
Facing Scalability Issues in Requirements Prioritization with Machine Learning
Techniques

Paolo Avesani, Cinzia Bazzanella, Anna Perini, Angelo Susi
ITC-IRST, Via Sommarive 18, I-38050, Trento, Italy

{avesani,bazzanella,perini,susi}@irst.itc.it

Abstract

Case-based driven approaches to requirements prioriti-
zation proved to be much more effective than first-principle
methods in being tailored to a specific problem, that is they
take advantage of the implicit knowledge that is available,
given a problem representation. In these approaches, first-
principle prioritization criteria are replaced by a pairwise
preference elicitation process. Nevertheless case-based ap-
proaches, using the Analytic Hierarchy Process (AHP) tech-
nique, become impractical when the size of the collection of
requirements is greater than about twenty since the elici-
tation effort grows as the square of the number of require-
ments.

We adopt a case-based framework for requirements pri-
oritization, called Case-Based Ranking, which exploits ma-
chine learning techniques to overcome the scalability prob-
lem. This method reduces the acquisition effort by combin-
ing human preference elicitation and automatic preference
approximation.

Our goal in this paper is to describe the framework in
details and to present empirical evaluations which aim at
showing its effectiveness in overcoming the scalability prob-
lem. The results prove that on average our approach outper-
forms AHP with respect to the trade-off between expert elic-
itation effort and the requirement prioritization accuracy.

1. Introduction

Requirements prioritization plays a key role in software
development when we need to plan for system releases and
to decide which requirements to implement in each release,
according to budget and time constraints as well as to cus-
tomer expectations [2]. Different factors influence the defi-
nition of priority criteria such as business aspects (e.g. mar-
ket competition or regulations), customer satisfaction, or
technical aspects (e.g. the development cost).

Requirements prioritization can be conceived as an order
relation on a given set of requirements, on the basis of which

it is possible to derive a partition into many subsets, one for
each release. Usually, it is not crucial to get the relative or-
der of core requirements, because all of them will be part of
the first release, but the accuracy of the rank becomes more
and more important when deciding which of the pending
requirements can be removed from the subsequent releases.

Recent approaches [12, 14, 19, 21, 26] to requirements
prioritization seem to share a common model for the re-
quirements prioritization process, consisting of the follow-
ing steps: (i) selection of one or more prioritization criteria
among business goals and technical features (e.g. customer
value, revenue or development cost); (ii) acquisition of a re-
quirements ordering according to a specific criterion from
one or more stakeholders (e.g. customers, users, project
manager); (iii) composition of the acquired orderings into
a final one based upon an appropriate composition schema.
These steps are part of a process that can be iterated many
times during the entire life-cycle of a software system.

First principle or ex-ante methods for requirements pri-
oritization, define a-priory the ranking criteria (that is the
requirements attributes — or priority indexes — and the rel-
ative ranges of values), independently of the current set of
requirements that are to be evaluated. Partial orders are a
possible outcome of ex-ante methods and can be the source
of less effective decision making support.

Our work follows an alternative approach based on ex-
post methods. Differently from first principle strategy, the
elicitation of prioritization criteria is performed in parallel
with the requirements analysis. A process of pairwise com-
parison allows to define at the same time which requirement
and why it has to be preferred between two alternatives.
That is, the prioritization criteria are not explicitly encoded
but acquired by examples. This approach is known as case-
based ranking and it is inspired by case-based reasoning [1],
a problem solving paradigm where the solution is built by
looking at examples rather than by using a first-principle
knowledge representation.

The Analytical Hierarchy Process (AHP) [25] can be
considered the reference method among those which adopt
a case-based driven strategy. In this technique the ranking
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criteria are defined through an assessment of the relative pri-
ority between a couple of requirements considered all the
possible pairs of requirements. This becomes impractical
as soon as the number of requirements increases and scala-
bility problems limit severely the applicability of this tech-
nique.

A straightforward remedy may consist in reducing the
amount of elicited pairs. Current solutions to scalability is-
sues tend to define heuristics for supporting the choice of
when the pairwise elicitation process can be stopped.

We propose an alternative strategy that aims at learning
the prioritization criteria making a ranking hypothesis for
the unknown pairs. We show that machine learning tech-
niques can be effective in dealing with the scalability prob-
lem by providing an accurate approximation of the final
ranking within a limited elicitation effort. Approximation
does not necessarily mean poor quality results. A qualita-
tive description of this framework and a first experimental
evidence of its effectiveness has been presented in [4].

Our goal in this paper is twofold. First, we give a formal
description of the framework and point out its main dif-
ferences with case-based approaches using the AHP tech-
nique. Second, we describe a set of experimental evalua-
tions which intend to characterize the effectiveness of our
approach with respect to AHP based approaches when con-
sidering large set of requirements. In this analysis we take
into account also state-of-the-art solutions to the AHP scal-
ability problem.

The experimental results prove that in average our ap-
proach outperforms AHP with respect to the trade-off be-
tween expert elicitation effort and the requirement prioriti-
zation accuracy.

The paper is structured as follows. In Section 2, we
describe in details our case-based prioritization framework
and the referred machine learning techniques. In Section 3,
we recall briefly how an AHP-based process looks like and
recall the stopping rule technique that has been proposed
as a solution to the scalability problem in AHP. In Sections
4 and 5, we describe the experimental evaluations and dis-
cuss their results. Related work are presented in Section 6
and conclusion are given in Section 7.

2. The Prioritization Methodology

We recently proposed a novel framework for prioritiz-
ing requirements [4]. It adapts the Case-Based Ranking
(CBRanking) methodology described in [6] which exploits
machine learning techniques to reduce the elicitation effort
in the prioritization process. The framework rests on an it-
erative process that can handle single and multiple decision
makers (stakeholders) and different criteria (both business
goals and technical parameters).

Figure 1 sketches the basic steps of the prioritization

process, where manual elicitation interleaves with machine
supported steps.

The main input to the process is the finite collection
of requirements Req = {r1, r2, . . . , rn} that have to be
ranked. The final output of the process is an approximation
of the target ranking formulated as a function H : Req → R

where ri ≺ rj when H(ri) < H(rj).
The basic process iteration rests on the following three

main steps:

Pair sampling. It is an automatic procedure which se-
lects a pair (or a sample of pairs) of requirements, (ri, rj),
on the basis of a predefined selection policy which may
take into account, information on the currently available
rankings.

Preference elicitation. This step is in charge of
the stakeholder. It takes in input a collection of pairs of
requirements and it produces in output their ranks. More
formally: at a certain iteration τ of the process, a function
Φτ , simply Φ from now on, describes the preferences
elicited from the user in terms of pair relations. In partic-
ular Φ : Req × Req → {−1, 0, 1} where Φ(ri, rj) = 1
means that rj be ranked above ri, Φ(ri, rj) = −1 means
that ri be ranked above rj , and Φ(ri, rj) = 0 indicates
that no preference has been given between ri and rj (we
assume Φ(ri, rj) = 0 and Φ(ri, rj) = −Φ(rj , ri) for all
ri, rj ∈ Req).

Ranking learning. It takes in input the stakeholder
preference Φ, and it computes an approximation of the
ranking function H(r) that, while preserving the elicited
preferences, tries to make a ranking hypothesis of the
unknown pairs. The learning procedures may exploit
also available knowledge on the requirements rankings
induced by other prioritization criteria (e.g. the cost for
the realization of the requirements, the estimated utility)
defined on the initial set of requirements. We call this
knowledge ranking criteria and denote it as a finite set of m
functions F = (f1, . . . , fl, . . . , fm), where fl : Req → R

(R = R ∪ {⊥}) and the inequality fl(ri) > fl(rj) means
that ri is preferred to rj according to the lth criterion, while
fl(r) = ⊥ if r is unranked with respect to the lth criterion.
The Ranking learning procedure exploits machine
learning techniques, as detailed below.

The final ranking, that is the output of the process rep-
resents an approximation of the exact ranking and may be-
come the input to a further iteration of the process. We de-
note the target ranking with the function K : Req → R

where rj is ranked higher than ri by K if K(rj) > K(ri).
Notice that the step of Preference elicitation

is usually a manual task; in the off-line simulation this task
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Prioritization Process
Input: the set of requirements Req, previous iteration rankings H(r)
Output: the final Ranking H(r)

Iteration steps:
1. Pair sampling (Req, H(Req));
2. Preference Elicitation ((ri, rj));
3. Ranking learning (Φ(ri, rj), F );

Figure 1. Basic steps of the prioritization process.

is performed by the machine through a sampling of the tar-
get ranking function K that is assumed to be given.

If the result of the learning step is considered enough
accurate or the end user has been overloaded, the iteration
halts and the latest approximated rank is given as output;
otherwise another cycle of the loop is carried on. Notice that
the first and the third steps are automated while the second
step is in charge of the stakeholder. In the following, for
simplicity, we will assume that the preference elicitation is
monotonic (i.e. the user does not see the same pair twice).

To summarize we can conceive the prioritization process
as an approximation problem where, given a set of require-
ments Req = {ri} and a subset of pairwise priority rela-
tions Φτ ⊆ Φ, the challenge is to learn a function H(r)
such that ∀ri, rj we have H(ri) > H(rj) if K(ri) > K(rj)
where K(r) is the unknown target prioritization criteria. Of
course the objective is twofold: to minimize the elicitation
effort, while reducing the disagreement between the target
(K) and the approximate rank (H).

2.1. The learning algorithm

The Ranking learning step produces an approxi-
mation of a preference structure, exploiting the boosting ap-
proach described in [10]. In the following we give a brief
description of the problem that we handle with the boosting
approach and of the algorithm.

The basic concepts, we introduced so far, are the set
of requirements, the ranking features, the exact (or target)
ranking and the elicitated pairwise preferences. The input
to the algorithm are described below.

• A finite set of requirements Req = {r1, . . . , rn}.

• The ranking criteria F = (f1, . . . , fm).

• The initial user preferences represented by the function
Φ0(ri, rj)

• Related to the Φ we also define a density function D :
Req × Req → R such that

D(ri, rj) = γ · max({0, Φ(ri, rj)})

setting to 0 all negative entries of Φ; γ is a positive
constant chosen in such a way that D is a distribution,
satisfying the following normalization property:

∑
ri,rj

D(ri, rj) = 1

The goal of the learning step is to produce a ranking of
all requirements in Req. This ranking is represented in the
form of a function H : Req → R. The function H rep-
resents the approximated ordering of Req induced by the
user preference function Φ using the information from the
set of features F ; the objective is to minimize a measure of
error called ranking loss rloss, which is defined in the fol-
lowing. Given a pair ri, rj , the pair is said to be crucial if
Φ(ri, rj) > 0, so that the pair receives non-zero weight un-
der D. The algorithm we use has been designed to find an
order function H with a small weighted number of crucial-
pair misorderings, in other words with a small ranking loss
rlossD(H) defined as:

rlossD(H) =
∑
ri,rj

D(ri, rj)[[H(rj) ≤ H(ri)]]

= Pr(ri,rj)∼D[H(rj) ≤ H(ri)]

where [[H(reqj) ≤ H(reqi)]] = 1 if H(reqj) ≤ H(reqi)
is true, 0 otherwise.

In our framework, the function H is computed by an
adaptation of the boosting method that is able to produce
highly accurate prediction rules by combining many weak
rules which may be moderately accurate; here we refer to
the boosting algorithm introduced in [9], which is sketched,
in pseudocode, in Figure 2.

The algorithm RankBoost performs T iterations; it takes
as input the initial distribution D and the set of functions F
and gives as output the final hypothesis H in the form of a
linear combination of partial order functions ht : Req → R

with a set of coefficients α = {α1, . . . , αt, . . . } (where t is
the iteration index).
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Algorithm RankBoost
Input: the set of requirements Req = {r1, . . . , ri, rj , . . . , rn},
the set of ranking criteria F , the function Φτ , the initial distribution D
Output: the final Hypothesis H(r)

begin
D1 = D;
For t = 1, . . . , T :

ht = WeakLearner(Req; Φτ , F, Dt) where ht : Req → R;
Choose αt, where αt ∈ R;

Dt+1(ri, rj) = Dt(ri,rj)
Zt

eαt(ht(ri)−ht(rj)), where Dt+1 : Req × Req → R

return H(r) =
∑T

t=1 αtht(r);
end.

Figure 2. A sketch of the RankBoost algorithm.

The basic iteration t performs the three steps described
below.

• Compute a partial order ht : Req → R via the function
ht = WeakLearner(Req; Φτ , F, D) of the elements
in Req tacking into account the function Φτ , the ranks
induced by the functions in F , and the distribution Dt.
In our experiments we referred to the WeakLearner
function described in [9]; it is a binary classifier that
in every iteration t produces a dichotomy on the sets
of requirements and defines a precedence relationship
among the resulting subsets.

• Compute a value for the parameter αt. This value is a
measure of the accuracy of the partial order ht respect
to the final order H .

• Compute a new distribution D over the set of pairs
whose value has been given by the users, which is
passed, on the next iteration, to the procedure that
computes the partial order ht. The algorithm, in fact,
uses the distribution D to emphasize some pairs in
ReqΦ × ReqΦ; D is computed as in the equation:
Dt+1(ri, rj) = Dt(ri,rj)

Zt
eαt(ht(ri)−ht(rj)).

In particular at the iteration t a high value for
Dt+1 assigned to a pair of requirements indicates
a great importance that the function ht+1 (so the
WeakLearner) orders that pair as indicated by the
user.

The total number of iterations, T , can be fixed a-priori
or the algorithm stops when a stable ordering configuration
has been found.

3. The AHP prioritization process

The Analytic Hierarchy Process (AHP) [25] is a mul-
tiple criteria decision making techniques based on a pair-
wise comparison approach. It has been largely applied in
software engineering, for instance in software package and
component selection [17, 18], in COTS evaluation [20] and
in requirements prioritization [14] .

From a practical point of view, when using AHP for pri-
oritizing requirements, the first step is the representation
of the set of requirements under investigation in a matrix
whose rows and columns represent the candidate require-
ments. Given a prioritization criterion, the second step im-
plements a pairwise comparison process where each ele-
ment of the matrix1 are assigned an integer belonging to the
interval [1 . . . 9] which represents a qualitative measure of
the preference relation between the corresponding require-
ments (e.g. if the requirement A is “equally important” than
requirement B respect to the given criterion, the value 1 is
given, if the requirement A is “essentially more important”
than requirement B the value 5 is given). When this step
has been completed, a total order is synthesized through the
computation of a vector of weights that specifies the rank of
each requirement.

In case of multiple criteria, the whole process is repeated
for each criterion and a further step is required, that is the
synthesis of a global rank based on a weighted composition
of the different criteria orderings is computed. The weights
are derived using an analogous preference elicitation pro-
cess performed on a matrix where rows and columns repre-
sent the different criteria.

Among the main, well known, limits of AHP, the growth
of the number of comparisons needed as long as the number

1More precisely, half of the matrix values is elicited while the other
half is computed by symmetry.
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of candidate requirements increases. Notice that even with
a small set of requirements, say 10, it is necessary to elicit
45 pairwise preferences, for each criterion2.

In Saaty [25] is proposed a technique to handle this scal-
ability problem by introducing the so called “dominance hi-
erarchy” whose top levels elements refer to criteria and the
lowest level correspond to the requirements. Intuitively, fol-
lowing the dominance hierarchy, the general prioritization
problem is decomposed into sub-problems allowing for a
reduction of the elicitation effort, but, at the same time in-
troducing a strong bias. In fact the dominance hierarchy
reflects the a-priori knowledge on the relative importance
of the criteria, independently from the current candidate re-
quirements.

A recent approach to handle the AHP scalability prob-
lem in prioritizing requirements has been proposed in [14].
This approach rests on the exploitation of the local stopping
rule technique proposed in [11]. This technique allows to
determine when new pairwise comparisons are no longer
needed.

More precisely, adopting the notation introduced in the
previous section, we can define the function KAHP that rep-
resents the correct ranking and the function HAHP (req)θ

that represents the ranking computed by the AHP algorithm
at a certain stage θ of the pairwise elicitation step (i.e. the
second step of the AHP process described above). The
stopping-rule can be represented by the expression (1)

(|H(ri)θ−1 − H(rj)θ| < a) (1)

where a is a positive real number.

4. Empirical Evaluation

In this section we present two types of experimental eval-
uation aiming at characterizing the effectiveness of our ap-
proach for a large set of requirements: the first consists in
comparing the CBRanking approach to AHP when priori-
tizing requirements sets of increasing cardinality; the sec-
ond aims at verifying the applicability and the effectiveness
of the stopping rule technique, briefly recalled in Section 3,
a state of the art solution to overcoming the AHP scalability
problem.

Both experimental evaluations rest on a simulation of
the prioritization process for a given target ranking, in
other words we assume that a simulated decision maker
knows the preference function K for a predefined set of re-
quirements, or, equivalently the correct prioritization cri-
terion. More precisely, a simulation of the prioritization
process can be accomplished as follows. First a subset
of pairs (reqi, reqj) is selected from the cartesian product

2The number of comparison required goes as n(n − 1)/2, where n is
the number of candidates

Req×Req with the restriction that i 	= j and (reqi, reqj) 	=
(reqj , reqi). In particular, in the CBRanking experiments,
the initial subset of pairs has cardinality n/2 and it is chosen
in order to guarantee that each requirement is a member of
at least one pair in the subset, while for AHP a spanning tree
(composed by n − 1 pairs) is chosen, as described in [15].
The following step, related to preference elicitation, sim-
ulates the user behavior retrieving the Φ(reqi, reqj) value
by sampling directly the given preference function K . For
simplicity we restrict the simulation to a monotonic behav-
ior and we assume that a decision maker acts without giving
inconsistent answers during the process. The third step, in-
vokes the RankBoost algorithm to produce an estimate of
the proper prioritization, H(req), fully defined over the set
Req resulting in an approximated priority rank.

We call this experimental approach off-line empirical
evaluation, in contrast to the on-line approach which involve
human decision-makers. The usefulness of the off-line ex-
perimentation when setting up a set of on-line experiments
have been presented in [4] where also a set of on-line tests
aiming at measuring the accuracy of the final ranking corre-
sponding to a given elicitation effort, have been discussed.

Notice that the complexity of a prioritization process it
is not directly dependent on the choice of a specific prefer-
ence function K but to the relationship that holds between a
given preference function K and the set of ranking features
F . As illustrated in [5] it is possible to recognize four dif-
ferent types of relationships that correspond respectively to
an increasing prioritization complexity: isotonic, anti-tonic,
non-monotonic, non-projective. According to this consid-
erations, we generated a set of prioritization problems of
different degrees of difficulty.

The first experimental evaluation has been conducted on
sets of requirements with cardinality n equal to 10, 25, 50,
100 respectively. On a given set of requirements, we run
two prioritization processes, one based on our approach,
the other on AHP. In both processes we computed the the
disagreement corresponding to a given number of elicitated
pair preferences. That is, given a pair (ri, rj) we intro-
duce the measure dp(ri, rj) which assumes the value 1 if
the functions H, K gives different ordering relationships for
that pair, and 0 otherwise, namely:

dp(ri, rj) =




1 if (H(ri) < H(rj) ∧ K(ri) > K(rj))
∨(H(ri) > H(rj) ∧ K(ri) < K(rj))

0 otherwise
(2)

The total disagreement(H, K) of the ordering function
H respect to the target ranking K is then defined in the
formula (3).

disagreement(H, K) =
1

n(n − 1)

∑
i,j,i�=j

dp(ri, rj) (3)
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Figure 3. The plot of disagreement (y-axis)
for a set of 25 requirements in AHP and
the CBRanking frameworks for an increasing
number of elicitated pairs (x-axis).
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Figure 4. The plot of disagreement (y-axis)
for a set of 50 requirements in AHP and
the CBRanking frameworks for an increasing
number of elicitated pairs (x-axis).

The values plotted in Figure 3, have been obtained as the
average of the disagreement values measured on ten runs.
On the x axis is shown the percentage of requirements pair
preferences that have been elicited (which is a measure of
the elicitation effort). Notice that 5% of requirements pairs
corresponds to the cardinality of the set of requirements.
This corresponds to the amount of evaluations that are usu-
ally requested by methods that are linearly related to the
number of requirements (within the hypothesis of mono-
tonicity).

In Figure 3, 4 and 5 are shown the disagreement mea-
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Figure 6. The result of the application of the
stopping rule over a set of 20 run of both
the Case-Based Ranking and AHP process
for prioritization the same set of 25 require-
ments.

sures in the case of 25, 50 and 100 requirements respec-
tively.

The second set of experiments focuses on the application
of the local stopping rule briefly described in Section 2, that
have been used both with AHP and with our approach.

A critical problem when using this technique is how to
choose a-priori, the right value for the parameter a, having
in mind the precise value for the maximum elicitation effort
at which the process should be stopped.

The input to this second type of experiments is a set of
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requirements, a value for K and a value for a. The output
is a measure of the disagreement computed for the elicited
pairs number at which the process stop.

In Figure 6 are shown some results. In particular the
diagram represents the results over twenty AHP runs, on
the same set of 25 requirements and for a = 0.001. Ev-
ery point in the diagram represents the final value of one of
these twenty runs.

The stopping rule technique has been adapted for our
methodology and values for the parameter aCBR for our
approach which may be compared to those for aAHP has
been found experimentally.

The results obtained running our approach with the stop-
ping rule, on the same set of requirements, and with a com-
parable value for the stopping parameter a are depicted in
the same plot.

Note that other values for parameter a have been tested
giving analogous results. The choice of showing the results
for aAHP = 0.001 and respectively for aCBR = 0.5 is
because they cover a region of the elicitation effort from
10% to 30%, which is a region of interest with respect to
the previously discussed experiments.

5. Discussion

The first set of experiments allows a deep analysis of the
trade-off between the elicitation effort and the ranking accu-
racy, in the two approaches, namely CBRanking and AHP,
and provides an empirical evidence that the first uniformly
outperforms the second.

First, the CBRanking framework results more effective
especially for lower values of elicited pairs, as shown in the
plots depicted in Figure 3, 4, 5, where, for instance the im-
provement in the approximation accuracy obtained with the
CBRanking framework with respect to that obtained with
AHP, at 5% of the elicited pairs is greater then the relative
improvement measured at 10% of the elicited pairs. This
is particularly remarkable when we are considering large
numbers of requirements since, in practice, only a small
portion of pairs can be manually elicited. For example, the
10% pairwise analysis of 200 requirements requires to per-
form around 2000 comparisons.

Moreover, if we focus our attention to the behaviour of
the two techniques for low elicitation effort (the most in-
teresting case for practical approaches, as claimed above)
we can see that the improvement of CBRanking with re-
spect to AHP increases when considering larger and larger
sets of requirements. Considering the approximated rank-
ing obtained with an elicitation effort of 5% of pairs, it is
characterized by a 20% of disagreement in the case of 25
requirements, by a 15% of disagreement in the case of 50
requirements and by a a 10% of disagreement in the case
of 100 requirements (see Figure 3, Figure 4 and Figure 5

respectively). This can be considered a relevant empirical
evidence of the effectiveness of the CBRanking framework
in dealing with the scalability issue. During the experiments
the effectiveness of the spanning tree initialization strategy
used in AHP have been tested also in our framework. The
results show that the adoption of this strategy does not pro-
duce a faster convergence of the RankBoost algorithm.

The results discussed so far concern with the average be-
haviour analysis. Since the % disagreement measured with
the CBRanking technique has a greater variance with re-
spect to that measured with AHP, the results of CBRanking
can be much more better. The analysis of complexity of a
requirement prioritization process is out of the scope of this
paper and is discussed in details in [5]; here it is important to
notice that one of the source of complexity in the CBRank-
ing method, other than the complexity related to number of
requirements, is the relationship between the target ranking
K and the domain knowledge represented by the ranking
criteria in F ; they can give effective support to the ranking
process in the case they specify a ranking close to the tar-
get ranking. Nevertheless it is important to remark, even
though not depicted in the plots, that the worst behaviour of
CBRanking performs at least as AHP.

The successful results of CBRanking can be extended to
the analysis of stopping-rule. The achievement is twofold:
better average accuracy and lower effort variance. The first
result is of course a straightforward consequence of the pre-
vious achievement. Since CBRanking outperforms AHP, if
we apply a policy to reduce the elicitation effort the final
results will be related to the general behaviour of the two
techniques.

A meaningful additional result is concerned with the
variance of elicitation effort. The behaviour of stopping-
rule, as technique to reduce the elicitation effort, is strongly
context sensitive. The final outcome is an high variance of
the numbers of pairs that have to be elicited. For example, in
our experiment with 25 requirements depicted in Figure 6,
the percentage of elicitation effort spans from 10% to 30%
for 10 iterations of the same problem. For the same ex-
periment the variance of CBRanking is half with respect to
AHP: the values are in the range between 10% and 20%.
It is important to notice that for both the methods the re-
sults show a high variance with respect to the disagreement
obtained when the process is stopped by the rule, so, espe-
cially for AHP, the low effort in the elicitation process is not
balanced with the accuracy of the final ranking.

The behaviour of CBRanking seems to get much more
effective the use of stopping-rule. Not only CBRanking
halves the variance of elicitation effort but at the same time
it lower the upper bound of the number of pairs that have
to be elicited. In our experiment illustrated in Figure 6,
the worst case of 30% is reduce to 20%. As mentioned in
advance, reducing the elicitation effort is dual problem of
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scaling with respect to the number of requirements.

6. Related work

In this paper we focused on how to deal with the scal-
ability problems that arise in managing the prioritization
of a large number of requirements. Among the relevant
approaches that face these issues, we already mentioned
[15] which proposes the concept of stopping-rule to reduce
the pairwise elicitation effort. This rule allows to define a
threshold on the variation of the estimated requirements or-
dering under which new comparisons are no longer needed.
In Section 5 we pointed out critical aspects related to the
fact that the value of the threshold has to be chosen a-priori,
and showed how our approach can limit them.

Considering the requirements prioritization in a more
general perspective, in [8] we can find a discussion of the
possible purpose and benefits, challenges and risks that
arises during the process of requirement prioritization as
well as a classification of currently used techniques. Among
them, of particular interest for our work are the following.
The Cost-Value approach, described in [14], exploits the
AHP technique for the evaluation of requirements against
two main criteria: business value, that is the ability of a
requirement to contribute to the customer satisfaction, and
cost of implementation. The result is then plotted in a cost-
value diagram that shows in a visual way the relative po-
sition of the requirements. This composition of the two
requirements rankings offers a rather effective method for
classifying the requirements, nevertheless the method suf-
fers from all the limits of the AHP technique and in partic-
ular those related to the scalability.

In [21] is proposed another AHP-based methodology
named Soft Requirements Negotiator (SRN). The SRN
method aims at addressing the incompleteness and uncer-
tainty of the initial set of requirements to be prioritized and
for this reason integrates AHP, multi-criteria approaches
and simulation techniques for the estimation of quantitative
ranking features. Multi-criteria techniques are exploited
with the attempt to deal with incomplete information, and
in particular to support the selection of balancing “for” and
“against” arguments for a given requirement.

Other studies on basic multi-criteria decision making
methods to be used during requirements prioritization are
[23], SMART [7], Quality Function Deployment (QFD) [3],
the Multi-criteria Preference Analysis Requirements Nego-
tiation (MPARN) [12], and Quantitative WinWin [24].

Main limits of the above mentioned approaches are re-
lated to the strong assumptions which are inherent to the de-
cision making techniques they adopt, such as, the complete-
ness and certainty of the set of requirements to be evaluated
and the plausibility of a rating scale based on discrete cate-
gories. Moreover most of them typically do not scale unless

the requirements are previously grouped in some manner.
This considerations [19, 26] motivated the development of
methodologies which are less accurate, but more easy-to use
and less time consuming that can be preferred in industrial
practice. For instance, in [22] is described an experimen-
tal study where an AHP based approach is compared to an
approach based on Planning Game, a technique used in Ex-
treme Programming [16], showing that the second approach
was preferred.

Other works propose the integration of different decision
making techniques as well as methods for the identification
of relevant criteria for requirements prioritization derived
from other disciplines, (e.g. portfolio-based reasoning) [12,
26].

Concerning the specific techniques that has been ex-
ploited in our CBRanking framework, in [13] are proposed
interesting modifications to the boosting algorithms, and in
particular to the Ada Boost algorithm [10]. A new algo-
rithm has been defined in order to cope with the problem of
overfitting and with the problem of improving the selection
of the most promising patterns that are able to approximate
the final target ranking; this may result in a better behavior
of the algorithm in finding a good approximated solution
with reducing the elicitation effort for the user.

7. Conclusions

In this paper we presented in details a novel framework
for requirements prioritization, called Case-Based Ranking.
Similarly to the AHP process, our framework adopts an elic-
itation process based on the acquisition of pairwise prefer-
ences, differently from AHP it enables a prioritization pro-
cess even over a large set of requirements, thanks to the
exploitation of machine learning techniques that induce re-
quirements ranking approximations from the acquired data.

The Case-Based Ranking framework has been evaluated
with respect to AHP on simulated data. We described this
set of tests and discussed the results which shows that our
framework is effective in dealing with large sets of require-
ments. Basically, they prove that in average, our approach
outperforms AHP with respect to the trade-off between ex-
pert elicitation effort and the requirement prioritization ac-
curacy and that in the worst case, it works as well as AHP
technique.

Current results seems to be promising and we are going
to further investigate the framework addressing other issues
of requirements prioritization such as the negotiation among
the points of view of different stakeholders, the handling of
requirements dependencies and of “anytime” prioritization,
a relevant issue when new unexpected requirements have to
be added. Moreover, in [4] we addressed the problem of
evaluating the effectiveness of the CBRanking method in a
real setting. Here an interesting emerging problem is repre-
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sented by the need of setting up methods for the validation
of the experimental results.
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