executed and its target state is entered. The event, condition,

and action parts of a transition are all optional. A transition without an event is said to be

triggerless.

States can be basic or compound. In Self-Serv, a basic state corresponds to an invocation

of a service operation, whether an elementary service, a community, or a composite service.

Accordingly, each basic state is labelled with an invocation to a service operation. When the

state is entered, this invocation is performed. The state is normally exited through one of

its triggerless transitions when the execution induced by this invocation is completed. If the

state has outgoing transitions labeled with events, an occurrence of any of these events causes

the state to be exited and the ongoing execution to be cancelled.

Compound states provide a mechanism for nesting one or several statecharts inside a

(larger) statechart. There are two types of compound states: OR and AND states. An OR-

state contains an arbitrary statechart nested inside it, which is executed when the compound

state is entered. An AND-state on the other hand contains several statecharts (separated

by dashed lines) which are all executed concurrently when the compound state is entered.

Each of the statecharts contained in an AND-state is usually called an AND component or

an orthogonal component, but in this paper we choose the term concurrent region instead, to

avoid confusion with the term component service introduced earlier.

The origin of the terms OR-state and AND-state can be explained as follows. The states

of the statechart contained in an OR-state (i.e., the substates of the OR-state) are related by

an exclusive or relationship, in the sense that being in an OR-state is equivalent to being in

exactly one of its substates. Meanwhile, being in an AND-state is equivalent to being in all

the concurrent regions contained in the AND-state.

From an operational perspective, when a compound state is entered, the initial state(s)

of the statechart(s) nested in it become(s) active. The execution of a compound state is
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considered to be completed when it has reached (all) its final state(s). Initial states are

denoted by filled circles whereas final states are denoted by two concentric circles.

2.2.2 Data Flow and Conversion

An operation of a composite service is described by its input parameters, output parameters,

consumed and produced events, and a statechart glueing these elements together. The input

and output parameters are mapped to variables of the statechart and can be referenced in

any of the conditions and actions of the statechart. Similarly, the consumed events can

appear in any of the event parts of the statechart’s transitions, and the produced events can

be generated by the actions of these transitions. Moreover, the statechart contains a set of

invocations to component services. Each of these invocations is described by the name of the

service, the name of the operation, an expression to compute the effective input parameters,

and the variables of the statechart to which the outputs of the operation are assigned.

Data flow between states in the statechart is therefore specified through the use of vari-

ables. A variable in the statechart of a composite service operation can be: an input parameter

of the composite service operation, an output parameter of the composite service operation,

or an internal (or local) variable. The value of an internal variable may be: (i) obtained from

the output of a service invocation as mentioned above, (ii) requested from the user during the

execution of the composite service, or (iii) derived from the input parameters of the composite

service operation and/or other internal variables through a query. To cater for the first of

these cases, we adopt the following syntax for invoking service operations:

S::m(Q1, ..., Qn, &V1, ..., &Vn)

The semantics of this expression is an invocation of the operation m provided by service

S, with input parameters provided by queries Q1, ..., Qn, and such that the outputs of the

invocation are assigned to variables V1, ..., Vn. A query Qi can be simply a variable name or

any other query. Self-Serv adopts XPath [12] as the query language. To cater for the second

and third cases above, Self-Serv recognizes in the action parts of the statechart the following

types of expressions: (i) X := USER: the value of the internal variable X is supplied by the

user, and (ii) X := Q: the value of X is the result of query Q.

2.2.3 Example

Figure 1 contains the statecharts of two composite services: Complete Travel Services

(CTS) and Intl Travel Arrangements Service (ITAS). The latter is invoked within the

former. The statechart of CTS is composed of an AND-state, in which a search for attractions
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Intl Travel
Arrangements

(ITA)

Domestic Flight

(DFB) Accommodation

Booking

Booking
(AB)

Attractions

major_attraction,
[not near(

Search
(AS)

Car Rental

(CR)

Complete Travel Service (CTS)

[not domestic(destination)]

[domestic(destination)]

International Flight
Booking

(IFB)

Travel Insurance
(TI)

International Travel Arrangements Service (ITAS)

accommodation)]
[near(major_attraction,

accommodation)]

Figure 1: The Travel Solution composite service.

is performed in parallel with the bookings of the flight and the accommodation. When both

of these threads complete, a car rental booking is performed if the major attraction is far

from the booked accommodation.

Table 2 describes the signature of CTS and the signatures of the services that it invokes.

To describe the signatures of the services, the following notations are used:

• CTS::prepareTrip denotes an invocation of the operation prepareTrip provided by the

service CTS.

• The keyword in indicates that a parameter is passed by value. For instance in Date

minDepatureDate indicates that the parameter minDepartureDate of type Date is passed

by value.

• The keyword out indicates that a parameter is passed by variable. For example out

float totalPrice means that the service operation returns a value of type float, and

that this value is assigned to the variable given in place of this parameter.

Table 3 details the invocations that are made in each of the states of the composite service

CTS. For a given row, the left column of the table contains the name of a state, e.g., AS,

and the right column provides the name of the service operation that is invoked when that

state is entered, followed by the effective parameters. Some of the variables appearing in

Figure 1 and in the associated Table 3 are input parameters of CTS (e.g., minDepartureDate,

maxDepartureDate, destination), while others are internal variables (e.g., departureDate,
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CTS::prepareTrip(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,
in maxReturnDate, in string destination, in string name,
out float totalPrice, out XMLDoc flightDetails,
out XMLDoc accommodationDetails, out XMLDoc rentalDetails)

CRS::booking(in string city, in string name, in Date rentalDate, in Date returnDate,
out float price, out XMLDoc rentalDetails)

ABS::booking(in string city, in string name, in Date arrivalDate, in Date departureDate,
in int starRating, out float price, out XMLDoc accommodationDetails)

AS::getAttractions(in string city, out XMLDoc attractions)
DFBS::booking(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,

in maxReturnDate, in string destination, in string name,
out Date actualDepartureDate, out actualReturnDate,
out float price, out XMLDoc flightDetails)

ITAS::booking(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,
in maxReturnDate, in string destination, in string name,
out Date actualDepartureDate, out actualReturnDate,
out float totalPrice, out XMLDoc flightDetails)

Table 2: Signatures of the operation prepareTrip provided by CTS, and signatures of the service
operations that it invokes.

flightDetails). All of the internal variables involved in this example, are used to store

the outputs of the component services invocations. In addition, the values of some internal

variables are used as input parameters to component services invocations. For example,

the variable departureDate is used to store one of the outputs of the invocation of the

operation DFBS::booking, and it is later on used to provide the value of an input parameter

for operations AB::booking and CRS::booking.

State Invocation
AS AS::getAttractions(destination, &attractions)
DFB DFBS.booking(minDepartureDate, maxDepartureDate, minReturnDate,

maxReturnDate, destination, name,
&departureDate, &returnDate, &flightPrice, &flightDetails)

ITA ITAS.arrangeTrip(minDepartureDate, maxDepartureDate, minReturnDate,
maxReturnDate, destination, name,
&departureDate, &returnDate, &flightPrice, &flightDetails)

AB ABS::booking(destination, name, departureDate, returnDate, starRating
&accommodationPrice, &accommodationDetails)

CR CRS::bookCar(destination, name, departureDate, returnDate,
&rentalPrice, &rentalDetails)

Table 3: Table of invocations of the CTS::prepareTrip composite service operation.

The statechart in Figure 1 features four conditions in its transitions. Conditions are

modeled as calls to boolean functions, which take as parameters queries involving input pa-

rameters of the composite service as well as internal variables. For example, the condition
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domestic(destination) is a function call whose parameter is directly obtained from one

of the inputs of service CTS. Meanwhile, near(major attraction, accommodation) is a

function call whose parameters are given by the values of internal variables. Although not

shown in the statechart for clarity reasons, the value of the variable major attraction is

derived from the value of the variable attractions (which is an XML document) through an

XPath expression. Also not shown in the statechart, is the fact that the value of the internal

variable starRating (which is used as an input parameter in the invocation ABS.booking) is

requested from the user at runtime, just after the flight booking is completed. This situation

should be expressed through the action starRating := USER.

3 Peer-to-Peer Orchestration

This section starts with an overview and illustration of the basic concepts of the service

execution model of Self-Serv. After this overview and illustration, a formal description of the

concepts and algorithms is given.

3.1 Overview

The execution model of Self-Serv is based on the idea that each state ST appearing in a

composite service specification is represented by a state coordinator which is responsible for:

• Receiving notifications of completion from other state coordinators and determining from

these notifications when should state ST be entered. These notifications of completion

include the relevant data items (i.e. the values of variables) which have been gathered

by the previous states visited during the execution.

• Invoking the service operation labelling ST whenever all the preconditions for entering

ST are met. This invocation is done by sending a message to the service and waiting for

a reply.

• Upon completion of the service execution started in the previous step, notifying this

completion to the coordinators of the states that may need to be entered next. These

notifications of completion contain all data items that need to be passed on to the next

state coordinators.

• While state ST is active, receiving notifications of external events (e.g., a cancellation)

and determining if ST should be exited due to these event occurrences. If so, the state

coordinator will interrupt the ongoing service execution and will send notifications of
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“completion” to the coordinators of the states which potentially need to be entered

next.

• If user input is needed in order to determine the value of a variable used within the state,

requesting this value from the initial coordinator which will then perform the necessary

user interaction.

In essence, the coordinator of a state is a lightweight scheduler which determines when

should a state be entered, and what should be done after the state is exited. The knowledge

needed by a coordinator in order to answer these questions at runtime is statically extracted

from the statechart describing the composite service operation, and represented in the form

of routing tables as detailed later.

A composite service execution is orchestrated through peer-to-peer message exchanges

between the coordinators of the states of the service’s description, and through message ex-

changes between the coordinators and the component services. The messages exchanged

between the coordinators for the purpose of notifying that a given state should/may be en-

tered are called control-flow notifications. A control-flow notification sent by a coordinator C1

to a coordinator C2 expresses the fact that the execution of the state represented by C1 has

completed, and that C1 believes that the state represented by C2 needs to be entered. The no-

tification message contains the up-to-date values of all the internal variables of the statechart

that C1 needs to transmit to C2. On the other hand, the messages exchanged between the state

coordinators and the component services are called service invocations/completions. Service

invocations are performed using SOAP, since every service in Self-Serv, whether elementary,

composite, or community-based, provides a SOAP entry point.

The initial coordinator of a composite service is a special type of coordinator which acts

as the entry point to the service. When a composite service is invoked, its initial coordinator

sends a control-flow notification to the coordinators of the states which need to be entered

in the first place. From that point on, the execution of the composite service is orchestrated

through peer-to-peer interactions between the state coordinators. At the end, the initial

coordinator receives back the control-flow notifications indicating that the execution of the

service instance is terminated. The initial coordinator can then return a completion message

to the invoker.

In addition, the initial coordinator of a composite service is responsible for detecting

and handling failures, and for processing external events. Specifically, the initial coordinator

receives and processes failure notifications issued by the state coordinators when a control-
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Figure 2: Interactions between the coordinators and the component services during an exe-
cution of CTS.

flow notification that needs to be sent has not been delivered after several retries. Also, the

initial coordinator detects timeouts that may indicate that the composite service execution

is stalled at a given node. When such timeouts occur, the initial coordinator identifies the

point of failure (if any), selects an alternative service if possible, and notifies the failure to

the invoker. Finally, external events directed to an instance of a composite service (e.g. for

suspending its execution), are handled by the initial coordinator, who forwards these events

to the appropriate state coordinators.

3.2 Orchestration Example

The diagram in Figure 2 shows the messages exchanged by the coordinators and the compo-

nent services during a particular execution of service CTS (see Figure 1). The layout of the

arrows indicate the type of the message (control-flow notification or service invocation/result)

as explained in the legend of the figure. The numbers labelling the arrows capture the tempo-

ral relationships between the messages. For instance, message 3 is sent after message 2 which

is sent after message 1. Some messages are exchanged as part of concurrent threads. In this

case, the messages are given the same serial number, followed by a character. For instance,

the messages starting with 2a and 2b in Figure 2 (e.g., 2a.1 and 2b.1) are sent within con-

current threads. Messages sent within the same thread are identified by serial numbers within

that thread. For instance, message 2a.1 and 2a.2 are sequential messages exchanged within

thread 2a.

The execution in this diagram starts when a user or application invokes the service CTS

through its initial coordinator (message 1). Assuming that the trip is international, the initial

coordinator of CTS sends a control-flow notification to the coordinators of ITA (message 2a.1)

and to the coordinator of AS (message 2b.1). These coordinators trigger the services ITAS
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(2a.2) and ASS (2b.2) respectively. When ASS returns an output (2b.3), the coordinator of

AS sends a control-flow notification both to the initial coordinator of CTS (2b.4a) and to the

coordinator of CR (2b.4b), since it is not possible to determine whether the major attraction

is near the accommodation until the accommodation has been booked, and this is done in a

separate concurrent thread. Meanwhile, the initial coordinator of ITAS starts the execution of

this composite service by sending a control-flow notification to the coordinator of IFB (message

2a.3), which invokes IFBS (2a.4 and 2a.5). The execution of ITAS continues its course (2a.6,

2a.7 and 2a.8) until eventually a termination message is sent to the initial coordinator of

ITAS (2a.9). This service returns a result to the coordinator of ITA (2a.10), which sends

a notification to the coordinator of AB (2a.11). After invoking ABS (2a.12 and 2a.13),

the coordinator of AB sends notifications both to the initial coordinator of CTS (2a.14a)

and to the coordinator of CR (2a.14b), since again, the condition near(major attraction,

accommodation) cannot (always) be evaluated at that point in time. The coordinator of

CR and the initial coordinator of CTS then evaluate the condition near(major attraction,

accommodation). If this condition is true, the coordinator of CR invokes the service CRS

(messages 3 and 4). Once this invocation is completed, a notification is sent to the initial

coordinator of CTS, and the overall execution is completed.

3.3 Preconditions and Postprocessing Actions

Extracting the knowledge required by a state coordinator from the statechart implementing

a composite service operation, involves answering the following questions:

• What are the preconditions for entering a state? That is, what are the source states

of the transitions leading to a given state, and what are the conditions that need to be

satisfied for this transition to be taken.

• When the execution of a state is completed (whether successfully or because of a signal),

which are the states that may need to be entered next? The process by which a coor-

dinator notifies that its state is being exited to the relevant peer coordinators is called

postprocessing.

The behavior of a state coordinator can therefore be captured through two sets: (i) a set

of preconditions such that the state is entered when one of these preconditions is met, and

(ii) a set of postprocessing actions indicating which coordinators need to be notified when a

state is exited. Preferably, these sets of preconditions and postprocessing actions should be

defined in a way to ensure minimal communication overhead. In other words, when a state
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is exited, only those states that potentially need to be entered are notified. The following

definitions formalize what is meant by a state potentially needed to be entered.

First of all, in order to identify the states which are accessible from another one in a single

step, we introduce the concept of compound transition. Intuitively, a compound transition1

is any path (i.e. list of linked transitions), going from a basic state to another basic state

without passing through any other basic state.

Definition 1 (Compound transition). A compound transition CT is a sequence of transi-

tions t1, t2, ..., tn belonging to a given statechart, such that:

• source(t1)
2 is a basic state,

• target(tn) is a basic state, and

• for all i in [1..n-1], either target(ti) is the final state of a region belonging to the compound

state source(ti+1), or source(ti+1) is the initial state of a region belonging to the compound

state target(ti).

Under these conditions, CT is said to connect source(t1) with target(tn), i.e., source(CT) =

source(t1) and target(CT) = target(tn). The condition part of CT, noted Cond(CT), is the

conjunction of the conditions labelling t1, ..., tn. �

For example, in Figure 1 there is a compound transition with two elements, going from

state AS to state CR, and another going from AB to CR. In both cases, the condition of the

compound transition is [true ∧ not near(major attraction, accommodation)].

When a state is exited, the states which potentially need to be entered next are those

which are target of a compound transition for which either: (i) the condition part is true, or

(ii) the condition part cannot be fully evaluated, but the part that can be evaluated is true.

Definition 2 (Minimal postprocessing table of a state). The minimal postprocessing

table of a state ST, is a set of rules of the form [C]/ST’ such that:

• There exists a compound transition CT such that source(CT) = ST and target(CT) =

ST’.

• Conjuncts(C) ⊆ Conjuncts(Cond(CT)), where Conjuncts(c1 ∧ . . .∧ cn) = { c1, . . . cn }.

• If Conjuncts(C) 6= Conjuncts(Cond(CT)), then the elements of Conjuncts(Conds(CT))

\ Conjuncts(C) are exactly those that cannot be evaluated at the time the state ST is

exited. Here, \ stands for the set difference operator. �

1Notice that the definition of compound transition that we adopt, is slightly different from that of [24].
2Here, source(t) denotes the source state of transition t, while target(t) denotes the target state of t.
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In the example of Figure 1, we have that Postprocessing(AS) = { [true]/notify(CR),

[true]/notify(I) }, where I is the identifier of the initial coordinator of the composite

service CTS. Notice that the condition near(major attraction , accommodation) cannot

be evaluated by the coordinator of AS, since it involves information which is only known once

the accommodation has been selected, and this is done in a separate concurrent region.

When a service labelling a state completes its execution, the coordinator of this state

evaluates the condition part of each of the entries appearing in its postprocessing table. For

each entry whose condition evaluates to true, it sends a notification message to the coordinator

of the state referenced in that entry. The constraints imposed in the Definition 2 ensure that

a state ST’, will receive a notification of completion from another state ST, if and only if either

(i) the state ST’ needs to be entered, or (ii) it is not possible for ST to determine whether the

state ST’ should be entered or not. In this latter case, the decision on whether ST’ should be

entered or not, is made by the coordinator of ST’ based on its preconditions table as defined

below.

Definition 3 (Minimal preconditions table of a state). The (minimal) preconditions

table of a state ST of a composite service specification is a set of rules E[C] such that:

• E is a conjunction of events of the form ready(ST’). The event ready(ST’) is generated

when a notification of completion is received from the coordinator attached to state ST’.

The conjunction of two events e1 and e2 is noted e1 ∧e2 and the semantics is that if an

occurrence of e1 and an occurrence of e2 are registered in any order, then an occurrence

of e1 ∧ e2 is generated.

• There exists a compound transition CT from ST’ to ST such that C ⊆ ST.

• If Conjuncts(C) 6= Conjuncts(Cond(CT)), then the conditions in CT \ C are exactly those

which cannot be evaluated by the coordinator of ST’. �

With respect to Figure 1, Preconditions(AB)={ ready(ITA)[true],ready(DFB)[true] },

meaning that the state AB is entered when a message is received from either the coordinator

of the state ITA or that of DFB. Similarly, Preconditions(CR)={ ready(AB)∧ready(AS)[not

near(major attraction, accommodation)] }.

When a rule in the preconditions table of a state ST is triggered (i.e. an event occurrence

matches the event part of the rule), if the rule’s condition evaluates to true, state ST is entered,

and the service that labels it is invoked by the coordinator of ST. The third item in Definition

3 ensures that the coordinator of ST will only evaluate those conditions which have not been

previously evaluated by the coordinators referenced in the event part of the rule.
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PostProc(ST) = let {T1, T2,. . . , Tn} are the outgoing transitions of ST in
PostProcTrans(T1) ∪ PostProcTrans(T2) ∪ . . .∪ PostProcTrans(Tn)

PostProcTrans(T) =
if target(T) is a basic state then { [cond(T)]/notify({target(T)}) }
else if target(T) is a compound state then

let {IT1, IT2, . . . , ITn} be the initial transitions of target(T) in
AddCond(cond(T), PostProcTrans(IT1) ∪. . .∪ PostProcTrans(ITn))

else if target(T) is a final state then
let SUP = superstate(target(T)) in
if SUP is the topmost state of the statecharts then { [cond(T)]/notify(initial coordinator) }
else if SUP is an OR-STATE AddCond(cond(T), PostProc(SUP))
else { [cond(T)]/notify(S) such that S ∈ CTargets(SUP) }

The above equations make use the following two auxiliary functions.

AddCond(c, { e1[c1]/a1, . . . , en[cn]/an }) = { e1[c and c1]/a1, . . . , en[c and cn]/an }
CTargets(ST) = { target(CT) | CT is a compound transition ∧ source(CT) = ST }

Figure 3: Algorithm for the generation of postprocessing actions.

3.4 Routing Tables Generation

We describe in turn the algorithms for generating the postprocessing and the preconditions

tables of a state. For the sake of simplicity and for space reasons, we restrict our presentation

to the case where the transitions are only labeled with conditions (i.e., they do not have an

event nor an action part). In [5], we discuss how transitions labeled with user-defined events

and actions can be accommodated.

3.4.1 Postprocessings Table Generation

In order to derive the postprocessing table of a state, its outgoing transitions are analyzed,

and one or several postprocessing actions are generated for each of them. The algorithm for

generating the postprocessing table of a state, namely PostProc (see Figure 3), relies on an

auxiliary algorithm PostProcTrans which takes as input a transition T, and returns a set of

postprocessing actions that need to be undertaken if transition T is taken.

Let us now discuss how an outgoing transition T is used to generate a set of postprocessing

actions. The simplest case is that when this transition leads to a basic state (target(T)), and

it is labeled with a condition (cond(T)). The postprocessing action [cond(T)]/notify(targe-

t(T)) is included in the postprocessing table, meaning that if condition cond(T) is true, a

notification must be sent to the coordinator of state target(T).

If an outgoing transition T points to a compound state CST, then one postprocessing action

is generated for each of the initial transitions of CST. The condition labelling T is then added
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as a conjunct to the condition guarding each of these postprocessing actions, since T has to be

true for any of these actions to be undertaken. This process is carried out recursively: if one of

the initial transitions of CST points to another compound state CST’, then one postprocessing

action is generated for each initial transition in CST’ and so on.

If an outgoing transition T points to a final state of a compound state CST, the outgoing

transitions of CST are considered in turn, and one or several postprocessing actions are gener-

ated for each of them. Given a transition T’ emanating from CST, a distinction is made here

between the case where CST is an OR-STATE, and that where CST is an AND-state. In the

former case, the condition labelling T’ should be included as a conjunct in each of the guards

of the postprocessing actions generated from T’. In the latter case, the condition labelling T’

should not be included in any of the guards of the postprocessing actions generated from T’,

since the evaluation of this condition may require information which is not available when

ST is exited. For example, in the case of Figure 1, the condition attractions far from

accommodation should not appear in the postprocessing table of the state AS, since it cannot

be evaluated until state AB is exited, and state AB is in a region concurrent to that of AS.

Finally, if an outgoing transition T points to the final state of the whole composite service,

the postprocessing action(s) generated from this transition will involve the initial coordinator

of the composite service. In other words, if this transition is taken, a control-flow notification

will be sent to the initial coordinator.

3.4.2 Preconditions Table Generation

The preconditions table of a state is generated by determining, for each of the incoming

transitions of the state, what are the conditions that should be met for that transition to be

taken. The function PreCond(ST) (see Figure 4) which computes the preconditions of state

ST can thus be written in terms of an auxiliary function PreCondTrans(T) which computes

the preconditions of transition T.

The function PreCondTrans(T) distinguishes the cases where the source of the transition

is a basic state, the one in which it is an initial state, the one in which it is an OR-state,

and that in which it is an AND-state. In the first case, the only precondition for taking the

transition is that the source state is exited, and the condition in the transition is taken. In the

second case (the transition T stems from an initial transition), the preconditions for taking

the transition T are identical to the preconditions for entering the superstate of T, except that

they contain the condition in the transition of T as a conjunct. Notice that if the superstate of

T is the topmost state of the statechart, T is an initial transition of the composite service
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PreCond(ST) let {T1, T2,. . . , Tn} be the incoming transitions of ST
PreCondTrans(T1) ∪ PreCondTrans(T2) ∪ . . .∪ PreCondTr ans(Tn)

PreCondTrans(T) =
if source(T) is a basic state then { ready(source(T))[cond(T)] }
else if source(T) is an initial state then

let SUP = superstate(source(T))
if SUP is the topmost state of the statechart then {ready(initial coordinator)[cond(T)]}

else AddCond(cond(T), PreCond(SUP))
else if source(T) is an OR-state then

let {FT1, FT2, . . . , FTn} be the final transitions of source(T)
AddCond(cond(T), PreCondTrans(FT1) ∪ . . .∪ PreCondTrans(FTn))

else /* source(T) is an AND-state */
let {CR1, . . . , CRn} be the concurrent regions of source(T),
let {FT1 CR1, . . . , FTn CRn} be the final transitions of CR1,
let {FT1 CR2, . . . , FTn CR2} be the final transitions of CR2,
. . .
let {FT1 CRn, . . . , FTn CRn} be the final transitions of CRn

AddCond([cond(T)],
PreCondTrans(FT1 CR1) ∪. . .∪ PreCondTrans(FTn CR1)) ×
PreCondTrans(FT1 CR2) ∪. . .∪ PreCondTrans(FTn CR2)) ×
. . .
PreCondTrans(FT1 CRn) ∪. . .∪ PreCondTrans(FTn CRn)))

The binary operator × (Cartesian product) used in this algorithm takes as parameters two sets of
e[c] rules (say SR1 and SR2) and generates a set of e[c] rules by combining each element of SR1 with each
element of SR2, where the combination of a rule e1[c1] with another rule e2[c2] is e1∧e2[c1∧c2].

{e1[c1], e2[c2], . . . , en[cn]} × {e′
1
[c′

1
], e′

2
[c′

2
], . . . , e′n[c′n]} =

{e1∧e′
1
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1
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2
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2
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Figure 4: Algorithm for the generation of preconditions.

and it is therefore taken when the composite service’s initial coordinator sends an order to

execute the service.

The case where a transition stems from a compound state CST is treated by recursively

applying the function PreCondTrans to the final transitions of CST, and merging the resulting

preconditions tables. In the case where st is an OR-state, the merging is a simple set

union. In the case of an AND-state, each concurrent region is treated as an OR-state, and

the preconditions tables obtained for each concurrent region are merged through a Cartesian

product, meaning that the AND-state is exited if one of the final transitions in each of the

concurrent regions is taken.

It can be proven by structural induction that the tables generated by PreCond and

PostProc fulfill the conditions in Definition 3 and Definition 2 respectively. It follows that, at

runtime, a control-flow message is sent from a coordinator C1 to another coordinator C2, only
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if there is a compound transition from the state of C1 to that of C2, and either the state of C2

needs to be entered, or it is impossible for C1 to determine whether the state of C2 needs to

be entered or not. It should be noted that changes of composite services (e.g., remove a state

from the statechart of a composite service) is not considered in this arcticle. However, one

of the authors work in the area of change management for integrated services can be found

in [42].

The above algorithms assume that the transitions in the statechart have no event and

action part (i.e. only conditions are considered). In reality, statechart transitions can be

labelled with events which may interrupt the execution of the service invocation labelling its

source state, and actions which may manipulate the variables of the statechart.

In order to accommodate transitions with events, the PostProc algorithm requires some

modifications. Specifically, it needs to generate rules which potentially have an event part,

in addition to the compulsory condition and action parts. When a coordinator receives an

event occurrence (which are sent by the initial coordinator), it checks whether this event

occurrence matches the event part of one of the rules in its postprocessing table, and if it

does, it evaluates the condition part of the rule, and executes the required notification actions.

Similarly, in order to accommodate transitions with actions, the algorithm for computing

the preconditions of a state, must also compute the actions that have to be executed before

the state is entered. This can be done by modifying the algorithm PreCond, so that the

postprocessing rules that it generates have an action part, in addition to an event and a

condition part.

3.5 Analysis of Centralised and P2P Orchestration

In the P2P orchestration approach presented above, the coordinator of a state S is placed

in the same machine as the service invoked in S. As a result, every control-flow notification

potentially entails a physical message exchange (i.e., a message exchange between different

physical machines). On the other hand, an invocation to a component service does not involve

any physical message exchange.

In practice however, a coordinator and the component service that it invokes can be

located in separate machines, in which case a message from a coordinator to the component

service entails a physical message exchange. Furthermore, several coordinators can be placed

in the same physical machine, so that a control-flow notification exchanged between these

coordinators does not entail any physical message exchange. In an extreme case, all the

coordinators can be placed in the same physical machine. We will subsequently call this
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orchestration approach centralised, since the set of all the coordinators placed in a single

physical machine can be seen as forming a central scheduler.

In the sequel, we compare the P2P and the centralised approaches in terms of physical

message exchanges. Specifically, we estimate the maximum number of physical message ex-

changes required by a composite service execution, in terms of the number of invocations to

component services involved by this execution. These physical message exchanges can result

either from control-flow notifications or from invocations to component services.

Centralised approach. The worst-case number of physical message exchanges required by

an execution of a composite service involving N invocations to component services is 2 × N.

Indeed, in this approach only the invocations to component services entail physical message

exchanges: the control-flow notifications do not. Moreover, each invocation to a component

service requires two messages: one from the coordinator to the component service and another

from the component service back to the coordinator.

P2P approach. The worst-case number of physical message exchanges required by an

execution of a composite service involving N invocations to component services, is bounded

by M × (N + 1), where M is the number of basic states in the corresponding statechart.

The reasoning behind this bound is the following. First, we note that only the control-flow

notifications require physical message exchanges: the invocations to component services do

not require so, since the coordinator that performs this invocation is located in the same

machine as the component service that is invoked. Next, we note that each time that a basic

state is exited, at most M control-flow notifications are sent by the coordinator of this state:

M−1 to its fellow coordinators and 1 to the initial coordinator. Hence, after an invocation to

a component service is completed and the corresponding state is exited, at most M physical

message exchanges (entailed by control-flow notifications) take place. If the composite service

execution involves N invocations to component services, N × M physical message exchanges

take place during it. Moreover, when the composite service begins its execution, at most

M messages are sent by the initial coordinator to the coordinators. Overall, the worst-case

number of physical message exchanges is thus M + M × N = M × (N + 1).

The above is a tight bound as evidenced by the example in Figure 5. In this example,

each time that one of the states labelled S1, · · · , Sm is exited, the corresponding coordinator

must send one control-flow notification to each of the other coordinators, and one to the

initial coordinator. Indeed, in the worst-case none of the coordinators is able to fully evaluate

the conditions C1 and C2: these conditions may involve one data item from each of the
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Figure 5: Worst-case scenario for the P2P orchestration approach.

invocations to S1, · · · , Sm, so that each coordinator must send the data item that it collects to

all the other coordinators and let them evaluate these conditions when they have all the data

items required. Hence, each invocation to a component service is followed by M control-flow

notifications, leading to a total of M × N physical message exchanges. This, added to the

M messages that the coordinator of the composite service needs to send to the coordinators

of the states labelled S1, · · · , Sm, yields exactly the above bound. The above however is

an extreme case. In practice, provided that there are no or few AND-states followed by

conditional branches such as that of Figure 5, one can expect that the P2P approach requires

less physical message exchanges than the centralised one.

4 Implementation of Self-Serv

The Self-Serv system [34] consists of a Service Composition Environment (also called the Ser-

vice Manager) for defining and deploying composite services and communities, and a runtime

environment that acts as a middleware for orchestrating composite services and perform-

ing dynamic provider selection. Both the service composition environment and the runtime

environment have been implemented in Java.

The services registered in Self-Serv form the so-called pool of services, and they can be

composed with others to form new services (see Figure 6), which are themselves registered and

added to the pool. Services all provide a SOAP-based programmatic interface. Elementary

services typically wrap application programs, workflows, databases, etc.
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Figure 6: Architecture of the Self-Serv prototype.

4.1 Service Composition Environment

The service composition environment consists of a set of integrated tools that allow service

developers and users to create and execute services. It is composed of the following component

tools: service discovery engine, service builder, and service deployer.

Service Discovery Engine. The service discovery engine facilitates the advertisement and

location of services (see Figure 7). It is implemented using SOAP, WSDL, and UDDI [2].

Service registration, discovery and invocation are implemented by SOAP calls. When a service

registers with a discovery engine, a UDDI SOAP request containing the service description

in WSDL is sent to the UDDI registry. After a service is registered in the UDDI registry, it

can be located by sending the UDDI SOAP request (e.g., business name, service type) to the

UDDI registry.

The discovery engine is implemented using the IBM Web Services Toolkit 2.4 (WSTK) [25].

WSTK provides several components and tools for Web service development (e.g., UDDI,

WSDL, SOAP). In particular, we used the UDDI Java API (UDDI4J) to access a private

UDDI registry (i.e, hosted by the Self-Serv platform), as well as the WSDL generation tool
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Figure 7: Service Discovery Engine.

for creating the WSDL documents and SOAP service descriptors required by the discovery

engine. Details about the implementation of the discovery engine are presented in [35].

Service Builder. The service builder assists developers in the creation and maintenance

of communities and composite services. It provides an editor for describing the statechart

diagram of a composite service operation, for creating and configuring service communities,

and for importing operations from existing Self-Serv services into composite services and

communities. A search and browse facility is offered to locate component services using the

service discovery engine and import their operations into states.

Service Deployer. The service deployer is responsible for generating the precondition and

postprocessing tables of every state of a composite service statechart, using the algorithms

presented in Section 3.4. The input of the programs implementing these algorithms are

statecharts represented as XML documents (which are generated by the service builder),

while the outputs are routing tables formatted in XML.

25



Once the tables are generated, the service deployer assists the service composer in the

process of uploading these tables into the hosts of the corresponding component services, as

well as in setting up the initial coordinator of the composite service. At present, security

issues related to uploading tables are not considered.

4.2 Runtime Environment

The runtime environment of Self-Serv consists of three classes: Community, InitialCoordina-

tor, and Coordinator. These classes are relatively lightweight, and the only infrastructure that

they require are standard Java libraries, a JAXP-compliant XML parser, and a SOAP server.

In the current implementation, we use Oracle’s XML Parser 2.0 and IBM’s Apache Axis 1.0.

By default, the XML documents containing the routing tables are stored in plain files, so

that there is no need to have a DBMS in the site where the installation is made. However, if

the administrator decides to store these documents in a DBMS, (s)he can customize the class

Coordinator accordingly.

The class Community provides a method to invoke a service operation on the community.

This method first invokes the scoring service to find the most suitable member for handling

the invocation, and then invokes the selected member service. A scoring service is a Java

method that takes as input a selection policy, queries the service descriptions, and returns

the identifier of one of the members registered with the community. The descriptions of

selection attributes are represented in XML. The class Community also provides operations

for managing the membership of the community (e.g. to join and quit the community).

The class InitialCoordinator on the other hand, provides methods for invoking an opera-

tion of a composite service. When this method is invoked, the initial coordinator reads the

postprocessings table of the initial state of the corresponding statechart, and sends a control-

flow notification message to each of the coordinators of the states that need to be entered

first. These coordinators then interact in a peer-to-peer way with other coordinators, until

eventually the coordinators of the states which are exited the last, send their control-flow no-

tifications back to the initial coordinator. Once all the control-flow notifications are received,

the outputs of the service invocation are made available.

The class Coordinator provides methods for processing and generating control-flow noti-

fications. This class implements a software component made up of a container and an object

pool. The container is a process that runs continuously, waiting for control-flow notifications

from other coordinators. When it receives a message from another coordinator, it first exam-

ines the identifier of the composite service instance to which the message relates, and proceeds
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as follows:

• If the identifier of the composite service instance is unknown to the container (i.e., this is

the first time that a control-flow notification related to that instance is received), a new

coordinator object is created, and this object is given access to the routing tables of the

receiver state indicated in the message identifier. The task of handling the notification

is forwarded to this newly created object by invoking a method process notification

on it. If other control-flow notifications related to the same composite service instance

are expected to arrive subsequently, the object is temporarily added to the object pool

so that it can treat them as they arrive.

• If on the other hand the container has previous knowledge about the composite ser-

vice instance to which the control-flow notification relates, the notification is forwarded

to the coordinator object that was created when the first message related to that in-

stance was received. This object is retrieved from the object pool and the method

process notification is invoked on this object.

Each object in the pool is dedicated to a particular composite service instance, and pro-

cesses all the incoming control-flow notifications related to that instance. By keeping track of

these notifications, and by having access to the relevant preconditions tables, the object is able

to detect when should a given state of the composite service be entered. When a coordinator

object detects that a given state of the composite service needs to be entered, it sends an

invocation message to this service. Once the corresponding completion message is received,

the object polls the result parameters from the service, generates one or several control-flow

notification messages (according to the information contained in the relevant postprocessings

table), and dispatches these messages. From there on, the coordinator object is no longer

needed, so it is removed from the pool and destroyed (garbage collection).

5 Performance Evaluation

To evaluate the proposed approach, we conducted experiments using the implemented pro-

totype system. This section presents three experimental results. The first experiment shows

the cost of deploying composite services in Self-Serv. The second experiment compares the

number of messages required to execute composite services using the P2P orchestration ap-

proach and the centralised orchestration approach. The experiment also shows the workload

distribution of these two models. The third experiment compares the execution time of the

two execution models under different message sizes.
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Figure 8: Complete Travel Planning Service (CTPS).

For the experiments, we designed a scenario Complete Travel Planning Service (CTPS),

shown in Figure 8. We conducted experiments using a cluster of PCs running the prototype

system. All PCs have the same configuration of Pentium III 933MHz and 2GB RAM. Each

PC runs Debian Linux and the Java 2 Standard Edition V1.3.0. The machines are connected

to a LAN through 100Mbits/sec Ethernet cards. One of them is dedicated to CTPS while

others are servers for component services.

5.1 Deployment Cost

The purpose of this experiment is to measure the deployment cost (i.e., time required to

deploy a service) of a composite service using Self-Serv. In the experiment, we created several

composite services with different number of component services and recorded the time taken

by the deployment of each composite service. The services were created by randomly adding

states to the composite service CTPS. The deployment procedure includes generating the

precondition/postprocessing tables for each component service and uploading the tables to

the corresponding host machines. We deployed each composite service 10 times and computed

the average deployment time.

Table 4 plots the time for deploying a composite service in terms of the number component
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No. of component service 15 20 30 40 50
Deployment cost(second) 8.9 10.1 13.1 15.9 19.0

No. of component service 60 70 80 90 100
Deployment cost(second) 21.8 25.9 30.2 32.9 34.1

Table 4: The deployment cost of composite services.

services. This table shows that for large composite services, the deployment speed tends to

be of 3 component services per second.

5.2 Number of Exchanged Messages

The purpose of this experiment is to study and compare the performance of the P2P orches-

tration model with that of the centralised one. The comparison was done by measuring: (i)

the number of overall physical message exchanges, and (ii) the distribution of workload (i.e.,

number of messages handled at a given host) across participant hosts.

In the implementation of the centralised approach, a central scheduler is responsible for

sending and receiving messages to and from the component services. The central scheduler

is located in the same machine as CTPS, while the component services are located in the

other machines. The physical message exchanges in the centralised model correspond to the

messages exchanged between the central scheduler and the component services.

On the other hand, in the implementation of the P2P approach, the coordinator of a state

and the component service invoked in this state are located in the same machine, i.e. each

pair (state coordinator, component service) is located in a separate machine, while the initial

coordinator of CTPS is located in its own machine. The physical message exchanges in this

approach correspond to the messages exchanged between the initial coordinator and the state

coordinators, and those exchanged between the state coordinators.

We executed CTPS and counted the number of messages under these two orchestration

models. Note that there are four branches in CTPS, so we executed the composite service

using all the possible combinations of truth values of the branching conditions. Table 5 shows

the results of these simulations.

From the table we can see that for every possible combination, the P2P model requires

less physical message exchanges than the centralised one. For example, in case 13 of Table 5

(i.e., the flight will be an international one, the customer will rent a bicycle, the events

need to be booked, and the customer will book a taxi), 26 messages are exchanged in the

centralised model, whereas only 18 messages are exchanged in the P2P model. In other words,
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Combination of branch conditions Number of messages
Branching conditions

No. domestic nearAttraction needBooking available P2P Centralised
1 yes yes yes yes 14 20
2 yes yes yes no 15 22
3 yes yes no yes 13 18
4 yes yes no no 14 20
5 yes no yes yes 14 20
6 yes no yes no 15 22
7 yes no no yes 13 20
8 yes no no no 14 20
9 no yes yes yes 18 24
10 no no yes yes 18 24
11 no no no yes 16 22
12 no yes no no 17 24
13 no yes yes no 18 26
14 no yes no yes 16 22
15 no no yes no 18 26
16 no no no no 17 24

Average 15.625 22.125

Table 5: The number of exchanged messages in the execution of CTPS.
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Figure 9: Workload allocation in the execution of CTPS.

the centralised model needs nearly 45% more exchanged messages than the P2P model does.

Overall, the average number of physical message exchanges under the P2P model is 15.625,

while it is 22.125 for centralised one. This shows that in realistic scenarios, the P2P model does

require less physical message exchanges than the centralised one as conjectured in Section 3.5.

We also measured the workload allocation of the participant hosts (i.e., the hosts of CTPS

and its components), by counting the number of messages received at each participant host.

Figure 9 shows the results for case 13. Other cases yielded similar results.

The results show that in the centralised model, messages are not distributed evenly. In

particular, the machine hosting the central scheduler receives many messages (13 messages

in the example). On the other hand, other machines only receives 1 message each. Half of

the messages are received by the central scheduler. In contrast to the centralised model, the
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Figure 10: The execution time of the composite service CTPS.

workload of P2P model is distributed gracefully among the machines. CTPS only receives 1

message (i.e., 5.6% of the total messages). The above experiments consider only one execution

of CTPS. However, we can estimate that there could be 13,000 messages handled by the central

scheduler if 1,000 executions run concurrently. While for P2P model, the wrapper of CTPS

would only receive 1,000 messages. As a result, the P2P execution model is more scalable.

5.3 Execution Time versus Message Size

The aim of this experiment is to investigate the execution performance of P2P and centralised

execution models, with different size of exchanged messages. In the experiment, we assume

that the size of all exchanged messages remains the same during the service execution. The

size of messages ranges over the values 1K, 2K, 4K, 16K, 32K, 64K, 128K, 256K, 512K, and

1024K. For each message size, we executed CTPS 10 times and computed the average execution

time. The results for case 13 is shown in Figure 10. Similar results were obtained for other

cases.

From the figure we can see that, in both the P2P and the centralised approach, the

execution time does not change greatly when the size of messages is small. For example,

in the P2P approach, the execution time is 12.6 seconds when the message size is 1K and

it is 19.8 seconds when the message size reaches 16K. However, the execution time changes

from 46.9 seconds to 130.8 seconds when the message size grows from 64K to 128K. We also

note that when the size of messages increases, the execution time of the centralised approach

increases more sharply than that of the P2P approach, and it is always larger than in the P2P

approach. This is due to two reasons. First, the number of exchanged messages in the P2P
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approach is less than in the centralised one. Second, the messages in the centralised approach

need to systematically transit through a central scheduler which constitutes a bottleneck.

6 Related Work

Service composition is a very active area of research and development [4, 9, 17, 33, 18, 21].

In this section, we examine component-based middleware, and Web services standards. We

also look at existing service composition approaches.

6.1 Component-based Middleware

Component-based middleware (e.g., CrossWorlds, IBM SanFrancisco) [17, 13] typically rely

on distributed object frameworks such as CORBA, DCOM, EJB, and other state-of-the-art

technologies such as Enterprise Application Integration (e.g., IBM MQSeries) and Enterprise

Resource Planning suites (e.g., SAP R/3), database gateways and transaction monitors. A

component-based middleware provides standard data and application integration facilities

(e.g., pre-built application adapters, data transformations, and messaging services among

heterogeneous systems) supporting uniform access to heterogeneous applications. In this

approach, composite services (e.g., ordering a product) can be assembled from independently

developed components (e.g., checking inventory, delivering goods, and payment). However,

the composition of services is realised through ad-hoc code development. This static and ad-

hoc composition approach would be hardly scalable because of the large number partners that

may be involved in a composition, the loosely coupled and possible dynamic nature of Web

services. Hard coding the composition flow makes the definition, deployment, and evolution

of services difficult and time-consuming [30, 31].

Component-based middleware are thus appropriate for the integration of small numbers

of tightly coupled services with stable interfaces. Our approach focuses on the composi-

tion and deployment of a potentially large number of loosely coupled and dynamic services.

Component-based middleware efforts are complementary to our approach. An intra-enterprise

application which developed using a component-based middleware, could be wrapped as an

elementary service and then composed with other services using using our approach.

6.2 Web Services Standards

Several standards that aim at providing infrastructure to support Web services interoper-

ability have emerged recently including SOAP, WSDL, UDDI, BPEL4WS, and WSCL[39].
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They provide building blocks for service invocation, description, advertisement, discovery,

and orchestration. SOAP provides an XML-based protocol for exchanging information and

requesting services. WSDL is an XML-based language that can be used to describe service op-

erations. UDDI provides a registry for advertising and discovering Web services. BPEL4WS

and WSCL build upon WSDL to support interactions among services. WSCL can be used to

describe conversations that a service supports (e.g. the supported operations and the legal or-

der of the their invocations). BPEL4WS can also be used to describe the behavior of a service

in terms of supported flows of operation invocations, as well as to specify composite services.

Several application development platforms such as Microsoft .NET, IBM WebSphere, Sun

ONE, and BEA Weblogic Integrator provide some support for Web services standards.

The above standards and platforms are complementary to our approach. Our approach

builds upon the building blocks of these standards (e.g., SOAP, UDDI) and extends them

in significant ways. We provide a scalable service mediation framework that provides high

level support for defining composite Web services involving a variable number of participants

and the resulting composite services can be enacted in a decentralised way within a dynamic

environment. Finally, we note that efforts in B2B interaction standards such as EDI, Roset-

taNet, and ebXML [17, 15, 16] provide common building blocks (e.g., documents and business

processes semantics, syntax for message exchanges) for all classes of B2B applications. The

incorporation of B2B interaction standards into Web service infrastructures will enable or-

ganisations to use Web services to carry out conversations according to these standards.

6.3 Service Composition Approaches

CMI [31] and eFlow [10] are platforms for specifying, enacting, and monitoring composite

services. In both of these platforms, the underlying execution model is based on a centralised

process engine, responsible for scheduling, dispatching, and controlling the execution of all

the instances of a composite service. This contrasts with Self-Serv’s peer-to-peer execution

approach. Both eFLOW and CMI support dynamic provider selection, although the concept

of community provided in Self-Serv is not explicitly supported. The concept of community

in Self-Serv stems from the concept of push community sketched in WebBIS [8]. WebBIS

however does not provide means for specifying: (i) a global view of a composite service, and

(ii) multi-attribute provider selection policies.

CrossFlow [23] and WISE [27] are inter-organisational workflow management platforms

that focus on inter-connecting business processes for e-commerce. They consider important

requirements of B2B applications such as dependability and external manageability. They
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differ from Self-Serv in that they do not consider the issue of multi-attribute provider selection

in a dynamic environment (where providers join and leave communities continuously), nor

the peer-to-peer orchestration of process definitions.

CPM [11] supports the execution of inter-organisational business processes through peer-

to-peer collaboration between a set of workflow engines, each representing a player in the

overall process. A major difference between CPM and Self-Serv, is that in CPM, the number

of messages exchanged between the players is not optimised. Instead, each time that a

process terminates a task, it must notify it to all the other players. Hence, if a process

involves N tasks and M players, its execution requires the exchange of N × M messages: far

more than required as shown in our experiments. Moreover, CPM requires that all the players

participating in an inter-organisational process deploy a full-fledged workflow engine to cater

for the coordination with the other players, whereas in Self-Serv the coordination between

entities is handled through lightweight schedulers (the state coordinators).

Self-Serv’s peer-to-peer orchestration model has also some similarities with the one used

in the Mentor distributed workflow system [28]. Given a workflow specified as a state and

an activity chart, Mentor partitions it into several sub-workflows, each encompassing all the

activities that are to be executed by a given entity within an organisation (thereby assuming

that this information is statically known). Each of these sub-workflows is itself specified as a

statechart. [28] describes some optimization techniques that reduce the number and the size

of the messages exchanged by the sub-workflows, leading to a weak synchronisation model

close (though using different techniques) to that of Self-Serv. Also in the context of the

Mentor project, [22] further considers the issue of configuring a distributed workflow system

in order to meet performance and availability constraints while minimising the system costs.

Mentor’s approach differs from Self-Serv’s, in that it is only applicable when the assignment

of activities to their executing entities is known during the deployment of the workflow, which

is a restrictive assumption in the context of service composition where providers can leave

and join a community or alter the characteristics of their offers (e.g. the QoS or the price)

after the composite service has been defined and deployed.

ADEPT [26] is a multi-agent platform designed to support inter-organisational business

process definition and enactment. In ADEPT, a workflow can be recursively decomposed

into smaller sub-workflows, leading to a tree-like structure similar to the one induced by the

relationship between composite services and their components in Self-Serv. Each sub-workflow

in ADEPT, is assigned to an autonomous agent. When the agent responsible for a workflow,

needs to invoke a sub-workflow, it has to negotiate with the agent(s) that provide it. This
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contrasts with Self-Serv where the selection of the component service within a community

is done through the evaluation of a selection policy. In this sense, ADEPT and Self-Serv

complement each other.

FUSION [38] is a framework for building and managing service portals. It provides a

description model for Web service methods as well as a Web Services Execution Specification

Language (WSESL). An optimal execution plan can be automatically generated from the

abstract requirements specified in this language. In this sense, Self-Serv and FUSION both

aim at facilitating the rapid composition of Web services. However, Self-Serv differs from

FUSION in that it considers the peer-to-peer orchestration of composite services. Also, the

issue of deriving an optimal execution plan is not considered in Self-Serv, but instead Self-Serv

supports dynamic service selection through the notion of service community.

DAML-S [29] focuses on enhancing the descriptions of services with higher level abstrac-

tions (e.g., constraints on operations, legal order of invocations) in order to capture the

service’s behaviour so that users can better understand the service execution semantics and

how to interact with it. Specifically, DAML-S aims at defining ontologies for service de-

scription that will allow software agents to reason about the properties of services. We also

mention the Web Service Modeling Framework (WSMF) [21] which combines Web semantics

and Web service technologies into an integrated framework. The issues addressed in this area

are complementary to those addressed in Self-Serv.

7 Conclusion

Self-Serv is a framework supporting the model-driven development and decentralised execu-

tion of composite Web services. The main features of Self-Serv are:

• An approach to model composite Web services based on statecharts. XML code captur-

ing the logic of the composition is generated directly from the resulting models, thereby

facilitating the use of agile software development approaches.

• A divide-and-conquer approach to manage large amounts of services by grouping them

into communities; communities are responsible for the management of their membership

and for the runtime selection of services against user’s profiles.

• A decentralised execution model in which the providers participating in a composite

service interact with each other in a peer-to-peer way to ensure that the control and

data flow dependencies expressed in the schema of the composite service are respected.
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Self-Serv has been implemented as a platform that provides graphical tools for: (i) spec-

ifying the schema of composite services; (ii) deploying these specifications over a network;

(iii) running instances of the deployed composite services; and (iv) managing communities of

services. Together, these tools provide an environment for the rapid development and testing

of composite Web services.

The Self-Serv platform has been used to validate the feasibility and benefits of the proposal.

In particular, several relatively large composite services have been specified and deployed using

the platform. The results have been encouraging: services with over 15 nodes and complex

control and data-flow dependencies have been specified in less than an hour, and services with

as many as a hundred components have been deployed in seconds. In addition, we have used

the platform to experimentally measure the performance of the peer-to-peer orchestration

approach with respect to a centralised approach. The results of these experiments show that

peer-to-peer orchestration leads to a more even load distribution among the participants, and

as a result, to lower execution times.

To handle the case when one or more component services fails or is unavailable, we are

considering extending the composition model to integrate transactional semantics for a group

of states in a statechart. Another interesting extension to the work reported here is the study

of the self-adaptability of composite services. The idea is that the history of past executions

of a composite service can be used to dynamically optimise an ongoing execution according to

a given set of parameters such as time, price, quality of service, etc. At present, the runtime

optimisation of service executions in Self-Serv is done independently at each node of the

composite service, i.e. each community decides locally which of its members should execute a

given service invocation. A global optimisation approach could lead to better execution with

respect to the above parameters.
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