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Abstract

The development of new Web services through the composition of existing ones has
gained a considerable momentum as a means to realise business-to-business collabo-
rations. Unfortunately, given that services are often developed in an ad hoc fashion
using manifold technologies and standards, connecting and coordinating them in order
to build composite services is a delicate and time-consuming task. In this paper, we
describe the design and implementation of a system in which services are composed
using a model-driven approach, and the resulting composite services are orchestrated
following a peer-to-peer paradigm. The system provides tools for specifying composite
services through statecharts, data conversion rules, and multi-attribute provider selec-
tion policies. These specifications are interpreted by software components that interact
in a peer-to-peer way to coordinate the execution of the composite service. We report re-
sults of an experimental evaluation showing the relative advantages of this peer-to-peer
approach with respect to a centralised one.

Index Terms: Web service, Web service composition, Web service orchestration, dy-

namic provider selection, peer-to-peer interaction, statechart.

1 Introduction
Web services are gaining a considerable momentum as a means to architect and implement in-

tegrated enterprise applications, business-to-business collaborations [4, 9], and e-Government
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systems [20]. A Web service is essentially a semantically well defined abstraction of a set
of computational and/or physical activities involving a number of resources, intended to ful-
fill a customer need or a business requirement. A Web service allows applications and/or
other services to programmatically interact with, for example, information sources, applica-
tion programs, and business processes. An example of a Web service is a flight booking system
accessible through SOAP [36].

Web services can be composed with each other in the context of inter-organisational busi-
ness processes, leading to composite (Web) services [10]. Composite services allow organisa-
tions to form alliances, to outsource functionalities, and to provide one-stop shops for their
customers. An example of a composite service is a travel booking system integrating flight
booking, accommodation booking, travel insurance, and car rental Web services.

The aim of the work reported in this paper is to enhance the fundamental understanding of
how to facilitate the rapid and scalable composition of Web services. Specifically, it addresses

the following key issues related to service composition:

e Rapid composition: The why part of Web services composition is widely under-
stood [30]. However, the technology (i.e, the how part) to compose Web services in
appropriate time-frames has not kept pace with the growth and volatility of available
opportunities. Indeed, the development of integrated Web services is still largely ad-
hoc, time-consuming and requiring a considerable effort of low-level programming. This
approach is hardly applicable because of the volatility and size of the Web. More agile

approaches (e.g. model-driven) to service composition are therefore required.

e Adaptation to large and dynamic environments: The set of services to be com-
posed may be large and continuously changing. Consequently, approaches where the
development of a composite service requires the understanding of each of the under-
lying services are inappropriate. Instead, a divide-and-conquer approach should be
adopted, whereby services addressing similar customer needs (i.e. substitutable services)
are grouped together, and these groups take over some of the responsibilities of service

composition.

e Distributed orchestration: The orchestration of composite services in existing tech-
niques is usually centralised, whereas the participating services are distributed and au-
tonomous. A centralised orchestration model has several drawbacks with respect to scal-
ability and availability [11]. Given the highly dynamic and distributed nature of Web

services, we believe that novel techniques involving peer-to-peer orchestration of ser-



vices will become increasingly attractive. In a peer-to-peer execution model, distributed
service components of similar capacity collaborate directly with each other without the
need to establish a hierarchical relationship between them. Peer-to-peer computing is
gaining a considerable momentum, as it naturally exploits the distributed nature of the

Internet [40].

The Self-Serv system [6, 7] described in this paper addresses these issues by providing mid-
dleware and tool support for facilitating the composition and orchestration of Web services.
In Self-Serv, Web services are composed using a model-driven approach, and the resulting
composite services are executed in a decentralised way within a dynamic environment. The

salient features and contributions of Self-Serv are:

e A language for process-based composition of Web services based on statecharts [24]:
a widely used formalism in the area of reactive systems, which is emerging as a stan-
dard for process modeling as it has been integrated into the Unified Modeling Lan-
guage (UML). Statecharts support the expression of control-flow dependencies such as
branching, merging, concurrency, etc. They also provide an implicit style for expressing

data-flow dependencies through the use of global variables.

e A concept of service community which provides a means to compose a potentially large
number of services in a flexible manner. Service communities are essentially containers
of substitutable services. They provide descriptions of desired services (e.g., providing
flight booking interfaces) without referring to any actual provider. Actual providers can
register with any community of interest to offer the desired service. At run-time, the
community is responsible for selecting the service offer that best fits a particular user

profile in a specific situation.

o A peer-to-peer orchestration model, whereby the responsibility of coordinating the ex-
ecution of a composite service is distributed across several software components called
coordinators. Coordinators are attached to each involved service. They are in charge of
initiating, controlling, monitoring the associated services, and collaborating with their
peers to orchestrate the service execution. The knowledge required at runtime by each
of the coordinators in a composite service (e.g. location, peers, and routing policies) is
statically extracted from the service’s statechart and represented in a tabular form. In

this way, the coordinators do not need to implement any complex scheduling algorithm.

The rest of the paper is organised as follows. Section 2 describes Self-Serv’s approach to

service composition, from the specification of control-flow and data-flow, to that of selection



policies. Section 3 discusses the peer-to-peer orchestration approach and analytically com-
pares it to a centralised one. Section 4 describes the system architecture and implementation
of Self-Serv. Section 5 describes an experimental setup in which the deployment and execution
costs of the peer-to-peer approach are evaluated and compared to a centralised one. Finally,

Section 6 provides an overview of related work and Section 7 draws some conclusions.

2 Service Composition Model

Self-Serv distinguishes three types of services: elementary services, composite services, and
service communities. An elementary service is an access point to an application that does not
rely on another Web service to fulfill user requests. In the Self-Serv system, it is assumed that
every elementary service provides a programmatic interface based on SOAP and WSDL [32].
This does not exclude the possibility of using Self-Serv to integrate legacy applications, such
as those written in CORBA. However, for such applications to be composed with others using
Self-Serv, appropriate adapters should first be developed.

A composite service is an umbrella structure that brings together other composite and
elementary services that collaborate to implement a set of operations. The services brought
together by a composite service are referred to as its component services. An example of
a composite service would be a travel preparation service, integrating services for booking
flights, booking hotels, searching for attractions, etc.

The concept of service community is a solution to the problem of composing a potentially
large number of dynamic Web services. A community describes the capabilities of a desired
service without referring to any actual Web service providers. In other words, a community
defines a request for a service which makes abstraction of the underlying providers. In order to
be accessible through communities, pre-existing Web services can register with them. Services
can also leave and reinstate these communities at any time. At runtime, when a community
receives a request for executing an operation, it selects one of its current members, and
delegates the request to it.

Whether elementary, composite, or community-based, a Web service is specified by an
identifier (e.g., URL), a set of attributes, and a set of operations. The attributes of a ser-
vice provide information which is useful for the service’s potential consumers (e.g., public
key certificates). We do not consider the specification of richer abstractions such as service
conversations. For details about service conversation support in our approach, we refer the

reader to [3].



2.1 Community Services

A community is an aggregator of service offers with a unified interface. It is intended as a
means to support the composition of a potentially large number of dynamic Web services.
The description of a community contains a set of operations that can be used to interact with
the community and its underlying members. These operations are described without referring

to the definitions of local services (i.e., members).

2.1.1 Service Registration

The registration of a service with a community requires the specification of mappings between

the operations of the service and those of the community. The following is an example of a

mapping:

source service Qantas Airway QAS target community Flight bookings FBS
operation mappings operation FBS.search flight() is QAS.search_ticket();
operation FBS.book flight() is QAS.book_ticket ()

In this example, the operation search_flight (resp., book_flight) of the community
Flight bookings is mapped to the operation search ticket (resp., book_ticket) of the
service Qantas Airway. A registration may concern only a subset of the operations of a
community. Thus, Web services have the flexibility to register only for the operations that
they can provide. For instance, the community Flight bookings provides operations for
searching (i.e, search_flight) and buying (i.e., book_flight) flight tickets. If a Web service
provides only one of these operations, then it will register only for the operation that it
provides.

A Web service can register with one or several communities. A community can be regis-
tered with another community. For example, the Web services Qantas Airway and Cathay
Pacific are registered with the community Flight bookings which is itself registered with

the community Intl Travel Arrangements.

2.1.2 Multi-Attribute Service Selection Policies

A community is associated with a scoring service that interprets a selection policy. A selection
policy specifies preferences over services of a community. It consists of a multi-attribute utility

function which has the form

U(s) = Z w;.Score;(s)

i€SA



where:

e Score;(s) is an attribute scoring function, which, given a value of an attribute ¢ of the

service s, returns a score (a positive integer value). SA is the set of selection attributes.

e w; is the weight assigned to the attribute .

The scoring service computes the weighted sum of service attribute scores using the weight
property of each selection attribute. It then selects the service which produces the higher
overall score according to the multi-attribute utility function. Selection attributes belong to
one of three categories: advertised, provider-supplied, and community-supplied. Advertised
attributes are the attributes that a service provider makes available at registration time (i.e.,
when the service becomes member of the community). For example, a service provider may
advertise the expected duration of an operation invocation. Provider-supplied attributes are
available from service providers only upon request. For instance, the price of a product can be
defined as being a provider-supplied attribute. Finally, community-supplied attributes are the
attributes that can be derived at the community level from past execution logs. For instance,
values of service quality attributes such as reliability and availability can be estimated based
upon past execution logs. Self-Serv supports a predefined set of generic attributes, and allows
developers to introduce new attributes. Table 1 lists the predefined attributes and their

corresponding scoring functions.

Quality Attribute Quality Functions

Execution Price price (S, op) represents the amount of money that a service requestor has to pay
for executing operation op of service s.

Execution Duration | ¢q.(s,0p) measures the expected delay in seconds between when a request to s
for executing operation op is sent and when results are received.

Reputation drep(s) is a measure of its trustworthiness which depends on end-users experi-
ences of using the service s.

Reliability gre1(8) is the probability that a request to s is correctly processed within a
maximum expected time frame.

Availability dav(8) is the probability that a request to s is accessible.

Table 1: Service Quality Attributes.

A scoring function is provided for each selection attribute. For simplicity, we assume
that the value of each scoring function has been scaled to the interval [0..1] and that a
higher value indicates a better quality. For instance, the scoring function associated with the
attribute Execution Duration (ed for short) is Scoreqq(s,op) = 1/qau(s,op) (i.e, the higher

the execution duration is, the lower is the score). It should be noted that the method of



estimating the value of a community-supplied attribute is not unique, neither is the set of
selection attributes.

Selection policies are provided by communities. Consumers can customise these policies by
providing weights for the selection attributes. A community may provide several alternative
multi-attribute utility functions which correspond to different selection policies. Consumers
choose policies depending on their preferences.

The automatic construction of attribute scoring functions is not addressed by Self-Serv.
This issue is in fact addressed by work in the area of preference-based product recommendation
systems [37]. In these systems, consumers specify their preferences via questionnaires. The
information extracted from these questionnaires is then used to construct attribute scoring
functions. Note that the focus of this paper is not on specifying selection policies. We mention
this aspect here for the sake of completeness. Our work on service selection is described

elsewhere [41].

2.2 Composite Services

The operations of a composite service are expressed as compositions of operations offered by
other Web services using statecharts [24]. The choice of statecharts as the language for cap-
turing the flow of operation invocations in Self-Serv is motivated by several reasons. First,
statecharts possess a formal semantics, which is essential for analysing composite service
specifications. Next, statecharts are a well-known and well-supported behaviour modelling
notation, and they are part of the Unified Modeling Language (UML). Furthermore, state-
charts offer most of the control-flow constructs found in existing process description languages:
sequence, branching, concurrent threads, and cycles. [19] shows that statercharts are suitable
for expressing typical control-flow dependencies. Specifically it is shown that statecharts can
capture a relatively high number of the workflow patterns identified in [1].

However, like any other process modelling languages (e.g. languages based on Petri nets,
process algebra, or transaction logic), statecharts have their relative advantages and draw-
backs. In particular, statecharts do not provide direct support for modelling the so-called
multiple instances patterns [1], that is, situations where multiple copies of the same activity
are executed simultaneously and these copies need to synchronize upon completion. Nonethe-
less, this characteristic is shared by several other proposals in this area, like the Business
Process Execution Language for Web Services (BPEL4WS) [14], which is currently emerging
as an implementation-level standard in the area of Web service composition. In any case,

the fundamental ideas behind our approach (e.g. peer-to-peer orchestration and late service



selection through communities) can be applied to other process modelling languages than
statecharts, although the algorithms for composite service orchestration will differ depending

on the language chosen.

2.2.1 Overview of Statecharts

A statechart is made up of states and transitions. Transitions are labeled by FCA (Event
Condition Action) rules. The occurrence of an event fires a transition if (i) the machine is
in the source state of the transition, (ii) the type of the event occurrence matches the event
description attached to the transition, and (iii) the condition of the transition holds. When a
transition fires, its action part is executed and its target state is entered. The event, condition,
and action parts of a transition are all optional. A transition without an event is said to be
triggerless.

States can be basic or compound. In Self-Serv, a basic state corresponds to an invocation
of a service operation, whether an elementary service, a community, or a composite service.
Accordingly, each basic state is labelled with an invocation to a service operation. When the
state is entered, this invocation is performed. The state is normally exited through one of
its triggerless transitions when the execution induced by this invocation is completed. If the
state has outgoing transitions labeled with events, an occurrence of any of these events causes
the state to be exited and the ongoing execution to be cancelled.

Compound states provide a mechanism for nesting one or several statecharts inside a
(larger) statechart. There are two types of compound states: OR and AND states. An OR-
state contains an arbitrary statechart nested inside it, which is executed when the compound
state is entered. An AND-state on the other hand contains several statecharts (separated
by dashed lines) which are all executed concurrently when the compound state is entered.
Each of the statecharts contained in an AND-state is usually called an AND component or
an orthogonal component, but in this paper we choose the term concurrent region instead, to
avoid confusion with the term component service introduced earlier.

The origin of the terms OR-state and AND-state can be explained as follows. The states
of the statechart contained in an OR-state (i.e., the substates of the OR-state) are related by
an exclusive or relationship, in the sense that being in an OR-state is equivalent to being in
exactly one of its substates. Meanwhile, being in an AND-state is equivalent to being in all
the concurrent regions contained in the AND-state.

From an operational perspective, when a compound state is entered, the initial state(s)

of the statechart(s) nested in it become(s) active. The execution of a compound state is



considered to be completed when it has reached (all) its final state(s). Initial states are

denoted by filled circles whereas final states are denoted by two concentric circles.

2.2.2 Data Flow and Conversion

An operation of a composite service is described by its input parameters, output parameters,
consumed and produced events, and a statechart glueing these elements together. The input
and output parameters are mapped to variables of the statechart and can be referenced in
any of the conditions and actions of the statechart. Similarly, the consumed events can
appear in any of the event parts of the statechart’s transitions, and the produced events can
be generated by the actions of these transitions. Moreover, the statechart contains a set of
invocations to component services. Each of these invocations is described by the name of the
service, the name of the operation, an expression to compute the effective input parameters,
and the variables of the statechart to which the outputs of the operation are assigned.

Data flow between states in the statechart is therefore specified through the use of vari-
ables. A variable in the statechart of a composite service operation can be: an input parameter
of the composite service operation, an output parameter of the composite service operation,
or an internal (or local) variable. The value of an internal variable may be: (i) obtained from
the output of a service invocation as mentioned above, (ii) requested from the user during the
execution of the composite service, or (iii) derived from the input parameters of the composite
service operation and/or other internal variables through a query. To cater for the first of

these cases, we adopt the following syntax for invoking service operations:
S:m(Qq, ..., Qun, &V, ..., &Vy)

The semantics of this expression is an invocation of the operation m provided by service
S, with input parameters provided by queries Q, ..., Qu, and such that the outputs of the
invocation are assigned to variables Vq, ..., V. A query Q; can be simply a variable name or
any other query. Self-Serv adopts XPath [12] as the query language. To cater for the second
and third cases above, Self-Serv recognizes in the action parts of the statechart the following
types of expressions: (i) X := USER: the value of the internal variable X is supplied by the
user, and (ii) X := Q: the value of X is the result of query Q.

2.2.3 Example

Figure 1 contains the statecharts of two composite services: Complete Travel Services
(CTS) and Intl Travel Arrangements Service (ITAS). The latter is invoked within the

former. The statechart of CTS is composed of an AND-state, in which a search for attractions
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Domestic Flight
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——————————————————————————————————————————————————————— accommodation)]
Attractions
Search

(AS)

International Travel Arrangements Service (ITAS)

International Flight Travel Insurance
[ Booking (T1) @
(IFB)

Figure 1: The Travel Solution composite service.

is performed in parallel with the bookings of the flight and the accommodation. When both
of these threads complete, a car rental booking is performed if the major attraction is far
from the booked accommodation.

Table 2 describes the signature of CTS and the signatures of the services that it invokes.

To describe the signatures of the services, the following notations are used:

o CTS::prepareTrip denotes an invocation of the operation prepareTrip provided by the

service CTS.

e The keyword in indicates that a parameter is passed by value. For instance in Date
minDepatureDate indicates that the parameter minDepartureDate of type Date is passed

by value.

e The keyword out indicates that a parameter is passed by variable. For example out
float totalPrice means that the service operation returns a value of type float, and

that this value is assigned to the variable given in place of this parameter.

Table 3 details the invocations that are made in each of the states of the composite service
CTS. For a given row, the left column of the table contains the name of a state, e.g., AS,
and the right column provides the name of the service operation that is invoked when that
state is entered, followed by the effective parameters. Some of the variables appearing in
Figure 1 and in the associated Table 3 are input parameters of CTS (e.g., minDepartureDate,

maxDepartureDate, destination), while others are internal variables (e.g., departureDate,

10



CTS::prepareTrip(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,
in maxReturnDate, in string destination, in string name,
out float totalPrice, out XMLDoc flightDetails,
out XMLDoc accommodationDetails, out XMLDoc rentalDetails)
CRS::booking(in string city, in string name, in Date rentalDate, in Date returnDate,
out float price, out XMLDoc rentalDetails)
ABS::booking(in string city, in string name, in Date arrivalDate, in Date departureDate,
in int starRating, out float price, out XMLDoc accommodationDetails)
AS::getAttractions(in string city, out XMLDoc attractions)
DFBS::booking(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,
in maxReturnDate, in string destination, in string name,
out Date actualDepartureDate, out actualReturnDate,
out float price, out XMLDoc flightDetails)
ITAS::booking(in Date minDepatureDate, in Date maxDepartureDate, in Date minReturnDate,
in maxReturnDate, in string destination, in string name,
out Date actualDepartureDate, out actualReturnDate,
out float totalPrice, out XMLDoc flightDetails)

Table 2: Signatures of the operation prepareTrip provided by CTS, and signatures of the service
operations that it invokes.

flightDetails). All of the internal variables involved in this example, are used to store
the outputs of the component services invocations. In addition, the values of some internal
variables are used as input parameters to component services invocations. For example,
the variable departureDate is used to store one of the outputs of the invocation of the
operation DFBS: :booking, and it is later on used to provide the value of an input parameter

for operations AB: :booking and CRS: :booking.

State | Invocation

AS AS::getAttractions(destination, &attractions)

DFB | DFBS.booking(minDepartureDate, maxDepartureDate, minReturnDate,
maxReturnDate, destination, name,

&departureDate, &returnDate, &flightPrice, &flightDetails)
ITA ITAS.arrangeTrip(minDepartureDate, maxDepartureDate, minReturnDate,
maxReturnDate, destination, name,

&departureDate, &returnDate, &flightPrice, &flightDetails)
AB ABS::booking(destination, name, departureDate, returnDate, starRating
&accommodationPrice, &accommodationDetails)

CR CRS::bookCar(destination, name, departureDate, returnDate,
&rentalPrice, &rentalDetails)

Table 3: Table of invocations of the CTS::prepareTrip composite service operation.

The statechart in Figure 1 features four conditions in its transitions. Conditions are
modeled as calls to boolean functions, which take as parameters queries involving input pa-

rameters of the composite service as well as internal variables. For example, the condition

11



domestic(destination) is a function call whose parameter is directly obtained from one
of the inputs of service CTS. Meanwhile, near(major_attraction, accommodation) is a
function call whose parameters are given by the values of internal variables. Although not
shown in the statechart for clarity reasons, the value of the variable major_attraction is
derived from the value of the variable attractions (which is an XML document) through an
XPath expression. Also not shown in the statechart, is the fact that the value of the internal
variable starRating (which is used as an input parameter in the invocation ABS.booking) is
requested from the user at runtime, just after the flight booking is completed. This situation

should be expressed through the action starRating := USER.

3 Peer-to-Peer Orchestration

This section starts with an overview and illustration of the basic concepts of the service
execution model of Self-Serv. After this overview and illustration, a formal description of the

concepts and algorithms is given.

3.1 Overview

The execution model of Self-Serv is based on the idea that each state ST appearing in a

composite service specification is represented by a state coordinator which is responsible for:

e Receiving notifications of completion from other state coordinators and determining from
these notifications when should state ST be entered. These notifications of completion
include the relevant data items (i.e. the values of variables) which have been gathered

by the previous states visited during the execution.

e Invoking the service operation labelling ST whenever all the preconditions for entering
ST are met. This invocation is done by sending a message to the service and waiting for
a reply.

e Upon completion of the service execution started in the previous step, notifying this
completion to the coordinators of the states that may need to be entered next. These

notifications of completion contain all data items that need to be passed on to the next

state coordinators.

e While state ST is active, receiving notifications of external events (e.g., a cancellation)
and determining if ST should be exited due to these event occurrences. If so, the state

coordinator will interrupt the ongoing service execution and will send notifications of

12



“completion” to the coordinators of the states which potentially need to be entered

next.

e [f user input is needed in order to determine the value of a variable used within the state,
requesting this value from the initial coordinator which will then perform the necessary

user interaction.

In essence, the coordinator of a state is a lightweight scheduler which determines when
should a state be entered, and what should be done after the state is exited. The knowledge
needed by a coordinator in order to answer these questions at runtime is statically extracted
from the statechart describing the composite service operation, and represented in the form
of routing tables as detailed later.

A composite service execution is orchestrated through peer-to-peer message exchanges
between the coordinators of the states of the service’s description, and through message ex-
changes between the coordinators and the component services. The messages exchanged
between the coordinators for the purpose of notifying that a given state should/may be en-
tered are called control-flow notifications. A control-flow notification sent by a coordinator C4
to a coordinator C, expresses the fact that the execution of the state represented by C; has
completed, and that C; believes that the state represented by C, needs to be entered. The no-
tification message contains the up-to-date values of all the internal variables of the statechart
that Cy needs to transmit to C,. On the other hand, the messages exchanged between the state
coordinators and the component services are called service invocations/completions. Service
invocations are performed using SOAP, since every service in Self-Serv, whether elementary,
composite, or community-based, provides a SOAP entry point.

The initial coordinator of a composite service is a special type of coordinator which acts
as the entry point to the service. When a composite service is invoked, its initial coordinator
sends a control-flow notification to the coordinators of the states which need to be entered
in the first place. From that point on, the execution of the composite service is orchestrated
through peer-to-peer interactions between the state coordinators. At the end, the initial
coordinator receives back the control-flow notifications indicating that the execution of the
service instance is terminated. The initial coordinator can then return a completion message
to the invoker.

In addition, the initial coordinator of a composite service is responsible for detecting
and handling failures, and for processing external events. Specifically, the initial coordinator

receives and processes failure notifications issued by the state coordinators when a control-
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Figure 2: Interactions between the coordinators and the component services during an exe-
cution of CTS.

flow notification that needs to be sent has not been delivered after several retries. Also, the
initial coordinator detects timeouts that may indicate that the composite service execution
is stalled at a given node. When such timeouts occur, the initial coordinator identifies the
point of failure (if any), selects an alternative service if possible, and notifies the failure to
the invoker. Finally, external events directed to an instance of a composite service (e.g. for
suspending its execution), are handled by the initial coordinator, who forwards these events

to the appropriate state coordinators.

3.2 Orchestration Example

The diagram in Figure 2 shows the messages exchanged by the coordinators and the compo-
nent services during a particular execution of service CTS (see Figure 1). The layout of the
arrows indicate the type of the message (control-flow notification or service invocation /result)
as explained in the legend of the figure. The numbers labelling the arrows capture the tempo-
ral relationships between the messages. For instance, message 3 is sent after message 2 which
is sent after message 1. Some messages are exchanged as part of concurrent threads. In this
case, the messages are given the same serial number, followed by a character. For instance,
the messages starting with 2a and 2b in Figure 2 (e.g., 2a.1 and 2b.1) are sent within con-
current threads. Messages sent within the same thread are identified by serial numbers within
that thread. For instance, message 2a.1 and 2a.2 are sequential messages exchanged within
thread 2a.

The execution in this diagram starts when a user or application invokes the service CTS
through its initial coordinator (message 1). Assuming that the trip is international, the initial
coordinator of CTS sends a control-flow notification to the coordinators of ITA (message 2a.1)

and to the coordinator of AS (message 2b.1). These coordinators trigger the services ITAS
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(2a.2) and ASS (2b.2) respectively. When ASS returns an output (2b.3), the coordinator of
AS sends a control-flow notification both to the initial coordinator of CTS (2b.4a) and to the
coordinator of CR (2b.4b), since it is not possible to determine whether the major attraction
is near the accommodation until the accommodation has been booked, and this is done in a
separate concurrent thread. Meanwhile, the initial coordinator of ITAS starts the execution of
this composite service by sending a control-flow notification to the coordinator of IFB (message
2a.3), which invokes IFBS (2a.4 and 2a.5). The execution of ITAS continues its course (2a.6,
2a.7 and 2a.8) until eventually a termination message is sent to the initial coordinator of
ITAS (2a.9). This service returns a result to the coordinator of ITA (2a.10), which sends
a notification to the coordinator of AB (2a.11). After invoking ABS (2a.12 and 2a.13),
the coordinator of AB sends notifications both to the initial coordinator of CTS (2a.14a)
and to the coordinator of CR (2a.14b), since again, the condition near (major_attraction,
accommodation) cannot (always) be evaluated at that point in time. The coordinator of
CR and the initial coordinator of CTS then evaluate the condition near (major_attraction,
accommodation). If this condition is true, the coordinator of CR invokes the service CRS
(messages 3 and 4). Once this invocation is completed, a notification is sent to the initial

coordinator of CTS, and the overall execution is completed.

3.3 Preconditions and Postprocessing Actions

Extracting the knowledge required by a state coordinator from the statechart implementing

a composite service operation, involves answering the following questions:

e What are the preconditions for entering a state? That is, what are the source states
of the transitions leading to a given state, and what are the conditions that need to be

satisfied for this transition to be taken.

e When the execution of a state is completed (whether successfully or because of a signal),
which are the states that may need to be entered next? The process by which a coor-
dinator notifies that its state is being exited to the relevant peer coordinators is called

postprocessing.

The behavior of a state coordinator can therefore be captured through two sets: (i) a set
of preconditions such that the state is entered when one of these preconditions is met, and
(ii) a set of postprocessing actions indicating which coordinators need to be notified when a
state is exited. Preferably, these sets of preconditions and postprocessing actions should be

defined in a way to ensure minimal communication overhead. In other words, when a state
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is exited, only those states that potentially need to be entered are notified. The following
definitions formalize what is meant by a state potentially needed to be entered.

First of all, in order to identify the states which are accessible from another one in a single
step, we introduce the concept of compound transition. Intuitively, a compound transition®
is any path (i.e. list of linked transitions), going from a basic state to another basic state

without passing through any other basic state.

Definition 1 (Compound transition). A compound transition CT is a sequence of transi-

tions tq, ta, ..., t, belonging to a given statechart, such that:
e source(ty )? is a basic state,
e targel(t, ) is a basic state, and

e foralliin [1..n-1], either target(t;) is the final state of a region belonging to the compound
state source(t;y1), or source(t;y1) is the initial state of a region belonging to the compound

state target(t;).

Under these conditions, CT is said to connect source(ty) with target(t, ), i.e., source(CT) =
source(ty) and target(CT) = target(t,). The condition part of CT, noted Cond(CT), is the
conjunction of the conditions labelling t, ..., t,. O

For example, in Figure 1 there is a compound transition with two elements, going from
state AS to state CR, and another going from AB to CR. In both cases, the condition of the
compound transition is [true A not near(major_attraction, accommodation)].

When a state is exited, the states which potentially need to be entered next are those
which are target of a compound transition for which either: (i) the condition part is true, or

(ii) the condition part cannot be fully evaluated, but the part that can be evaluated is true.

Definition 2 (Minimal postprocessing table of a state). The minimal postprocessing

table of a state ST, is a set of rules of the form [C]/ST’ such that:
o There exists a compound transition CT such that source(CT) = ST and target(CT) =
ST
e Conjuncts(C) C Conguncts(Cond(CT)), where Conjuncts(cy A ...N¢,) ={c1, ...cy}.

o [f Conguncts(C) # Conjuncts(Cond(CT)), then the elements of Conguncts(Conds(CT))
\ Conguncts(C) are exactly those that cannot be evaluated at the time the state ST is

exited. Here, \ stands for the set difference operator. [

INotice that the definition of compound transition that we adopt, is slightly different from that of [24].
2Here, source(t) denotes the source state of transition t, while target(t) denotes the target state of t.
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In the example of Figure 1, we have that Postprocessing(AS) = { [true]/notify(CR),
[truel /notify(I) }, where I is the identifier of the initial coordinator of the composite
service CTS. Notice that the condition near(major_attraction , accommodation) cannot
be evaluated by the coordinator of AS, since it involves information which is only known once
the accommodation has been selected, and this is done in a separate concurrent region.

When a service labelling a state completes its execution, the coordinator of this state
evaluates the condition part of each of the entries appearing in its postprocessing table. For
each entry whose condition evaluates to true, it sends a notification message to the coordinator
of the state referenced in that entry. The constraints imposed in the Definition 2 ensure that
a state ST’, will receive a notification of completion from another state ST, if and only if either
(1) the state ST’ needs to be entered, or (ii) it is not possible for ST to determine whether the
state ST’ should be entered or not. In this latter case, the decision on whether ST’ should be
entered or not, is made by the coordinator of ST’ based on its preconditions table as defined

below.

Definition 3 (Minimal preconditions table of a state). The (minimal) preconditions

table of a state ST of a composite service specification is a set of rules E[C] such that:

e E is a conjunction of events of the form ready(ST’). The event ready(ST’) is generated
when a notification of completion is received from the coordinator attached to state ST .
The conjunction of two events e; and ey is noted ey Aey and the semantics is that if an
occurrence of ey and an occurrence of ey are registered in any order, then an occurrence

of e1 Aey is generated.
o There exists a compound transition CT from ST’ to ST such that C C ST.
o [f Conjuncts(C) # Conjuncts(Cond(CT)), then the conditions in CT \ C are exactly those

which cannot be evaluated by the coordinator of ST’. O

With respect to Figure 1, Preconditions (AB)={ ready (ITA) [true] ,ready(DFB) [true] },
meaning that the state AB is entered when a message is received from either the coordinator
of the state ITA or that of DFB. Similarly, Preconditions (CR)={ ready (AB) Aready (AS) [not
near (major_attraction, accommodation)] }.

When a rule in the preconditions table of a state ST is triggered (i.e. an event occurrence
matches the event part of the rule), if the rule’s condition evaluates to true, state ST is entered,
and the service that labels it is invoked by the coordinator of ST. The third item in Definition
3 ensures that the coordinator of ST will only evaluate those conditions which have not been

previously evaluated by the coordinators referenced in the event part of the rule.
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PostProc(ST) = let {T1, Tz,..., T,,} are the outgoing transitions of ST in
PostProcTrans(T1) U PostProcTrans(7z) U ... U PostProcTrans(7),)

PostProcTrans(T) =
if target(T) is a basic state then { [cond(T)]/notify({target(T)}) }
else if target(T) is a compound state then
let {ITy, ITs, ..., IT,} be the initial transitions of target(T) in
AddCond(cond(T), PostProcTrans(I17) U. ..U PostProcTrans(IT},))
else if target(T) is a final state then
let SUP = superstate(target(T)) in
if SUP is the topmost state of the statecharts then { [cond(T)]/notify(initial_coordinator) }
else if SUP is an OR-STATE AddCond(cond(T), PostProc(SUP))
else { [cond(T)]/notify(S) such that S € CTargets(SUP) }

The above equations make use the following two auxiliary functions.

AddCond(c, { e1[c1]/a1, ..., enlcn]l/an }) = { e1]c and ¢1]/aq, ..., ex]c and ¢,]/an }
CTargets(ST) = { target(CT) | CT is a compound transition A source(CT) = ST }

Figure 3: Algorithm for the generation of postprocessing actions.

3.4 Routing Tables Generation

We describe in turn the algorithms for generating the postprocessing and the preconditions
tables of a state. For the sake of simplicity and for space reasons, we restrict our presentation
to the case where the transitions are only labeled with conditions (i.e., they do not have an
event nor an action part). In [5], we discuss how transitions labeled with user-defined events

and actions can be accommodated.

3.4.1 Postprocessings Table Generation

In order to derive the postprocessing table of a state, its outgoing transitions are analyzed,
and one or several postprocessing actions are generated for each of them. The algorithm for
generating the postprocessing table of a state, namely PostProc (see Figure 3), relies on an
auxiliary algorithm PostProcTrans which takes as input a transition T, and returns a set of
postprocessing actions that need to be undertaken if transition T is taken.

Let us now discuss how an outgoing transition T is used to generate a set of postprocessing
actions. The simplest case is that when this transition leads to a basic state (target(T)), and
it is labeled with a condition (cond(T) ). The postprocessing action [cond(T)]/notify(targe-
t(T)) is included in the postprocessing table, meaning that if condition cond(T) is true, a
notification must be sent to the coordinator of state target (T).

If an outgoing transition T points to a compound state CST, then one postprocessing action

is generated for each of the initial transitions of CST. The condition labelling T is then added
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as a conjunct to the condition guarding each of these postprocessing actions, since T has to be
true for any of these actions to be undertaken. This process is carried out recursively: if one of
the initial transitions of CST points to another compound state CST’, then one postprocessing
action is generated for each initial transition in CST’ and so on.

If an outgoing transition T points to a final state of a compound state CST, the outgoing
transitions of CST are considered in turn, and one or several postprocessing actions are gener-
ated for each of them. Given a transition T’ emanating from CST, a distinction is made here
between the case where CST is an OR-STATE, and that where CST is an AND-state. In the
former case, the condition labelling T’ should be included as a conjunct in each of the guards
of the postprocessing actions generated from T’. In the latter case, the condition labelling T’
should not be included in any of the guards of the postprocessing actions generated from T’,
since the evaluation of this condition may require information which is not available when
ST is exited. For example, in the case of Figure 1, the condition attractions far from
accommodation should not appear in the postprocessing table of the state AS, since it cannot
be evaluated until state AB is exited, and state AB is in a region concurrent to that of AS.

Finally, if an outgoing transition T points to the final state of the whole composite service,
the postprocessing action(s) generated from this transition will involve the initial coordinator
of the composite service. In other words, if this transition is taken, a control-flow notification

will be sent to the initial coordinator.

3.4.2 Preconditions Table Generation

The preconditions table of a state is generated by determining, for each of the incoming
transitions of the state, what are the conditions that should be met for that transition to be
taken. The function PreCond(ST) (see Figure 4) which computes the preconditions of state
ST can thus be written in terms of an auxiliary function PreCondTrans(T) which computes
the preconditions of transition T.

The function PreCondTrans(T) distinguishes the cases where the source of the transition
is a basic state, the one in which it is an initial state, the one in which it is an OR-state,
and that in which it is an AND-state. In the first case, the only precondition for taking the
transition is that the source state is exited, and the condition in the transition is taken. In the
second case (the transition T stems from an initial transition), the preconditions for taking
the transition T are identical to the preconditions for entering the superstate of T, except that
they contain the condition in the transition of T as a conjunct. Notice that if the superstate of

T is the topmost state of the statechart, Tis an initial transition of the composite service
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PreCond(ST) let {T1, T»,..., T} be the incoming transitions of ST
PreCondTrans(71) U PreCondTrans(72) U ...U PreCondTr ans(T},)

PreCondTrans(T) =
if source(T) is a basic state then { ready(source(T))[cond(T)] }
else if source(T) is an initial state then
let SUP = superstate(source(T))
if SUP is the topmost state of the statechart then {ready(initial_coordinator)[cond(T)]}
else AddCond(cond(T), PreCond(SUP))
else if source(T) is an OR-state then
let {FTy, FTs, ..., FT,} be the final transitions of source(T)
AddCond(cond(T), PreCondTrans(FT1) U ...U PreCondTrans(FT),))
else /* source(T) is an AND-state */
let {CRy, ..., CR,} be the concurrent regions of source(T),
let {FT1_.CRy, ..., FT,,_.CR,} be the final transitions of CR1,
let {FT1_-CRy, ..., FT,,_.CRs} be the final transitions of C R,

let {FT1_-CR,, ..., FT,,_.CR,} be the final transitions of CR,,
AddCond([cond(T)],
PreCondTrans(F'T7-CR;y) U. ..U PreCondTrans(FT,,-CR1)) x
PreCondTrans(FT1-CR3) U. ..U PreCondTrans(FT,-CRz)) X

PreCondTrans(FT1-CR,,) U. ..U PreCondTrans(FT,-CR,)))

The binary operator x (Cartesian product) used in this algorithm takes as parameters two sets of
e[c] rules (say SRy and SR3) and generates a set of €[c] rules by combining each element of SR; with each
element of SRy, where the combination of a rule e1[c1] with another rule es[ca] is e1AeaciAca].

{eiler], e2fca], ..., enfen]} x {ei[cl], es[ch], ..., e len]} =
{erine[eind], exneheincs],. .., exnel[cind],
eaNef[eand]], eaNehcandy].. .., ealel,[caAel,],
enNef[enAch], enAeS[en AL, . ., ep el [enACl ]}

Figure 4: Algorithm for the generation of preconditions.

and it is therefore taken when the composite service’s initial coordinator sends an order to
execute the service.

The case where a transition stems from a compound state CST is treated by recursively
applying the function PreCondTrans to the final transitions of CST, and merging the resulting
preconditions tables. In the case where st is an OR-state, the merging is a simple set
union. In the case of an AND-state, each concurrent region is treated as an OR-state, and
the preconditions tables obtained for each concurrent region are merged through a Cartesian
product, meaning that the AND-state is exited if one of the final transitions in each of the
concurrent regions is taken.

It can be proven by structural induction that the tables generated by PreCond and
PostProc fulfill the conditions in Definition 3 and Definition 2 respectively. It follows that, at

runtime, a control-flow message is sent from a coordinator C; to another coordinator C,, only
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if there is a compound transition from the state of C; to that of Cy, and either the state of C,
needs to be entered, or it is impossible for C; to determine whether the state of C, needs to
be entered or not. It should be noted that changes of composite services (e.g., remove a state
from the statechart of a composite service) is not considered in this arcticle. However, one
of the authors work in the area of change management for integrated services can be found
in [42].

The above algorithms assume that the transitions in the statechart have no event and
action part (i.e. only conditions are considered). In reality, statechart transitions can be
labelled with events which may interrupt the execution of the service invocation labelling its
source state, and actions which may manipulate the variables of the statechart.

In order to accommodate transitions with events, the PostProc algorithm requires some
modifications. Specifically, it needs to generate rules which potentially have an event part,
in addition to the compulsory condition and action parts. When a coordinator receives an
event occurrence (which are sent by the initial coordinator), it checks whether this event
occurrence matches the event part of one of the rules in its postprocessing table, and if it
does, it evaluates the condition part of the rule, and executes the required notification actions.

Similarly, in order to accommodate transitions with actions, the algorithm for computing
the preconditions of a state, must also compute the actions that have to be executed before
the state is entered. This can be done by modifying the algorithm PreCond, so that the
postprocessing rules that it generates have an action part, in addition to an event and a

condition part.

3.5 Analysis of Centralised and P2P Orchestration

In the P2P orchestration approach presented above, the coordinator of a state S is placed
in the same machine as the service invoked in S. As a result, every control-flow notification
potentially entails a physical message exchange (i.e., a message exchange between different
physical machines). On the other hand, an invocation to a component service does not involve
any physical message exchange.

In practice however, a coordinator and the component service that it invokes can be
located in separate machines, in which case a message from a coordinator to the component
service entails a physical message exchange. Furthermore, several coordinators can be placed
in the same physical machine, so that a control-flow notification exchanged between these
coordinators does not entail any physical message exchange. In an extreme case, all the

coordinators can be placed in the same physical machine. We will subsequently call this
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orchestration approach centralised, since the set of all the coordinators placed in a single
physical machine can be seen as forming a central scheduler.

In the sequel, we compare the P2P and the centralised approaches in terms of physical
message exchanges. Specifically, we estimate the maximum number of physical message ex-
changes required by a composite service execution, in terms of the number of invocations to
component services involved by this execution. These physical message exchanges can result

either from control-flow notifications or from invocations to component services.

Centralised approach. The worst-case number of physical message exchanges required by
an execution of a composite service involving N invocations to component services is 2 x N.
Indeed, in this approach only the invocations to component services entail physical message
exchanges: the control-flow notifications do not. Moreover, each invocation to a component
service requires two messages: one from the coordinator to the component service and another

from the component service back to the coordinator.

P2P approach. The worst-case number of physical message exchanges required by an
execution of a composite service involving N invocations to component services, is bounded
by M x (N + 1), where M is the number of basic states in the corresponding statechart.
The reasoning behind this bound is the following. First, we note that only the control-flow
notifications require physical message exchanges: the invocations to component services do
not require so, since the coordinator that performs this invocation is located in the same
machine as the component service that is invoked. Next, we note that each time that a basic
state is exited, at most M control-flow notifications are sent by the coordinator of this state:
M —1 to its fellow coordinators and 1 to the initial coordinator. Hence, after an invocation to
a component service is completed and the corresponding state is exited, at most M physical
message exchanges (entailed by control-flow notifications) take place. If the composite service
execution involves N invocations to component services, N x M physical message exchanges
take place during it. Moreover, when the composite service begins its execution, at most
M messages are sent by the initial coordinator to the coordinators. Overall, the worst-case
number of physical message exchanges is thus M+ M x N = M x (N + 1).

The above is a tight bound as evidenced by the example in Figure 5. In this example,
each time that one of the states labelled Sy, --- ,S,, is exited, the corresponding coordinator
must send one control-flow notification to each of the other coordinators, and one to the
initial coordinator. Indeed, in the worst-case none of the coordinators is able to fully evaluate

the conditions C; and Cs: these conditions may involve one data item from each of the
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Figure 5: Worst-case scenario for the P2P orchestration approach.

invocations to Sy, - -+, Sy, so that each coordinator must send the data item that it collects to
all the other coordinators and let them evaluate these conditions when they have all the data
items required. Hence, each invocation to a component service is followed by M control-flow
notifications, leading to a total of M x N physical message exchanges. This, added to the
M messages that the coordinator of the composite service needs to send to the coordinators
of the states labelled Sy,---,S,,, yields exactly the above bound. The above however is
an extreme case. In practice, provided that there are no or few AND-states followed by
conditional branches such as that of Figure 5, one can expect that the P2P approach requires

less physical message exchanges than the centralised one.

4 Implementation of Self-Serv

The Self-Serv system [34] consists of a Service Composition Environment (also called the Ser-
vice Manager) for defining and deploying composite services and communities, and a runtime
environment that acts as a middleware for orchestrating composite services and perform-
ing dynamic provider selection. Both the service composition environment and the runtime
environment have been implemented in Java.

The services registered in Self-Serv form the so-called pool of services, and they can be
composed with others to form new services (see Figure 6), which are themselves registered and
added to the pool. Services all provide a SOAP-based programmatic interface. Elementary

services typically wrap application programs, workflows, databases, etc.
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Figure 6: Architecture of the Self-Serv prototype.

4.1 Service Composition Environment

The service composition environment consists of a set of integrated tools that allow service
developers and users to create and execute services. It is composed of the following component

tools: service discovery engine, service builder, and service deployer.

Service Discovery Engine. The service discovery engine facilitates the advertisement and
location of services (see Figure 7). It is implemented using SOAP, WSDL, and UDDI [2].
Service registration, discovery and invocation are implemented by SOAP calls. When a service
registers with a discovery engine, a UDDI SOAP request containing the service description
in WSDL is sent to the UDDI registry. After a service is registered in the UDDI registry, it
can be located by sending the UDDI SOAP request (e.g., business name, service type) to the
UDDI registry.

The discovery engine is implemented using the IBM Web Services Toolkit 2.4 (WSTK) [25].
WSTK provides several components and tools for Web service development (e.g., UDDI,
WSDL, SOAP). In particular, we used the UDDI Java API (UDDI4J) to access a private
UDDI registry (i.e, hosted by the Self-Serv platform), as well as the WSDL generation tool
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Figure 7: Service Discovery Engine.

for creating the WSDL documents and SOAP service descriptors required by the discovery

engine. Details about the implementation of the discovery engine are presented in [35].

Service Builder. The service builder assists developers in the creation and maintenance
of communities and composite services. It provides an editor for describing the statechart
diagram of a composite service operation, for creating and configuring service communities,
and for importing operations from existing Self-Serv services into composite services and
communities. A search and browse facility is offered to locate component services using the

service discovery engine and import their operations into states.

Service Deployer. The service deployer is responsible for generating the precondition and
postprocessing tables of every state of a composite service statechart, using the algorithms
presented in Section 3.4. The input of the programs implementing these algorithms are
statecharts represented as XML documents (which are generated by the service builder),

while the outputs are routing tables formatted in XML.
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Once the tables are generated, the service deployer assists the service composer in the
process of uploading these tables into the hosts of the corresponding component services, as
well as in setting up the initial coordinator of the composite service. At present, security

issues related to uploading tables are not considered.

4.2 Runtime Environment

The runtime environment of Self-Serv consists of three classes: Community, InitialCoordina-
tor, and Coordinator. These classes are relatively lightweight, and the only infrastructure that
they require are standard Java libraries, a JAXP-compliant XML parser, and a SOAP server.
In the current implementation, we use Oracle’s XML Parser 2.0 and IBM’s Apache Axis 1.0.
By default, the XML documents containing the routing tables are stored in plain files, so
that there is no need to have a DBMS in the site where the installation is made. However, if
the administrator decides to store these documents in a DBMS, (s)he can customize the class
Coordinator accordingly.

The class Community provides a method to invoke a service operation on the community.
This method first invokes the scoring service to find the most suitable member for handling
the invocation, and then invokes the selected member service. A scoring service is a Java
method that takes as input a selection policy, queries the service descriptions, and returns
the identifier of one of the members registered with the community. 