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Introduction

A variety of studies in recent years have focused on
assessing the relative effectiveness of different human
tutorial strategies and investigating the role of lan-
guage interaction ill such strategies, including (Chi
et al. 1989) (Chi et al. 1994) (VanLelm, Jones, 
Chi 1992) (VanLehn, Siler, & Baggett 1998) (Ros4 et
al. 2000). These studies leave open the questions of
whether the same tutoring strategies that are effective
in human tutoring can be emulated in ITSs with sim-
ilar effectiveness, and whether this emulation can in
fact be achieved in a cost effective way. Without an-
swers to these questions, the direct relevance of such
findings about human tutorial dialogue to the field of
intelligent tutoring is called into question. While inter-
est in dialogue interfaces for tutoring systems is rapidly
growing, real progress in this direction has been greatly
hindered by the tremendous time, effort., and expertise
that is required to construct such interfaces. This pa-
per describes a design for and current progress towards
building DAIENU1, the Domain knowledge Authoring
Interface for Extractive Natural language Understand-
ing. The purpose of the DAIENU tool set is to facilitate
the rapid development of robust and efficient natural
language understanding interfaces for tutoring systems.

The DAIENU tool set is part of the larger Knowl-
edge Construction Dialogue Authoring Tool Suite de-
veloped in the context of the Atlas project to auto-
mate the authoring of all domain specific knowledge
sources required to build a domain specific dialogue-
based tutoring systeln using the general Atlas architec-
ture (Freedman et al. 2000). In particular the current
prototype version of the tool suite automates the con-
struction of recipes for the APE tutorial dialogue plan-
ner (Freedman 2000) and semantic rules for the LCFlex
robust parser (ttos4 and Lavie, to appear). The proto-
type KCD Authoring Tool Suite is currently operational
but continuing to be developed and refined. This proto-
type tool suite was recently used to develop knowledge
sources for implen~enting directed lines of reasoifing tar-
geting 50 physics rules covering all aspects of Newtonian

1Daienu is a Hebrew word pronomlced die-ay-noo. It
means "enotlgh for us’.

mechanics. The entire authoring process, including ini-
tial authoring, review by collaborating physicists, and
revision required only two man months of development
time. The result was a running dialogue system cur-
rently being pilot tested with naive human subjects.
The running directed lines of reasoning will eventually
replace the teaching hints previously used in the Andes
tutoring system (VanLehn et al. 2000).

The KCD Authoring tool suite is meant to allow au-
thors with little or no computational linguistics exper-
tise to rapidly develop dialogue interfaces for their ap-
plications. Thus, the goal for the authoring interface
is to insulate the author from directly addressing the
underlying computational linguistic aspects of dialogue
planning and language understanding. The author is
free to focus fully on pedagogical issues, such as what
directed lines of reasoning are most effective for teach-
ing particular concepts, how misconceptions and miss-
ing knowledge manifest themselves in student, answers,
and which aspects of student answers are relevant for
evaluating their content. Furthermore, the interface is
flemble enough to allow the author to be involved in
the computational linguistic aspects of development if
the author so chooses. For example, advanced authors
may consider system integration issues such as what
tokens or logical forms should be passed on to the dia-
logue manager or back end tutoring system. Thus, it is
adaptable to differing levels of expertise on the part of
the author.

The Authoring Process
The DAIENU tool set is meant to facilitate the rapid
development of domain specific sentence level language
understanding interfaces that can extract desired in-
formation from student, input. The core of the tar-
get domain specific system is the domain indepen-
dent CARMEL core understanding component (Ros4
2000a). CARMEL makes use of two primary domain
independent knowledge sources, namely a broad cover-
age syntactic parsing grammar and a large scale lexi-
con than can easily be augmented with domain specific
vocabulary and idiomatic construction entries. It pro-
vides a meaning representation formalism for speci~dng
a domain specific meaning representation declaratively.
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Thus, applying CARMEL to a new domain requires de-
signing a meaning representation, entering domain spe-
cific vocabulary and relevant idiomatic constructions
into the lexicon, and finally linking the semantic con-
structor functions into the lexicon. Currently the pro-
cess of applying CARMEL to a new domain is done by
hand; however, as the DAIENU tool set is further de-
veloped, more and more of this work will be automated.

The DAIENU authoring process takes place after an
initial pass with the KCD Authoring Tool Suite’s GUI
interface. The KCD Authoring GUI provides templates
that allow authors to develop relatively high level spec-
ifications for directed lines of reasoning. Recipes are
the building blocks out of which the high level specs
are built. Primitive recipes encode the most basic steps
executed by a tutorial planner. A Primitive recipe may
simply encode a tutor explanation or a question for
eliciting a particular piece of information. More ab-
stract recipes are composed of one or more steps that
may themselves be abstract recipes or primitive recipes.
Each recipe is associated with a tutorial goal. In this
way, the internal representation may encode alternative
ways of achieving the same tutorial goal.

Each Primitive recipe that encodes a question used to
elicit a piece of information from a student is associated
with a hierarchical answer representation. The answer
representation is intended to allow for a wide range of
types of answers and some variation in how answers
are expressed by students. Answers are divided into
parts. For example, if the tutor asks, :’Can you de-
scribe a reaction force in relationship to its associated
action force?" The expected answer has three parts:
Same magnitude, opposite direction, same type. These
three parts may appear in any order without affecting
the correctness of the answer. Also, each part is inde-
pendent of the others in that a student may get one or
more parts correct while missing the other. Whether a
student gets the direction of the reaction force correct
is independent of whether the student realizes that the
magnitude is the same, for example. By dividing the
expected answer into three parts, we avoid the need to
list every perlnutation of the three parts.

For each answer part, we list a number of alterna-
tives. For example, the student may have said same
direction, or opposite direction, or left out the direc-
tion altogether, or gave an explicit direction like left. or
right. For completeness, we always include <anything
else> as one of the alternatives, which covers the case
where the associated part of the answer was left out
of what the student said altogether. Each alternative
in the list has associated with it a status, such as ex-
pected, partial, wrong, etc. Every alternative that is
not correct has associated with it a list of tutorial goals
that must be achieved by the tutorial planner in order
to remediate that wrong answer. A simple extension
allows for alternative answers that are not composed of
the same number of parts. Alternative answer parts are
entered by authors in text form.

The first stage in DAIENU’s authoring process is to

assemble a list of concept labels paired with a set of
example texts. Out of the complete set of answer parts
entered by authors during the initial pass, there may
be many answer parts that are equivalent in meaning
that may or mas’ not have been expressed in exactly
the same words. DAIENU first, guides authors in clus-
tering together answer parts with equivalent meaning.
It does this by suggesting answer parts that share con-
tent words and providing a search interface for allowing
authors to quickly identi~" other candidates from the
complete set. During and after the clustering process,
authors may enter alternative phrasings of the same
concept either by constructing exmnples or by finding
examples in a corpus.

A machine learning stage described below then in-
duces patterns for the concept labels to be used by the
target system for matching against student input.. An
interactive refinement stage allows authors to influence
the resulting induced patterns. During this interaction-
refinement process, the author is provided with a set
of novel texts, produced and labeled by the system.
The author is then required to indicate which elements
of the set are correctly annotated and which are not.
DAIENU then uses this information to further develop
its induced patterns.

Note that authors are not constrained to proceed
through the authoring stages in a linear fashion. Pre-
vious stages can be revisited in order to allow for con-
tinued refinement at all levels.

Learning Algorithms for Constructing

Domain Specific Knowledge Sources

The result of the authoring process described above is
a set of abstract conceptual classes such that each class
pairs a concept label or logical form with a set of exam-
ple natural language expressions that have each been
analyzed using the CARMEL core understanding com-
ponent. DAIENU’s task is then to find commonalities
between the analyses within each set in order to con-
struct the most compact set of general patterns that can
match against the representations for each example in
the set. The purpose is to find the most general con-
ditions under which a novel expression can be labeled
with the corresponding concept label or logical form.
These general patterns are what the target system uses
to match against student language input. To perform
the generalization task we plan to use techniques simi-
lar to those being used for automatic template genera-
tion in the information extraction and text classification
communities (Glickman & Jones 1999) (Bruninghaus
Ashley 1999) (Riloff & Shephard 1997) (Riloff 1996).

Consider the following examples from the Newtonian
Physics domain that each express the idea that a stu-
dent drew a vector and that the resulting vector points
do1,vn.

1. The student drew the vector to point down.

2. The vector was drawn by the student to point down.
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3. I saw the vector that the student drew to point down.

,t. Tile vector that was drawn by the student pointed
(IO~,V n.

5. I saw the vector that was drawn to point down by
the student.

6. The vector that the student drew slanted down.

7. The vector that was sketched by the student, slanted
down.

8. The vector drawn by the student was oriented down-
wards.

9. The student’s vector pointed down.

Despite the difference between the surface realiza-
tions of these sentences, they have aspects in common
on the level of their respective deep functional analyses.
In examples 1 through 5 "The student" is the deep sub-
ject of "to draw", and "the vector" is the deep object
of "to draw" as well as the deep subject of "to point".
In example 6, the verb "to slant" is used in place of "to
point". Example 7 replaces "to point" with "to slant"
and replaces "to draw" with "to sketch". Finally, exam-
ple 8 replaces "to point" with "to be oriented". Never-
theless, the substitutions made in examples 6 through 8
are on the level of rough synonyms. Example 9 contains
the proposition "The vector points down", as in the
previous examples, but uses the possessive to indicate
that the student drew the vector. Thus. its functional
analysis is distinct from the preceding examples.

Notice that it is not sufficient to take the intersec-
tion of all of the features found in the analyses of the
set of provided examples in order to find the most gen-
eral set. of features that covers the appropriate range
of student language expressions. Specifically, see how
Example 9 does not contain the same information as
the preceding examples encoded in the same way. Ide-
ally the learning process should cluster the first 8 exam-
pies together since a single abstract pattern could cover
the variation found within that set quite easily. The
9th example would then be handled separately. Syn-
tactic analyses can be clustered into groups using an
unsupervised clustering algorithm that compares anal-
yses in terlns of which features they share. In order
to facilitate domain dependent generalizations, such as
clustering "point", "slant", and "orient" together, an
automatically constructed rough domain specific ontol-
ogy created by means of LSA could be used to identify
clusters of similar words. Alternatively, a lexical re-
source such as WordNet could be used a similar way.
Using this rough ontology, specific lexical heads could
be replaced by tokens representing more abstract do-
main specific concept. This ontology makes it possible
to make such dolnain specific abstractions, however it
is not by itself sufficient to determine which level of ab-
straction is appropriate for particular concept labels. It
does, however, provide a set of alternative hypotheses
on progressively inore abstract levels of representation.

The task relnains then of selecting the set of fea-
tures that describe the weakest conditions under which

a meaning representation structure can ahvays be la-
beled with the associated concept label. One possi-
ble solution would be to use a decision tree learning
algorithm to identi~; the most appropriate set of fea-
tures from a large set of possible alternatives (Quinlan
1990) (Kakes :fz Morris 1996) (Hehnbold & Schapire
1997) (Martin 1997) (Utgoff, Berkman, & Clouse 1997)
and then using interaction to select between alterna-
tive learned trees. Testing hypothesized trees could be
accomplished by generating text. corresponding to al-
ternative feature structures that match the conditions
represented by the hypothesized tree. The user of the
authoring system would then be asked to mark the gen-
erated examples that are not classified correctly. Mark-
ing any of the examples indicates that the hypothesis
is not specific enough. Similar forms of user interaction
for the purpose of hypothesis confirmation have played
a large role in our previous research on interactive re-
covery from parser failure (Rosd ~ Levin 1998) (Rosfi
1997) (Ros6 & Waibel 1997).

Because the learned patterns are based on functional
roles assigned by CARMEL’s syntactic parsing gram-
mar, it should be possible to automatically link learned
patterns into the lexicon. Performing this task only
requires matching lexical items to meaning representa-
tion types and functional roles to semantic roles. Our
current research focuses on developing these learning
aspects of the proposed tool set. Note that. the tar-
get domain specific knowledge sources will be encoded
in the same formalism used now to apply CARMEL to
new domains by hand. Thus, expert authors would have
the ability to fine tune or change the learned knowledge
by hand by modi~:ing the automatically constructed
knowledge sources.

The CARMEL Core Understanding

Component

The CARMEL core understanding component (Ros6
2000a; 2000b), is the heart of the DAIENU tool set. It
provides the underlying linguistic knowledge that makes
it possible to generalize the examples annotated by the
authors into patterns that can match against unseen
data, and thus be used in an interface for processing
student input.

CARMEL in the Context of Previous Work

The majority of current dialogue based tutoring sys-
tems employ shallow approaches to language un-
derstanding. For example, the AutoTutor system
(Wiemer-Hastings et al. 1998) uses a purely empiri-
cal approach to interpretation, namely Latent Semantic
Analysis (LSA). Although "bag of words" approaches
such as LSA (Landauer, Foltz, & Laham 1998) (La-
ham 1997) and HAL (Burgess, Livesay, & Lund 1998)
(Burgess & Lund 1997) have enjoyed a great deal 
popularity and success in some domains, they miss key
aspects of meaning comnmnicated structurally t.hrough
scope and subordination such as the proper interpre-
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tation of negation and causality. Therefore, they miss
such distinctions as the difference between "tile force
of the table pushing against the book" and :’the force
of the book pushing against the table". These aspects
of natural language have been well studied in the field
of linguistics and well addressed within rule-based ap-
proaches to language understanding. Current dialogue
based tutoring systems with rule based language un-
derstanding interfaces include CIRCSI~t-TUTOR (Glass
1999), BE&E tutor (Rosd, Di Eugenio, & Moore 1999),
and Atlas-Andes (Freedman et al., 2000) . A great deal
of computational linguistics research has focused on the
development of robust domain independent algorithms
for rule-based language understanding. Nevertheless,
a significant knowledge engineering effort, is required
to develop domain specific knowledge sources to apply
these algorithnls to specific tasks. Broad coverage do-
main specific knowledge sources for non-trivial applica-
tions conamonly take two or more man years to develop
by experienced computational linguists. The goal of the
tool set described in this paper is to dramatically reduce
these requirements, making it practical for researchers
who may lack expertise in computational linguistics to
quickly construct sentence level language understand-
ing interfaces for their tutoring applications.

The approach to language understanding embodied
in the DAIENU tool set is called extractive language
understanding (ELU) because of its similarity with in-
formation extraction (IE) approaches, such as (Glass
1999). The C, ARMEL core understanding component
(Ros6 2000a; 20001)) provides deep syntactic functional
analyses from which DAIENU induces abstract pat-
terns that are then used to match against, analyses of
novel student input. The primary difference between
ELU and typical IE approaches is that ELU employs a
deeper level of syntactic analysis. While typical IE ap-
proaches lilnit their syntactic analysis to surface syntax,
ELU uncovers deep syntactic functional relationships
obscured in surface syntax by extraction and passiviza-
tion. This deep syntactic fimctional analysis allows for
a greater degree of generalization across paraphrases
of the saxne idea, such as between "I drew the vector
to point down." and "The vector was drawn pointing
down." This greater generalization power is advanta-
geous in the context of an authoring environment be-
cause it means that many fewer examples are needed for
the purpose of inducing effective patterns for matching
against student input.

Robustness at Each Level of Processing
Input understanding in CARMEL proceeds in three dis-
tinct stages. See Figure 1. The lexical preprocessing
stage, which is the initial stage, is responsible for per-
forming morphological analysis on each word in the in-
put sentence and retrieving all lexical entries that match
the root. form of each word from the lexicon. Subse-
quently, the parsing stage is responsible for performing
a syntactic and semantic analysis with these lexical en-
tries in so far as the parser’s flexibility settings will al-

Morphological
Analysis
Spelling

Correction
Lexieal
Lookup

+

Parsing

Full Anal’~,si~

~P ar’dal Parse

Figure 1: CARMEL m-chitectural overview

low. When necessary, a repair stage is responsible for
assembling the pieces of a fragmentary parse when no
complete parse is possible.

The key to robustness in the lexical preprocessing
stage is the coordination of morphological analysis, lex-
ical lookup, and spelling correction. For each word, the
morphological analyzer first constructs a list of possi-
ble segmentations of it into morpheme. For each possi-
ble segmentation, the associated le:dcal entries are re-
trieved from the lexicon. If none of the root forms from
any of the possible segmentations correspond to an en-
try in the le:dcon, a list of possible replacement words
are obtained from the spelling corrector (Ehni & Evens
1998) based on the form of the word, the previous word
and the next word. Based on its internal heuristics, the
spelling corrector chooses either to split the word, com-
bine the word with a neighboring word, or replace with
whole word with one or more alternative words.

The key to robustness in the parsing stage is the
LCFLEx robust, parser (Ros6 and Lavie, to appear)
(Lavie & Ros6 2000). The LCFLEX parser robustly
applies CARMEL’s broad coverage syntactic parsing
grammar by introducing various types of flexibility only
as needed. Its repertoire of parameterized flexibil-
ity features includes skipping over words, insertion of
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words or non-t.enninal categories in specific contexts,
and relaxation of grammatical constraints expressed via.
feature nnification. Because broad coverage syntactic
grammars naturally produce a great deal of ambiguity,
LCFLEX’s ambiguity packing and pruning strategy as
well as its statistical disambiguation make it an ideal
choice for our application. When the flexibility allowed
at parse tilne is not sufficient to construct an analysis
of a sentence deviating too far fl’om the grammar’s cov-
erage, a fragmentary analysis is passed on to the repair
module, which quickly assembles the fragments.

CARMEL is full)’ implemented and has been eval-
uated as a whole and in part in a number of pre-
vious publications. In a small evaluation involving
100 spontaneous student utterances ranging between 1
ans 20 words long in the Newtonian Physics domain,
CARMEL was able to achieve 87% coverage with an
average run time requirement of .1 second per utter-
ance (Freedman et al. 2000). CARMEL’s LCFLEx
robust parser has been tested extensively in the con-
text of the JANUS large scale multi-lingual speech-to-
speech translation system, achieving 73.3% acceptable
translations in a recent evaluation over a set of 500
randomly selected spontaneous utterances in the Ap-
pointment Scheduling domain (Rosd and Lavie, to ap-
pear). In a similar evaluation over a separate set of
300 sentences in the same domain, LCFLEX achieved
75.0% acceptable translations while LCFLEX paired
with CARMEL’s AUTOSEM repair algorithm achieved
a total of 78.7% acceptable translations (Ros4 2000a).

The Meaning Representation Specification
The meaning representation structures constructed

by CARMEL can be used in intelligent tutoring sys-
tems to identih’ commonalities in propositional content
between student answers that express the same concep-
tual knowledge but encode it differently. The mean-
ing representation specification defines the frame based
language that is used for this purpose. In particular, it.
defines the set of seinantic types that together specih,
the set of frames and atomic feature values that make
up the domain specific frame-based language, which
slots are associated with each frame, and what range of
frames and atomic feature values inay fill each of those
slots. When the meaning representation specification is
compiled, constructor flmctions are created correspond-
ing to each semantic type. These semantic constructor
functions are first used at parse time to build up se-
mantic representations in parallel with syntactic ones as
in the Glue Language Semantics approach (Dalrymple
1999) (Dalrymple, Lamping, & Saraswat 1993). These
same constructor functions are then used in a repair
stage to compose the fragments returned by the parser
in the cases where the parser is not able to obtain a
complete analysis for an extra-grammatical input sen-
tence.

CARMEL provides a simple formalism for defining
meaning representations. Some sample entries are dis-
played in figure 2. Each entry corresponds to a se-

mantic type and contains five fields: :type, :isa,
: instances, :vars, and : spec. Some sample en-
tries for the Newtonian physics domain are displayed
in Figure 2. The : type field simply contains the name
of the type. The : vars field contains a list of variables,
each corresponding to a semantic role. The : spec field
associates a frame and set of slots with a type. For each
slot., the : spec field contains the name of the slot, the
most general type restriction on the slot., and a speci-
fication of where the slot filler comes from. This third
piece of information can be either a variable name, indi-
cating that whatever is bound to that variable is what
should fill that slot, or a function call to another se-
mantic constructor function, allowing types to speeih,
constraints at more than one level of embedding. Simi-
lar to the : spec field, the : instances field associates
a list of atomic values with a type.

Inheritance relations are defined via the : isa field.
Types inherit the values of each subsuming type’s
: instances, :vars, and : spec fields. Further de-
tails about the inheritance and compilation algorithms
are deleted because of space restrictions.

The Lexicon

(:morph draw
:syntax

((cat vlex) (root draw) (vform 
(irreg-past +) (irreg-pastpart 

(features vveryvingpast)
(proot (*or* near on upon to at from))
(subcat (*or* pp np-advp np-to-inf-oc

np-for-np intrans np np-as-np advp))
(semtag drawl))

:semantics (drawl <draw> (subject agent)

(negation polarity)
(object theme)))

(:construct (<clause>)
:syntax ((cat clause) (semtag knowl))
:constraints (((xl root) = (*or* have 

((xl object root) 
(*or* clue idea))

(xO = xl)
((xO root) <= know)
((xO object) = *remove*)))

Figure 3: Sample Lexieal Entries

CARMEL is a lexicon driven approach to seman-
tic interpretation. As in the Glue Language Seman-
tics approach (Dalrymple 1999) (Dalrymple, Lamp-
ing, ~ Saraswat 1993), the lexicon serves as a clean
interface between syntactic and semantic knowledge.
The CARMEL lexicon is built on top of the large
scale COMLEX lexicon (Grishman, Macleod, ~ Meyers
1994) available from the Linguistic Data Consortimn.
The CARMEL lexicon contains both regular lexical en-
tries for individual words as well as construct entries for
idiomatic and otherwise non-compositional expressions.

91



(:type <*event>
:isa (<>)
:instances nil
:vars (agent time polarity)
:spec ((polarity [+/-] polarity)

(agent <*who> agent)
(time <*time> time)))

(:type <draw>

:isa (<*event>)
:instances nil

:vats (theme)
:spec ((frame *draw)

(theme <*thing> theme)))

(:type [+/-]
:isa (<>)
:instances (+ -)
:vars nil
:spec nil)

(:type <magnitude>
:isa (<*thing>)
:instances nil
:vars (ref-object)
:spec ((frame *magnitude)

(ref-object <vector> ref-object)))

(:type <velocity-vector-mag>
:isa (<magnitude>)
:instances nil
:vars (timept quantity orientation object)
:spec ((ref-object <velocity-vector>

(<velocity-vector> timept quantity
orientation object))))

Figure 2: Sample meaning representation entries for the Newtonian Physics domain

In general, we have taken a compositional approach to
semantic interpretation, building up the meaning of an
expression from the meanings of its constituent parts.
However, idiomatic expressions are not correctly inter-
preted compositionally. Thus, these non-compositional
expressions are represented as construct entries so that
their meaning can be associated with the whole expres-
sion as a unit.

Regular lexical entries contain three fields: :morph,
: syntax, and semantics. The :morph and
: syntax fields are taken froin COMLEX. The :morph
field contains the root form of the word. The : syntax
field contains the list of features assigned to that root
form in the COMLEX lexicon. Often the :syntax
field contains a disjunction of feature structures wher-
ever there are multiple entries associated with a sin-
gle root form in COMLEX. For example, COMLEX
contains seven entries for ~’draw", although only one is
displayed in Figure 3. To the original : syntax field,
we have added a semtag feature. Semtag feature val-
ties correspond to lnappings between syntactic roles and
the arguments of semantic constructor functions. The
:semantics field defines the specific mappings asso-
ciated with each semtag feature value. Each mapping
needs only be defined the first time the corresponding
semtag value is used in a lexical entry.

Construct entries are used for non-compositional id-
iomatic expressions as well as bound collocation (Cruse
1986), which are compositional although they display
idiom-like behavior. Idioms can be seen as sharing
properties both with words and with phrases. To ac-
commodate this phenomenon, construct entries can be
seen as blurring the distinction between lexical entries
and grammar rules. Our forinalism for expressing con-

struct entries is equivalent in power to the formMism
for representing idiomatic expressions in (van den Berg,
Bod, & Scha 1994). Construction entries contain 
:construct field to replace the :morph field. It can
contain a list of one or more words, grammar symbols,
or a combination of the two. Thus, construct entries
can leverage off of syntactic generalizations from the
grammar and easily speci~~ how the corresponding ex-
pression should be inflected. Construct entries contain
a constraints field wherein constraints can be placed on
the feature structures dominated by the grammar sym-
bols found in the construct field. For exmnple, the con-
struct entry in Figure 3 represents the idiom "to have a
clue". It matches against clauses. If the verb and direct
object match the associated constraints, the verb root
is changed to "know" and the direct object is deleted.
Our design principle is one idiom, one rule. Our con-
struct entry design makes it possible with one rule to
match the great deal of va.riation allowed by the "have
a clue" idiom: "I don’t have a clue in the world", "I
don’t have any ide£’, "I haven’t got the foggiest clue",
"Get a clue!", "Haven’t you any clue?"’, "I have got a
clue." At the same time, it does not misfire on expres-
sions that look similar but do not mean the same thing
such as "I have got to clue you in."

Broad Coverage English Parsing Grammar

The underlying principle behind the CARMEL ap-
proach to syntactic analysis is to provide a solid foun-
dation for semantic interpretation. We have incorpo-
rated aspects of both Functional Grammar (Halliday
1985) and Lexical Functional Grammar (Bresnan 1982)
in our approach. Our usage of Functional Grammar
has been primarily limited to our analysis of tense.
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As lnentioned, tile focus of our approach has been on
coustructing deep syntactic functional analyses. Deep
flmctional syntactic representations have been demon-
strated to translate directly into quasi logical formulas
(vall Genabith & Crouch 1996) and thus provide use-
fill input for semantic interpretation (Halvorsen 1997)
(Dalrylnple 1999)
(Dalrymple, Lamping,& Saraswat 1993).

The underlying grannnar formalism used by LCFLEX
is a unification-augmented context-free grannnar for-
realism that was originally developed for the General-
ized LR Parser/Compiler (Tomita 1990) (Tolnita 1987)
at the Center for Machine Translation at Carnegie Mel-
lon University. As an extension to LCFLEX’s pseudo-
unification gramlnar formalism, AUTOSEM provides
the ±nsert:-role function as an interface to allow
semantic interpretation to operate in parallel with
syntactic interpretation at parse time. When the
insert:-role fimction is used to insert a child con-
stituent into the slot. corresponding to its syntactic
functional role in a parent constituent, the child con-
stituent’s semantic representation is passed in to the
parent constituent’s semantic constructor function as in
the Glue Language Semantics approach to interpreta-
tion (Dalrymple 1999). AUTOSEM’s lexicon formalism
allows selnantic constructor fimctions to be linked into
lexical entries by means of the semtag feature. Each
semta9 feature value corresponds to a semantic con-
structor function and mappings between syntactic func-
tional roles such as subject:, direct: object:, and
indirect: object: and semantic roles such as agent:,
act:ivity, or t:irae. See Figures 2 and 3 for example
ineanmg representation definitions and lexical entries
respectively.

The CARMEL Interpretation Process

Consider the example sentence ’:Should the vector have
been drawn to point down?" and its parsed result dis-
played in Figure 4. This sentence expresses two propo-
sitions, one about drawing a vector and one about the
vector pointing down. The verb draw as displayed
in Figure 3, has as one of it.s subcategorization tags
np-t:o-inf-oc, which indicates that the verb can take
a noun phrase direct, object that acts also as the sub-
ject of a to-infinitival clausal argument. In this case, the
verb draw is passivized, so its surface syntactic subject.
is its deep syntactic object. Thus, "the vector" is both
the deep object of "draw" as well as the deep subject of
"point". When a verb, such as draw, appears in its past
participle form following a form of the verb to be, an
analysis is constructed for draw with the passive fea-
ture assigned the value +. When a passivized verb with
subcategorization tag np-t:o-inf-oc appears with
only a to-infinitival clause as its argulnent, as in :’drawn
to point down", one analysis the grammar produces
is a structure with a representation of "point down"
as a modifying clause, and features that indicate that
the surface syntactic subject should be assigned two
roles, namely, deep object and subject of the modi~dng

Sentence:
Should the vector have been drawn to point down?

((mood *yes-no-interrogative)
(root draw)
(tense past)
(modal should)
(negation -)
(passive +)
(object

((root vector)
(agr 3s)
(definite +)
(adjunct

((root. point)
(tense infinitive)
(negation -)
(passive -)
(subject

((root vector)
(a~ 3s)
(de.re +)))

(modifier ((root. down)))))))
(semantics

(*multiple*
((frame *orient)
(theme ((frame *vector)))
(direction ((frame *down))))

((frame *draw)
(theme ((frame *vector)))))))

Figure 4: Sample Parser Output

clause.
Each time a constituent is assigned a functional role

in relationship to draw, the constructor function for the
semantic type <draw> is called. The semtag drawl
indicates how the syntactic functional roles assigned by
the grammar correspond to argument positions in the
constructor function for <draw>. Thus, when the con-
structor function is called, the corresponding argument
position is instantiated with the constituent’s seman-
tic interpretation. Since the same constructor function
is called with different arguments a number of times
in order to construct an analysis incrementally, an ar-
gument is included in every constructor function that
allows a "result so far" to be passed in and augmented.
Its default value, which is used the first time the con-
struct.or function is executed, is the representation as-
sociated with the corresponding type in the absence of
any arguments being instantiated. Each time the con-
structor function is executed, each of its argmnents that
are instantiated are first checked to be certain that the
structures they are instantiated with match all of the
type restrictions on all of the slots that are bound to
that argument. If they are, the instantiated arguments’
structures are inserted into the corresponding slots in
the "result so far". Otherwise the constructor function
fails.

Interleaving syntactic and semantic analysis in this
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way allows semantic selectional restrictions to eliminate
some of the ambiguity generated by tile broad coverage
syntactic grammar. It. also allows the parser to avoid
wasting time parsing portions of all input text that it.
does not have sufficient semantic knowledge to inter-
pret. It has this effect, becanse the parser fails to an-
alyze any constituent that it cannot construct both a
syntactic analysis and a semantic analysis for. At any
time, a subset, of selnantic types can be selected from
the complete meaning representation in order to restrict
the parser further based on context specific semantic
expectations. Additional context-specific semantic re-
strictions can also be introduced to specific types on
the fly for the same purpose. For example, the mean-
ing representatiou allows the theme associated with the
*draw frame to be any object, but if in a particular con-
text it was only important for the parser to interpret.
statements about drawing vectors, a further restriction
could be imposed on the corresponding slot.

Conclusions and Current Directions

This paper describes a design for and current progress
towards the developlnent of the DAIENU authoring
tool set for facilitating the rapid development of robust
language understanding interfaces.

The DAIENU tool set is part of the larger Knowl-
edge Construction Dialogue Authoring Tool Suite de-
veloped in the context of the Atlas project to automate
the authoring of all domain specific knowledge sources
required to implemeut domain specific dialogue capa-
bilities in the general Atlas architecture. A simplified
prototype version of DAIENU has been already been
built. The simplified version does not yet include the
interactive refinement stage described above. Further-
more, it does not yet make use of the full power offered
by the CARMEL core understanding component. As
mentioned, the prototype version of DAIENU was re-
cently used to develop a language understanding inter-
face sufficient for allowing stndents to navigate through
lines of reasoning for 50 physics rules targeting all ar-
eas of Newtonian mechanics in the Atlas-Andes Physics
tutoring system. The resulting language understanding
interface required only 1 working day to complete us-
ing the prototype version of DAIENU. It consists of
714 basic patterns organized into 148 abstract concep-
tual classes. The corresponding planning interface re-
quired 2 man months of authoring time and resulting in
1815 APE operators. The resulting authored version of
Atlas-Andes is currently being pilot tested with naive
human subjects.
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