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Abstract

Reaction systems is a formal model of computation which originated as a model of interactions between biochemical reac-

tions in the living cell. These interactions are based on two mechanisms, facilitation and inhibition, and this is well reflected 

in the formulation of reaction systems. In this paper, we investigate the facilitation aspect of reaction systems, where the 

products of a reaction may facilitate other reactions by providing some of their reactants. This aspect is formalized through 

positive dependency graphs which depict explicitly such facilitating interactions. The focus of the paper is on demonstrating 

how structural properties of reaction systems defined through the properties of their positive dependency graphs influence 

the behavioural properties of (suitable subclasses of) reaction systems, which, as usual, are defined through their transition 

graphs.

Keywords Reaction systems · Interaction between reactions · Positive dependency graphs · Transition graphs · Structure vs 

behaviour

1 Introduction

Reaction systems is a novel model of interactive computa-

tion which originated as a model of interactions between 

biochemical reactions in the living cell (see, e.g. [10, 18, 

20, 21]). The main feature of these interactions is that they 

are driven by two mechanisms, facilitation and inhibition. 

If a reaction takes place in a biochemical system (here the 

living cell), then its products may facilitate some reactions 

by providing (some of) their reactants or inhibit some reac-

tions by providing (some of) their inhibitors. The model of 

reaction systems formulates biochemical reactions in such a 

way that dynamical processes (called interactive processes) 

taking place in reaction systems formalize these interactions.

Thus, a reaction is defined as a triplet of nonempty sets 

a = (R, I, P) , where R is the set of reactants that a needs to 

take place, I is the set of inhibitors each of which forbids a to 

take place, and P is the set of products produced by a when 

it takes place. All three sets are finite.

A reaction system A = (S, A) consists of a finite set of 

reactions A and a finite background set S of entities used for 

defining reactions in A as well as for analysing the function-

ing of A . The intuition behind the entities of A is that they 

represent molecular entities (e.g. atoms, ions, molecules) 

that may be present in the states of a biochemical system. 

These states are represented by subsets of S, in fact each 

subset of S is a state of A.

Given a state T ⊆ S of A , one may consider all reactions 

from A which are enabled by T, i.e. all reactions a = (R, I, P) 

such that all reactants of a are in T ( R ⊆ T  ) and none of the 

inhibitors of a is in T ( I ∩ T = ∅ ). The union of products P 

of all those reactions form the successor state of T. Iterating 

this procedure one gets the state sequence of A beginning 

with T. Then, the set of all state sequences of A beginning 

with all states of A formalizes the behaviour of A , its inter-

active processes.

In the general model of behaviour of reaction systems, 

one also takes into account the interaction with the envi-

ronment, but in this paper we consider the interactive pro-

cesses of reaction systems not influenced by the environment 
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(technically referred to as context-independent interactive 

processes).

Although the model of reaction systems was inspired by 

biology, the research on reaction system is driven by both 

the biological considerations (see, e.g. [1, 3–5, 11, 12, 19, 

22]) and considerations concerned with the understanding 

of computations resulting from the interactions of biochemi-

cal reactions within a reaction system as well as from the 

interactions of a reaction system with its environment (see, 

e.g. [2, 6, 8, 13, 14, 16, 17, 23, 24, 26, 28, 30–32]). As a 

matter of fact, reaction systems turned out to be a novel and 

interesting foundational model of interactive computations.

In this paper, we investigate the facilitating aspect of 

interactions of reactions in a reaction system, i.e. we con-

sider the effects that products of reactions have on the sets of 

reactants. In this investigation, our focus is on the influence 

of the structure of a reaction system on its behaviour.

A natural way to represent the structure of a reaction 

system A = (S, A) is through its dependency graph, dg (A) , 

which is the directed graph, where the nodes are reactions 

from A and there is a directed edge (a, b) from reaction 

a to reaction b if the product set P
a
 of a contains either 

some reactants of b or some inhibitors of b or both. Such an 

edge (a, b) means then that a influences b or, dually, that b 

depends on a.

Since we investigate the facilitating aspects of interac-

tions, we will consider the “facilitating subgraph” of dg (A) , 

where we include only edges (a, b) such that P
a
 contains 

some reactants of b but none of the inhibitors of b. This 

facilitating subgraph of dg (A) is called the positive depend-

ency graph of A.

We will investigate the effect of the structure of the posi-

tive dependency graph of a reaction system on its behaviour 

(i.e. the set of its state sequences). To this aim we: 

1. restrict ourselves to subclasses of reaction systems with 

facilitating behaviour only, and

2. restrict ourselves to specific graph-theoretic structures of 

positive dependency graph (and investigate the influence 

that those structures have on the behaviour).

The paper is organized as follows.

In Sect. 2, we settle the terminology and notation con-

cerning basic mathematical notions to be used in this paper, 

while in Sect. 3 we recall basic notions concerning reaction 

systems. Graph theoretical notions for representing the struc-

ture of reaction systems, viz., the dependency graph and the 

positive dependency graph, are introduced in Sect. 4.

In Sect. 5, we introduce strongly self-sustaining reaction 

systems, abbreviated ss-s reaction systems, which are the 

subject of investigation in this paper. They result by requir-

ing that no reaction can inhibit another one (ensuring facili-

tation only) and requiring that the positive dependency graph 

consists only of cycles which are self-sustaining in the sense 

that in each cycle, for each reaction a in it, its predeces-

sor b in the cycle provides all reactants for a ( R
a
⊆ P

b
 ). 

Such cycles once activated can “run” on their own. Since 

self-sustaining cycles are the basic building blocks of ss-s 

reaction systems, in Sect. 6 we first investigate ss-s reaction 

systems with one cycle only. We prove some basic proper-

ties of their positive dependency graph, which we then use 

to prove behavioural properties of ss-s reactions systems, 

which, as usual, are represented by transition graphs, i.e. 

directed graphs where nodes are the states of the system 

and the directed edge (T , T
�) from the state T to the state T ′ 

means that T ′ is the successor of T.

In Sect. 7, we consider ss-s reaction systems where the 

underlying positive dependency graph consists of more than 

one cycle, but all the cycles together form specific graph-

theoretic structures, viz., the so called c-chains and flowers. 

Again, also for these reaction systems we demonstrate how 

their structures, i.e. structures of their positive dependency 

graph, imply specific behaviours, viz., specific properties of 

their transition graph.

2  Preliminaries

We recall here some basic mathematical notions to be 

used in this paper in order to establish the terminology and 

notation.

As usual, ℕ and ℕ+ denote the set of natural numbers and 

the set of positive integers, respectively.

Given sets X and Y, X − Y  denotes their difference, X ∪ Y  

denotes their union, X ∩ Y  denotes their intersection, and 

X × Y  denotes their Cartesian product. Given a finite family 

of sets F  , we use 
⋃

F  and 
⋂

F  to denote the union and the 

intersection of the sets from F  , respectively.

For a finite set X, |X| denotes its cardinality and 2X the 

set of all subsets of X (the power set of X). The empty set is 

denoted by ∅.

For a set X and a subset Y ⊆ X , the characteristic function 

of Y in X is the function X
Y ,X ∶ X → {0, 1} defined as fol-

lows: for each x ∈ X , X
Y ,X(x) = 1 if x ∈ Y and X

Y ,X(x) = 0 if 

x ∉ Y  . If X is clear from the context of considerations, then 

we write simply X
Y
 rather than X

Y ,X
.

A (finite, directed) graph is an ordered pair G = (V , E) , 

where V is a finite set of nodes and E ⊆ V × V  is the set of 

edges. For v ∈ V , inc
G
(v) = {u ∈ V ∶ (u, v) ∈ E} is the set of 

all nodes incoming to v and out
G
(v) = {u ∈ V ∶ (v, u) ∈ E} 

is  the set  of al l  nodes outgoing from v .  If 

inc
G
(v) = out

G
(v) = ∅ , the v is an isolated node. If there 

are no isolated nodes in V, then G is reduced.

For n ≥ 1 , a sequence v0, v1,… , v
n−1, v

n
 of n + 1 nodes 

of v such that the first n are distinct is called a cycle of G of 
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length n, if (v
i
, v(i+1) mod n

) ∈ E for all i ∈ {0,… , n − 1} and 

v
n
= v

0
 . A cycle of length 1 is a loop.

In this paper, we will consider binary strings, i.e. strings 

over the alphabet Σ = {0, 1} . We will use Σ⋆ , Σ+ , and Σn for 

n ≥ 1 to denote the set of all strings, the set of nonempty 

strings, and the set of strings of length n over Σ , respec-

tively. For a string w = x0,… , x
n−1 , n ≥ 1 , with x

i
∈ Σ for 

i ∈ {0,… , n − 1} , we use the notation ⟨w⟩
i
 to denote the i-th 

character of w, i.e. ⟨w⟩
i
= x

i
.

For strings w, z ∈ Σ+ we say that z is a rotation of w, if 

w = w
1
w

2
 and z = w

2
w

1
 for some w1, w2 ∈ Σ

⋆ - The strings 

w,  z are equivalent under rotation, and an equivalence 

class under rotation is called a necklace (of length n, when 

w, z ∈ Σ
n for n ≥ 1 ). If |w

2
| = 1 , then z is the elementary 

rotation of w.

For n ≥ 1 , elr
n
 is the function elr

n
∶ Σ

n
→ Σ

n defined by: 

for w ∈ Σ
n , elr

n
(w) = z if and only if z is the elementary 

rotation of w.

3  Reaction systems

In this section, we recall some basic notions of reaction sys-

tems. We start by recalling the notion of a reaction.

De�nition 1 A reaction a is a triple a = (R, I, P) of finite sets 

such that P ≠ ∅ and R ∩ I = ∅.

The set R is called the set of reactants of a, I is called the 

set of inhibitors, and P is the set of products (we denote R, I, 

P by R
a
 , I

a
 , and P

a
 , respectively). The set R

a
∪ I

a
 is called the 

resource set of a, denoted by M
a
 . Also, for a set of reactions 

A, we use the notations R
A
 , I

A
 , and P

A
 to denote 

⋃

a∈A
R

a
 , 

⋃

a∈A
I
a
 , and 

⋃

a∈A
P

a
 , respectively. Given a finite set S with 

R, I, P ⊆ S , we say that a is a reaction over S.

We note here that in Definition 1 we do not require that 

R and I are nonempty. This was required in the original 

definition of reaction systems due to biological considera-

tions. However, since then, also reactions not satisfying this 

restriction are considered, especially in more mathematically 

oriented papers (see, e.g. [28, 34]).

De�nition 2 Let S be a finite nonempty set, let a = (R, I, P) 

be a reaction over S, let A be a set of reactions over S, and 

let T ⊆ S . Then: 

 (i) a is enabled by T if R ⊆ T  and I ∩ T = ∅.

 (ii) The result of a on T, denoted by res
a
(T) , is defined 

by: 

res
a
(T) =

{

P it a is enabled by T

∅ otherwise
.

 (iii) The result of A on T, denoted by res
A
(T) , is defined 

by: 

Thus, for a given finite nonempty set S, each set A of 

reactions over S induces the function res
A
∶ 2

S
→ 2

S , 

called the result function of A, such that, for each T ⊆ S , 

res
A
(T) is defined as in (iii) above. In particular, if A is a 

singleton set, A = {a} , then res
A
∶ 2

S
→ 2

S , becomes the 

result function res
a
∶ 2

S
→ 2

S , called the result function 

of a, such that, for each T ⊆ S , res
a
(T) is defined as in (ii) 

above.

Note that the definition of res
A
 implies that the result 

of applying A to T is cumulative, i.e. it is the union of the 

results of applying all reactions from A to T. In particu-

lar, this implies that no conflict occurs between (applying) 

reactions from A for which the intersection of their reac-

tants sets is nonempty.

We move now to define the notion of a reaction system.

De�nition 3 A reaction system, abbreviated rs, is an ordered 

pair A = (S, A) , where S is a finite non-empty set and A is a 

set of reactions over S.

We refer to S as the background set of  A , to elements 

of S as entities of A , to subsets of S as the states of  A , and 

to A as the set of reactions of A . The result function of  A , 

denoted by res A , is the function res A ∶ 2
S
→ 2

S defined 

by: for each T ⊆ S , res A(T) = res
A
(T).

The dynamic behaviour of reaction systems is formalized 

through the notion of an interactive process (see, e.g. [10, 

20, 21]). These processes take into account the fact that, in 

general, reaction systems are open systems which interact 

with their environment (where the environment is formalized 

through the set of the so called context sequences, which are 

sequences of subsets of the background set of the rs under 

consideration). In this paper, we consider the dynamic 

behaviour of closed reaction system, i.e. reaction systems 

which do not interact with their environment (which techni-

cally means that their context sequences are sequences of 

empty sets). In this case the interactive processes are de facto 

reduced to state sequences which are defined as follows.

De�nition 4 Let A = (S, A) be a rs. A state sequence of  A is 

a countable sequence of states of A , � = T0, T1,… such that, 

for each i ≥ 0 , T
i+1

= res A(Ti
).

Thus, � = T0, res A(T0), res 2

A
(T0), res 3

A
(T0),… . The state 

T
0
 is the initial state of � . The set of all state sequences of 

A is denoted by STS (A).

res
A
(T) =

⋃

a∈A

res
a
(T) .
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If T is such that, for some j ≥ 0 , Tj = Tj+1
 , then Tj is a 

fixed point of  � and a fixed point of A . Fixed points of a reac-

tion system A represent an important feature of the behav-

iour of A : if a state sequence of A arrives at a fixed point, 

then it remains trapped there “forever”. They also constitute 

an important notion in a broader framework of behaviour of 

dynamical systems, see, e.g. [15, 24].

Since res A is a function, for each i, j ≥ 0 , if Ti = Tj , then 

res A(Ti) = res A(Tj) . Since S is finite (and so the number of 

states of A is finite), this implies that either � is periodic or 

� is ultimately periodic, where 

1. � is periodic if there exists a p ∈ ℕ
+ , such that, for each 

i ≥ 0 , Ti = Ti+p (the smallest such p is the period of � ), 

and

2. � is ultimately periodic if � is not periodic, but there 

exists a q ∈ ℕ such that the sequence Tq+1, Tq+2,… is 

periodic (the smallest such q is the preperiod of �).

The dynamic behaviour of a rs A = (S, A) is often repre-

sented by a directed edge-labelled graph, called the transi-

tion graph of A , where nodes are the states of A and labels 

of the edges are context sets (which are subsets of S repre-

senting the effects of the environment). Since in this paper 

we consider closed reaction systems (where context sets are 

empty), the transition graphs reduce to directed (unlabelled) 

graphs defined as follows:

De�nition 5 Let A = (S, A) be a rs. The context-independent 

transition graph of A is a directed graph (V, E) such that 

V = 2
S and, for x, y ∈ V  , (x, y) ∈ E if y = res A(x).

Since we consider only closed reaction systems we will 

use the shorter name, transition graph of A , and denote it 

by trg (A) . Obviously, each edge of trg (A) represents a one-

step transition in a state sequence. Hence, there is a loop on 

a state T of A if and only if T is a fixed point of A.

4  Dependency and positive dependency 
graphs

In this section, we introduce graphs representing impor-

tant aspects of interactions between reactions of a reaction 

system.

De�nition 6 Let A = (S, A) be a rs. The dependency graph 

of A is the graph (V, E), where V = A and

We will use dg (A) to denote the dependency graph of A.

E = {(a, b) ∈ A × A ∶ P
a
∩ M

b
≠ ∅} .

The dependency graph dg (A) represents some aspects 

of interactions between the reactions of A . For example, 

when (a, b) is an edge of dg (A) , then a interacts with b by 

providing b with (some of) its resources. Thus, if b is an 

isolated node of dg (A) , then b is not involved in any inter-

action of A : no reaction of A (including b) can provide 

b with some of its resources, and b does not provide any 

reaction c of A (including b) with some of the resources of 

c. In other words, neither b is influenced by any reaction of 

A , nor b influences any reaction of A . Such a reaction b is 

called an isolated reaction of A . Clearly, an isolated reac-

tion can be applied only in the first step of a state sequence 

of A if its reactant set is nonempty, or at each time step if 

its reactant set is empty.

Example 1 Let A = (S, A) be the reaction system with 

S = {x1, x2,… , x12} and A consisting of the following 

reactions:

The dependency graph of A is given in Fig. 1.

We note that:

– a
11

 is an isolated node. Hence, a
11

 does not interact with 

any other reaction in A, including itself. Thus, a
11

 can be 

enabled only in the initial state of a state sequence.

– a
3
 is not isolated, but it does not have any incoming 

edges. Hence, also a
3
 can be enabled only in the initial 

state of a state sequence.

a1 = ({x1},∅, {x1}), a2 = ({x1},∅, {x2}),

a3 = ({x3},∅, {x12}), a4 = ({x4}, {x8}, {x4}),

a5 = ({x8}, {x12}, {x5}), a6 = ({x5},∅, {x6}),

a7 = ({x6},∅, {x7}), a8 = ({x7},∅, {x8}),

a9 = ({x7},∅, {x9}), a10 = ({x10, x9},∅, {x6}),

a11 = ({x11},∅, {x2}), and a12 = ({x9}, {x5, x12}, {x2}).

a1 a11 a6 a9

a2 a3 a5 a7

a12 a8 a10

a4

Fig. 1  The dependency graph dg (A) for the reaction system A of 

Example 1.
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– There are two loops in dg (A) , they involve a
1
 and a

4
 . 

They are there, because for both a
1
 and a

4
 their prod-

ucts intersect with their resources; in fact P
a

1

= R
a

1

 and 

P
a

4

= R
a

4

.

– There are two cycles in dg (A) which are not loops, 

a5, a6, a7, a8 and a7, a9, a10 . They share exactly one node, 

viz., a
7
.

While dg (A) represents interactions between the reactions 

of A , it doesn’t show which of those interactions are facili-

tating (reaction a produces at least one reactant of reaction 

b) and which are inhibiting (reaction a produces at least one 

inhibitor of reaction b). For our considerations, we will need 

the information about facilitating interactions and to this 

aim we introduce the notion of positive dependency graph.

De�nition 7 Let A = (S, A) be a rs. The positive dependency 

graph of A is the graph (V, E), where V = A and

We will use pdg (A) to denote the positive dependency 

graph of A.

Thus, pdg (A) is a subgraph of dg (A) with the same set 

of nodes (viz., A), where an edge (a, b) from dg (A) is also 

an edge of pdg (A) if and only if P
a
∩ R

b
≠ ∅.

Example 2 Let us consider the reaction system A from 

Example 1.

Its positive dependency graph, pdg (A) depicted in 

Figs. 2, results from dg (A) by removing 4 edges:

– (a3, a5) , because P
a3
= I

a5
,

– (a3, a12) , because P
a

3
∩ R

a
12
= ∅,

– (a5, a12) , because P
a5
∩ R

a12
= ∅,

– (a8, a4) , because P
a

8
= I

a
4
.

E = {(a, b) ∈ A × A ∶ P
a
∩ R

b
≠ ∅}

All other edges (x,  y) from dg (A) are also edges in 

pdg (A) , because for all of them Px ∩ Iy = ∅ (hence 

Px ∩ Ry ≠ ∅).

Based on the positive dependency graph, we define now 

important sequences of reactions, called fully facilitating 

cycles, and then, based on such cycles, we define fully facili-

tating positive dependency graphs.

De�nition 8 Let A = (S, A) be a rs and let pdg (A) = (A, E) . 

(1) A cycle of pdg (A) , � = a0,… , a
n−1, a

n
= a0 , n ≥ 1 , 

where, for i ∈ {0,… , n − 1} , a
i
= (R

i
, I

i
, P

i
) , is a fully 

facilitating cycle of A if, for each i ∈ {0,… , n − 1} , 

P
i
⊇ R(i+1) mod n

.

(2) pdg (A) is fully facilitating if it is reduced, each cycle 

of it is a fully facilitating cycle, and each edge of E is 

included in a cycle.

Thus, each reaction in a fully facilitating cycle provides 

all reactants for the next one (modulo n). Then, pdg (A) is 

fully facilitating if it consists of (is a union of) fully facili-

tating cycles.

Example 3 Let us continue with pdg (A) from Exam-

ple  2. There are two cycles which are not loops: 

C1 = a5, a6, a7, a8, a5 and C2 = a7, a9, a10, a7 . We note that 

C
1
 is fully facilitating, since P

a5
⊇ R

a6
 , P

a
6
⊇ R

a
7
 , P

a
7
⊇ R

a
8
 , 

and P
a8
⊇ R

a5
 . However, C

2
 is not fully-facilitating, because 

R
a10

= {x9, x10} and P
a

9
= {x

9
} , hence R

a
9
⊈ P

a
10

 . Then, 

there are two loops C3 = a1, a1 and C4 = a4, a4 . Both of them 

are fully facilitating, as R
a

1

= P
a

1

 and R
a

2

= P
a

2

.

5  Strongly self-sustaining reaction systems

In this section, we define strongly self-sustaining reaction 

systems, which will be investigated in the sequel of the 

paper. We also establish a basic technical property for them.

To begin with, we define a subclass of reaction sys-

tems where the only interactions between reactions are 

facilitating.

De�nition 9 A reaction systems A = (S, A) is nonblocking 

if P
A
∩ I

A
= ∅.

Thus, A is nonblocking if an application of any reaction 

from A in the current state will not inhibit an application of 

any reaction from A in the successor state.

Note that a nonblocking A may contain reactions (R, I, P) 

such that I ≠ ∅ . We allow it, because this can be useful 

in more general situations. Even though we deal in this 

paper with reaction systems which do not interact with their 

a1 a11 a6 a9

a2 a3 a5 a7

a12 a8 a10

a4

Fig. 2  The positive dependency graph pdg (A) for the reaction system 

A of Example 2, with the edges in dg (A) but not in pdg (A) repre-

sented with dotted lines
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environments, such interactions are considered in the gen-

eral model of interactive processes. Then, in nonblocking 

reaction systems interacting with their environments, reac-

tions may be blocked (disabled) by entities provided by the 

environment (the so called context of interactive processes).

Obviously for a nonblocking reaction system A , the 

dependency graph and the positive dependency graph 

coincide, dg (A) = pdg (A) . In the sequel of this paper, 

we will use the term “positive dependency graph” (and the 

notation pdg (A) ) to emphasize that we deal here only with 

positive (facilitating) aspects of interactions.

If A = (S, A) is nonblocking and � = a0,… , a
n−1, a

n
= a0 

is a fully facilitating cycle of A , as defined in Defini-

tion 8(1), then also P
i
∩ I(i+1) mod n

= ∅ holds. This means 

that each reaction of � enables the next one (modulo n) and 

so such a cycle can “run on its own” (without the need of 

intervention of other reactions). Accordingly, we call such 

a cycle self-sustaining.

Thus, the fully facilitating positive dependency graph 

of a nonblocking reaction system consists of self-sus-

taining cycles and, accordingly, such graphs are called 

self-sustaining.

Definition 10 Let A = (S, A) be a rs. We say that A is 

strongly self-sustaining, a ss-s reaction system for short, if 

A is nonblocking and pdg (A) is fully facilitating.

Note that for a ss-s reaction system A its positive 

dependency graph is reduced and so A does not contain 

isolated reactions. This is a natural choice, since we inves-

tigate the structure of interactions between reactions and 

(as discussed after Definition 6) isolated reactions do not 

participate in such interactions.

The following result provides basic constraints on the 

form of reactions (their reactant, inhibitor, and product 

sets) in a ss-s reaction system.

Theorem 1 Let A = (S, A) be a ss-s reaction system and let 

G = pdg (A) . For every b ∈ A,the following holds:

Proof Let b ∈ A . 

ad (1) Since G is self-sustaining, b is included in a cycle 

of G and so inc
G
(b) ≠ ∅ and out

G
(b) ≠ ∅ . Since 

each cycle of G is self-sustaining, R
b
⊆ P

a
 for each 

a ∈ inc
G
(b) , and so R

b
⊆
⋂

a∈ inc G(b)
P

a
.

ad (2) By (1), for each a ∈ A , R
a
⊆ P

A
 . Since A is non-

blocking, this implies I
b
∩ R

A
= ∅.

ad (3) Since G is self-sustaining, R
c
⊆ P

b
 for each 

c ∈ out
G
(b) , and so 

⋃

c∈ out G(b)
R

c
⊆ P

b
 .   ◻

(1)R
b
⊆

⋂

a∈ inc G(b)

P
a
, (2)I

b
∩ R

A
= ∅, and (3)P

b
⊇

⋃

c∈ out G(b)

R
c
.

6  Single cycle strongly self-sustaining 
reaction systems

Since for each ss-s reaction system its positive dependency 

graph is a union of cycles, the most basic form of these 

reaction systems is the one where the positive dependency 

graph consists of just one cycle. Such reaction systems will 

be considered in this section.

De�nition 11 A ss-s reaction system A is a single cycle ss-s 

reaction system if pdg (A) consists of one cycle only.

The length of the cycle of A is called the index of A.

Example 4 Let A1 = (S1, A1) be the reaction system with

where reactions a5,… , a8 are defined as in Example 1. 

Clearly, A
1
 is a nonblocking reaction system and the cycle 

a5,… , a8, a5 is a self-sustaining cycle, thus A
1
 is a single 

cycle ss-s reaction system of index 4.

The basic technical property of single cycle ss-s reaction 

systems is given by the following lemma.

Lemma 1 Let A be a single cycle ss-s reaction system. For 

all B1, B2 ⊆ Asuch that B
1
≠ B

2
 , P

B
1

≠ P
B

2

.

Proof Let pdg (A) = G = (A, E) and let B1, B2 ⊆ A with 

B
1
≠ B

2
 . Since the statement of the lemma obviously 

holds if either B
1
 or B

2
 is empty, we will assume that both 

B
1
≠ ∅ and B

2
≠ ∅ . Since B

1
≠ B

2
 , the symmetric differ-

ence of B
1
 and B

2
 is non-empty. Thus, there exists a reaction 

a ∈ (B
1
∪ B

2
) − (B

1
∩ B

2
) ; without loss of generality let’s 

assume that a ∈ B
1
 . Since G consists of one cycle only, a is 

a node of this cycle and its successor b in this cycle (mean-

ing (a, b) ∈ E ) is such that inc
G
(b) = {a} . Since A is a ss-s 

reaction system, by Theorem 1, R
b
⊆ P

a
 and so R

b
⊆ P

B
1

.

Assume now that P
B

1

= P
B

2

 . This implies that R
b
⊆ P

B
2

 

and so there exists c ∈ B
2
 such that P

c
∩ R

b
≠ ∅ . Thus, 

(c, b) ∈ E . Since a ∉ B
2
 , this implies that | inc

G
(b)| ≥ 2 , 

contradicting the fact that G consists of one cycle only.

Consequently P
B

1

≠ P
B

2

 .   ◻

For a reaction system A = (S, A) , its positive dependency 

graph records the facilitating interactions among the reac-

tions of A. Based on pdg (A) , we can trace the propaga-

tion of the facilitating influence of any subset B of A, using 

the facilitation functions and then represent the facilitation 

dynamics using the facilitation graph.

De�nition 12 Let A = (S, A) be a rs with pdg (A) = (A, E) . 

S1 = {x5, x6, x7, x8, x12} and A1 = {a5, a6, a7, a8},
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1. The facilitating function of A , denoted by fac A , is the 

function fac A ∶ 2
A
→ 2

A such that, for each B ⊆ A , 

fac A(B) = {a ∈ A ∶ (b, a) ∈ E for some b ∈ B}.

2. The facilitation graph of A , denoted by fcg (A) , 

is  the graph (V ,   F)  such that V = 2
A and 

F = {(X, Y) ∶ X, Y ⊆ 2A and fac A(X) = Y}.

The propagation of the influence of sets of reactions is 

represented by facilitating sequences defined as follows.

De�nition 13 Let A = (S, A) be a rs. A facilitating sequence 

of A is a countable sequence of subsets of A, � = B0, B1,… 

such that, for each i ≥ 0 , B
i+1

= fac A(Bi
).

Thus, � = B0, fac A(B0), fac
2

A
(B0),… , where the set B

0
 

is the initial set of  � . In fact, the facilitation sequences of A 

are just trajectories in fcg (A).

For a reaction system A = (S, A) and a state T of A , 

knowing the set B
T
 of reactions enabled by T allows one to 

know the successor state T ′ of T, viz., T � = {P
b
∶ b ∈ B

T
} . 

Such translations are formally defined as follows.

De�nition 14 Let A = (S, A) be a reaction system. 

1. The product function of A , denoted by prd A , is the 

function prd A ∶ 2A
→ 2S such that, for each B ⊆ A , 

prd A(B) = P
B
.

2. A product sequence of A is a countable sequence � of 

states of A , � = P0, P1,… , such that there exists a facili-

tating sequence � of A , � = B0, B1,… , where, for each 

i ≥ 0 , P
i
= P

B
i

.

By Lemma 1, when dealing with a single cycle ss-s 

reaction system A = (S, A) , each subset B ⊆ A is uniquely 

determined (coded by) its product set P
B
 . In this case, the 

facilitating sequences of A are in one-to-one correspondence 

with the product sequences of A . In fact, it turns out that 

one can directly compute consecutive elements of a product 

sequence P0, P1,… using the result function res A.

Theorem 2 Let  A be a single cycle ss-s reaction system 

and let  � = P0, P1,… be a product sequence of  A.For each  

i ≥ 0 , P
i+1

= res A(Pi
).

Proof Let A = (S, A) and let pdg (A) = (A, E) .  Let 

� = P0, P1,… be a product sequence of A and let 

� = B0, B1,… be the facilitating sequence of A such that � 

is obtained from � by the product function of A , i.e. for each 

i ≥ 0 , P
i
= prd A(Bi

).

Let i ≥ 0 . Then, P
i+1 = prd A(Bi+1) =

⋃

b∈B
i+1

P
b
.

Let b ∈ B
i+1

 . Then, there exists a ∈ B
i
 such that 

(a, b) ∈ E . Since A is an ss-s reaction system, b is enabled 

by P
a
 and so P

b
⊆ res A(Pa

) . Since P
i
= prd A(Bi

) , P
a
⊆ P

i
 

and res A(Pa
) ⊆ res A(Pi

) , and because the rs is nonblocking 

all reactions enabled by P
a
 are also enabled by P

i
 . Conse-

quently P
i+1

=
⋃

b∈B
i+1

P
b
⊆ res A(Pi

).

Since A is a single cycle ss-s reaction system, for each 

b ∈ B
i+1

 , there exists a unique a ∈ B
i
 such that (a, b) ∈ E and 

this correspondence is a bijection of B
i+1

 onto B
i
.

Now let x ∈ res A(Pi
) . The x ∈ P

b
 for some b ∈ A enabled 

by P
i
 , hence R

b
⊆ P

i
 . Therefore, for some a belonging to B

i
 , 

P
a
∩ R

b
≠ ∅ . This implies that (a, b) ∈ E . Thus, b ∈ B

i+1
 and 

so x ∈ P
i+1

 . Therefore, res A(Pi
) ⊆ P

i+1
.

Consequently P
i+1

= res A(Pi
) .   ◻

Thus, to investigate product sequences of single cycle ss-s 

reaction systems one can use the product transition graphs 

defined as follows.

De�nition 15 Let A = (S, A) be a rs. The product transition 

graph of A , denoted by ptg (A) , is the directed graph (V, E) 

such that V = {X ∈ 2
S ∶ X = P

B
for some B ⊆ A} and, for 

X, Y ∈ V  , (X, Y) ∈ E if and only if Y = res A(X).

Hence, ptg (A) is the subgraph of the transition graph 

of A resulting by restricting the nodes of trg (A) to the set 

{X ∈ 2
S ∶ X = P

B
for some B ⊆ A} . Clearly, the product 

transition graph is an important construct for represent-

ing the behaviour of reaction systems in general. In each 

state sequence � = T0, T1,… of a rs A , after the first step the 

remaining sequence T1,… is a trajectory in ptg (A).

According to Theorem 2, if A is a single cycle ss-s reac-

tion system, then the diagram of Fig. 3 commutes.

One obtains in this way an elegant correspondence 

between the trajectories in the facilitation graph of A (deter-

mined by pdg (A) ) and the trajectories in the product transi-

tion graph (determined by res A ). Note that (by Lemma 2) 

also the “inverse” diagram (where the arrows labelled by 

prd A are reversed and relabelled by prd −1
A

 ) commutes.

We will assume now that a specification of a single cycle 

ss-s reaction system A = (S, A) includes (next to S and A) 

also a fixed representation (sequence of nodes) cyc A of the 

cycle of A . Hence, cyc A = a0,… , a
n−1, a

n
= a0 for some 

n ≥ 1 and a0,… , a
n−1 ∈ A.

To establish a link with the combinatorial notion of a 

binary necklace (see, e.g. [35] and also Sect. 2 for the defini-

tion), we need the following notion.

fcg(A) : B0

facA

prdA

B1

facA

prdA

B2

facA

prdA

B3

facA

prdA

· · ·

ptg(A) : P0

resA

P1

resA

P3

resA

P3

Fig. 3  Correspondence between trajectories in fcg A and ptg A
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Let A = (S, A) be a single cycle ss-s reaction sys-

tem of index n, where cyc A = a0,… , a
n−1, a

n
= a0 . 

Then, the binary translation by A is the function bin A 

defined by bin A ∶ 2A
→ {0, 1}n , where for each B ⊆ A , 

bin A(B) = X
B
(a0),… , X

B
(a

n−1) (recall, see Sect.  2, that 

X
B
 is the characteristic function of B ⊆ A ). Thus, the 

binary translation of B extends X
B
 to the string cyc A . 

Note that bin A is a bijection and so the inverse function 

bin
−1

A
∶ {0, 1}n

→ 2A is well defined.

We prove now that the elementary rotations of binary 

translations of sets of reactions corresponds to applying the 

facilitation function to those sets.

Lemma 2 Let A = (S, A) be a single cycle ss-s reaction 

system of index n.For each  B ⊆ A the following diagram 

commutes:

Proof Let G = pdg (A) and let cyc A = a0,… , a
n−1, a

n
= a0 . 

Let i ∈ {0,… , n − 1}.

A s s u m e  t h a t  a
i
∈ B  ,  h e n c e  ⟨ bin A(B)⟩i

= 1 . 

T h e n ,  ⟨ elr
n
( bin A(B)⟩(i+1) mod n

= 1  a n d  s o 

a(i+1) mod n
∈ bin

−1

A
( elr

n
( bin A(B))) . Since A is a single cycle 

ss-s reaction system, a
i
∈ B implies out

G
(a

i
) = {a(i+1) mod n

} . 

Thus, a(i+1) mod n
∈ fac A(B).

As sume  t ha t  a
i
∉ B  ,  h ence  ⟨ bin A(B)⟩i

= 0  . 

T h e n ,  ⟨ elr
n
( bin A(B))⟩(i+1) mod n

= 0  a n d  s o 

a(i+1) mod n
∉ bin

−1

A
( elr

n
( bin A(B)) . Since A is a single cycle 

ss-s reaction system, inc
G
(a(i+1) mod n

) = {a
i
} . Thus, a

i
∉ B 

implies a(i+1) mod n
∉ fac A(B).

Hence,

and consequently the diagram commutes.   ◻

Single cycle ss-s reaction systems result by imposing 

specific restrictions on their positive dependency graphs. 

These structural restrictions imply then specific behavioural 

properties expressed through their transition graphs.

Theorem 3 Let  A be a single cycle ss-s reaction system of 

index n.Then trg (A) contains only cycles of length dividing 

n,and for each divisor of n, trg (A) contains a cycle of this 

length.

fac A(B) = fac A( bin
−1

A
( bin A(B))) = bin

−1

A
( elr

n
( bin A(B))

Proof By Theorem 2 and Lemma 1, the product sequence of 

A and the facilitation sequences of A are in one-to-one cor-

respondence (each product sequence of A can be uniquely 

translated into a facilitation sequence of A and the other 

way around).

By Lemma 2, facilitation sequences of A are in one-

to-one correspondence with sequences of binary strings 

of length n, where the initial term corresponds to the ini-

tial set of reactions and the successor term is obtained by 

elementary rotations. The binary strings contained in such 

sequences are all and only the binary necklaces of length n.

It is well known (see, e.g. [35]) that, for each n, k is the 

cardinality of a binary necklace of length n if and only if k 

is a divisor of n.

Since (through bin A ) the subsets of A and binary strings 

of length n are in one-to-one correspondence, this implies 

the statement of the theorem.   ◻

Theorem 3 yields the following result for arbitrary ss-s 

reaction systems.

Corollary 1 Let  A be a ss-s reaction system where  pdg (A) 

is the union of k cycles, k ≥ 1,where  n1,… , n
k
 are the 

lengths of those cycles. Then, C is a cycle of  trg (A) if and 

only if the length of C equals  d
1
⋅… ⋅ d

k
 for some divisors  

d1,… , d
k
 of  n1,… , n

k
,respectively.

Finally, we establish the number of cycles in the transi-

tion graph of a single cycle ss-s reaction system. We use 

here the Euler totient function (see, e.g. [36]), denoted by 

� , which, for each d ∈ ℕ , gives the number of integers 

�(d) that are relatively prime with respect to d.

Theorem 4 Let  A be a single cycle ss-s reaction system of 

index n and let  D
n
 be the set of all divisors of n.Then, the 

number of distinct cycles in  trg (A) equals

Proof By Theorem 3, the number of cycles in trg (A) is the 

number of binary necklaces of length n, which (see [33]) 

equals

Hence, the theorem holds.   ◻

1

n

∑

d∈D
n

�(d)2
n

d

1

n

∑

d∈D
n

�(d)2
n

d
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7  c-chains and �owers

In this section, we consider ss-s reaction systems for which 

positive dependency graphs consist of more cycles, which 

however form specific graph structures, viz., c-chains and 

flowers, which are defined as follows.

De�nition 16 Let G = (V , E) be a graph and let C be a set of 

n cycles in G for n ≥ 2 . 

1. C is a c-chain if there exists a linear ordering C1,… , C
n
 

of the n cycles such that, for all i ∈ {1,… , n − 1} , 

|C
i
∩ C

i+1
| = 1 and, for all j ∈ {1,… , n} such that 

j ∉ {i, i + 1} , |Ci ∩ Cj| = 0 , and moreover |C
n
∩ C

1
| ≤ 1 . 

If |C
n
∩ C

1
| = 0 , then C is an open c-chain. If 

|C
n
∩ C

1
| = 1 , then C is a closed c-chain.

2. C is a flower if ��
⋂

C∈C
C�
� = 1 and for all C1, C2 ∈ C with 

C
1
≠ C

2
 , it holds that |C

1
∩ C

2
| = 1.

The cycles in a flower are referred to as petals.

Note that every set of two cycles C = {C1, C2} sharing a 

single node (i.e. |C
1
∩ C

2
| = 1 ), is both a (closed) c-chain 

and a flower. Moreover, no set of three or more cycles is 

both a flower and a c-chain.

Now, we define reaction systems to be considered in 

this section.

De�nition 17 Let A be a ss-s reaction system. 

1. A is a c-chain ss-s reaction system if pdg (A) is a 

c-chain, and if pdg (A) consists of k-cycles, k ≥ 2 , then 

we say that A is a k-cycles c-chain ss-s reaction system.

2. A is a flower ss-s reaction system if pdg (A) is a flower, 

and if pdg (A) consists of k-cycles, k ≥ 2 , then we say 

that A is a k-petals flower ss-s reaction system.

Example 5 Let A
1
 , A

2
 , and A

3
 be the ss-s reaction systems 

defined as follows. 

1. A1 = (S1, A1)  ,  w i t h  S1 = {x1,… , x10}  a n d 

A1 = {a1,… , a9} , where 

2. A2 = (S2, A2)  ,  w i t h  S2 = {x1,… , x10}  a n d 

A2 = {a1,… , a10} where a1, a2, a3 and a5,… , a9 are 

defined as above (for A
1
 ), while a

4
 and a

10
 are defined 

by a4 = ({x10},∅, {x4, x8}) , and a10 = ({x9},∅, {x10}).

3. A3 = (S3, A3)  ,  w i t h  S3 = {y1,… , y4}  a n d 

A3 = {b1,… , b6} , where 

Then, the positive dependency graph for A
1
 , A

2
 , and A

3
 are 

given in Figs. 4, 5, and 6, respectively.

Note that pdg (A1) is an open c-chain, pdg (A2) is a closed 

c-chain, and pdg (A3) is a flower.

We show now that in a 2-cycles c-chain ss-s reaction sys-

tem, the two cycles “synchronise” over time, as they mutu-

ally enable each other’s reactions in a pattern depending on 

their lengths.

Lemma 3 Let A = (S, A) be a 2 -cycles c-chain ss-s reaction 

system with cycles C
1
 and C

2
 of lengths m and n,respectively. 

a1 = ({x4},∅, {x1}), a2 = ({x1},∅, {x2}),

a3 = ({x2},∅, {x3, x10}), a4 = ({x10},∅, {x4}),

a5 = ({x3},∅, {x5, x9}), a6 = ({x5, x9},∅, {x2, x6}),

a7 = ({x6},∅, {x7}), a8 = ({x7},∅, {x8}), and

a9 = ({x8},∅, {x5, x9}).

b1 = ({y3},∅, {y1}), b2 = ({y1},∅, {y2}),

b3 = ({y2},∅, {y3}), b4 = ({y1},∅, {y3}),

b5 = ({y1},∅, {y4}), and b6 = ({y4},∅, {y3}).

a2 a5 a7

a1 a3 a6 a8

a4 a9

Fig. 4  pdg (A1)

a2 a5 a7

a1 a3 a6 a8

a4 a9

a10

Fig. 5  pdg (A2)

Fig. 6  pdg (A3) b6 b2

b5 b1 b3

b4
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Let T ⊆ S be such that at least one reaction from either 

C
1
 or C

2
 is enabled by T.Then, the facilitating sequence  

� = B0, B1,…,where  B
0
 is the set of all reactions enabled 

by T,is ultimately periodic, with some preperiod  q ∈ ℕ and 

period p such that  p ≤ gcd(m, n) and  
⋃p

i=1
Bq+i = A.

P r o o f  L e t  C1 = a0,… , a
m−1, a

m
= a0 

and C2 = b0,… , b
n−1, b

n
= b0.

We may assume without loss of generality that a
0
= b

0
 

and T ⊆ S is such that a
0
= b

0
 is enabled by T. This can be 

assumed since in each state where at least one reaction in 

either C
1
 or C

2
 is enabled, a

0
= b

0
 will be enabled after at 

most max{m, n} steps (because A is a ss-s reaction system). 

Furthermore, we assume that no reaction except for a
0
= b

0
 

is enabled by T
0
 . If that is not the case, then the reasoning in 

the rest of the proof provides an upper bound on the length 

of the period rather than an exact value.

Let � = lcm (m, n) be the least common multiple of m and 

n. Let us consider T
�
= res

�

A
(T

0
) and the reactions enabled 

by it. First of all, notice that because a
0
= b

0
 is enabled by 

T
0
 , T

�−1
 is the first state in which a

m−1
 and b

n−1
 are both 

enabled and thus T
�
 is the first state after T

0
 in which a

0
= b

0
 

is enabled at the same time by both the reactions in C
1
 and 

in C
2
 . Concerning other reactions of C

2
 enabled by T

�
 , we 

note that a
0
= b

0
 has also been enabled by cycle C

1
 every m 

time steps, enabling reaction b
1
 at the successive time step. 

Since every step 0 < h < � is not a multiple of both m and 

n, if a
0
= b

0
 is enabled by T

h
 , then this is due to the fact that 

at step h − 1 either a
m−1

 or b
n−1

 was enabled (but not both). 

In the case a
m−1

 was the reaction enabled by T
h−1

 , at time 

step h + 1 the reaction b
1
 becomes enabled by T

h+1
 and it 

would not become enabled without the interactions between 

the two cycles C
1
 and C

2
 . That is, every m steps in all steps 

before � , cycle C
1
 is enabling a reaction of C

2
 that would not 

have been enabled at that step by C
2
 alone. Therefore, cycle 

C
2
 contains �∕m enabled reactions in T

�
 . Since 

lcm (m, n) =
mn

gcd(m,n)
 , C

2
 contains n∕ gcd(m, n) enabled reac-

tions. By repeating the above reasoning starting in 

T
1
= res A(T0

) and considering the reactions enabled by 

T
�+1

= res
�+1

A
(T

0
) , we observe that in T

�+1
 there are 

n∕ gcd(m, n) enabled reactions from C
2
 that, if gcd(m, n) > 1 , 

are all distinct from the ones enabled by T
�
.

By reasoning as above, we conclude that in each of the 

states T
�
, T

�+1,… , T
�+gcd(m,n)−1 there are n∕ gcd(m, n) ena-

bled reactions that are all distinct, yielding together n dis-

tinct enabled reactions (i.e. all reactions from C
2
 ) every 

gcd(m, n) steps.

Symmetrically, analysing the reactions of C
1
 enabled by 

T
�
,… , T

�+gcd(m,n)−1 , we obtain that m distinct reactions (i.e. 

all reactions from C
1
 ) are enabled every gcd(m, n) steps.

Consequently, we conclude that the facilitating sequence 

� = B0, B1,… is ultimately periodic for some preperiod q 

and a period p ≤ gcd(m, n) such that 
⋃p

i=1
Bq+i = A .   ◻

We will generalize now Lemma 3 to k-cycles c-chain ss-s 

reaction systems for k ≥ 2.

Lemma 4 Let  A = (S, A) be a k -cycles c-chain ss-s reaction 

system with cycles  C1,… , C
k
 of lengths  n1,… , n

k
 , respec-

tively. Let  T ⊆ S be such that at least one reaction in one of  

C1,… , C
k
 is enabled by T.Then, the facilitating sequence  

� = B0, B1,…,where  B
0
 is the set of all reactions enabled 

by T,is ultimately periodic, with some preperiod  q ∈ ℕ and 

a period p such that  p ≤ gcd(n1,… , nk) and  
⋃p

i=1
Bq+i = A.

Proof By induction on the number of cycles. For two cycles 

the statement holds by Lemma 3.

Now, suppose that the statement holds for k ≥ 2 and 

assume that A is a (k + 1)-cycles c-chain ss-s reaction sys-

tem with cycles C1,… , C
k
, C

k+1 of length n1,… , n
k
, n

k+1 , 

respectively. By induction hypothesis, every reaction 

in C1,… , C
k
 is eventually enabled every gcd(n1,… , n

k
) 

steps and also every reaction in C2,… , C
k+1 is eventually 

enabled every gcd(n2,… , n
k+1) steps. Thus, every cycle 

C2,… , C
k
 has each of its reactions eventually enabled every 

gcd(gcd(n1,… , n
k
), gcd(n2,… , n

k+1)) steps, which is equal 

to gcd(n1,… , n
k+1) steps. We now only need to show that 

also C
1
 and C

k+1
 have all of their reaction enabled every 

gcd(n1,… , n
k+1) steps.

If we consider the last two cycles C
k
 and C

k+1
 , then, by 

Lemma 3, each reaction in C
k
 and C

k+1
 is eventually enabled 

every gcd(n
k
, n

k+1) steps. However, since C
k
 has all of its 

reaction enabled every gcd(n1,… , n
k+1) steps, we can apply 

the reasoning of the proof of Lemma 3 to conclude that every 

reaction in C
k+1

 is enabled every gcd(n1,… , n
k+1) steps. 

Analogously, we conclude that every reaction in C
1
 is ena-

bled every gcd(n1,… , n
k+1) steps. Consequently, all reaction 

are eventually enabled at least once every gcd(n1,… , n
k+1) 

steps. Hence, the lemma holds.   ◻

In particular, if the lengths of all cycles of a c-chain have 

the gcd equal to 1, we get exactly 2 fixed points in the transi-

tion graph of A.

Theorem 5 Let  A be a k -cycles c-chain ss-s reaction system 

with the lengths of the cycles n1,… , n
k
.If  gcd(n1,… , n

k
) = 1

,then  A has exactly two fixed points.

Proof Let A = (S, A) and let T ⊆ S . 
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1. Assume that T is such that there is at least one reaction 

in A enabled by T. We show now that the state sequence 

beginning with T reaches a fixed point, which equals 
⋃

a∈A
P

a
 . Since gcd(n1,… , n

k
) = 1 , by Lemma  4 the 

facilitating sequence � = B0, B1,… , where B
0
 is the set 

of all reactions enabled by T, is such that Bq+i = A , for 

all i ≥ 1 , where q is the preperiod of � . This means that 

the state sequence � = T0, T1,… , where T
0
= T  , is such 

that T(q+1)+i =
⋃

a∈A Pa , for all i ≥ 1 . Hence, 
⋃

a∈A
P

a
 is 

a fixed point of A.

2. Assume that T is such that no reaction of A is enabled by 

T. Then, the state sequence � = T0, T1,… , where T
0
= T , 

is such that T
i
= ∅ , for all i ≥ 1.

Since either T enables at least one reaction from A or it 

doesn’t, A has exactly two fixed points: 
⋃

a∈A
P

a
 and ∅ .  

 ◻

We move now to consider flower ss-s reaction systems 

and demonstrate that the result analogous to Theorem 5 

holds for them. First we need a lemma analogous to 

Lemma 4.

Lemma 5 Let  A = (S, A) be a k -petals flower ss-s reaction 

system with the set of cycles of lengths  n1,… , n
k
.Let  T ⊆ S 

be such that at least one reaction in one of the cycles is 

enabled by T.Then, the facilitating sequence  � = B0, B1,…

,where  B
0
 is the set of all reactions enabled by T,is ulti-

mately periodic, with some preperiod  q ∈ ℕ and a period p 

such that  p ≤ gcd(n1,… , nk) and  
⋃p

i=1
Bq+i = A.

Proof By induction on the number of cycles. For two cycles 

the statement holds by Lemma 3.

Now, suppose that the statement holds for k ≥ 2 and 

assume that A is a (k + 1)-petals flower ss-s reaction systems 

with the set of cycles C of lengths n1,… , n
k
, n

k+1 . Without 

loss of generality, we may consider an arbitrary linear order 

⟨C1,… , C
k
, C

k+1⟩ of C.

Let i, j ∈ {1,… , k + 1} with i ≠ j . Thus, C
i
 and Cj are 

distinct cycles in C , with the sets C − {C
i
} and C − {Cj} 

both distinct and containing exactly k cycles. By induction 

hypothesis, every reaction in C − {C
i
} and C − {Cj} is even-

tually enabled every gcd(n1,… , n
i−1, n

i+1,… , n
k+1) steps 

and every gcd(n1,… , nj−1, nj+1,… , nk+1) steps. Thus, every 

reaction in C − {Ci, Cj} is enabled every gcd(n1,… , n
k+1) 

steps. Since this holds for any choice of i and j, all reaction 

are eventually enabled at least once every gcd(n1,… , n
k+1) 

steps. Hence, the lemma holds.   ◻

Theorem 6 Let  A be a k -petals flower ss-s reaction system 

with the lengths of the cycles  n1,… , n
k
.If gcd(n1,… , n

k
) = 1

,then  A has exactly two fixed points.

Proof We proceed analogously to the proof of Theorem 5, 

replacing the use of Lemma 4 by the use of Lemma 5.  

 ◻

8  Discussion

In a reaction system, reaction a can influence reaction b by 

producing either some reactants of b (hence facilitating b) 

or some inhibitors of b (hence inhibiting b) or both. In this 

paper, we have considered the facilitating aspects of such 

interactions.

To this aim, we have restricted ourselves to nonblocking 

reaction systems (which allow for facilitation only) and then 

focused on the research line often referred to as “structure vs 

behaviour”, where one investigates how structural properties 

of a system influence its behaviour. In this paper, the struc-

ture of a reaction system is formalized through its positive 

dependency graph which captures the facilitating interac-

tions. The behaviour of a reaction system is formalized, in 

the standard way, through its transition graph.

We have defined specific structural properties of reaction 

systems through specific properties of their positive depend-

ency graph and demonstrated how they imply specific behav-

ioural properties, expressed through their transition graphs.

The research presented here is certainly worth to be con-

tinued in both directions: 

(1) investigating reaction systems based on facilitation, and

(2) investigating how the structure of reactions, hence 

properties of the positive dependence graph, influence 

the behaviour, hence properties of the transition graph.

ad.(1) Investigating facilitating reaction systems is natural, 

also from the point of view of other models of interac-

tions of biochemical reactions. For example, chemical 

reaction networks, well-accepted and intensely investi-

gated model (see, e.g. [9]) is based on facilitation only. 

Some “obvious” research topics for facilitating reaction 

systems are:

• Properties of their state sequences, and in particular 

comparing those properties with the properties of 

state sequences of general reaction systems, which 

are well understood by now (see, e.g. [10, 11, 20, 28, 

30–32]).

• Complexity properties, and, again, comparing them 

with the complexity properties of general reaction 

systems, which are well understood by now (see, 

e.g. [16, 23–25]).

• As pointed out in Sect. 5 already, reactions in a non-

blocking reaction systems may have nonempty set 
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of inhibitors. This becomes interesting when one 

considers the general framework of reaction systems 

where the environment can control the behaviour of 

reaction systems, a well-investigated research area 

(see, e.g. [7, 8, 27, 29]). One can now investigate 

reaction systems, where the inhibitors can be “acti-

vated” by the environment only, i.e. the so-called 

context sequences. This may lead to new classes of 

behaviour, in-between the context-independent and 

arbitrary interactive processes.

ad.(2) Concerning the “structure vs behaviour” research 

line for facilitating reaction systems, interesting and 

perhaps really challenging topic is to find interesting 

structures of positive dependency graphs (interesting in 

the sense that they would imply interesting properties of 

transition graphs).

• Our current proposal (and the topic we investigate 

now) is to consider “DAG-cycles” structure of posi-

tive dependency graphs. Such a graph is obtained by 

considering as a template a connected directed acyclic 

graph and substituting in it each node by a cycle. Con-

sequently in these graphs cycles do not share nodes 

but rather they are connected by directed edges, which 

form sort of “bridges” between them.
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