
Research Article

Facility Location with Tree Topology and Radial
Distance Constraints

Pablo Adasme 1 and Ali Dehghan Firoozabadi 2

1Department of Electrical Engineering, Universidad de Santiago de Chile, Avenida Ecuador 3519, Santiago, Chile
2Department of Electricity, Universidad Tecnológica Metropolitana, Av. Jose Pedro Alessandri 1242, 7800002 Santiago, Chile

Correspondence should be addressed to Pablo Adasme; pablo.adasme@usach.cl

Received 22 April 2019; Accepted 30 October 2019; Published 21 November 2019

Academic Editor: Dan Selişteanu

Copyright © 2019 Pablo Adasme and Ali Dehghan Firoozabadi. �is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Let Gd � (V, Ed) be an input disk graph with a set of facility nodes V and a set of edges Ed connecting facilities in V. In this paper,
we minimize the total connection cost distances between a set of customers and a subset of facility nodes S⊆V and among facilities
in S, subject to the condition that nodes in S simultaneously form a spanning tree and an independent set according to graphs Gd
and Gd, respectively, where Gd is the complement of Gd. Four compact polynomial formulations are proposed based on classical
and set covering p-Median formulations. However, the tree to be formed with S is modelled with Miller–Tucker–Zemlin (MTZ)
and path orienteering constraints. Example domains where the proposed models can be applied include complex wireless and
wired network communications, warehouse facility location, electrical power systems, water supply networks, and transportation
networks, to name a few. �e proposed models are further strengthened with clique valid inequalities which can be obtained in
polynomial time for disk graphs. Finally, we propose Kruskal-based heuristics and metaheuristics based on guided local search
and simulated annealing strategies. Our numerical results indicate that only theMTZ constrained models allow obtaining optimal
solutions for instances with up to 200 nodes and 1000 users. In particular, tight lower bounds are obtained with all linear
relaxations, e.g., less than 6% for most of the instances compared to the optimal solutions. In general, theMTZ constrainedmodels
outperform path orienteering ones. However, the proposed heuristics and metaheuristics allow obtaining near-optimal solutions
in significantly short CPU time and tight feasible solutions for large instances of the problem.

1. Introduction

Facility location has been a major research topic within last
decades [1–6]. In general, a facility location problem is
mainly concerned with the optimal placement of facilities in
a predefined geographical area in such a way that customers
(users) can connect to facilities at minimum (distance) costs.
Example application domains include wireless and wired
network communications, warehouse facility location,
electrical power systems, water supply networks, and
transportation networks, to name a few [1]. Naturally, the
optimal placement is also conditioned to several factors
which directly depend on the application itself, e.g., avoiding
placing hazardous materials near housing, fair distribution
of hospitals, public schools, military bases, radar

installations, branch banks, shopping centers, waste disposal
facilities, police and/or fire departments in a city tomeet user
demands and avoiding interference between base stations in
a wireless communication network. Notice that all of these
examples require facilities to be placed separately, which
naturally imposes the condition of a radial distance con-
straint. In principle, any of them can be represented by
means of a unit disk graph, and then an independent set
structure appears as a natural way to model these con-
straints. In particular, any disk graph representation need
not be a connected graph.

Let Gd � (V, Ed) and Gc � (V, Ec) be, respectively, the
input disk and complete graphs composed of a set of facility
nodes V drawn in the Euclidean plane with edge sets Ed and
Ec, and let S be a subset of V. In this paper, we consider the

Hindawi
Complexity
Volume 2019, Article ID 9723718, 29 pages
https://doi.org/10.1155/2019/9723718

mailto:pablo.adasme@usach.cl
https://orcid.org/0000-0003-2500-3294
https://orcid.org/0000-0002-6391-6863
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9723718

problem of assigning a set K of users to facility nodes in S
while simultaneously forming a tree backbone
T � (S, Ec(T)) with nodes in S where Ec(T) denotes the set
of edges in Ec spanned by T such that |Ec(T)| � |S| − 1 and
with the additional condition that no two adjacent nodes in
V related with Gd can belong to S.)e latter represents the
radial distance requirement that we handle with in-
dependent set constraints [7]. Notice that finding the
optimal subset S leads to a hard combinatorial optimization
problem. For this purpose, we assume that all candidate
sites for facility placement are represented by means of a
unit disk graph with some predefined distance facility
radial coverage. If two facility nodes are located near a
certain distance, then at most, one of them can be selected
for the tree backbone. Finally, users can connect to the
resulting subset S. Notice that forming a tree backbone with
facilities is an efficient strategy to ensure connectivity in a
network [5, 8–12]. A unit disk graph is the resulting graph
obtained by intersecting several unit disks in the Euclidean
plane where each vertex corresponds to a center of each
disk and with edges connecting them whenever the cor-
responding vertices lie within a constant (unit) distance of
each other.

However, an independent or stable set of an arbitrary
graph G � G(V, E)with set of nodes V and set of edges E is
a subset of vertices S⊆V, no two of which are adjacent.
)is means that, for every two vertices in S, there is no
edge connecting them. Notice that a maximal in-
dependent set is a subset S⊆V in which by adding any
other vertex forces set S to loose the independent set
property. However, a maximum independent set is a
maximal independent set with largest cardinality among
all maximal independent sets. Consequently, every
maximum independent set is maximal although the
converse does not necessarily hold. Finding the maxi-
mum independent set is an NP-hard optimization
problem, and the number of maximal independent sets in
a general arbitrary graph with n nodes is of the order of
O(3n/3) [13]. Furthermore, notice that finding a maximal
independent set in an arbitrary graph G is equivalent to
finding a maximal clique in its complement graph G.)e
reader must not be confused with the fact that if it is
possible to list all maximal cliques of G in polynomial
time, then listing all maximal cliques is also possible to
achieve in its complement graph in polynomial time.)is
is not true in general. In particular, for unit disk graphs,
all maximal cliques can be listed in polynomial time
[14, 15]. However, this is not possible to achieve with its
complement graph which is no longer a unit disk graph.
In fact, finding the maximum independent set in a unit
disk graph has proved to be an NP-complete problem
even if a disk representation of the graph is given [16–18].
In general, listing all maximal cliques in polynomial time
can be achieved for sparse graphs [15, 19].)e latter can
be performed, for example, by using the Bron–Kerbosch
algorithm [14, 19].

We propose four compact polynomial formulations
based on classical and set covering p-Median models in
order to minimize the total connection cost distance

between facilities and between customers and facilities
simultaneously [10, 20, 21]. However, the tree to be formed
with S is modelled with Miller–Tucker–Zemlin (MTZ) and
path orienteering constraints, respectively [22, 23]. Notice
that path orienteering constraints have been recently
proposed in [23] to avoid cycles in trees. Subsequently, we
further strengthen the MILP models by adding clique valid
inequalities which we obtain in polynomial time using the
Bron–Kerbosch algorithm [14, 15]. Notice that the fact that
we can list all maximal cliques in unit disk graphs allows us
to strengthen our proposed models in a straightforward
manner, leading to tight gaps when compared to the
optimal solutions. Finally, we propose Kruskal-based
heuristics and metaheuristics adapted from a greedy ap-
proach proposed for the maximum independent set
problem [24, 25].)e greedy algorithm mainly consists of
selecting the vertex of minimum (or maximum) degree of
G and removing it together with its neighbors from the
graph, and it iterates on this process on the remaining
graph until no vertex remains. Notice that the output of
this greedy algorithm always results in a maximal in-
dependent set. In particular, the metaheuristics are con-
structed based on guided local search and simulated
annealing strategies [26–29]. As far as we know, placing
facilities at a certain radial distance using independent sets
on unit disk graphs and with tree backbone representa-
tions have never been considered in the literature before.
Similarly, the solution methods are new to the proposed
models.

)e paper is organized as follows: In Section 2, we
review some related works.)en, in Section 3, we in-
troduce the mathematical formulations together with their
strengthened versions and present two examples of feasible
solutions for the problem. In Section 4, we present our
proposed heuristics and metaheuristics. Subsequently, in
Section 5, we conduct substantial numerical experiments
in order to compare all the proposed models and algo-
rithms. Finally, in Section 6, we give the main conclusions
of the paper and provide some insights into future
research.

2. Related Work

Facility location dates back to the well-known Fermat
point problem which consists of finding a point such that
the total distance to three other points in an Euclidean
plane is minimized.)is problem was originally proposed
by Pierre de Fermat and later solved by Evangelista
Torricelli [4, 6]. Today, its extended version is known as
the Geometric Median Problem and it is considered as a
continuous facility location problem [1, 2]. Discrete fa-
cility location has also been considered as a major research
topic since several decades ago [3, 5], and in particular, the
distance requirement between facilities or between fa-
cilities and demand points has been recognized as a key
decision factor. For instance, in [5], the authors illustrate
and highlight the distance requirement with several real-
life applications.)eir examples include distribution
systems where transshipment among stocking points are

2 Complexity

of significant size, locating emergency facilities such as
ambulance stations and fire fighting units with respect to
population centers, gasoline stations, fast food restau-
rants, and spacing between wireless radio base stations,
construction of nuclear power plants or missile silos
nearby, and dump sites for chemical waste or collected
refuse, to name a few.

For a more general and deep review related with facility
location topic, the reader is referred to [1–6, 30–32] and
references therein. In particular, Farahani et al. [3] present a
recent survey related with distance covering location
problems together with a comprehensive review of models,
solution approaches, and applications where it also high-
lights the importance of the distance factor required when
designing facility networks.

Hereafter, we briefly discuss some works where the
authors propose models which are closer to ours. Perhaps,
a first model that is worth mentioning is the covering tour
problem [33].)is problem consists of determining a
minimum length Hamiltonian cycle which has to be
formed with a subset of nodes from a larger set of nodes V
such that every vertex of an another set W, that must be
covered, is within a specified distance from the cycle.)is
problem is similar in nature to our problem in the sense
that it requires to form a backbone network topology with
a subset of facilities. In order to solve this problem, the
authors proposed an exact branch and cut algorithm and a
heuristic. Similarly, covering location problems related
with paths and trees are proposed in [34], where the fa-
cilities are assumed to be small in size in proportion to
their location regions which is the case of subway metro
stations and highways for example and where the aim is to
find a path through the facility network of minimum
length such that the population coverage is maximized. In
[34], the authors develop Lagrangian solution approaches
to solve their models.)e maximal covering location
problem (MCLP) is also worth mentioning where the
objective is to maximize the amount of demand covered
within an acceptable service distance by locating a fixed
number of new facilities [35].)e problem is solved with
linear programming relaxations and branch and bound
techniques as well. Variants of MCLP are also presented
and discussed in [3].

)e indirect covering tree problem proposed in [36]
represents another approach which is similar in nature to
our facility location problem.)ere, it is assumed that a
given backbone spanning tree network is given a priori,
and then, two optimization problems are derived, namely,
the minimum cost covering subtree and the maximal
indirect covering subtree problems. In the former, the
aim is to find the minimum cost collection of arcs that
form a subtree and satisfy covering constraints for nodes
of the network, whereas in the latter, the subtree maxi-
mizes the demand within a given distance of nodes of the
subtree. Reduction techniques that were initially pro-
posed to solve the location set covering problem are
extended by the authors to solve these new problems.
More variants of these problems are also explained and
discussed in [3, 36].

In [37], the authors study two continuous facility
location problems.)e first one consists of placing a
fixed number of unit disks in an area in order to max-
imize the total weight of the points inside the union of
the disks, whilst the second one deals with placing a
single disk with center in a given constant region in order
to minimize the total weight of the points inside the disk.
)e authors propose approximation algorithms to obtain
solutions for these problems. Similarly, the authors in
[12] deal with a continuous facility location problem
while including backbone connectivity together with
their related costs. In particular, the objective here is to
minimize the weighted sum of three costs, namely, the
fixed costs required to install facilities, the backbone
network costs required to connect facilities, and the
transportation costs incurred from providing services
from the facilities to the service region.)e authors
analyze the behaviour of their proposed model and de-
rive two asymptotically optimal configurations of facil-
ities. Finally, they give a fast constant factor
approximation algorithm which allows us to find the
placement of a set of facilities in a convex polygon that
minimizes the total sum of the costs. We note that the
authors also highlight the importance of considering
connectivity among facilities in this reference. Finally, in
the domain of telecommunications, some related works,
although not so similar, can be consulted for instance in
references [30–32].

3. Description of the Problem and
Mathematical Formulations

In this section, we first describe the facility location problem
we are dealing with. For this purpose, we present and explain
two feasible solutions of the problem for different radial
coverage values. Subsequently, we present our MILP
formulations.

3.1. Description of the Problem. Consider the undirected
graphs Gd � (V, Ed) and Gc � (V, Ec) as defined in Section
1. Notice that Ec contains the edges obtained with all pairs of
nodes v1 and v2 in V, (v1 ≠ v2) as Gc is complete. However,
Ed is composed of the edges obtained with all pairs of nodes
v1 and v2 in V, (v1 ≠ v2) which are located at a radial distance
lower than or equal to d.)e facility location problem we are
dealing with consists of finding a subset of facilities S⊆V
such that S is an independent set of Gd and a tree backbone
of Gc and where each user in the set K is assigned to its
nearest facility in S, thus minimizing the total distance costs
between facilities and users and among facilities themselves.
Notice that S does not necessarily need to be a maximal
independent set.

In Figure 1, we plot two examples of input disk graphs
with |V| � 30 nodes within an area of one square km
using radial coverage values of 0.2 and 0.5 km, re-
spectively. More precisely, on the left, we plot each input
disk graph Gd and the independent set obtained from Gd.
Nodes in S are colored green. However, on the right, we

Complexity 3

plot the spanning tree backbone formed with nodes in S. Users
are omitted for the sake of clarity. In particular, notice that, for
an input graph Gd with low density, the cardinality of S should
be higher. On the opposite, if the density of Gd is high, the
cardinality of S should be smaller. By density, we refer to the
ratio obtained by dividing the number of edges of Ed over the
total number of edges of Ec.

3.2. MILP Formulations. In order to write a first compact
polynomial formulation for the facility location problem
described in Section 3.1, we first define set
Ac � (i, j), (j, i)/ i, j􏼈 􏼉 ∈ Ec􏼈 􏼉 as the set of directed arcs
obtained from edges in Ec and H � (V,Ac) as the
digraph obtained from Gc. Next, we define the binary
variables:

xkj �
1, if user k ∈ K is connected to facility j ∈ S⊆V,

0, otherwise,

⎧⎨
⎩

zij �
1, if the arc(i, j) ∈ Ac, i, j ∈ S⊆V is part of the tree backbone,

0, otherwise,

⎧⎨
⎩

yj �
1, if facility j ∈ V belongs to S⊆V,

0, otherwise.

⎧⎨
⎩

(1)

)us, a MILP model can be verified by means of the
following proposition.

Proposition 1. The linear model P1 allows us to obtain
a feasible solution with minimum cost for the

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

(d)

Figure 1: Input graphs and feasible solutions obtained for an instance with |V| � 30 nodes and |K| � 50 users using radial coverage values of
0.2 and 0.5 km: (a) independent set using 0.2 km; (b) minimum spanning tree backbone using 0.2 km; (c) independent set using 0.5 km; (d)
minimum spanning tree backbone using 0.5 km.

4 Complexity

facility location problem while satisfying the following
conditions:

(i) All users in K are assigned to facilities in S.

(ii) Subset S⊆V forms an independent set (not neces-
sarily maximal) from Gd.

(iii) Subset S⊆V forms a tree backbone T � (S, Ec(T))
from Gc where Ec(T)⊆Ec is the set of edges spanned
by T where |Ec(T)| � |S| − 1:

P1: min
x,y,z,u{ }

􏽘
k∈K
􏽘
j∈V
Ckjxkj +􏽘

i∈V
􏽘
j∈V
(i≠j)

Dijzij,
(2)

s.t. 􏽘
j∈V
xkj � 1, ∀k ∈ K,

(3)

xkj ≤yj, ∀k ∈ K, j ∈ V, (4)

yi + yj ≤ 1, ∀ i, j􏼈 􏼉 ∈ Ed, (5)

􏽘
i,j∈V
(i≠j)

zij � 􏽘
j∈V
yj − 1,

(6)

ui − uj ≥ 1 − |V| 1 − zji􏼐 􏼑, ∀i, j ∈ V, (i≠ j),
(7)

uj ≤ |V|yj, ∀j ∈ V, (8)

uj ≥yj, ∀j ∈ V, (9)

􏽘
i,j∈V
(i≠j)

zij ≤yj, ∀j ∈ V,
(10)

􏽘
i∈V
(i≠j)

zij + 􏽘
i∈V
(i≠j)

zji ≤ (|V| − 1)yj, ∀j ∈ V,
(11)

xkj, yj, zij ∈ 0, 1{ }, ∀k ∈ K, i, j ∈ V. (12)

Proof. To prove (i) and (ii), we focus on explaining how
the set of constraints in P1 together with its objective
function imply each of the assertions. For this purpose,
we define the input matrices C � (Ckj) and D � (Dij),
∀k ∈ K, i, j ∈ V (i≠ j), to be the distances between user k
and facility j and between facilities i and j, respectively. In
particular, we require matrix D � (Dij) to be symmetric.
)us, the total distance is minimized in (2). It is easy to
see from the objective function (2) that the first double
sum will be less expensive when the cardinality of S,
which can be computed by |S| � 􏽐j∈Vyj, is larger.

However, the second term will be cheaper when the
cardinality of S is smaller. Consequently, we seek for a
tradeoff between these two terms leading to an optimal
number of facilities in S which can be obtained by solving
P1. Notice that S is composed of the nodes j ∈ V for which
the binary variable yj � 1. Constraints (3) ensure that
each user is connected to a unique facility, whilst con-
straints (4) ensure that a user is connected to a facility
node that belongs to S. Next, constraints (5) are in-
dependent set constraints and ensure that no two adja-
cent facilities in V can belong to S according to Ed.
Furthermore, note that S is not conditioned to be a
maximal independent set.

To prove condition (iii), we show that any feasible
solution (x, y, z, u) of P1 is an acyclic connected arbores-
cence of H � (V,Ac). First, notice that the constraint (6)
imposes the condition that any tree formed with nodes in S
contains exactly |S| − 1 arcs. However, the constraints (10)
ensure that the number of arcs entering node j ∈ V is at
most one if and only if yj � 1. Similarly, the constraints (11)
ensure that the number of incoming and outgoing arcs in
node j ∈ V can be at most |V| − 1 if and only if yj � 1.
Otherwise, if yj � 0, then the binary variables zij � zji � 0,
∀i, j ∈ V (i≠ j). Finally, the constraints (7)–(9) together
with the constraints (6) and (10) avoid cycles. To see how
these constraints avoid cycles, let us assume that the subset
S � v1, v2, . . . , v|S|􏽮 􏽯⊆V is solution to P1.)en, the con-
straints (7) imply that uv1

+ 1≤ uv2
, uv2

+ 1≤ uv3
, . . . , uv|S|− 1

+

1≤ uv|S|, uv|S| + 1≤ uv1
since 1≤ uj ≤ |S|, ∀j ∈ S. In turn, this

implies that uv1
< uv2
< uv3
< . . . < uv|S|− 1

< uv|S| < uv1
which

cannot hold. Notice that, in general, the contradiction holds
for any subset of nodes of S which implies that the digraph
induced by z � (zij) cannot contain directed cycles. Fur-
thermore, notice that constraints (7) do not consider the
particular case when an arc is in the opposite direction in the
sequence (v1, v2), (v2, v3), . . . , (vj, v1) for some j ∈ S.)is
particular case is avoided by means of the constraints (6) and
(10), which finally ensure that the digraph is connected with
|S| − 1 directed arcs while avoiding the fact that a particular
node has more than one incoming arc. Consequently, by
dropping the directions of each arc, we obtain an undirected
tree topology. Recall that the cost distance matrix D � (Dij)

∀i, j ∈ V, (i≠ j), is symmetric. Finally, the constraints (12)
limit the domain of the decision variables, thus concluding
the proof. □

Notice that P1 is constructed based on a classical for-
mulation of the p-Median problem and a directed Miller–
Tucker–Zemlin characterization of the spanning tree poly-
tope [10, 21, 22].

Regarding the complexity of the facility location problem
associated with P1, we outline the following theorem.

Theorem 1. ;e facility location problem associated with P1

is NP-hard.

Proof. To see this, let us consider the following weighted
version of the objective function (2) as

Complexity 5

(2 − α)􏽘
k∈K
􏽘
j∈V
Ckjxkj + α􏽘

i∈V
􏽘
j∈V
(i≠j)

Dijzij,

(13)

where 0≤ α≤ 2. In particular, when α � 0, any spanning tree
will be feasible for P1 at zero cost for the objective function of
the problem. Consequently, in this case, P1 can be equiv-
alently written as the following optimization problem:

Pα
1: min

x,y{ }
2 􏽘
k∈K
􏽘
j∈V
Ckjxkj +M 􏽘

i,j{ }∈Ed

yiyj,

s.t. 􏽘
j∈V
xkj � 1, ∀k ∈ K,

xkj ≤yj, ∀k ∈ K, j ∈ V,
xkj, yj ∈ 0, 1{ }, ∀k ∈ K, j ∈ V,

(14)

where the second quadratic sum in (14) is due to an
equivalent form of writing independent set constraints [38].
For this purpose, parameter M should be a nonnegative
real value such that M> 2􏽐k∈K􏽐j∈VCkj. In general, notice
that any independent set S implies 􏽐 i,j{ }∈Edyiyj � 0. Con-
sequently, it is easy to see that Pα

1 is a quadratic version of the
classical uncapacitated facility location problem which is
NP-hard [39].

Subsequently, when 0≤ α< 2, we aim to solve Pα
1 with the

implicit requirement that the number of facilities must be
between 1≤􏽐j∈Vyj ≤ β(Gd), where β(Gd) denotes the
cardinality of the maximum independent set of Gd. Con-
sequently, in this case, the problem is equivalent to finding a
minimum spanning tree with variable number of nodes in an
arbitrary graph which is also known to be an NP-hard
optimization problem by reduction from the Steiner tree
problem [40]. Finally, when α � 2, the objective function
(13) equals zero and the solution can be found trivially in
linear time. In this case, the cardinality of the optimal so-
lution set S∗ will be equal to one and all users will be assigned
to this unique facility node. Obviously, the tree obtained in
this case does not contain any edge, and hence, its objective
value equals zero as well. □

Notice that, in particular, the objective function of P1 is
obtained with α � 1 which is set by default.)e reason
behind this is that we minimize the total cost distances with
fair degree of importance for both users and facilities.
However, below in the numerical result section, we further
consider the more general case for values of α ∈ [0; 2] which
reflects different cost structures.

An alternative formulation of P1 can be obtained by
removing constraints (7) and (9) together with the decision
variables uj for each j ∈ V and by introducing the non-
negative precedence variables pij for all i, j ∈ V (i≠ j).
Precedence variables are used to indicate if there exists a
direct path from i to j. If such a path exists, then pij � 1;
otherwise, pij � 0. Notice that precedence variables have
recently been introduced in order to deal with subtour
elimination constraints in combinatorial optimization
problems defined under a tree topology structure [23].)us,
an equivalent MILP model can be written as

P2: min
x,y,z,p{ }

􏽘
k∈K
􏽘
j∈V
Ckjxkj +􏽘

i∈V
􏽘
j∈V
(i≠j)

Dijzij,

s.t. 􏽘
j∈V
xkj � 1, ∀k ∈ K,

xkj ≤yj, ∀k ∈ K, j ∈ V,

yi + yj ≤ 1, ∀ i, j􏼈 􏼉 ∈ Ed,
􏽘
i,j∈V
(i≠j)

zij � 􏽘
j∈V
yj − 1,

(15)

zij ≤pij, ∀i, j ∈ V, (i≠ j), (16)

pij + pji ≤ 1, ∀i, j ∈ V, (i≠ j), (17)

pij + zjk ≤ 1 + pik, ∀j, k ∈ V,
(j≠ k), i ∈ V − j, k􏼈 􏼉, (18)

pik + zjk ≤ 1 + pij, ∀j, k ∈ V,
(j≠ k), i ∈ V − j, k􏼈 􏼉, (19)

􏽘
i∈V
(i≠j)

zij ≤yj, ∀j ∈ V,
(20)

􏽘
i∈V
(i≠j)

zij + 􏽘
i∈V
(i≠j)

zji ≤ (|V| − 1)yj, ∀j ∈ V,

(21)

xkj, yj, zij ∈ 0, 1{ }, ∀k ∈ K, i, j ∈ V,
pij ≥ 0, ∀i, j ∈ V, (i≠ j).

(22)

Constraints (16) state that if there is a path from i to j, for
all i, j ∈ V (i≠ j) that belongs to the solution, then a direct
path going from i to j must exist. Similarly, constraints (17)
ensure that there should be at most one path either from i to j
or from j to i for all i, j ∈ V, (i≠ j). Finally, constraints (18)
and (19) ensure that if there is a direct path from i to j and the
arc path j to k belongs to the solution, then both path
variables Pij and Pik must be equal.

Notice that both P1 and P2 are formulated based on a
classical formulation of the p-Median problem while using
MTZ and path orienteering constraints, respectively. Next,
we present two formulations which are based on a set cover
formulation of the p-Median problem [20, 41] together with
MTZ and path orienteering constraints as well. We denote
these two models hereafter by P3 and P4, respectively. In
order to write a first model under this approach, we first
construct for each k ∈ K, the vectors
Cok � (C

o
k1, C

o
k2, . . . , C

o
k|V|) by sorting in the ascending order

6 Complexity

the different entries of each k-th row of the original cost matrix
C � (Ckj) in (2) in such a way that Cok1 � 0 and
Cok|V| � max Ck,j, j ∈ V􏽮 􏽯. Since the first entry in each row of
these vectors equals zero, we need to introduce an artificial
facility node labeled as “1” hereafter. Also, we need to expand
the input graphsGd andGc with this additional node.)us, we
expand sets V, Ed, and Ec and denote them by Vo, Eod, and Eoc ,
respectively. Since the artificial node has to be excluded from
the solution of the problem, the extra edges added to Eod andEoc
are irrelevant for the solution of the problem. Similarly, we
construct a new matrix Do � (Do

ij), ∀i, j ∈ Vo (i≠ j), by
adding to D an additional row and a column in position one
with zero entries. Consequently, a first set covering-based
formulation using MTZ constraints can be written as

P3: min
x,y,u,z{ }

􏽘
k∈K

􏽘
j∈Vo
(j>1)

Cokj − C
o
k,j− 1􏼐 􏼑xkj + 􏽘

i∈Vo
􏽘
j∈Vo
(i≠j)

Do
ijzij,

(23)

s.t. xkj + 􏽘
i∈Vo

􏼈Cki<Cokj􏼉

yi ≥ 1, ∀k ∈ K, j ∈ Vo, (j> 1),

(24)

y1 � 0,

yi + yj ≤ 1, ∀ i, j􏼈 􏼉 ∈ Eod,
􏽘
i,j∈Vo
(i≠j)

zij � 􏽘
j∈Vo

yj − 1,

ui − uj ≥ 1 − |V| 1 − zji􏼐 􏼑, ∀i, j ∈ Vo, (i≠ j),
uj ≤ |V|yj, ∀j ∈ Vo,
uj ≥yj, ∀j ∈ Vo,
􏽘
i∈Vo
(i≠j)

zij ≤yj, ∀j ∈ Vo,

􏽘
i∈Vo
(i≠j)

zij + 􏽘
i∈Vo
(i≠j)

zji ≤ (|V| − 1)yj, ∀j ∈ Vo,

xkj, yj, zij ∈ 0, 1{ }, ∀k ∈ K, i, j ∈ Vo.
(25)

In P3, notice that the binary variable xkj for each k ∈ K,
j ∈ Vo, acts as a cumulative variable where xkj � 1 if and
only if the allocation cost distance of user k is at least Cokj and
xkj � 0 otherwise. For this purpose, the set covering con-
straints (24) ensure that variable xkj � 1 if there is no open
facility at less than distance Cokj.)e positive coefficients of
the first double sum in the objective function (23) ensure
that variable xkj � 0 otherwise. Next, the constraint (25)
ensures that node “1” is excluded from the solution of the
problem. Finally, all remaining constraints have the same
effect as for P1. Analogously as for P2, we propose the
following MILP formulation using path orienteering
constraints:

P4: min
x,y,z,p{ }

􏽘
k∈K

􏽘
j∈Vo

(j>1)

Cokj − C
o
k,j− 1􏼐 􏼑xkj + 􏽘

i∈Vo
􏽘
j∈Vo

(i≠j)

Do
ijzij,

s.t. xkj + 􏽘
i∈Vo

Cki<Cokj􏽮 􏽯

yi ≥ 1, ∀k ∈ K, j ∈ Vo, (j> 1),

y1 � 0,

yi + yj ≤ 1, ∀ i, j􏼈 􏼉 ∈ Eod,
􏽘
i,j∈Vo

(i≠j)

zij � 􏽘
j∈Vo

yj − 1,

zij ≤pij, ∀i, j ∈ Vo, (i≠ j),
pij + pji ≤ 1, ∀i, j ∈ Vo, (i≠ j),
pij + zjk ≤ 1 + pik, ∀j, k ∈ Vo, (j≠ k), i ∈ Vo − j, k􏼈 􏼉,
pik + zjk ≤ 1 + pij, ∀j, k ∈ Vo, (j≠ k), i ∈ Vo − j, k􏼈 􏼉,
􏽘
i∈Vo
(i≠j)

zij ≤yj, ∀j ∈ Vo,

􏽘
i∈Vo
(i≠j)

zij + 􏽘
i∈Vo
(i≠j)

zji ≤ (|V| − 1)yj, ∀j ∈ Vo,

xkj, yj, zij ∈ 0, 1{ }, ∀k ∈ K, i, j ∈ Vo,
pij ≥ 0, ∀i, j ∈ Vo, (i≠ j).

(26)
Ultimately, we derive strengthened versions for each of

the proposed models and denote them hereafter by Ps1, Ps2,
Ps3, and Ps4, respectively. In particular, from the MTZ
constrained models, we remove constraints (5), (7), and (11)
and replace them by the following sets of constraints:

􏽘
j∈V

MC(q, j)yj ≤ 1, ∀q ∈ Q,
(27)

ui − uj +(|V| − 1)zij +(|V| − 3)zji ≤ |V| − 2,

∀i, j ∈ V, (i≠ j),
(28)

zij ≤yj, ∀i, j ∈ V, (i≠ j),
(29)

zji ≤yj, ∀i, j ∈ V, (i≠ j),
(30)

where the constraints (27) avoid cliques in the solution set S.
For this purpose, we define the set Q containing all maximal
cliques of Gd. Recall that, in practice, all cliques can be ob-
tained in polynomial time as Gd is a unit disk graph [14, 15].
Consequently, each row in the binary matrix MC(q, ·) cor-
responds to a maximal clique q ∈ Q. Constraints (28) are valid
cuts obtained from constraints (7) and adapted for the
spanning tree polytope [10, 22]. Finally, constraints (29) and
(30) are valid cuts for the constraints (11) [11].

From the path orienteering-based models, we only
remove constraints (5) and (11), and replace them with (27)

Complexity 7

and (29) and (30), respectively. Hereafter, we denote the
linear programming (LP) relaxations of P1, P2, P3, P4, Ps1,
Ps2, Ps3, and Ps4 by LP1, LP2, LP3, LP4, LPs1, LPs2, LPs3, and LPs4,
respectively. □

4. Algorithms

In this section, we propose Kruskal-based heuristics and
metaheuristics which are adapted from a greedy approach
initially proposed for the maximum independent set
problem [25]. In particular, the metaheuristics are con-
structed based on guided local search and simulated
annealing greedy strategies [26–29].

4.1.Heuristic Approach.)ree variants of the same heuristic
are proposed.)e only difference between them relies on the
greedy decision of adding new nodes to S at each iteration.
)us, we only present the first one referred to as GMIN in
Algorithm 1 and explain the other ones based on these steps.
)e heuristic requires the input matrices C � (Ckj),
D � (Dij), k ∈ K, i, j ∈ V, (i≠ j), and the input disk graph
Gd � (V, Ed).)en, for each vertex v ∈ V, the following
steps are performed.)e set S is initialized as an empty set,
and W is assigned set V.)e set W is used as an auxiliary set.
Next, v is added to S, and it is removed from W together with
its neighbors. Subsequently, we obtain the minimum
spanning tree with nodes in S using the Kruskal algorithm
and assign each user k ∈ K to its nearest facility in S. Finally,
we compute the objective function value of P1 and save the
current solution if its objective value is less than the best
found so far. Initially, the objective value is set to infinity.
)en, in Step 2, we enter into a while loop and iterate until
Gd � (W,Ed(W)) is empty, where Ed(W) denotes the set of
edges in Ed induced by remaining nodes in W. Inside the
while loop, we proceed similarly by selecting a new vertex
v ∈W with minimum or maximum degree to be added to S
or by interchanging between minimum and maximum
degrees.)is is the greedy decision which differentiates
remaining variants of Algorithm 1. Hereafter, we denote the
three heuristics by GMIN, GMAX, and IC, respectively.
Finally, Algorithm 1 returns the best solution found and its
objective function value.

4.2. Guided Local Search Approach.)e first metaheuristic
we propose is based on a guided local search strategy and
requires the same input parameters of Algorithm 1 [29]. Its
pseudocode is presented in Algorithm 2, and it is explained
as follows. In Step 1, first we set W � V and S � ∅, and
iterate while Gd � (W,Ed(W)) is not empty.)e following
steps are performed inside the loop. First, we remove the
node with minimum degree v from W and add it to S.)en,
we remove all neighbors of v from W and find the minimum
spanning tree with current nodes in S using the Kruskal
algorithm. Finally, we assign each user k ∈ K to its nearest
facility in S, compute the objective function value of P1, and
save S∗ � S if the objective value is less than the best found so
far. Similarly, in Step 2, we enter into a second, while loop

and iterate until the CPU time is greater than or equal to
maxCPU which is an input parameter. Inside this loop, we
penalize each value in vector Deg(S∗) corresponding to each
node in S∗ by adding a random number uniformly dis-
tributed in (0, ρ). Initially, Deg(v) contains the degree of
each node v ∈ V. Notice that this step acts as a guided local
search strategy, and its main purpose is to avoid repeated
nodes in the new solutions generated by the algorithm.)en,
we reset S � ∅ andW � V and construct a new independent
set S from Gd � (W,Ed(W)) with cardinality less than or
equal to R. Observe that, in this case, S is constructed without
evaluating the objective function each time a new vertex is
added to S. Once set S is constructed, we proceed to find the
minimum spanning tree formed with nodes in S using the
Kruskal algorithm, assign each user k ∈ K to its nearest
facility in S, and compute the objective function value of P1.
If this value is less than the best found so far, we update
S∗ � S and reset the current CPU time to zero. Finally, we
randomly generate a value c ∈ − 1, 0, 1{ } in order to decrease,
maintain, or increase, respectively, the cardinality of the next
independent set to be generated by the algorithm starting
from |S∗|. Notice that Algorithm 2 updates degree values in
Deg(·) according to new and better solutions obtained
following a simple local search rule in contrast to classical
guided local search metaheuristics which use augmented
objective functions in order to perform the local search [29].

4.3. Simulated Annealing Approach. Next, we further con-
sider another metaheuristic approach based on a simulated
annealing (SA) greedy strategy. SA is a classical meta-
heuristic which was proved to be highly efficient when
finding near-optimal solutions for hard combinatorial op-
timization problems [26–28]. SA randomly searches for
ascent moves in order to escape from local minima and to
find global optimal solutions. It is basically inspired on the
annealing process of a material in metallurgy and consists of
heating and cooling steps which must be controlled in such a
way that certain equilibrium is reached in terms of tem-
perature. In particular, the cooling step is analog to a slow
decrease in the probability of accepting worse solutions in
order to allow a major degree of diversity while performing
the search process.)e underlying idea in the SA algorithm
is simple and can be described as follows. First, SA requires
an initial feasible solution to start. Next, it randomly gen-
erates a neighbor solution. If this neighbor solution is better
than the best found so far, it is accepted as a new best so-
lution. Otherwise, SA allows us to move to a worse solution
with a certain probability. In fact, this is the key ingredient
that allows us to escape from local minima. In general, the
probability of moving to a new solution is determined by
Boltzmann distribution while varying the temperature
which is gradually decreased. Initially, it is high enough to
allow a high degree of diversity since probabilities are close
to one. However, small temperature values allow proba-
bilities to go down to zero which is equivalent to a pure local
search method.)e SA procedure we propose is depicted in
Algorithm 3, and it is explained as follows. It requires the
same parameters used by Algorithms 1 and 2. Initially, the

8 Complexity

temperature T0 is set to a large positive value Ti. Inside the
while loop of Step 2, we set S � ∅ and W � V, and for each
v ∈ S∗, which is obtained in step one, we pick randomly a
number from [0, 1] and compare it with the input parameter
η which is arbitrarily chosen from the interval [0, 1] as well.

If the random number is less than η, then we include node
v ∈ S∗ in the new independent set S and remove from W
node v and its neighbors. Otherwise, we skip node v and
continue.)is allows us to keep an η percentage of nodes in
S∗. Next, we start a while loop in order to add new nodes in

Data: input matrices C � (Ckj) and D � (Dij) and input graph Gd � (V, Ed).
Result: a feasible solution for P1.
for each v ∈ V do
Step 1:;
Set S � ∅, W � V;
S � S∪ v{ }, W �W∖ v{ };
Remove all neighbors of v from W;
Find the minimum spanning tree formed with nodes in S using the Kruskal algorithm;
Assign each user k ∈ K to its nearest facility in S and compute the objective function value of P1;
Save the current solution found if its objective function value is less than the best found so far;
Step 2:;
while (Gd � (W,Ed(W)) is not empty) do

Let v be the vertex with minimum degree in Gd � (W,Ed(W));
S � S∪ v{ }, W �W∖ v{ };
Remove all neighbors of v from W;
Find the minimum spanning tree formed with nodes in S using the Kruskal algorithm;
Assign each user k ∈ K to its nearest facility in S and compute the objective function value of P1;
Save the current solution found if its objective function value is less than the best found so far;

Return the best solution found and its objective function value;

ALGORITHM 1: Proposed heuristics.

Data: input matrices C � (Ckj) and D � (Dij) and input graph Gd � (V, Ed).
Result: a feasible solution for P1.
Step 1:;
Set S � ∅ and W � V;
while (Gd � (W,Ed(W)) is not empty) do

Let v be the vertex with minimum degree in Gd � (W,Ed(W));
S � S∪ v{ } and W �W∖ v{ };
Remove all neighbors of v from W;
Find the minimum spanning tree formed with nodes in S using the Kruskal algorithm;
Assign each user k ∈ K to its nearest facility in S and compute the objective function value of P1;
Save the current solution found in S∗ if its objective function value is less than the best found so far;

R � |S∗|;
Step 2:;
while (cpuTime≤maxCPU) do

Update degree vector Deg(·) according to the indices of each element in S∗ as Deg(S∗) � Deg(S∗) + (0, ρ);
Set S � ∅ and W � V;
while (Gd � (W,Ed(W)) is not empty and (|S|<R)) do

Let v be the vertex with minimum value in Deg(W);
S � S∪ v{ } and W �W∖ v{ };
Remove all neighbors of v from W;

Find the minimum spanning tree formed with nodes in S using the Kruskal algorithm;
Assign each user k ∈ K to its nearest facility in S and compute the objective function value of P1;
Save the current solution found in S∗ if its objective function value is less than the best found so far. If a better solution is found, set
cpuTime � 0; R � |S∗|;
If (|S∗| � 1) then
R � |S∗| + |c|;

else
R � |S∗| + c;

Return best solution found and its objective function value;

ALGORITHM 2: Guided local search-based metaheuristics.

Complexity 9

the solution until Gd � (W,Ed(W)) is empty or |S| � R.
Added nodes are chosen randomly from remaining nodes in
W. Subsequently, we find the minimum spanning tree with
nodes in S, assign each user k ∈ K to its nearest facility in S,
and compute the objective function value of P1. If a better
solution is found, we save this new solution in S∗∗ and set
S∗ � S∗∗ and the current CPU time to zero in order to extend
the duration of the algorithm. Otherwise, we compute the
variable Δ as the difference between the current objective
function value minus the previous one, generate a random
number r from [0, 1], and compute the probability
p � exp(− Δ/T0). If r is less than p, we accept the new so-
lution and save it in S∗; else, we set S∗ � S∗∗. Notice that the
value of Δ will be positive when the objective value of the
current solution is greater than the previous one, i.e., when
the new solution is worse. In particular, when the initial
temperature T0 is large enough and the difference in Δ is
low, the probability p will be close to one. On the opposite,
when temperature values decrease and Δ is positive, the
probability p will be close to zero and the algorithm will
behave as a pure random local search algorithm.)e next
lines inside the while loop of Step 2 ensures that T0 decreases
at a δ rate.)en, we check if T0 < ϵwhere ϵ is a small positive
value. If so, we reset T0 � Ti and allow the algorithm to
interchange between exploration and exploitation more
frequently during the process. Finally, we randomly generate
a value c ∈ − 1, 0, 1{ } to decrease, maintain, or increase,
respectively, the size of the next independent set to be
generated by the algorithm. Notice that the value of T0 is of
critical importance to handle efficiently the algorithm. If T0

decreases rapidly, then a premature convergence to a local
minimum may occur. On the opposite, if T0 decreases
slowly, then the algorithm will converge slowly as well. In
order to guarantee that the algorithm converges to global
optimal solutions with probability one, T0 should be de-
creased at the logarithmic rate [42]. However, this can lead
to poor convergence rates, so in practical settings, one is
usually forced to decrease T0(t) at iteration t by T0(t) �
δ ∗T0(t − 1) where 0.85≤ δ ≤ 0.96 [43].

5. Numerical Experiments

In this section, we perform substantial numerical experi-
ments in order to compare all the proposed models and
algorithms. For this purpose, we randomly generate con-
nected Euclidean disk graph instances. More precisely,
nodes are uniformly distributed in a plane within an area of
one square kilometer, and each pair of nodes is connected if
the distance of the edge connecting them is less than or equal
to the predefined radial coverage. However, the complete
version is obtained by connecting all pairs of nodes. Con-
sequently, each entry in the input matrices C � (Ckj) and
D � (Dij) for all k ∈ K, i, j ∈ V, represents the distance
between user k and facility j and distance between facilities i
and j, (i≠ j), respectively. Matrix D is symmetric. We
generate two sets of instances with dimensions of |K| �
500, 600, 700, 800, 1000{ } users and |V| � 50, 100, 200, 300{ }

facility nodes for radial coverage values of 0.2 and 0.5 km.
Each set is composed of 20 instances.)en, we further

generate two larger sets of instances with dimensions of
|K| � 1000, 1200, 1300, 1400, 1500{ } users and |V| � 500,{

700, 1000} nodes for both radial coverage values of 0.2 and
0.5 km as well.)e larger sets are composed of 15 instances
each one and are only solved with the proposed algorithms
since the linear models cannot be solved with CPLEX due to
shortage of memory [44]. In order to solve the strengthened
versions of each MILP model, we find all cliques for each
disk graph using the Bron–Kerbosch algorithm [14, 19].

We implement a Matlab program using CPLEX 12.8 to
solve all the proposed models P1, Ps1, LP1, LPs1, P2, Ps2, LP2,
LPs2, P3, Ps3, LP3, LPs3, P4, Ps4, LP4, and LPs4 [44].)e
proposed algorithms GMIN, GMAX, IC, GL, and SA are
also implemented in Matlab, where GL refers to Algo-
rithm 2 and SA refers to Algorithm 3, respectively.)e
parameters in Algorithms 2 and 3 are calibrated to
maxCPU � 100 s, η � 0.5, δ � 0.85, ϵ � 10− 4, Ti � 1000, and
c ∈ − 1, 0, 1{ }.)e numerical experiments have been carried
out on an Intel(R) 64 bits core (TM) with 3.40 GHz and 8
gigabytes of RAM.

5.1. Numerical Results for the Linear Models. In Tables 1–4,
we present numerical results for the linear models. In these
tables, we solve the first two sets of instances which use both
radial coverage values.)us, each row in each of these tables
corresponds to a particular instance. Notice that, in
Tables 2–4, we do not report numerical results for some of
the instances because the linear models cannot be solved
with CPLEX due to shortage of memory [44].)e column
information in these four tables is exactly the same with the
exception of Table 1 which includes four additional columns
with instance dimensions.)e information of each column
is described as follows. In column 1, we present the instance
number.)en, only in Table 1, columns 2–5 report the
number of users, the number of facility nodes, the density of
each input graph, and the number of optimal facilities
obtained with P1.)e density of each graph is computed by
dividing the number of edges of the input disk graph over
the total number of edges. Next, in columns 6–10 of Table 1,
which correspond to columns 2–6 in Tables 2–4, we present
the optimal solution or best solution found with CPLEX in
two hours for the MILP models, number of branch and
bound nodes, CPU time in seconds, optimal solutions for the
LP relaxations, and CPU time in seconds, respectively.
Similarly, in columns 11–15 of Table 1 which correspond to
columns 7–11 in Tables 2–4, respectively, we present the
same column information for the strengthened versions of
the MILP models. Finally, the last two columns in Tables 2–4
report gaps that we compute by ((Opt − OptLP)/Opt)∗ 100
where Opt refers to the optimal solution of each MILP model
and OptLP represents the optimal solution obtained with its
linear relaxation.

From Table 1, we observe that the density of the input
disk graphs increases with the radial coverage. On the op-
posite, we see that the number of optimal facilities obtained
with P1 is larger for the sparse graphs, which is obvious since
sparse graphs contain more independent sets than dense
graphs. In particular, we observe that, for the instances

10 Complexity

#16–#20, CPLEX cannot solve the MILP models to opti-
mality within two hours of CPU time using a radial coverage
of 0.2 km, which is also the case for the instances #17–#20
using a radial coverage of 0.5 km. All remaining instances are
solved to optimality. Next, we observe that sparse graphs are
harder to solve to optimality which is reflected in terms of
branch and bound nodes for example. In particular, these
values and the CPU times are lower for the strengthened
models. Regarding the optimal solutions obtained with the
LP relaxations, we see that these bounds are significantly
tighter for the strengthened models as well.)is can be
confirmed by the gap columns which show that the linear
relaxations are less than 6% for most of the instances when
compared to the optimal solutions. However, the CPU times
for the strengthened linear relaxations are considerably
higher.

In Table 2, first we observe that the optimal solutions
obtained with P2 and Ps2 are exactly the same as those
obtained with P1 and Ps1 in Table 1. In general, we observe

that path orienteering constraints decrease CPLEX perfor-
mance significantly. Consequently, we could only solve
instances #1–#10 in this case.)is observation is also valid
for the LP relaxations which require more CPU times than
for solving LP1 and LPs1, respectively. Regarding the number
of branch and bound nodes, we observe a slightly less
number of nodes required to solve the MILP models in
Table 2. Finally, we observe that the gaps are exactly the same
in both Tables 1 and 2.

In Tables 3 and 4, we report numerical results obtained
with P3, Ps3, P4, and Ps4, respectively. As it can be observed, in
these tables, we cannot solve more than 15 and 10 instances
with CPLEX in each table, respectively. From the obtained
results, we observe that the optimal solutions are the same as
in Tables 1 and 2. Similarly, we obtain the same gap values
for the LP bounds when compared to the optimal solutions.
In general, we observe that the strengthened models allow us
to obtain optimal solutions more rapidly and verify that path
orienteering constraints deteriorate CPLEX performance.

Data: input matrices C � (Ckj) and D � (Dij) and input graph Gd � (V, Ed).
Result: a feasible solution for P1.
Step 1:;
Set S � ∅ and W � V;
while loop as in Step 1 of Algorithm 2;
R � |S∗| and T0 � Ti;
Step 2:;
while (cpuTime≤maxCPU) do

Set S � ∅ and W � V;
for each (v ∈ S∗) do

Draw a random number r from [0, 1];
if (r< η) then
S � S∪ v{ } and W �W\ v{ };
Remove all neighbors of v from W;

while (Gd � (W,Ed(W)) is not empty and (|S|<R)) do
Chose a vertex v randomly from W;
S � S∪ v{ } and W �W\ v{ };
Remove all neighbors of v from W;

Find the minimum spanning tree formed with nodes in S using the Kruskal algorithm;
Assign each user k ∈ K to its nearest facility in S and compute the objective function value of P1;
if (A better solution is found) then

Save it in S∗∗ and set cpuTime � 0 and S∗ � S∗∗;
else

Compute Δ as the difference between the current objective value minus the previous one;
Draw a random number r from [0, 1];
Compute p � exp(− Δ/T0);
if (r<p) then

Accept the new solution and save it in S∗;
else
S∗ � S∗∗;

R � |S∗| and T0 � T0 ∗ δ;
if (T0 < ϵ) then

T0 � Ti;
if (|S∗| � 1) then
R � |S∗| + |c|;

else
R � |S∗| + c;

Return best solution found and its objective function value;

ALGORITHM 3: Simulated annealing-based metaheuristic.

Complexity 11

Finally, from the numerical results presented in Tables 1–4,
we conclude that model Ps1 outperforms the set covering
formulations. In general, we observe that MTZ constraints
seem to work better than path orienteering ones.

In Tables 5 and 6, for each input disk graph instance in
Table 1, we present the total number of maximal cliques,
maximum clique number, total number of maximal in-
dependent sets, and maximum independent set number,
respectively. We compute this information by using the
Bron–Kerbosch algorithm [14, 15]. Recall that the total
number of cliques can be obtained in polynomial time for
disk graphs. Consequently, the maximum clique number can
be obtained straightforwardly by selecting the maximal
clique with largest cardinality. However, the total number of
maximal independent sets can be obtained with the

Bron–Kerbosch algorithm listing all maximal cliques from
its complement graph Gd � (V, Ed), where Ed � Ec − Ed.
Notice that Gd is no longer a disk graph, and therefore, we
cannot expect to find all cliques in polynomial time in this
case. In fact, the total number of maximal independent sets
in an arbitrary graph with n nodes is of the order of O(3n/3)

[13]. Moreover, finding the maximum independent set is an
NP-hard optimization problem. Although it is a difficult task
to list all maximal independent sets, we still run the
Bron–Kerbosch algorithm for two hours in order to give
some insights with respect to the difficulty of doing this for
graph instances with different radial coverage values. As it
can be observed from Table 5, while using a radial coverage
of 0.2 km, we can find all maximal cliques. On the opposite,
we cannot list all maximal independent sets for any of the

Table 1: Numerical results for P1 and Ps1.

|K| |V| Den. |S∗| P1 B&Bn CPU (s) LP1 CPU (s) Ps1 B&Bn CPU (s) LPs1 CPU (s) Gap1(%) Gaps1(%)

Instances using radial coverage of 0.2 km
1 500 50 11.26 14 56.20 113 9.61 47.63 0.78 56.20 83 6.60 55.03 1.79 15.25 2.08
2 600 50 10.61 17 63.83 123 10.33 54.63 0.98 63.83 12 5.59 63.26 1.65 14.41 0.89
3 700 50 11.02 14 84.28 166 15.46 73.40 1.14 84.28 13 8.44 83.15 2.64 12.91 1.35
4 800 50 11.02 16 85.13 65 11.81 75.25 1.39 85.13 89 8.99 84.79 3.07 11.61 0.40
5 1000 50 10.86 16 105.24 573 29.09 90.41 1.90 105.24 142 16.47 104.14 3.90 14.09 1.04
6 500 100 10.53 20 49.81 387 24.65 35.85 1.51 49.81 277 22.79 47.97 7.57 28.03 3.69
7 600 100 10.40 21 56.95 307 47.41 40.21 1.97 56.95 130 27.83 55.16 9.19 29.39 3.14
8 700 100 10.24 20 67.01 4402 260.79 47.29 2.28 67.01 5547 236.14 64.46 15.02 29.43 3.80
9 800 100 10.59 20 76.62 633 94.77 56.29 2.61 76.62 176 54.16 74.49 17.74 26.53 2.78
10 1000 100 10.20 20 93.87 225 91.34 68.47 3.79 93.87 159 73.87 91.93 24.74 27.05 2.06
11 500 200 10.19 23 45.05 2331 727.94 26.17 4.41 45.05 219 406.80 41.67 107.66 41.91 7.50
12 600 200 9.97 25 52.38 599 405.91 29.89 4.95 52.38 273 257.96 49.50 135.94 42.93 5.50
13 700 200 10.20 23 62.07 1898 884.70 35.45 5.73 62.07 175 640.04 58.50 193.37 42.90 5.75
14 800 200 10.47 22 70.70 4269 4296.99 38.52 6.58 70.70 346 986.03 66.93 246.15 45.51 5.33
15 1000 200 10.08 23 87.50 2441 1653.07 49.17 9.86 87.50 1226 1324.35 83.87 358.33 43.81 4.16
16 1000 300 10.35 24 85.16 222 7200 41.25 18.95 84.99 101 7200 - 1008.92 51.56 -
17 1200 300 10.81 25 102.77 127 7200 48.09 23.99 102.25 51 7200 ∗ ∗ 53.20 ∗

18 1300 300 11.01 21 119.96 90 7200 54.21 27.86 633.94 8 7200 ∗ ∗ 54.81 ∗

19 1400 300 10.70 24 119.61 127 7200 55.51 29.75 117.08 30 7200 ∗ ∗ 53.59 ∗

20 1500 300 10.59 1 766.47 11 7200 60.52 31.06 765.22 2 7200 ∗ ∗ 92.10 ∗

Instances using radial coverage of 0.5 km
1 500 50 51.18 5 99.83 15 16.74 46.17 0.83 99.83 3 13.12 96.61 3.87 53.75 3.23
2 600 50 44.08 4 122.36 0 14.12 62.68 0.97 122.36 0 11.43 121.36 4.87 48.78 0.82
3 700 50 53.39 4 138.68 0 17.04 70.69 1.59 138.68 0 15.35 138.03 5.96 49.03 0.47
4 800 50 46.12 4 163.48 38 29.89 77.24 1.36 163.48 11 24.80 158.58 8.98 52.75 2.99
5 1000 50 51.92 5 201.94 0 29.91 98.40 2.33 201.94 0 26.66 201.22 13.82 51.27 0.35
6 500 100 48.91 5 97.20 0 65.99 35.74 1.72 97.20 0 60.15 96.14 21.78 63.23 1.09
7 600 100 49.33 5 116.65 40 101.18 44.57 2.04 116.65 0 98.19 113.68 30.03 61.79 2.54
8 700 100 43.54 6 131.50 0 106.99 46.58 2.53 131.50 0 102.31 130.60 45.29 64.58 0.69
9 800 100 47.64 5 157.34 15 154.19 59.78 2.98 157.34 3 148.20 154.90 50.81 62.00 1.55
10 1000 100 52.61 5 192.27 27 231.91 68.04 3.65 192.27 7 222.71 189.23 88.52 64.61 1.58
11 500 200 48.30 6 93.32 0 419.36 26.51 4.90 93.32 0 522.18 91.83 249.68 71.59 1.60
12 600 200 47.85 6 110.63 37 777.41 30.98 5.58 110.63 33 740.69 108.48 401.20 72.00 1.94
13 700 200 49.38 6 133.28 55 1158.32 35.24 7.60 133.28 19 1061.54 129.97 548.92 73.56 2.48
14 800 200 47.90 6 152.25 39 1273.34 41.22 10.16 152.25 4 1174.40 149.29 640.60 72.93 1.94
15 1000 200 47.48 6 188.15 36 2104.82 49.17 12.39 188.15 13 1664.89 182.83 1005.08 73.87 2.83
16 1000 300 46.43 6 184.02 91 6892.81 40.91 23.32 184.02 18 5364.37 ∗ ∗ 77.77 ∗

17 1200 300 48.88 1 551.27 0 7200 49.02 24.77 219.90 17 6747.17 ∗ ∗ 91.11 ∗

18 1300 300 47.10 1 768.33 0 7200 53.42 38.84 237.04 0 6044.67 ∗ ∗ 93.05 ∗

19 1400 300 47.21 1 701.78 0 7200 56.48 43.06 701.78 0 7200 ∗ ∗ 91.95 ∗

20 1500 300 48.17 1 728.30 0 7200 61.02 53.02 728.30 0 7200 ∗ ∗ 91.62 ∗

∗Instance not solved. -, CPLEX could not solve the problem.

12 Complexity

Table 2: Numerical results for P2 and Ps2.

P2 B&Bn CPU (s) LP2 CPU (s) Ps2 B&Bn CPU (s) LPs2 CPU (s) Gap2 (%) Gaps2 (%)

Instances using radial coverage of 0.2 km
1 56.20 40 26.85 47.63 2.65 56.20 31 21.54 55.03 3.23 15.25 2.08
2 63.83 14 23.85 54.63 2.75 63.83 32 25.66 63.26 3.10 14.41 0.89
3 84.28 14 30.59 73.40 2.98 84.28 18 26.55 83.15 3.34 12.91 1.35
4 85.13 15 28.61 75.25 2.84 85.13 18 20.73 84.79 3.62 11.61 0.40
5 105.24 93 41.59 90.41 3.24 105.24 108 34.16 104.14 4.24 14.09 1.04
6 49.81 73 212.35 35.85 18.36 49.81 86 164.74 47.97 34.63 28.03 3.69
7 56.95 65 218.46 40.21 18.53 56.95 73 196.75 55.16 35.30 29.39 3.14
8 67.01 1663 1570.02 47.29 18.84 67.01 1335 1376.37 64.46 41.54 29.43 3.80
9 76.62 59 273.33 56.29 18.91 76.62 60 242.44 74.49 39.23 26.53 2.78
10 93.87 64 334.26 68.47 19.39 93.87 42 251.46 91.93 41.20 27.05 2.06

Instances using radial coverage of 0.5 km
1 99.83 0 42.78 46.17 2.46 99.83 3 26.86 96.61 4.30 53.75 3.23
2 122.36 0 25.35 62.68 2.73 122.36 0 23.17 121.36 5.12 48.78 0.82
3 138.68 0 31.58 70.69 2.82 138.68 0 28.64 138.03 5.76 49.03 0.47
4 163.48 17 57.44 77.24 2.90 163.48 11 51.17 158.58 7.41 52.75 2.99
5 201.94 0 69.19 98.40 3.23 201.94 0 40.25 201.22 12.45 51.27 0.35
6 97.20 0 278.55 35.74 18.59 97.20 0 249.74 96.14 50.62 63.23 1.09
7 116.65 10 361.80 44.57 18.50 116.65 5 329.04 113.68 39.34 61.79 2.54
8 131.50 0 340.63 46.58 18.38 131.50 0 315.00 130.60 64.91 64.58 0.69
9 157.34 4 442.54 59.78 19.33 157.34 4 439.66 154.90 72.87 62.00 1.55
10 192.27 11 597.43 68.04 19.67 192.27 13 563.11 189.23 83.19 64.61 1.58

Table 3: Numerical results for P3 and Ps3.

P3 B&Bn CPU (s) LP3 CPU (s) Ps3 B&Bn CPU (s) LPs3 CPU (s) Gap3 (%) Gaps3 (%)

Instances using radial coverage of 0.2 km
1 56.20 141 5.21 47.63 1.59 56.20 85 2.98 55.03 2.45 15.25 2.08
2 63.83 89 4.63 54.63 1.89 63.83 116 4.38 63.26 2.89 14.41 0.89
3 84.28 126 5.65 73.40 2.20 84.28 23 3.67 83.15 3.65 12.91 1.35
4 85.13 125 5.37 75.25 2.60 85.13 30 3.53 84.79 4.71 11.61 0.40
5 105.24 843 12.73 90.41 3.42 105.24 692 11.42 104.14 6.40 14.09 1.04
6 49.81 330 42.95 35.85 5.35 49.81 348 45.86 47.97 16.47 28.03 3.69
7 56.95 390 59.47 40.21 6.52 56.95 169 24.29 55.16 22.76 29.39 3.14
8 67.01 10184 246.96 47.29 7.16 67.01 5419 177.14 64.46 28.75 29.43 3.80
9 76.62 725 78.08 56.29 9.00 76.62 69 31.65 74.49 33.03 26.53 2.78
10 93.87 295 73.12 68.47 11.45 93.87 212 57.27 91.93 45.97 27.05 2.06
11 45.05 2900 1584.04 26.17 22.50 45.05 253 558.45 41.67 158.00 41.91 7.50
12 52.38 924 917.80 29.89 25.71 52.38 341 284.30 49.50 228.23 42.93 5.50
13 62.07 1727 2136.49 35.45 31.61 62.07 230 693.26 58.50 291.16 42.90 5.75
14 70.70 2559 4483.00 38.52 35.13 70.70 421 1071.89 66.90 1017.85 45.51 5.38
15 87.50 2928 2845.94 49.17 45.18 87.50 2269 2128.26 83.87 577.61 43.81 4.16

Instances using radial coverage of 0.5 km
1 99.83 18 4.96 46.17 1.54 99.83 3 5.16 96.61 9.52 53.75 3.23
2 122.36 0 3.56 62.68 1.87 122.36 0 3.48 121.36 12.11 48.78 0.82
3 138.68 0 4.13 70.69 2.34 138.68 0 4.06 138.03 15.29 49.03 0.47
4 163.48 29 6.76 77.24 2.56 163.48 9 7.07 158.58 20.02 52.75 2.99
5 201.94 0 5.62 98.40 3.35 201.94 0 5.21 201.22 33.18 51.27 0.35
6 97.20 0 61.82 35.74 5.45 97.20 0 52.59 96.14 94.86 63.23 1.09
7 116.65 19 85.66 44.57 6.40 116.65 10 93.71 113.68 120.26 61.79 2.54
8 131.50 0 92.90 46.58 7.29 131.50 0 63.85 130.60 152.85 64.58 0.69
9 157.34 14 104.94 59.78 9.25 157.34 7 136.47 154.90 195.45 62.00 1.55
10 192.27 16 119.76 68.04 11.64 192.27 19 157.03 189.23 292.41 64.61 1.58
11 93.32 0 818.46 26.51 22.57 93.32 0 812.49 86.04 1011.80 71.59 7.81
12 110.63 45 1288.58 30.98 29.36 110.63 22 1332.43 83.82 1013.69 72.00 24.24
13 133.28 35 2712.52 35.24 33.77 133.28 18 2076.74 101.78 1016.23 73.56 23.63
14 152.25 43 2016.52 41.22 36.77 152.25 3 1777.64 121.81 1017.84 72.93 19.99
15 188.15 52 4170.99 49.17 43.91 188.15 13 3638.41 128.55 1059.40 73.87 31.67

Complexity 13

instances in two hours. Consequently, in this case, we ob-
tained the maximum independent set number by solving the
following optimization problem:

(MIS): max
y{ }

􏽘
j∈V

yj,

s.t. yi + yj ≤ 1, ∀ i, j􏼈 􏼉 ∈ Ed,
yj ∈ 0, 1{ },∀j ∈ V.

(31)

Similarly, from Table 6, while using a radial coverage of
0.5 km, we can find all maximal cliques and all maximal
independent sets for half of the instances (e.g., instances
#1– #10).)is clearly shows that the sparser the input disk
graphs are, the harder it is to list its maximal independent
sets. We also see from Tables 5 and 6 that the maximum
independent set numbers are slightly larger than the op-
timal number of facilities obtained with P1 in Table 1.
Notice that the maximum independent set number is an
upper bound for the optimal number of facilities since no
larger maximal set can be obtained from Gd.)is obser-
vation can be understood by simply looking at the ob-
jective function of the proposed P1 model which seeks for a

tradeoff between the two terms. In particular, when the
number of facilities is close to the maximum independent set
number, it means that the first double sum in the objective
function of P1 dominates the second term, which also means
that the cost of assigning the total number of users to the
facilities is significantly larger than the cost of the spanning
tree required to connect facilities. Notice that the trade off
between the two terms can vary with parameter α ∈ [0, 2]
used in)eorem 1. Numerical results while varying pa-
rameter α are discussed and reported below.

5.2. Numerical Results for the Algorithms. In Tables 7–9, we
report numerical results for the proposed heuristics and
metaheuristics for all the instances reported in Table 1 and
for the larger sets of instances mentioned above. More
precisely, numerical results for the instances in Table 1 are
reported in Tables 7 and 8, while Table 9 reports numerical
results for the larger sets. In Table 7, for the sake of clarity, we
repeat some information of Table 1.

)us, in columns 1–5, we present the instance number,
number of users to be assigned to the facilities, number of
nodes of the input graph, and optimal solution or minimum

Table 4: Numerical results for P4 and Ps4.

P4 B&Bn CPU (s) LP4 CPU (s) Ps4 B&Bn CPU (s) LPs4 CPU (s) Gap4 (%) Gaps4 (%)

Instances using radial coverage of 0.2 km
1 56.20 23 17.55 47.63 3.43 56.20 19 12.84 55.03 4.96 15.25 2.08
2 63.83 19 20.64 54.63 3.34 63.83 18 12.87 63.26 4.18 14.41 0.89
3 84.28 36 19.55 73.40 4.16 84.28 38 18.47 83.15 5.19 12.91 1.35
4 85.13 53 23.65 75.25 3.87 85.13 22 12.04 84.79 4.45 11.61 0.40
5 105.24 173 32.46 90.41 4.46 105.24 108 24.52 104.14 5.14 14.09 1.04
6 49.81 75 245.39 35.85 21.84 49.81 74 210.43 47.97 44.49 28.03 3.69
7 56.95 87 292.41 40.21 22.49 56.95 54 154.28 55.16 52.54 29.39 3.14
8 67.01 1423 1086.13 47.29 23.96 67.01 1482 1132.80 64.46 64.96 29.43 3.80
9 76.62 52 278.22 56.29 23.20 76.62 76 255.91 74.49 39.22 26.53 2.78
10 93.87 61 303.92 68.47 28.55 93.87 48 233.59 91.93 92.79 27.05 2.06

Instances using radial coverage of 0.5 km
1 99.83 5 13.99 46.17 3.14 99.83 0 11.76 96.61 4.76 53.75 3.23
2 122.36 0 12.36 62.68 3.59 122.36 0 11.98 121.36 5.19 48.78 0.82
3 138.68 0 10.86 70.69 3.70 138.68 0 10.98 138.03 6.13 49.03 0.47
4 163.48 21 16.66 77.24 4.20 163.48 9 17.10 158.58 20.14 52.75 2.99
5 201.94 0 12.87 98.40 4.70 201.94 0 12.95 201.22 9.73 51.27 0.35
6 97.20 0 308.21 35.74 22.25 97.20 0 211.75 96.14 98.75 63.23 1.09
7 116.65 15 342.09 44.57 22.49 116.65 6 265.36 113.68 101.10 61.79 2.54
8 131.50 0 302.74 46.58 23.84 131.50 0 223.71 130.60 208.23 64.58 0.69
9 157.34 9 331.83 59.78 25.56 157.34 4 339.99 154.90 185.62 62.00 1.55
10 192.27 14 386.21 68.04 27.69 192.27 7 374.94 189.23 293.45 64.61 1.58

Table 5: Maximal cliques and maximal independent sets obtained with the Bron–Kerbosch algorithm for the instances #1–#20 in Table 1
using a radial coverage value of 0.2 km.

Instance number # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Maximal C. 36 41 35 30 38 92 108 97 96 105 313 283 305 334 309 687 674 811 739 654
Maximum C. 9 7 6 11 7 11 12 9 9 9 14 15 14 18 15 21 23 23 21 21
Maximal I.S. -
Maximum I.S. 16 17 15 16 16 20 21 20 21 21 24 26 24 24 24 25 26 26 26 26

-, not solved in 2 hours.

14 Complexity

T
a

b
l
e

6:
M

ax
im

al
cl

iq
u

es
an

d
m

ax
im

al
in

d
ep

en
d

en
t

se
ts

o
b

ta
in

ed
w

it
h

th
e

B
ro

n
–

K
er

b
o

sc
h

al
go

ri
th

m
fo

r
th

e
in

st
an

ce
s

#1
–#

20
in

T
ab

le
1

u
si

n
g

a
ra

d
ia

l
co

ve
ra

ge
va

lu
e

o
f

0.
5

k
m

.

In
st

an
ce

n
u

m
b

er
#

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

#
M

ax
im

al
C

.
77

35
65

56
72

29
3

22
0

24
9

27
0

26
4

18
01

19
78

14
18

10
57

14
91

49
40

58
29

55
70

55
52

65
29

M
ax

im
u

m
C

.
17

19
19

15
16

34
31

26
30

35
54

54
57

60
52

73
76

77
74

72
#

M
ax

im
al

I.
S.

20
66

26
84

15
59

19
03

16
78

30
61

7
39

72
1

60
32

4
36

08
8

27
43

8
-

-
-

-
-

-
-

-
-

-
M

ax
im

u
m

I.
S.

5
5

5
6

5
6

6
6

5
6

6
6

6
6

6
6

6
6

6
7

-,
n

o
t

so
lv

ed
in

2
h

o
u

rs
.

Complexity 15

T
a

b
l
e

7:
N

u
m

er
ic

al
re

su
lt

s
fo

r
G

M
IN

,
G

M
A

X
,

an
d

IC
fo

r
th

e
in

st
an

ce
s

in
T

ab
le

1.

#
|K
|

|V
|

O
p

t
C

P
U

(s
)

G
M

IN
G

M
A

X
IC

|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)
|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)
|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
2
km

1
50

0
50

56
.2

0
6.

60
16

58
.7

1
1.

63
4.

46
14

63
.0

2
1.

29
12

.1
3

15
63

.0
3

1.
34

12
.1

5
2

60
0

50
63

.8
3

5.
59

17
63

.9
2

2.
11

0.
14

14
72

.9
7

1.
46

14
.3

2
15

70
.8

2
1.

51
10

.9
5

3
70

0
50

84
.2

8
8.

44
15

84
.6

7
2.

01
0.

46
11

10
0.

05
1.

29
18

.7
0

12
94

.1
1

1.
47

11
.6

6
4

80
0

50
85

.1
3

8.
99

16
89

.6
2

2.
48

5.
27

12
10

5.
11

1.
40

23
.4

7
12

10
2.

91
1.

67
20

.8
9

5
10

00
50

10
5.

24
16

.4
7

16
10

7.
64

2.
99

2.
28

13
11

7.
36

2.
17

11
.5

2
13

11
5.

74
2.

33
9.

98
6

50
0

10
0

49
.8

1
22

.7
9

20
50

.8
2

4.
78

2.
04

15
58

.8
6

2.
70

18
.1

7
15

57
.6

9
2.

97
15

.8
2

7
60

0
10

0
56

.9
5

27
.8

3
21

60
.0

0
5.

75
5.

34
14

70
.2

8
3.

22
23

.3
9

16
65

.5
3

3.
76

15
.0

6
8

70
0

10
0

67
.0

1
23

6.
14

20
71

.4
1

6.
30

6.
57

15
77

.7
2

3.
81

15
.9

9
16

80
.0

2
4.

14
19

.4
3

9
80

0
10

0
76

.6
2

54
.1

6
21

78
.4

0
6.

96
2.

32
16

89
.9

7
4.

35
17

.4
2

16
89

.5
0

4.
73

16
.8

2
10

10
00

10
0

93
.8

7
73

.8
7

21
98

.8
8

8.
25

5.
34

15
11

6.
93

4.
90

24
.5

7
16

10
9.

91
5.

55
17

.0
9

11
50

0
20

0
45

.0
5

40
6.

80
24

47
.6

5
13

.4
3

5.
76

17
54

.0
4

7.
60

19
.9

6
19

51
.7

5
8.

53
14

.8
7

12
60

0
20

0
52

.3
8

25
7.

96
25

55
.1

2
15

.5
3

5.
22

15
66

.3
9

7.
75

26
.7

4
19

64
.3

0
8.

96
22

.7
5

13
70

0
20

0
62

.0
7

64
0.

04
23

66
.4

7
19

.9
4

7.
09

16
76

.3
9

10
.1

6
23

.0
6

18
72

.1
6

12
.1

3
16

.2
5

14
80

0
20

0
70

.7
0

98
6.

03
24

74
.1

5
21

.4
2

4.
88

17
84

.4
0

12
.2

9
19

.3
8

18
83

.2
3

13
.9

0
17

.7
3

15
10

00
20

0
87

.5
0

13
24

.3
5

24
91

.4
8

23
.3

0
4.

55
16

10
6.

65
13

.6
8

21
.8

7
18

10
2.

06
15

.8
9

16
.6

3
16

10
00

30
0

84
.9

9
72

00
25

89
.1

5
42

.0
5

4.
90

18
10

1.
61

25
.0

3
19

.5
5

21
96

.6
8

28
.7

2
13

.7
5

17
12

00
30

0
10

2.
25

72
00

25
10

5.
67

48
.7

8
3.

35
19

12
2.

93
29

.0
5

20
.2

3
20

12
0.

33
32

.4
4

17
.6

9
18

13
00

30
0

11
9.

96
72

00
24

11
4.

47
52

.2
8

—
19

13
0.

38
32

.5
4

8.
69

20
12

6.
33

36
.6

3
5.

32
19

14
00

30
0

11
7.

08
72

00
25

12
0.

94
61

.7
1

3.
29

18
14

2.
07

29
.9

2
21

.3
4

19
13

8.
97

35
.7

1
18

.7
0

20
15

00
30

0
76

5.
22

72
00

26
13

0.
42

57
.1

7
—

18
15

5.
11

33
.5

9
–

20
14

8.
99

39
.4

4
—

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
5
km

1
50

0
50

99
.8

3
13

.1
2

5
10

2.
04

0.
43

2.
22

4
10

2.
05

0.
34

2.
23

4
10

2.
05

0.
34

2.
23

2
60

0
50

12
2.

36
11

.4
3

5
12

6.
51

0.
47

3.
39

4
13

2.
93

0.
35

8.
64

4
13

2.
93

0.
37

8.
64

3
70

0
50

13
8.

68
15

.3
5

5
14

4.
73

0.
55

4.
36

4
15

1.
77

0.
41

9.
44

4
15

6.
96

0.
41

13
.1

8
4

80
0

50
16

3.
48

24
.8

0
5

16
3.

75
0.

70
0.

16
4

16
9.

21
0.

50
3.

50
4

16
9.

92
0.

52
3.

94
5

10
00

50
20

1.
94

26
.6

6
5

20
5.

42
0.

77
1.

72
4

21
4.

12
0.

60
6.

03
4

21
4.

12
0.

59
6.

03
6

50
0

10
0

97
.2

0
60

.1
5

5
10

2.
71

0.
96

5.
67

4
10

5.
66

0.
79

8.
71

4
10

5.
73

0.
76

8.
78

7
60

0
10

0
11

6.
65

98
.1

9
5

11
7.

44
1.

11
0.

68
6

11
9.

35
0.

86
2.

31
6

11
9.

35
0.

93
2.

31
8

70
0

10
0

13
1.

50
10

2.
31

6
13

4.
68

1.
41

2.
42

6
13

7.
15

1.
11

4.
29

6
13

7.
15

1.
18

4.
29

9
80

0
10

0
15

7.
34

14
8.

20
5

15
9.

02
1.

39
1.

07
5

16
2.

97
1.

11
3.

58
5

16
2.

97
1.

14
3.

58
10

10
00

10
0

19
2.

27
22

2.
71

6
19

5.
68

1.
76

1.
78

5
20

8.
04

1.
40

8.
20

5
21

1.
09

1.
34

9.
79

11
50

0
20

0
93

.3
2

41
9.

36
6

98
.6

2
2.

23
5.

68
6

10
1.

43
1.

82
8.

69
6

10
0.

97
1.

90
8.

20
12

60
0

20
0

11
0.

63
74

0.
69

6
11

4.
30

2.
72

3.
31

6
12

3.
37

2.
11

11
.5

1
6

11
7.

45
2.

16
6.

16
13

70
0

20
0

13
3.

28
10

61
.5

4
6

13
5.

63
3.

51
1.

77
6

13
7.

15
2.

65
2.

90
6

13
5.

39
2.

85
1.

58
14

80
0

20
0

15
2.

25
11

74
.4

0
6

15
5.

98
3.

89
2.

45
5

16
1.

24
3.

05
5.

90
6

15
4.

78
3.

25
1.

67
15

10
00

20
0

18
8.

15
16

64
.8

9
6

19
3.

28
4.

66
2.

73
6

19
8.

10
3.

62
5.

29
6

19
5.

45
3.

76
3.

88
16

10
00

30
0

18
4.

02
53

64
.3

7
6

19
0.

37
8.

55
3.

45
6

19
7.

37
7.

10
7.

25
6

19
1.

07
6.

72
3.

83
17

12
00

30
0

21
9.

90
67

47
.1

7
6

22
8.

88
8.

89
4.

08
6

23
9.

72
7.

13
9.

01
6

23
3.

02
7.

65
5.

97
18

13
00

30
0

23
7.

04
60

44
.6

7
6

25
1.

54
9.

52
6.

11
6

25
7.

77
7.

95
8.

75
6

25
0.

70
8.

19
5.

76
19

14
00

30
0

70
1.

78
72

00
6

26
4.

27
10

.4
4

—
6

28
1.

32
8.

35
—

6
27

7.
52

8.
60

—
20

15
00

30
0

72
8.

30
72

00
7

28
0.

24
11

.2
5

—
5

29
7.

51
8.

79
—

6
29

0.
08

9.
39

—

16 Complexity

T
a

b
l
e

8:
N

u
m

er
ic

al
re

su
lt

s
fo

r
G

L
an

d
SA

fo
r

th
e

in
st

an
ce

s
in

T
ab

le
1.

#
|K
|

|V
|

O
p

t
C

P
U

(s
)

G
L

SA

|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)
|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
2
km

1
50

0
50

56
.2

0
6.

60
14

56
.2

0
20

.4
7

0
14

56
.2

0
1.

38
0

2
60

0
50

63
.8

3
5.

59
17

63
.8

3
96

.6
6

0
17

63
.8

3
0.

98
0

3
70

0
50

84
.2

8
8.

44
15

84
.4

5
10

6.
28

0.
20

14
84

.2
8

7.
29

0
4

80
0

50
85

.1
3

8.
99

16
86

.6
7

21
.1

4
1.

81
16

85
.1

3
0.

81
0

5
10

00
50

10
5.

24
16

.4
7

16
10

5.
89

82
.7

6
0.

62
16

10
5.

24
0.

77
0

6
50

0
10

0
49

.8
1

22
.7

9
19

50
.7

1
7.

04
1.

81
20

49
.8

1
8.

39
0

7
60

0
10

0
56

.9
5

27
.8

3
19

58
.7

8
20

.2
0

3.
21

21
56

.9
5

5.
37

0
8

70
0

10
0

67
.0

1
23

6.
14

19
68

.5
4

13
0.

87
2.

29
20

67
.0

1
13

.9
9

0
9

80
0

10
0

76
.6

2
54

.1
6

19
78

.7
1

3.
69

2.
72

20
76

.6
2

11
.1

9
0

10
10

00
10

0
93

.8
7

73
.8

7
20

94
.3

8
62

.8
3

0.
55

20
93

.8
7

50
.8

0
0

11
50

0
20

0
45

.0
5

40
6.

80
22

46
.9

5
27

.2
2

4.
20

23
45

.0
5

20
.4

4
0

12
60

0
20

0
52

.3
8

25
7.

96
24

54
.9

5
48

.3
3

4.
90

23
52

.4
5

70
.6

6
0.

12
13

70
0

20
0

62
.0

7
64

0.
04

22
65

.8
5

21
.5

7
6.

08
23

62
.0

7
16

1.
15

0
14

80
0

20
0

70
.7

0
98

6.
03

22
72

.0
9

79
.8

5
1.

97
22

70
.7

0
25

3.
45

0
15

10
00

20
0

87
.5

0
13

24
.3

5
21

90
.5

9
12

4.
55

3.
53

23
87

.5
0

10
3.

51
0

16
10

00
30

0
84

.9
9

72
00

21
89

.5
3

12
.7

3
5.

34
25

86
.2

0
55

.5
8

1.
42

17
12

00
30

0
10

2.
25

72
00

24
10

5.
52

13
3.

29
3.

20
25

10
2.

75
89

.5
5

0.
49

18
13

00
30

0
11

9.
96

72
00

24
11

3.
76

32
.1

9
−

5.
16

24
11

2.
00

43
.5

3
−

6.
63

19
14

00
30

0
11

7.
08

72
00

23
12

1.
14

34
.6

2
3.

47
24

11
7.

98
11

6.
98

0.
77

20
15

00
30

0
76

5.
22

72
00

22
13

3.
02

67
.4

3
−

82
.6

1
25

12
9.

33
95

.5
3

−
83

.0
9

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
5
km

1
50

0
50

99
.8

3
13

.1
2

5
99

.8
3

0.
50

0
5

99
.8

3
0.

31
0

2
60

0
50

12
2.

36
11

.4
3

4
12

2.
36

4.
72

0
4

12
2.

36
0.

54
0

3
70

0
50

13
8.

68
15

.3
5

4
14

2.
21

0.
66

2.
55

4
13

8.
68

15
.2

2
0

4
80

0
50

16
3.

48
24

.8
0

4
16

4.
51

0.
30

0.
63

4
16

3.
48

63
.0

1
0

5
10

00
50

20
1.

94
26

.6
6

5
20

1.
94

2.
31

0
5

20
1.

94
0.

71
0

6
50

0
10

0
97

.2
0

60
.1

5
5

97
.2

0
3.

81
0

5
97

.2
0

6.
15

0
7

60
0

10
0

11
6.

65
98

.1
9

5
11

6.
69

3.
25

0.
04

5
11

6.
65

11
.8

9
0

8
70

0
10

0
13

1.
50

10
2.

31
6

13
1.

50
8.

96
0

6
13

1.
50

0.
67

0
9

80
0

10
0

15
7.

34
14

8.
20

5
15

7.
49

5.
12

0.
10

5
15

7.
34

0.
59

0
10

10
00

10
0

19
2.

27
22

2.
71

5
19

2.
27

1.
04

0
5

19
2.

27
26

.6
5

0
11

50
0

20
0

93
.3

2
41

9.
36

6
93

.3
2

36
.9

1
0

6
93

.3
2

2.
56

0
12

60
0

20
0

11
0.

63
74

0.
69

6
11

0.
63

2.
66

0
6

11
0.

63
0.

39
0

13
70

0
20

0
13

3.
28

10
61

.5
4

6
13

3.
28

10
.0

3
0

6
13

3.
28

17
.6

4
0

14
80

0
20

0
15

2.
25

11
74

.4
0

6
15

2.
78

11
.4

7
0.

35
6

15
2.

25
1.

84
0

15
10

00
20

0
18

8.
15

16
64

.8
9

6
18

8.
15

28
.0

0
0

6
18

8.
15

2.
26

0
16

10
00

30
0

18
4.

02
53

64
.3

7
6

18
4.

25
17

.1
9

0.
13

6
18

4.
72

19
.3

2
0.

38
17

12
00

30
0

21
9.

90
67

47
.1

7
6

22
0.

81
23

4.
57

0.
41

6
21

9.
90

1.
04

0
18

13
00

30
0

23
7.

04
60

44
.6

7
6

23
7.

78
60

.9
0

0.
31

6
23

7.
04

44
.3

7
0

19
14

00
30

0
70

1.
78

72
00

6
25

6.
48

74
.5

3
−

63
.4

5
6

26
2.

47
5.

84
−

62
.5

9
20

15
00

30
0

72
8.

30
72

00
7

27
8.

49
21

.8
2

−
61

.7
6

6
28

2.
01

10
.8

2
−

61
.2

7

Complexity 17

T
a

b
l
e

9:
N

u
m

er
ic

al
re

su
lt

s
fo

r
G

M
IN

,
G

L
,

an
d

SA
al

go
ri

th
m

s
fo

r
th

e
la

rg
e

si
ze

in
st

an
ce

s.

#
|K
|

|V
|

D
en

.
G

M
IN

G
L

SA

|S
∗ |

U
b

C
P

U
(s

)
|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)
|S
∗ |

U
b

C
P

U
(s

)
G

ap
(%

)

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
2
km

1
10

00
50

0
10

.5
7

26
87

.3
4

82
.6

9
24

86
.6

6
7.

33
0.

78
25

85
.6

6
31

.4
5

1.
97

2
12

00
50

0
10

.4
9

27
10

4.
08

97
.7

8
23

10
1.

50
29

.6
0

2.
54

25
10

0.
70

10
2.

46
3.

35
3

13
00

50
0

10
.5

6
26

11
1.

15
10

2.
58

25
10

9.
18

12
8.

19
1.

80
26

10
5.

04
36

9.
68

5.
82

4
14

00
50

0
10

.6
1

27
11

9.
56

11
2.

72
25

11
9.

23
76

.8
4

0.
27

25
11

7.
82

20
1.

39
1.

47
5

15
00

50
0

10
.3

6
27

12
8.

46
11

7.
14

23
12

8.
03

82
.7

4
0.

34
26

12
4.

94
23

8.
19

2.
82

6
10

00
70

0
10

.5
6

28
84

.7
4

14
9.

35
26

85
.4

0
22

6.
00

−
0.

77
27

83
.9

3
27

3.
14

0.
97

7
12

00
70

0
10

.5
6

28
10

4.
45

17
6.

45
24

10
2.

27
24

3.
70

2.
12

26
10

1.
28

59
8.

77
3.

13
8

13
00

70
0

11
.1

2
28

11
1.

94
18

2.
19

23
10

9.
58

11
2.

67
2.

15
25

10
9.

52
19

5.
97

2.
21

9
14

00
70

0
10

.2
6

29
11

6.
27

20
7.

47
25

11
7.

59
81

.7
4

−
1.

13
27

11
3.

27
38

7.
75

2.
64

10
15

00
70

0
10

.4
5

28
12

6.
42

20
4.

97
26

12
5.

85
31

.8
8

0.
45

27
12

6.
12

17
9.

14
0.

23
11

10
00

10
00

10
.1

4
28

84
.9

7
27

7.
61

26
83

.2
6

11
7.

39
2.

06
26

83
.4

9
37

9.
99

1.
77

12
12

00
10

00
10

.6
1

29
10

0.
14

33
1.

85
25

10
1.

26
18

2.
85

−
1.

10
29

98
.1

5
28

1.
68

2.
03

13
13

00
10

00
10

.6
3

28
10

7.
62

35
4.

17
25

10
6.

83
17

0.
39

0.
74

28
10

5.
82

51
8.

54
1.

71
14

14
00

10
00

10
.5

6
30

11
8.

58
35

9.
51

24
11

7.
42

57
.5

1
0.

99
26

11
6.

20
14

7.
08

2.
05

15
15

00
10

00
10

.3
2

28
12

4.
38

39
4.

33
24

12
3.

45
11

0.
95

0.
76

27
12

3.
02

20
7.

92
1.

10

In
st
a
n
ce
s
u
si
n
g
ra
d
ia
l
co
ve
ra
ge

of
0.
5
km

1
10

00
50

0
49

.2
2

6
18

8.
96

16
.4

4
6

18
5.

54
29

.0
8

1.
84

6
18

4.
39

48
.2

2
2.

48
2

12
00

50
0

50
.0

3
6

22
9.

38
19

.1
5

6
22

0.
48

72
.4

7
4.

03
6

22
2.

96
9.

08
2.

88
3

13
00

50
0

46
.7

1
7

24
7.

19
21

.0
6

6
23

8.
58

23
.9

6
3.

61
6

24
2.

42
14

.1
6

1.
97

4
14

00
50

0
51

.3
9

6
27

0.
10

22
.3

5
6

25
7.

81
8.

10
4.

77
6

26
0.

91
5.

05
3.

53
5

15
00

50
0

48
.3

4
6

28
3.

52
23

.9
0

6
27

3.
81

11
3.

59
3.

55
6

27
4.

10
3.

08
3.

44
6

10
00

70
0

48
.6

5
7

18
9.

37
34

.8
8

6
18

1.
26

27
8.

97
4.

47
6

18
3.

16
79

.8
3

3.
39

7
12

00
70

0
48

.0
4

6
22

7.
75

35
.3

3
6

21
9.

55
95

.2
8

3.
74

6
22

0.
21

79
.4

0
3.

43
8

13
00

70
0

47
.4

6
7

24
2.

48
36

.8
8

6
23

8.
53

13
0.

71
1.

66
6

23
9.

97
16

.5
6

1.
04

9
14

00
70

0
46

.7
0

7
25

8.
40

39
.0

1
6

25
2.

52
11

2.
10

2.
33

6
25

8.
84

10
.0

1
−

0.
17

10
15

00
70

0
48

.5
0

7
28

1.
43

40
.7

8
6

27
1.

28
11

1.
47

3.
74

6
27

5.
77

38
.5

8
2.

05
11

10
00

10
00

48
.9

6
7

18
4.

28
69

.8
6

6
18

2.
69

28
2.

79
0.

87
6

18
5.

89
7.

31
−

0.
87

12
12

00
10

00
48

.4
6

7
22

3.
99

80
.8

1
6

21
5.

64
12

5.
56

3.
87

6
22

3.
71

7.
83

0.
13

13
13

00
10

00
47

.6
3

6
24

5.
73

77
.2

7
6

23
7.

25
70

.7
9

3.
58

6
24

0.
35

19
.4

3
2.

24
14

14
00

10
00

47
.8

1
7

26
3.

12
81

.5
5

6
25

4.
52

75
.9

0
3.

38
7

25
8.

23
5.

52
1.

89
15

15
00

10
00

47
.0

1
6

28
2.

72
84

.4
4

6
27

1.
97

13
9.

55
3.

95
6

27
7.

50
50

.3
5

1.
88

18 Complexity

solution found with P1 or Ps1 together with its minimum
CPU time in seconds, respectively.)en, in columns 6–9,
10–13 and 14–17, we report number of facilities, upper
bounds, CPU times in seconds, and gaps for each heuristic
GMIN, GMAX, and IC, respectively.)e gaps are computed
by ((UB − Opt)/Opt)∗ 100.

From Table 7, first we observe that the number of fa-
cilities is nearly the same as the optimal one for GMIN
heuristics. In general, GMIN allows us to obtain a higher
number of facilities than both IC and GMAX, whereas IC
obtains more facilities than GMAX. We note that this can be
explained as a consequence of the greedy decision that each
heuristic performs at each iteration. Notice that GMIN
removes less nodes from the graph than IC, which in turn
removes less nodes than GMAX. Next, we further observe
that GMIN obtains tighter bounds than the other heuristics
although at a higher CPU time effort.)is is also conse-
quence of removing less nodes at each iteration since more
nodes remain in subsequent iterations. Subsequently, by
looking at the gap columns, we see that GMIN dominates the
other ones with near-optimal gaps. In particular, the gaps are
tighter for the instances that use a higher radial coverage
value. Finally, we observe that the solutions obtained by
GMIN require significantly less CPU time than those ob-
tained with P1 or Ps1. Notice the fact that the first term in the
objective function of P1 dominating the second one implies
that more facilities should be open, which should not always
be the case if the cost to connect facilities under the spanning
tree requirement is higher than the cost of assigning users to
facilities. In order to deal with other situations where the cost
of each term in the objective function of P1 is different, later
we further present numerical while varying the parameter
α ∈ [0, 2] using the weighted objective function presented in
)eorem 1.

In Table 8, for the sake of clarity, we repeat columns 1–5
from Table 7, whereas in columns 6–9 and 10–13, we present
numerical results for GL and SA, respectively. More pre-
cisely, in these columns, we report number of facilities,
upper bounds, and CPU times in seconds and gaps that we
compute by ((UB − Opt)/(Opt))∗ 100.

From Table 8, we observe that the number of facilities is
slightly larger for SA than for GL for most of the instances
while using a radial coverage value of 0.2 km. However, for the
coverage value of 0.5 km, most of these numbers remain nearly
the same. Next, we see that the upper bounds obtained with SA
are tighter than those obtained with GL when compared to the
optimal solutions using both radial coverage values. In par-
ticular, this improvement is higher for 0.2 km which corre-
sponds to the subset composed of the harder instances.)e gap
columns confirm these improvements. Finally, we observe that
the CPU times obtained with GL and SA are significantly
smaller than those required by CPLEX to solve the MILP
models. In particular, we obtain negative gaps for the instances
#18 and #20 using 0.2 km and for the instances #19 and #20
using 0.5 km which evidences the difficulty of finding optimal
solutions for instances with higher dimensions.

In Table 9, we report similar results as those presented in
Table 8, but for the larger set of instances. In columns 1–4,
we report the instance number, number of users, number of

facility nodes, and density of each input graph, respectively.
)en, in columns 5–7, we report number of facility nodes,
upper bounds, and CPU times in seconds for GMIN heu-
ristics. Similarly, in columns 8–11 and in columns 12–15, we
report number of facilities, upper bounds, CPU times in
seconds, and gaps for GL and SA, respectively. Notice that,
in this case, we cannot solve the MILP models with CPLEX,
and then we compute the gaps using as a reference the upper
bounds obtained with GMIN. More precisely, we compute
the gaps as ((Ub(GMIN) − Ub(GL))/Ub(GL)) ∗ 100 and
((Ub(GMIN) − Ub(SA))/Ub(SA))∗ 100 in columns 11 and
15, respectively.

From Table 9, we mainly observe that the number of
facilities obtained with the three algorithms remain
nearly the same. Next, we observe that the upper bounds
obtained with SA are tighter than those obtained with
GL, which in turn are tighter than those obtained with
GMIN for most of the instances when using a radial
coverage of 0.2 km. On the opposite, GL obtains tighter
gaps than SA and GMIN when using a radial coverage of
0.5 km. In particular, a few negative gaps are reported
when GMIN allows us to obtain better solutions com-
pared to a metaheuristic.)is is the case for the instances
#6, #9, and #12, and for the instances #9 and #11 using 0.2
and 0.5 km, respectively. Finally, we observe that higher
CPU times are required for GL compared to SA for dense
instances. However, the opposite occurs for the sparse
ones. Notice that the CPU times obtained with GMIN are
deterministic which is not the case for the meta-
heuristics. In order to give more insights with respect to
the upper bounds and CPU times obtained, later, we
report some average results as well.

In Tables 10 and 11, we further report total number of
maximal cliques, maximum clique cardinalities, number of
maximal independent sets, and maximum independent set
numbers for the large instances presented in Table 9 for the
radial coverage values of 0.2 and 0.5 km, respectively.

Similarly as for Tables 5 and 6, the total number of
maximal cliques and maximal independent sets are obtained
with the Bron–Kerbosch algorithm when it is possible.
Otherwise, we omit presenting this information. In par-
ticular, when it is not possible to obtain all maximal cliques
ofGd, its maximum clique number is obtained by solving the
optimization problem (MIS) presented above using the set
Ed which corresponds to the set of edges of the complement
graph of Gd.

From Tables 10 and 11, we observe similar trends as in
Tables 5 and 6, respectively. We observe that it is not possible
to list all maximal cliques with the Bron–Kerbosch algorithm
in two hours for some of the instances although it is known
they can be obtained in polynomial time [14, 15]. Finally, we
see that the maximum independent sets are slightly larger
than the number of facilities found with the proposed
algorithms.

In order to give more insights with respect to the be-
haviours of Ps1, LPs1, GMIN, GMAX, IC, GL, and SA algo-
rithms while varying α using the objective function of
)eorem 1, in Figures 2–7, we plot upper bounds, optimal
solutions, and number of facilities and CPU times in seconds

Complexity 19

Table 10: Maximal cliques and maximal independent sets obtained with the Bron–Kerbosch algorithm for the instances #1–#15 in Table 9
using a radial coverage value of 0.2 km.

Instance number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximal C. 2184 2295 2130 2273 2073 4966 4798 4923 4743 4863 10974 12250 12843 13131 12086
Maximum C. 30 31 30 32 29 42 37 46 41 39 52 50 56 54 48
Maximal I.S. - - - - - - - - - - - - - - -
Maximum I.S. 28 28 28 28 27 29 28 28 29 29 30 30 29 30 30

-, not solved in 2 hours.

Table 11: Maximal cliques and maximal independent sets obtained with the Bron–Kerbosch algorithm for the instances #1–#15 in Table 9
using a radial coverage value of 0.5 km.

Instance number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximal C. 35161 34559 32729 45659 33872 - - - - - - - - - -
Maximum C. 128 127 116 132 120 174 165 161 160 165 235 223 225 228 228
Maximal I.S. - - - - - - - - - - - - - - -
Maximum I.S. 6 6 7 7 6 7 7 7 7 7 7 7 7 7 7

-, not solved in 2 hours.

U
p

p
er

 b
o

u
n

d
s

an
d

o
p

ti
m

al
 s

o
lu

ti
o

n
s

0

50

100

150

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

P
s
1

LPs
1

GMIN

GMAX

IC

GL

SA

(a)

N
u

m
b

er
 o

f
m

ed
ia

n
s

0

10

20

30

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

P
s
1

GMIN

GMAX

IC

GL

SA

(b)

Figure 2: Continued.

20 Complexity

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

C
P

U
 t

im
es

 (
s)

0

500

1000

P
s
1

GMIN

GMAX

IC

GL

SA

(c)

Figure 2: (a) Upper bounds and optimal solutions, (b) number of facilities, and (c) CPU times in seconds for the instance #11 in Table 1
while varying α ∈ [0; 2] and using a radial coverage value of 0.2 km.

U
p

p
er

 b
o

u
n

d
s

an
d

o
p

ti
m

al
 s

o
lu

ti
o

n
s

0

100

200

300

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

P
s
1

LPs
1

GMIN

GMAX

IC

GL

SA

(a)

N
u

m
b

er
 o

f
m

ed
ia

n
s

0

2

4

6

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

P
s
1

GMIN

GMAX

IC

GL

SA

(b)

C
P

U
 t

im
es

 (
s)

0

200

400

600

0 0.2 0.4 0.6 0.8
α

1 1.2 1.4 1.6 1.8 2

P
s
1

GMIN

GMAX

IC

GL

SA

(c)

Figure 3: (a) Upper bounds and optimal solutions, (b) number of facilities, and (c) CPU times in seconds for the instance #11 in Table 1
while varying α ∈ [0; 2] and using a radial coverage value of 0.5 km.

Complexity 21

0

10

20

30

U
p

p
er

 b
o

u
n

d
s

an
d

o
p

ti
m

al
 s

o
lu

ti
o

n
s

1.7 1.75 1.8 1.85 1.9 1.95
α

2

P
s
1

LPs
1

GMIN

GMAX

IC

GL

SA

(a)

0

10

20

30

N
u

m
b

er
 o

f
m

ed
ia

n
s

1.7 1.75 1.8 1.85 1.9 1.95 2
α

P
s
1

GMIN

GMAX

IC

GL

SA

(b)

0

2000

4000

6000

8000

C
P

U
 t

im
es

 (
s)

1.7 1.75 1.8 1.85 1.9 1.95 2
α

P
s
1

GMIN

GMAX

IC

GL

SA

(c)

Figure 4: (a) Upper bounds and optimal solutions, (b) number of facilities, and (c) CPU times in seconds for the instance #11 in Table 1
while varying α ∈ [1.7; 2] and using a radial coverage value of 0.2 km.

0

20

40

U
p

p
er

 b
o

u
n

d
s

an
d

o
p

ti
m

al
 s

o
lu

ti
o

n
s

1.7 1.75 1.8 1.85 1.9 1.95
α

2

P
s
1

LPs
1

GMIN

GMAX

IC

GL

SA

(a)

Figure 5: Continued.

22 Complexity

0

2

4

6

8

N
u

m
b

er
 o

f
m

ed
ia

n
s

1.7 1.75 1.8 1.85 1.9 1.95 2
α

P
s
1

GMIN

GMAX

IC

GL

SA

(b)

0

200

400

600

C
P

U
 t

im
es

 (
s)

1.7 1.75 1.8 1.85 1.9 1.95 2
α

P
s
1

GMIN

GMAX

IC

GL

SA

(c)

Figure 5: (a) Upper bounds and optimal solutions, (b) number of facilities, and (c) CPU times in seconds for the instance #11 in Table 1
while varying α ∈ [1.7; 2] and using a radial coverage value of 0.5 km.

0

100

200

300

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

U
p

p
er

 b
o

u
n

d
s

α

(a)

0

10

20

30

N
u

m
b

er
 o

f
m

ed
ia

n
s

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

(b)

Figure 6: Continued.

Complexity 23

0

100

200

300

400

500

C
P

U
 t

im
es

 (
s)

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

(c)

Figure 6: (a) Upper bounds, (b) number of facilities, and (c) CPU times in seconds for the instance #10 in Table 9 while varying α ∈ [0; 2]
and using a radial coverage value of 0.2 km.

0

200

400

600

U
p

p
er

 b
o

u
n

d
s

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

(a)

0

2

4

6

8

N
u

m
b

er
 o

f
m

ed
ia

n
s

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

(b)

0

50

100

150

C
P

U
 t

im
es

 (
s)

GMIN

GMAX

IC

GL

SA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

(c)

Figure 7: (a) Upper bounds, (b) number of facilities, and (c) CPU times in seconds for the instance #10 in Table 9 while varying α ∈ [0; 2]
and using a radial coverage value of 0.5 km.

24 Complexity

for the instances #11 and #10 in Tables 1 and 9, respectively,
while varying α ∈ [0; 2] and using radial coverage values of
0.2 and 0.5 km. In particular, in Figures 4 and 5, we restrict
the values of α in the interval [1.7; 2] in order to decrease the
number of optimal facilities while searching for a tradeoff
between the two terms in the objective function.

From Figures 2 and 3, we observe that the upper bounds
and optimal solutions decrease with α. In particular, in
Figure 2, the LP bounds remain near optimal for all values
of α. Furthermore, we see that the upper bounds decrease in
the following order: Ub(GMAX)>Ub(IC)>Ub(GMIN) >

Ub(GL)>Ub(SA). Regarding the number of facilities (or
medians), we observe that the order of the methods is as
follows: Med(GMIN)>Med(SA)>Med(GL)>Med (IC)
>Med(GMAX), where the optimal number of facilities is
closer to Med(SA). However, the order of the methods
with respect to the CPU times is as follows: CPU(Ps1)>
CPU(GL)>CPU(SA). For the heuristics, the CPU times
remain nearly the same.

From Figure 3, we observe similar trends although, in
this case, the curves are closer to each other with the ex-
ception in the CPU times which are significantly higher for

45

45.5

46

46.5

47

47.5

U
p

p
er

 b
o

u
n

d
s

GL SAGMIN

Averages

(a)

50

100

150

200

250

C
P

U
 t

im
es

 (
s)

GL SAGMIN

Averages

(b)

Figure 8: (a) Average upper bounds and (b) CPU times in seconds for the instance #11 in Table 1 while using a radial coverage value of
0.2 km.

U
p

p
er

 b
o

u
n

d
s

93.5

94

94.5

95

95.5

96

96.5

97

97.5

98

98.5

GL SAGMIN

Averages

(a)

C
P

U
 t

im
es

 (
s)

0

10

20

30

40

50

60

70

80

GL SAGMIN

Averages

(b)

Figure 9: (a) Average upper bounds and (b) CPU times in seconds for the instance #11 in Table 1 while using a radial coverage value of
0.5 km.

Complexity 25

Ps1. In particular, the number of facilities is exactly the same
for all the methods. Finally, from Figures 2 and 3, we observe
that the number of facilities decreases for values of
α ∈ [1.7; 2]. Consequently, in Figures 4 and 5, we plot for the
same instances numerical results as in Figures 2 and 3,
respectively, but for values of α ∈ [1.7; 2].

From Figure 4, we observe the following ordering for the
upper bounds: Ub(GMIN)>Ub(IC)>Ub(GMAX)>
Ub(GL)>Ub(SA). As it can be observed, in this case,
GMAX allows us to obtain better solutions than GMIN.)is
can be explained by the fact that less number of facilities are
required in the optimal solution of the problem.
Regarding the number of medians, the ordering is
Med(GMIN)>Med(SA), Med(GL)>Med(IC)>Med
(GMAX), where the optimal number of facilities is closer to
Med(SA) or Med(GMAX).)en, we observe that the CPU
times required to solve Ps1 increase significantly for values of
α ∈ [1.7; 2]. Notice that, in particular, we cannot solve Ps1 to
optimality in two hours for α � 1.8, 1.9{ }, which is not the
case for the instance #11 in Table 1. In general, the CPU
times required by SA are higher than those required by GL.
Finally, we observe that the lower bounds obtained with LPs1
are not tight when compared to the optimal solution of the
problem which explains somehow the difficulty in solving
Ps1. Similarly, from Figure 5, we see that GMAX outperforms
GMIN and IC in terms of upper bounds. However, SA and
GL outperform the proposed heuristics. Regarding the
number of medians obtained, we observe that SA and GL
obtain less number of facilities than the heuristics. Finally,
the CPU times obtained show similar orders of magnitude
for all the algorithms.

In Figures 6 and 7, we report analog numerical results
as in Figures 2 and 3 for the instance #10 presented in
Table 9 using radial coverage values of 0.2 and 0.5 km,
respectively. In these figures, we do not report optimal
solutions for Ps1 as it is not possible to obtain these results
for the instances with higher dimensions due to CPLEX
shortage of memory.

From Figure 6, we observe that the upper bounds
obtained with GMIN, GL, and SA are nearly the same and
better than the other ones. Regarding the number of
facilities, we observe that GMIN obtains the largest
values, whilst GMAX obtains the lowest ones.)e
number of facilities of each remaining algorithm is be-
tween these values. Finally, we observe that the CPU
times obtained with SA and GL algorithms are the largest
and smallest ones, respectively. Consequently, the CPU
times for the remaining algorithms are between these
values as well. From Figure 7, we observe similar trends
for the upper bounds and nearly constant values for the
number of facilities obtained with each algorithm. In
particular, GMIN obtains the largest values. Sub-
sequently, we observe that the CPU times are different for
most of the algorithms and in particular higher for the
metaheuristics in some cases.

In order to give more insights with respect to the behaviours
of GMIN, GL, and SA algorithms, we further present average
upper bounds and CPU times in seconds for the instance #11 in

Table 1 and for the instance #10 in Table 9 while using radial
coverage values of 0.2 and 0.5 km.)ese numerical results are
presented in Figures 8–11 for each of the instances, respectively.
In particular, the averages are obtained for 50 runs using each
algorithm.

From Figures 8 and 9, we observe that the upper bounds
obtained with SA are lower than GMIN and GL. However,
the upper bounds obtained with GL are lower than those
obtained with GMIN. Regarding the CPU times, the average
values can be ordered in the opposite direction for the three
algorithms being larger for SA and lower for GMIN. In
particular, in Figure 9, the averages for SA and GL are closer
to each other.

Next, in Figure 10, we observe that the upper bounds
obtained with SA are the lowest ones. However, GMIN
obtains the worst solutions. Regarding the CPU times
obtained, we see that, in average, GMIN and SA require
similar values. However,GL obtains solutions faster than
the remaining algorithms. Subsequently, in Figure 11, we
observe that GL obtains better solutions compared to
GMIN and SA although at a higher CPU time. Finally, we
observe that GL allows us to obtain better solutions than
SA for higher radial coverage values, i.e., when dealing
with dense input disk graphs. However, on the opposite,
SA allows us to obtain better solutions for sparse graphs
which resulted in more difficult instances to be solved by
the proposed MILP models.

6. Conclusions

In this paper, we consider the problem of assigning a set K
of users to a subset S of facilities chosen from a larger set V
while simultaneously forming a tree backbone with S and
with the additional condition that no two adjacent nodes in
V of an input disk graph Gd can belong to S.)e latter
condition is handled by means of independent set con-
straints. We model this problem on unit disk graphs and
propose mixed integer linear programming models in
order to minimize the total connection cost distance be-
tween facilities and between customers and facilities si-
multaneously. Four compact polynomial formulations are
proposed based on classical and set covering p-Median
formulations, whilst the tree backbone formed with S is
modelled with Miller–Tucker–Zemlin and path orien-
teering constraints, respectively.)e MILP models are
further strengthened with clique valid inequalities which
can be obtained in polynomial time for unit disk graphs.
Finally, we propose Kruskal-based heuristics and meta-
heuristics which are adapted from a greedy approach
initially proposed for the maximum independent set
problem. In particular, the metaheuristics are constructed
based on guided local search and simulated annealing
strategies. Our main observations and conclusions on this
paper can be outlined as follows:

(1) Our numerical results indicated that only the
Miller–Tucker–Zemlin constrained models allow us
to obtain optimal solutions for instances with up to

26 Complexity

200 nodes and 1000 users. Notice that finding fea-
sible solutions with certificate of optimality is an
important achievement. Indeed, it allows us to
compare the solutions obtained with the proposed
algorithms against optimal solutions and also to
compare possibly new algorithmic approaches as
part of future research.

(2) We obtained the same near-optimal solutions with
all linear relaxations and gaps lower than 6% with the
strengthened models for most of the instances
compared to the optimal solutions.

(3) We compared Miller–Tucker–Zemlin and path orien-
teering constrained models using novel formulations
which are constructed based on classical and set

covering p-Median models. We observed, from our
numerical results, that Miller–Tucker–Zemlin con-
strained models outperform path orienteering ones.

(4) We also proposed a heuristic framework with three
variants referred to as GMIN, IC, and GMAX and
noticed that GMIN outperforms the other ones for
most tested instances. Furthermore, we noticed that,
in some cases, when varying the weights of the
objective function of the proposed MILP models,
GMAX outperforms the other ones. In particular,
this occurs when the second term of the objective
function of Ps1 is greater than the first one, i.e., when
the cost incurred to construct the backbone tree is
greater than the cost of assigning users to facilities.

Averages

GMIN GL SA

U
p

p
er

 b
o

u
n

d
s

123

123.5

124

124.5

125

125.5

126

126.5

127

(a)

Averages

GMIN GL SA

C
P

U
 t

im
es

 (
s)

0

50

100

150

200

250

300

350

400

450

(b)

Figure 10: (a) Average upper bounds and (b) CPU times in seconds for the instance #10 in Table 9 while using a radial coverage value of 0.2 km.

U
p

p
er

 b
o

u
n

d
s

272

274

276

278

280

GL SAGMIN

Averages

(a)

C
P

U
 t

im
es

 (
s)

0

50

100

150

200

GL SAGMIN

Averages

(b)

Figure 11: (a) Average upper bounds and (b) CPU times in seconds for the instance #10 in Table 9 while using a radial coverage value of
0.5 km.

Complexity 27

Finally, we verified that the heuristic approach allows
one to obtain near-optimal solutions in short CPU
time.

(5) Finally, we proposed two metaheuristics based on
guided local search and simulated annealing greedy
strategies (GL and SA, respectively) that out-
performed the proposed heuristics for most of the
instances. In particular, we noticed that SA obtains
better results than GL on sparse disk graphs.
However, the opposite occurs for dense graphs.
Finally, both GL and SA allowed to obtain near-
optimal solutions in significantly short CPU time
and tight feasible solutions for large instances of the
problem.

As future research, we plan to propose new modelling
and algorithmic approaches while taking into account other
network structures such as dominating and maximum leaf
spanning trees. Ultimately, new modelling approaches
should also be considered while including mathematical
majorization concepts related with distances in trees and
location theory [45], in order to compare with the models
proposed in this paper.

Data Availability

All data were generated randomly as it is clearly explained in
the manuscript. Consequently, no particular data were used
to support this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e authors acknowledge financial support from projects
FONDECYT (nos. 11180107 and 3190147).

References

[1] Z. Drezner and H. W. Hamacher, Facility Location: Appli-
cations and ;eory, Springer, Berlin, Germany, 2002, https://
www.springer.com/gp/book/9783540421726.

[2] D. Zvi, K. Kathrin, S. Anita, and O. Wesolowsky George, ;e
Weber Problem. Facility Location: Applications and ;eory,
Springer, Berlin, Germany, 2002.

[3] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and
M. Goh, “Covering problems in facility location: a review,”
Computers & Industrial Engineering, vol. 62, no. 1, pp. 368–
407, 2012.

[4] J. Krarup and S. Vajda, “On Torricelli’s geometrical solution
to a problem of Fermat,” IMA Journal of Management
Mathematics, vol. 8, no. 3, pp. 215–224, 1997.

[5] I. D. Moon and S. S. Chaudhry, “An analisys of network
location problems with distance constraints,” Management
Science, vol. 30, no. 3, pp. 290–307, 1984.

[6] P. G. Spain, “)e Fermat point of a triangle,” Mathematics
Magazine, vol. 69, no. 2, pp. 131–133, 1996.

[7] A. D. Korshunov, “Coefficient of internal stability,” Kiber-
netika, vol. 10, no. 1, pp. 17–28, 1974.

[8] P. Adasme, “Optimal sub-tree scheduling for wireless sensor
networks with partial coverage,” Computer Standards & In-
terfaces, vol. 61, pp. 20–35, 2019.

[9] P. Adasme, “Visible light communication networks under
ring and tree topology constraints,” Computer Standards &
Interfaces, vol. 52, pp. 10–24, 2017.

[10] P. Adasme, R. Andrade, J. Leung, and A. Lisser, “Improved
solution strategies for dominating trees,” Expert Systems with

Applications, vol. 100, pp. 30–40, 2018.
[11] P. Adasme, R. Andrade, and A. Lisser, “Minimum cost

dominating tree sensor networks under probabilistic con-
straints,” Computer Networks, vol. 112, pp. 208–222, 2017.

[12] J. G. Carlsson and F. Jia, “Continuous facility location with
backbone network costs,” Transportation Science, vol. 49,
no. 3, pp. 433–451, 2015.

[13] D. Eppstein, “Small maximal independent sets and faster exact
graph coloring,” Journal of Graph Algorithms and Applica-
tions, vol. 7, no. 2, pp. 131–140, 2003.

[14] F. Cazals and C. Karande, “A note on the problem of reporting
maximal cliques,” ;eoretical Computer Science, vol. 407,

no. 1–3, pp. 564–568, 2008.
[15] T. Izumi and D. Suzuki, “Faster enumeration of all maximal

cliques in unit disk graphs using geometric structure,” IEICE
Transactions on Information and Systems, vol. E98.D, no. 3,
pp. 490–496, 2015.

[16] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk
graphs,” Discrete Mathematics, vol. 86, no. 1–3, pp. 165–177,
1990.

[17] T. Erlebach and J. Fiala, “Independence and coloring prob-
lems on intersection graphs of disks,” in Efficient Approxi-
mation and Online Algorithms, pp. 135–155, Springer, Berlin,
Germany, 2006.

[18] D. Wang and Y. S. Kuo, “A study on two geometric location
problems,” Information Processing Letters, vol. 28, no. 6,
pp. 281–286, 1988.

[19] D. Eppstein, M. Loffler, and D. Strash, “Listing all maximal
cliques in sparse graphs in near-optimal time,” in Proceedings
of the International Symposium on Algorithms and Compu-

tation ISAAC 2010, pp. 403–414, Jeju Island, December 2010.
[20] S. Garćıa, M. Labbé, and A. Maŕın, “Solving large p-median

problems with a radius formulation,” Informs Journal on
Computing, vol. 23, no. 4, pp. 546–556, 2011.

[21] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno
Pérez, “)e p-median problem: a survey of metaheuristic
approaches,” European Journal of Operational Research,
vol. 179, no. 3, pp. 927–939, 2007.

[22] M. Desrochers and G. Laporte, “Improvements and exten-
sions to the Miller-Tucker-Zemlin subtour elimination con-
straints,” Operations Research Letters, vol. 10, no. 1, pp. 27–36,
1991.

[23] C. Luna Mota, ;e Optimum Communication Spanning Tree
Problem: Properties, Models and Algorithms, PhD thesis,
Universitat Politécnica de Catalunya, Barcelona, Spain, 2015.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press and McGraw-Hill,

Cumberland, RI, USA, 2009.
[25] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy

algorithms for the maximum weighted independent set
problem,” Discrete Applied Mathematics, vol. 126, no. 2-3,
pp. 313–322, 2003.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, New Series, vol. 220,
no. 4598, pp. 671–680, 1983.

28 Complexity

https://www.springer.com/gp/book/9783540421726
https://www.springer.com/gp/book/9783540421726

[27] C. Koulamas, S. Antony, and R. Jaen, “A survey of simulated
annealing applications to operations research problems,”
Omega, vol. 22, no. 1, pp. 41–56, 1994.

[28] B. Suman and P. Kumar, “A survey of simulated annealing as a
tool for single and multiobjective optimization,” Journal of the
Operational Research Society, vol. 57, no.10, pp.1143–1160, 2006.

[29] C. Voudouris and E. Tsang, “Guided local search and its ap-
plication to the traveling salesman problem,” European Journal
of Operational Research, vol. 113, no. 2, pp. 469–499, 1999.

[30] I. Rodŕıguez-Mart́ın, J. J. Salazar-González, and H. Yaman,
“Hierarchical survivable network design problems,” Electronic
Notes in Discrete Mathematics, vol. 52, pp. 229–236, 2016.

[31] I. Rodŕıguez, J. J. Salazar, and H. Yaman, “)e ring/k-rings
network design problem, model and branch-and-cut algo-
rithm,” Networks, vol. 68, no. 2, pp. 130–140, 2016.

[32] H. Yaman, “Allocation strategies in hub networks,” European
Journal of Operational Research, vol. 211, no. 3, pp. 442–451,
2011.

[33] M. Gendreau, G. Laporte, and F. Semet, “)e covering tour
problem,” Operations Research, vol. 45, no. 4, pp. 568–576,
1997.

[34] B. Boffey and S. C. Narula, “Models for multi-path covering-
routing problems,” Annals of Operations Research, vol. 82,
pp. 331–342, 1998.

[35] R. Church and C. ReVelle, “)e maximal covering location
problem,” Papers of the Regional Science Association, vol. 32,
no. 1, pp. 101–118, 1974.

[36] V. A. Hutson and C. ReVelle, “Indirect covering tree problems
on spanning tree networks,” European Journal of Operational
Research, vol. 65, no. 1, pp. 20–32, 1993.

[37] M. Berg, S. Cabello, and S. Har-Peled, “Covering many or few
points with unit disks,” in WAOA 2006: LNCS, T. Erlebach
and C. Kaklamanis, Eds., vol. 4368, pp. 55–68, Springer-
Verlag, Berlin, Germany, 2006.

[38] S. Butenko, Maximum Independent Set and Related Problems,
with Applications, PhD. thesis, School of the University of
Florida, Gainesville, FL, USA, 2003.

[39] J. Krarup and P. M. Pruzan, “)e simple plant location
problem: survey and synthesis,” European Journal of Oper-
ational Research, vol. 12, no. 1, pp. 36–81, 1983.

[40] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and
S. S. Ravi, “Spanning trees-short or small,” SIAM Journal on
Discrete Mathematics, vol. 9, no. 2, pp. 178–200, 1996.

[41] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, “A ca-
nonical representation of simple plant location problems and
its applications,” SIAM Journal on Algebraic Discrete Methods,
vol. 1, no. 3, pp. 261–272, 1980.

[42] B. Hajek, “Cooling schedules for optimal annealing,” Math-
ematics of Operations Research, vol. 13, no. 2, pp. 311–329,
1988.

[43] K. Du and M. N. S. Swamy, “Simulated Annealing,” in Search
and Optimization by Metaheuristics, Birkhäuser, Cham,
Switzerland, 2016.

[44] IBM ILOG CPLEX Optimization Studio Information Center,
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/index.jsp.

[45] G. Dahl, “Majorization and distances in trees,” Networks,
vol. 50, no. 4, pp. 251–257, 2007.

Complexity 29

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/index.jsp

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International

Journal of

Mathematics and

Mathematical

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

