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Abstract

We introduce scientific claim verification, a

new task to select abstracts from the re-

search literature containing evidence that SUP-

PORTS or REFUTES a given scientific claim,

and to identify rationales justifying each de-

cision. To study this task, we construct SCI-

FACT, a dataset of 1.4K expert-written scien-

tific claims paired with evidence-containing

abstracts annotated with labels and rationales.

We develop baseline models for SCIFACT, and

demonstrate that simple domain adaptation

techniques substantially improve performance

compared to models trained on Wikipedia or

political news. We show that our system is

able to verify claims related to COVID-19 by

identifying evidence from the CORD-19 cor-

pus. Our experiments indicate that SCIFACT

will provide a challenging testbed for the de-

velopment of new systems designed to retrieve

and reason over corpora containing specialized

domain knowledge. Data and code for this

new task are publicly available at https://

github.com/allenai/scifact. A leader-

board and COVID-19 fact-checking demo

are available at https://scifact.apps.

allenai.org.

1 Introduction

Due to rapid growth in the scientific literature, it

is difficult for researchers – and the general pub-

lic even more so – to stay up to date on the latest

findings. This challenge is especially acute during

public health crises like the current COVID-19 pan-

demic, due to the extremely fast rate at which new

findings are reported and the risks associated with

making decisions based on outdated or incomplete

information. As a result, there is a need for auto-

mated tools to assist researchers and the public in

evaluating the veracity of scientific claims.

∗Work performed during internship with the Allen Insti-
tute for Artificial Intelligence.
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Figure 1: A scientific claim, supported by evidence

identified by our system. To correctly verify this claim,

the system must possess background knowledge that

troponin is a protein found in cardiac muscle and that

elevated levels of troponin are a marker of cardiac

injury. In addition, it must be able to reason about di-

rectional relationships between scientific processes: re-

placing higher with lower would cause the rationale

to REFUTE the claim rather than SUPPORT it. Finally,

the system should interpret p < 0.001 as an indication

that the reported finding is statistically significant.

Fact-checking – a task in which the veracity

of an input claim is verified against a corpus of

documents that support or refute the claim – has

been studied to combat the proliferation of misin-

formation in political news, social media, and on

the web (Thorne et al., 2018; Hanselowski et al.,

2019). However, verifying scientific claims poses

new challenges to both dataset construction and

effective modeling. While political claims are read-

ily available on fact-checking websites and can be

verified by crowd workers, annotators with exten-

sive domain knowledge are required to generate

and verify scientific claims.

In addition, NLP systems for scientific claim

verification must possess additional capabilities be-

yond those required to verify factoid claims. For

instance, to verify the claim shown in Figure 1, a

https://github.com/allenai/scifact
https://github.com/allenai/scifact
https://scifact.apps.allenai.org
https://scifact.apps.allenai.org
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Claim 1: Lopinavir / ritonavir have exhibited favorable clinical responses when used as a treatment for coronavirus.

Supports: . . . Interestingly, after lopinavir/ritonavir (Kaletra, AbbVie) was administered, β-coronavirus viral loads significantly
decreased and no or little coronavirus titers were observed.

Refutes: The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for
curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus . . .

Claim 2: The coronavirus cannot thrive in warmer climates.

Supports: ...most outbreaks display a pattern of clustering in relatively cool and dry areas...This is because the environment
can mediate human-to-human transmission of SARS-CoV-2, and unsuitable climates can cause the virus to destabilize quickly...

Refutes: ...significant cases in the coming months are likely to occur in more humid (warmer) climates, irrespective of the
climate-dependence of transmission and that summer temperatures will not substrantially limit pandemic growth.

Table 1: Evidence identified by our system as supporting and refuting two claims concerning COVID-19.

system must have the ability to access scientific

background knowledge, reason over increases and

decreases in quantities or measurements, and make

sense of specialized statistical language.

In this paper, we introduce the task of scien-

tific claim verification to evaluate the veracity of

scientific claims against a scientific corpus. Ta-

ble 1 presents some examples. To facilitate re-

search on this task, we construct SCIFACT, an

expert-annotated dataset of 1,409 scientific claims

accompanied by abstracts that support or refute

each claim, and annotated with rationales (Lei et al.,

2016) justifying each SUPPORTS / REFUTES deci-

sion. To create the dataset, we develop a novel an-

notation protocol in which annotators re-formulate

naturally occurring claims in the scientific literature

– citation sentences – into atomic scientific claims.

Using citation sentences as a source of claims both

speeds the claim generation process and guarantees

that the topics discussed in SCIFACT are represen-

tative of the research literature. In addition, citation

links indicate the exact documents likely to contain

evidence necessary to verify a given claim.

We establish performance baselines on SCIFACT

with an approach similar to DeYoung et al. (2020a),

which achieves strong performance on the FEVER

claim verification dataset (Thorne et al., 2018). Our

baseline is a pipeline system which retrieves ab-

stracts related to an input claim, uses a BERT-

based (Devlin et al., 2019) sentence selector to iden-

tify rationale sentences, and labels each abstract

as SUPPORTS, REFUTES, or NOINFO with respect

to the claim. We demonstrate that our baseline

can benefit from training on claims from domains

including Wikipedia articles and politics.

We showcase the ability of our model to ver-

ify expert-written claims concerning the novel

coronavirus COVID-19 against the newly-released

CORD-19 corpus (Wang et al., 2020). Expert anno-

tators judge retrieved evidence to be plausible for

23 of 36 claims.1 Our results and analyses demon-

strate the importance of the new task and dataset to

support significant future research in this domain.

In summary, our contributions include: (1) We

introduce and formalize the scientific claim verifi-

cation task. (2) We develop a novel annotation

protocol to generate and verify 1.4K naturally-

occurring claims about scientific findings. (3) We

establish strong baselines on this task, and iden-

tify substantial opportunities for improvement at

all stages of the modeling pipeline. (4) We demon-

strate the efficacy of our system in a real-world case

study verifying claims about COVID-19 against the

research literature.

2 Background and task definition

As illustrated in Figure 1, scientific claim verifi-

cation is the task of identifying evidence from the

research literature that SUPPORTS or REFUTES a

given scientific claim. Table 1 shows the results

of our system applied to claims about the novel

coronavirus COVID-19. For each claim, the sys-

tem identifies relevant scientific abstracts, and la-

bels the relation of each abstract to the claim as

either SUPPORTS or REFUTES. Verifying scientific

claims is challenging and requires domain-specific

background knowledge – for instance, in order to

identify the evidence supporting Claim 1 in Ta-

ble 1, the system must determine that a reduction in

coronavirus viral load indicates a favorable clinical

response, even though this fact is never mentioned.

Scientific claims In SCIFACT, a scientific claim is

an atomic verifiable statement expressing a finding

1We emphasize that our model is a research prototype and
should not be used to make any medical decisions whatsoever.
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about one aspect of a scientific entity or process,

which can be verified from a single source.2 For

instance, “The R0 of the novel coronavirus is 2.5”

is valid, but opinion-based statements like “The

government should require people to stand six feet

apart to stop coronavirus” are not. Compound

claims like “Aerosolized coronavirus droplets can

travel at least 6 feet and can remain in the air for 3

hours” should be split into two atomic claims.

Claims in SCIFACT are natural – they are de-

rived from citation sentences, or citances (Nakov

et al., 2004), that occur naturally in scientific ar-

ticles. This is similar to political fact-checking

datasets such as UKP Snopes (Hanselowski et al.,

2019), which use political fact-checking websites

as a source of natural claims. On the other hand,

claims in the popular FEVER dataset (Thorne et al.,

2018) are synthetic, since they are created by anno-

tators by mutating sentences from the Wikipedia

articles that will serve as evidence.

Supporting and refuting evidence In most fact-

checking work, claims are assigned a global truth

label based on the entirety of the available evidence.

For example in FEVER, the claim “Barack Obama

was the 44th President of the United States” can be

verified using Wikipedia as an evidence source.

While SCIFACT claims are indeed verifiable as-

sertions about scientific findings, accurately assign-

ing a global truth label to a scientific claim (given a

fixed scientific corpus) requires a systematic review

by a team of experts. In this work we focus on the

simpler task of assigning SUPPORTS or REFUTES

relations to individual claim-abstract pairs.

Each SUPPORTS or REFUTES relation between

claim and abstract must be justified by at least one

rationale. A rationale is a minimal collection of

sentences which, taken together as premises in the

context of the abstract, can reasonably be judged by

a domain expert as implying the claim. Rationales

facilitate the development of interpretable models

which not only have the ability to make label pre-

dictions, but can also identify the exact sentences

that are necessary for their decisions.

3 The SCIFACT dataset

The SCIFACT dataset consists of 1,409 scientific

claims3 verified against a corpus of 5,183 abstracts.

2Requiring annotators to search multiple sources increases
cognitive burden and decreases annotation quality.

3SCIFACT is comparable in size to recent scientific datasets
for tasks such as QA (e.g. PubMedQA (Jin et al., 2019)
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Figure 2: Corpus construction. Citing abstracts are

identified for each seed document. A claim is written

based on the source citance in the citing abstract.

Abstracts that support or refute each claim are an-

notated with rationales. We describe our corpus

creation and annotation process.

3.1 Data source and corpus construction

To construct SCIFACT, we use S2ORC (Lo et al.,

2020), a publicly-available corpus of millions of

scientific articles. To ensure that documents in our

dataset are of high quality, we randomly sample

articles from a manually curated collection of well-

regarded journals spanning domains from basic sci-

ence (e.g., Cell, Nature) to clinical medicine (e.g.,

JAMA, BMJ). The full list of journals is included in

Appendix C.1. We restrict to articles with at least

10 citations. The resulting collection is referred

to as our seed set. We use the S2ORC citation

graph to sample source citances from citing arti-

cles which cite these seed articles. If a citance cites

other articles not in the seed set, we refer to these

as co-cited articles and add them to the corpus, as

depicted in Figure 2. The content of the cited ab-

stracts encompasses a diverse array of topics within

biomedicine, as shown in Figure 3. The majority

of citances used for SCIFACT cite only the seed

article (no co-cited articles), as we found in initial

annotation experiments that these citances tended

to yield specific, easy-to-verify claims.

To expand the corpus, we identify five papers

cited in the same paper as each source citance but

in a different paragraph, and add these to the cor-

pus as distractor abstracts. These abstracts often

has 1,000 questions), and information extraction (e.g. Sci-
ERC (Luan et al., 2018) has 500 annotated abstracts).
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Figure 3: Most frequently occurring Medical Subject

Headings (MeSH) terms (y-axis) among cited abstracts.

MeSH is a controlled vocabulary used for indexing ar-

ticles in PubMed. Topics range from clinical trial re-

ports (“Humans”, “Risk Factors”) to molecular biology

(“Cell Line”, “RNA”).

discuss similar topics to the evidence documents,

increasing the difficulty of abstract retrieval and

making our metrics more accurately reflect the sys-

tem’s performance on a large research corpus.

3.2 Claim writing

Annotation Annotators are shown a source citance

in the context of an article, and are asked to write up

to three claims based on the content of the citance;

see Appendix C.2 for an example. This results in

natural claims because the annotator does not see

the cited article’s abstract – the cited abstract – at

the time of claim writing. Annotators are asked

to skip citances that do not make statements about

specific scientific findings.

The claim writers included four experts with

background in scientific NLP, fifteen undergradu-

ates studying the life sciences, and four graduate

students (doctoral or medical) in the life sciences.

Detailed information on the annotator training pro-

cess can be found in Appendix C.3. The claim-

writing interface is shown in Appendix D.

Claim negation Unless the authors of the source

citance were mistaken, cited articles should pro-

vide supporting evidence for the claims made in

a citance. To obtain examples where an abstract

REFUTES a claim, an NLP expert wrote negations

of existing claims, taking precautions not to bias

the negations by using obvious keywords like “not”

(Schuster et al., 2019; Gururangan et al., 2018). In

§6.1, we demonstrate that a “claim-only” verifi-

cation model performs poorly, suggesting that the

negation process did not introduce severe artifacts.

3.3 Claim verification

Annotation For each claim, all of the claim’s cited

abstracts are annotated for evidence. Annotators

are shown a single claim - cited abstract pair, and

asked to label the pair as SUPPORTS, REFUTES, or

NOINFO. Although our task definition allows for a

single claim to be both supported and refuted (by

different abstracts) – an occurrence we observe on

real-world COVID-19 claims (§6.3) – this never

occurs in our dataset. Each claim has a single label.

Counts for each label are shown in Table 2a. Over-

all, the annotators found evidence in 63% of cited

abstracts. If the annotator assigns a SUPPORTS or

REFUTES label, they must also identify all ratio-

nales as defined in §2. Table 2b provides statistics

on the number of sentences per rationale, the num-

ber of rationales per claim / abstract pair, and the

number of evidence abstracts per claim. No ab-

stract has more than 3 rationales for a given claim,

and all rationales consist of at most three sentences.

Rationales in SCIFACT are mutually exclusive. 28

rationales contain non-contiguous sentences.

The verifiers included three NLP experts, five

life science undergraduates, and five graduate stu-

dents studying life sciences. Annotators verified

claims that they did not write themselves. Annota-

tion guidelines are provided in Appendix D.

SCIFACT claims are verified against abstracts

rather than full articles since (1) abstracts can be

annotated more scalably, (2) evidence is found in

the abstract in more than 60% of cases, and (3) pre-

vious attempts at full-document annotation suffered

from low annotator agreement (§7).

Quality We assign 232 claim-abstract pairs for in-

dependent re-annotation. The label agreement is

0.75 Cohen’s κ, comparable with the 0.68 Fleiss’

κ reported in Thorne et al. (2018), and 0.70 Co-

hen’s κ reported in Hanselowski et al. (2019). To

measure rationale agreement, we treat each sen-

tence as either classified as “part of a rationale” or

“not part of a rationale” and compute sentence-level

agreement. The resulting Cohen’s κ is 0.71.

4 The SCIFACT task

Task Formulation The inputs to our task are a sci-

entific claim c and a corpus of abstracts A. All ab-

stracts a ∈ A are labeled as y(c, a) ∈ {SUPPORTS,

REFUTES, NOINFO } with respect to a claim c.
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Fold SUPPORTS NOINFO REFUTES All

Train 332 304 173 809

Dev 124 112 64 300

Test 100 100 100 300

All 556 516 337 1409

(a) Distribution of claim labels in SCIFACT.

0 1 2 3+

Cited abstracts per claim - 1278 86 45

Evidence abstracts per claim 516 830 37 26

Rationales per abstract - 552 290 153

Sentences per rationale - 1542 92 11

(b) Evidence counts at various levels of granularity. For exam-
ple, Column 2 of the row “Rationales / abstract” indicates that
290 claim / abstract pairs are supported by 2 distinct rationales.

Table 2: Statistics on claim labels, and the number of

evidence abstracts and rationales per claim.

The abstracts that either SUPPORT or REFUTE c

are referred to as evidence abstracts for c, denoted

as E(c). Each evidence abstract a ∈ E(c) is an-

notated with rationales. A single rationale Ri is

a collection of sentences {r1(c, a), . . . , rm(c, a)},

where m is the number of sentences in rationale Ri.

We denote the set of all rationales as R(c, a) =
{R1(c, a), . . . , Rn(c, a)}.

Given a claim c and a corpus A, the system

must predict a set of evidence abstracts Ê(c). For

each abstract a ∈ Ê(c), it must predict a label

ŷ(c, a), and a collection of rationale sentences

Ŝ(c, a) = {ŝ1(c, a), . . . , ŝℓ(c, a)}. Note that al-

though the gold annotations may contain multiple

separate rationales, to simplify the prediction task

we only require the model to predict a single col-

lection of rationale sentences; these sentences may

encompass multiple gold rationales.

Task Evaluation We evaluate the task at two levels

of granularity. For abstract-level evaluation, we

assess the model’s ability to identify the abstracts

that support or refute the claim. For sentence-level

evaluation, we evaluate the model’s performance

at identifying the sentences sufficient to justify the

abstract-level predictions. We conduct evaluations

in both the “Open” FEVER-style (Thorne et al.,

2018) setting where the evidence abstracts must

be retrieved, and the “Oracle abstract” ERASER-

style (DeYoung et al., 2020a) setting where the

gold evidence abstracts E(c) are provided.

Abstract-level evaluation is inspired by the

FEVER score. Given a claim c, a predicted evidence

abstract a ∈ Ê(c) is correctly labeled if (1) a is a

gold evidence abstract for c, and (2) The predicted

label is correct: ŷ(c, a) = y(c, a). It is correctly

rationalized if, in addition, the predicted rationale

sentences contain a gold rationale, i.e., there exists

some gold rationale Ri(c, a) ⊆ Ŝ(c, a).

Like FEVER, which limits the maximum number

of predicted rationale sentences to five, SCIFACT

limits to three predicted rationale sentences. Over-

all performance is measured by the micro-F1 of

the precision and recall over the correctly-labeled

and correctly-rationalized evidence abstracts. We

refer to these evaluations as AbstractLabel-Only and

AbstractLabel+Rationale, respectively.

Sentence-level evaluation measures performance

in identifying individual rationale sentences. Un-

like the abstract-level metrics, this evaluation pe-

nalizes the prediction of extra rationale sentences.

A predicted rationale sentence ŝ(c, a) is cor-

rectly selected if (1) It is a member of some gold

rationale Ri(c, a), (2) all other sentences from the

same gold rationale Ri(c, a) are among the pre-

dicted Ŝ(c, a), and (3) ŷ(c, a) 6= NOINFO
4. It is

correctly labeled if, in addition, the abstract a is

correctly labeled: ŷ(c, a) = y(c, a).

Overall performance is measured by the micro-

F1 of the precision and recall of correctly-selected

and correctly-labeled rationale sentences, denoted

SentenceSelection-Only and SentenceSelection+Label.

For sentence-level evaluation, we do not limit the

number of predicted rationale sentences, since the

evaluation penalizes models that over-predict.

5 VERISCI: Baseline model

We develop a baseline (referred to as VERISCI) that

takes a claim c and corpus A as input, identifies

evidence abstracts Ê(c), and predicts a label ŷ(c, a)
and rationale sentences Ŝ(c, a) for each a ∈ Ê(c).
Following the “BERT-to-BERT” model presented

in DeYoung et al. (2020a); Soleimani et al. (2019),

VERISCI is a pipeline of three components:

1. ABSTRACTRETRIEVAL retrieves k abstracts

with highest TF-IDF similarity to the claim.

2. RATIONALESELECTION identifies rationale

sentences Ŝ(c, a) for each abstract.

3. LABELPREDICTION makes the final label pre-

diction ŷ(c, a).

Rationale selection Given a claim c and ab-

stract a, we train a model to predict zi ,

4Condition (3) eliminates rationale sentences which were
identified by the rationale selector, but proved insufficient to
justify a final SUPPORTS / REFUTES decision
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1[ai is a rationale sentence] for each sentence ai
in a. For each sentence, we encode the concate-

nated sequence wi = [ai, SEP, c] using a BERT-

style language model and predict a score z̃i =
σ[f(CLS(wi))], where σ is the sigmoid function,

f is a linear layer and CLS(wi) is the CLS token

from the encoding of wi. We train the model on

pairs of claims and their cited abstracts and min-

imize cross-entropy loss between zi and z̃i. For

each claim, we use cited abstracts labeled NOINFO,

as well as non-rationale sentences from abstracts

labeled SUPPORTS and REFUTES as negative ex-

amples. To make predictions, we select all sen-

tences ai with z̃i > t as rationale sentences, where

t ∈ [0, 1] is tuned on the dev set (Appendix A.1).

Label prediction Sentences identified by the ra-

tionale selector are passed to a separate BERT-

based model to make the final labeling decision.

Given a claim c and abstract a, we concatenate

the claim and the predicted rationale sentences

u = [ŝ1(c, a), . . . ŝℓ(c, a), SEP, c]5, and predict

ỹ(c, a) = φ[f(CLS(u))], where φ is the softmax

function, and f is a linear layer with three outputs

representing the {SUPPORTS, REFUTES, NOINFO

} labels. We minimize the cross-entropy loss be-

tween ỹ(c, a) and the true label y(c, a).

We train the model on pairs of claims and their

cited abstracts using gold rationales as input. For

cited abstracts labeled NOINFO, we choose the

k sentences from the cited abstract with high-

est TF-IDF similarity to the claim as input ra-

tionales. For prediction, we use the predicted

rationale sentences Ŝ(c, a) as input and predict

ŷ(c, a) = argmax ỹ(c, a). NOINFO is predicted

for abstracts with no rationale sentences.

We experimented with a label prediction model

which encodes entire abstracts via the Longformer

(Beltagy et al., 2020), and makes predictions us-

ing the document-level CLS token. Performance

was not competitive with our pipeline setup, likely

because the label predictor struggles to identify

relevant information when given full abstracts.

6 Experiments

In our experiments, we (1) analyze the performance

of each individual component of VERISCI, (2) eval-

uate full task performance in both the “Oracle ab-

stract” and “Open” settings, (3) present promising

results verifying claims about COVID-19 using

5We truncate the rationale input if it exceeds the BERT
token limit. c is never truncated.

RATIONAL-SELECT. LABEL-PRED.

Training data P R F1 ACC.

FEVER 41.5 57.9 48.4 67.6
UKP Snopes 42.5 62.3 50.5 71.3
SCIFACT 73.7 70.5 72.1 75.7
FEVER + SCIFACT 72.4 67.2 69.7 81.9

Sentence encoder P R F1 ACC.

SCIBERT 74.5 74.3 74.4 69.2
BioMedRoBERTa 75.3 69.9 72.5 71.7
RoBERTa-base 76.1 66.1 70.8 62.9
RoBERTa-large 73.7 70.5 72.1 75.7

Model inputs P R F1 ACC.

Claim-only - - - 44.5
Abstract-only 60.1 60.9 60.5 53.3

Table 3: Comparison of different training datasets, en-

coders, and model inputs for RATIONALESELECTION

and LABELPREDICTION, evaluated on the SCIFACT

dev set. The claim-only model cannot select rationales.

VERISCI, and (4) discuss some modeling chal-

lenges presented by the dataset.

6.1 Pipeline components

We examine the effects of different training

datasets, sentence encoders, and model inputs on

the performance of the RATIONALESELECTION

and LABELPREDICTION modules. The RATIO-

NALESELECTION module is evaluated on its ability

to select rationale sentences given gold abstracts6.

The LABELPREDICTION module is evaluated on its

3-way label classification accuracy given gold ratio-

nales from cited abstracts. Cited abstracts labeled

NOINFO are included in the evaluation. These ab-

stracts have no gold rationale sentences; as in §5,

we provide the k most similar sentences from the

abstract as input (more details in Appendix A).

Training Data We train on (1) FEVER, (2) UKP

Snopes, (3) SCIFACT, and (4) FEVER pretraining

followed by SCIFACT fine-tuning. RoBERTa-large

(Liu et al., 2019) is used as the sentence encoder.

Sentence encoder We fine-tune SCIBERT (Belt-

agy et al., 2019), BioMedRoBERTa (Gururangan

et al., 2020), RoBERTa-base, and RoBERTa-large.

SCIFACT is used as training data.

Model Inputs We examine the performance of

“claim-only” and “abstract-only” models trained

on SCIFACT, using RoBERTa-large as the sentence

encoder. The claim-only model makes label predic-

6Our FEVER-trained RATIONALESELECTION module
achieves 79.9 sentence-level F1 on the FEVER test set, virtu-
ally identical to 79.6 reported in DeYoung et al. (2020a).
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Sentence-level Abstract-level
Selection-Only Selection+Label Label-Only Label+Rationale

Retrieval Model P R F1 P R F1 P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.0 80.5 89.22.1 89.6 72.2 79.93.0 90.1 77.5 83.32.4 90.1 77.5 83.32.4

Zero-shot 2 42.5 45.1 43.82.0 36.1 38.4 37.22.3 86.9 53.6 66.33.1 67.9 41.9 51.83.4
VERISCI 3 76.1 63.8 69.42.6 66.5 55.7 60.63.1 87.3 65.3 74.72.8 84.9 63.5 72.72.9

Open

Oracle rationale 4 100.0 56.5 72.23.3 87.6 49.5 63.23.7 88.9 54.1 67.23.2 88.9 54.1 67.23.2

Zero-shot 5 28.7 37.6 32.52.3 23.7 31.1 26.92.3 56.0 42.3 48.23.3 42.3 32.0 36.43.3
VERISCI 6 45.0 47.3 46.13.0 38.6 40.5 39.53.0 47.5 47.3 47.43.1 46.6 46.4 46.53.1

Table 4: Test set performance on SCIFACT, according to the metrics from §4. For the “Oracle abstract” rows,

the system is provided with gold evidence abstracts. “Oracle rationale” rows indicate that the gold rationales are

provided as input. “Zero-shot” indicates zero-shot performance of a verification system trained on FEVER. Addi-

tionally, standard deviations are reported as subscripts for all F1 scores. See Appendix B for standard deviations

on all reported metrics.

tions based on the claim text alone, without access

to evidence abstracts. The abstract-only model

selects rationale sentences and makes label predic-

tions without access to the claim.

Results The results are shown in Table 3. For LA-

BELPREDICTION, the best performance is achieved

by training first on the large FEVER dataset and

then fine-tuning on the smaller in-domain SCIFACT

training set. To understand the benefits of FEVER

pretraining, we examined the claim / evidence pairs

where the FEVER + SCIFACT- trained model made

correct predictions but the SCIFACT- trained model

did not. In 36 / 44 of these cases, the SCIFACT-

trained model predicts NOINFO. Thus pretraining

on FEVER appears to improve the model’s abil-

ity to recognize textual entailment relationships

between evidence and claim – particularly relation-

ships indicated by non-domain-specific cues like

“is associated with” or “has an important role in”.

For RATIONALESELECTION, training on SCI-

FACT alone produces the best results. We exam-

ined the rationales that the SCIFACT- trained model

identified but the FEVER- trained model missed,

and found that they generally contain science-

specific vocabulary. Thus, training on additional

out-of-domain data provides little benefit.

RoBERTa-large exhibits the strongest perfor-

mance on label prediction, while SCIBERT has

a slight edge on rationale selection. The “claim-

only” model exhibits very poor performance, which

provides some reassurance that the claim negation

procedure described in §3.2 does not introduce ob-

vious statistical artifacts. Similarly, the poor perfor-

mance of the “abstract-only” model indicates that

the model needs access to the claim being verified

in order to identify relevant evidence.

6.2 Full task

Experimental setup Based on the results from

§6.1, we use the RATIONALESELECTION module

trained on SCIFACT only, and the LABELPREDIC-

TION module trained on FEVER + SCIFACT for our

final end-to-end system VERISCI. Although SCIB-

ERT performs slightly better on rationale selection,

using RoBERTa-large for both RATIONALESELEC-

TION and LABELPREDICTION gave the best full-

pipeline performance on the dev set, so we use

RoBERTa-large for both components. For the AB-

STRACTRETRIEVAL module, the best dev set full-

pipeline performance was achieved by retrieving

the top k = 3 documents.

Model comparisons We report performance of

three model variants. For the “Oracle rationale”

setting, the RATIONALESELECTION module is re-

placed by an oracle which outputs gold rationales

for correctly retrieved documents, and no rationales

for incorrect retrievals. The “Zero-shot” setting re-

ports the zero-shot generalization performance of

a model trained on FEVER (the results on UKP

Snopes were slightly worse). VERISCI reports the

performance of our best system.

Results The results are shown in Table 4. In the

oracle abstract setting, the abstract-level F1 scores

are roughly comparable to label classification accu-

racies, and the AbstractLabel+Rationale score in Row

3 implies an end-to-end classification accuracy of

roughly 70%, given gold abstracts.

Access to in-domain data during training

clearly improves performance. Despite the

small size of SCIFACT, training on these data
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Reasoning type Example

Science
background

Claim: Rapamycin slows aging in fruit flies.

Evidence: . . . feeding rapamycin to adult Drosophila produces life span extension . . .

Gold Verdict: SUPPORTS

Reasoning: Drosophila is a type of fruit fly.

Directionality

Claim: Inhibiting glucose-6-phospate dehydrogenase impairs lipogenesis

Evidence: . . . suppression of 6PGD increased lipogenesis

Gold Verdict: REFUTES

Reasoning: A decrease (not increase) in lipogenesis would indicate lipogenesis impairment.

Numerical
reasoning

Claim: Bariatric surgery improves resolution of diabetes.

Evidence: Strong associations were found between bariatric surgery and the resolution of T2DM,

with a HR of 9.29 (95% CI 6.84-12.62)...

Gold Verdict: SUPPORTS

Reasoning: A HR (hazard ratio) that is greater than 1 with 95% confidence indicates improvement.

Cause and
effect

Claim: Major vault protein (MVP) functions to decrease tumor aggression.

Evidence: Knockout of MVP leads to miR-193a accumulation...inhibiting tumor progression

Gold Verdict: REFUTES

Reasoning: Knocking out (removing) MVP inhibits tumor progression → MVP increases tumor

aggression.

Coreference

Claim: Low saturated fat diets have adverse effects on the development of infants

Evidence: Neurological development of children in the intervention group was at least as good as ...

the control group

Gold Verdict: REFUTES

Reasoning: The intervention group in this study was placed on a low saturated fat diet.

Table 5: Reasoning types required to verify SCIFACT claims which are classified incorrectly by our modeling

baseline. Words crucial for correct verification are highlighted.

leads to relative improvements of 47% on

open SentenceSelection+Label, and 28% on open

AbstractLabel+Rationale over FEVER alone (Row 6 vs.

Row 5). The three pipeline components make simi-

lar contributions to the overall model error. Replac-

ing RATIONALESELECTION with an oracle leads

to a roughly 20-point rise in SentenceSelection+Label

F1 (Row 6 vs. Row 4). Replacing ABSTRACTRE-

TRIEVAL with an oracle as well leads to a gain of

roughly 20 more points (Row 4 vs. Row 1).

Nearly all correctly-labeled abstracts are sup-

ported by at least one rationale. There is only a two-

point difference in F1 between AbstractLabel-Only

and AbstractLabel+Rationale in the oracle setting

(Row 3), and a one-point difference in the

open setting (Row 6). The differences between

SentenceSelection-Only and SentenceSelection+Label are

larger, caused by examples where the model finds

the evidence but fails to predict its relationship to

the claim. We examine these in §6.4.

We evaluate the statistical robustness of our re-

sults by generating 10,000 bootstrap-resampled ver-

sions of the test set (Dror et al., 2018) and com-

puting the standard deviation of all performance

metrics. Table 4 shows the standard deviations in

F1 score. Uncertainties on all metrics for both the

dev and test set can be found in Appendix B. The re-

sults indicate that the observed differences in model

performance are statistically robust and cannot be

attributed to random variation in the dataset.

6.3 Verifying claims about COVID-19

We conduct exploratory experiments using our sys-

tem to verify claims concerning COVID-19. We

tasked a medical student to write 36 COVID-related

claims. For each claim c, we used VERISCI to

predict evidence abstracts Ê(c). The annotator ex-

amined each (c, Ê(c)) pair. A pair was labeled

plausible if Ê(c) was nonempty, and at least half of

the evidence abstracts in Ê(c) were judged to have

reasonable rationales and labels. For 23 / 36 claims,

the response of VERISCI was deemed plausible by

our annotator, demonstrating that VERISCI is able

to successfully retrieve and classify evidence in

many cases. Two examples are shown in Table 1.

In both cases, our system identifies both supporting

and refuting evidence.

6.4 Error analysis

To better understand the errors made by VERISCI,

we conduct a manual analysis of test set predictions

where an evidence abstract was correctly retrieved,

but where the model failed to identify any relevant

rationales or predicted an incorrect label. We iden-
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tify five modeling capabilities required to correct

these mistakes (Table 5 provides examples):

Science background includes knowledge of

domain-specific lexical relationships.

Directionality requires understanding increases or

decreases in scientific quantities.

Numerical reasoning involves interpreting numer-

ical or statistical findings.

Cause and effect requires reasoning about coun-

terfactuals.

Coreference involves drawing conclusions using

context stated outside of a rationale sentence.

7 Related work

Fact checking and rationalized NLP models

Fact-checking datasets include PolitiFact (Vla-

chos and Riedel, 2014), Emergent (Ferreira and

Vlachos, 2016), LIAR (Wang, 2017), SemEval

2017 Task 8 RumorEval (Derczynski et al., 2017),

Snopes (Popat et al., 2017), CLEF-2018 Check-

That! (Barrón-Cedeño et al., 2018), Verify (Baly

et al., 2018), Perspectrum (Chen et al., 2019),

FEVER (Thorne et al., 2018), and UKP Snopes

(Hanselowski et al., 2019). Hanselowski et al.

(2019) provides a thorough review. To our knowl-

edge, there are no existing data sets for scientific

claim verification. We refer to our task as “claim

verification” rather than “fact-checking” to empha-

size that our focus is to help researchers make sense

of scientific findings, not to counter disinformation.

Fact-checking is one of a number of tasks where

a model is required to justify a prediction via ra-

tionales from the source document. The ERASER

dataset (DeYoung et al., 2020a) provides a suite

of benchmark datasets (including SCIFACT) for

evaluating rationalized NLP models.

Related scientific NLP tasks The citation contex-

tualization task (Cohan et al., 2015; Jaidka et al.,

2017) is to identify spans in a cited document that

are relevant to a particular citation in a citing doc-

ument. Unlike SCIFACT, these citations are not

re-written into atomic claims and are therefore

more difficult to verify. Expert annotators achieved

very low (21.7%) inter-annotator agreement on the

BioMedSumm dataset (Cohen et al., 2014), which

contains 314 citations referencing 20 papers.

Biomedical question answering datasets include

BioASQ (Tsatsaronis et al., 2015) and PubMedQA

(Jin et al., 2019), which contain 855 and 1,000

“yes / no” questions respectively (Gu et al., 2020).

Claim verification and question answering are both-

knowledge intensive tasks which require an under-

standing of the relationship between an input query

and relevant supporting text.

Automated evidence synthesis (Marshall and

Wallace, 2019; Beller et al., 2018; Tsafnat et al.,

2014; Marshall et al., 2017) seeks to automate the

process of creating systematic reviews of the med-

ical literature7 – for instance, by extracting PICO

snippets (Nye et al., 2018) and inferring the out-

comes of clinical trials (Lehman et al., 2019; DeY-

oung et al., 2020b). We hope that systems for claim

verification will serve as components in future evi-

dence synthesis frameworks.

8 Conclusion and future work

Claim verification allows us to trace the sources

and measure the veracity of scientific claims. These

abilities have emerged as particularly important

in the context of the current pandemic, and the

broader reproducibility crisis in science. In this

article, we formalize the task of scientific claim

verification, and release a dataset (SCIFACT) and

models (VERISCI) to support work on this task.

Our results indicate that it is possible to train mod-

els for scientific fact-checking and deploy them

with reasonable efficacy on real-world claims re-

lated to COVID-19.

Scientific claim verification presents a number

of promising avenues for research on models capa-

ble of incorporating background information, rea-

soning about scientific processes, and assessing

the strength and provenance of various evidence

sources. This last challenge will be especially cru-

cial for future work that seeks to verify scientific

claims against sources other than the research lit-

erature – for instance, social media and the news.

We hope that the resources presented in this pa-

per encourage future research on these important

challenges, and help facilitate progress toward the

broader goal of scientific document understanding.
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A Model implementation details

All models are implemented using the Huggingface

Transformers package (Wolf et al., 2019).

A.1 Parameters for the final VERISCI system

For the ABSTRACTRETRIEVAL module, VERISCI

retrieves the top k = 3 documents ranked by TF-

IDF similarity using unigram + bigram features.

These parameters are tuned on the SCIFACT devel-

opment set.

When making predictions using the RATIO-

NALESELECTION module described in §5, we find

that the usual decision rule of predicting ẑi = 1
when z̃i ≥ 0.5 works well for models trained on

SCIFACT. However, for models trained on FEVER

and UKP Snopes, we achieve better performance

by tuning the classification threshold t, such that

ẑi = 1 when z̃i ≥ t, on the SCIFACT dev set.

The best threshold was t = 0.025 when training

on FEVER, and t = 0.75 when training on UKP

Snopes.

A.2 Training the RATIONALESELECTION

module

We experiment with various learning rates when

training SCIBERT, BioMedRoBERTa, RoBERTa-

base, and RoBERTa-large. Below we describe the

setting for training RoBERTa-large.

For models trained on SCIFACT, we use an ini-

tial learning rate of 1e-5 on the transformer base

and 1e-3 on the linear layer. For FEVER + SCI-

FACT, the learning rate is set to 1e-5 for the entire

model for pre-training on FEVER and fine-tuning

on SCIFACT. We use a batch size of 256 through

gradient accumulation and apply cosine learning

rate decay over 20 epochs to find the best perform-

ing model on the dev set.

For models trained on FEVER, we set the learn-

ing rate to 5e-6 for the transformer base and 5e-5

for the linear layer. For models trained on UKP

Snopes, we set the learning rate 1e-5 for the trans-

former base and 1e-4 for the linear layer. We find

that these learning rates help the models converge.

We only train the model for 3 epochs on FEVER

and 5 epochs on UKP Snopes because they are

larger datasets and the models converged within

early epochs.

A.3 Training the LABELPREDICTION

module

We adopt similar settings as we used for the RA-

TIONALESELECTION module and only change the

learning rate to 1e-5 for the transformer base and

1e-4 for the linear layer for models trained on SCI-

FACT, FEVER, and UKP Snopes. When training on

claim / cited abstract pairs labeled NOINFO, we use

the k sentences in the abstract with greatest simi-

larity to the claim as rationales (§5). k is sampled

from {0, 1} with uniform probability.

A.4 Additional training details

All models are trained using a single Nvidia P100

GPU on Google Colabortoary Pro platform.8 For

the RATIONALESELECTION module, it takes about

150 minutes to train on SCIFACT for 20 epochs.

120 minutes on UKP Snopes for 5 epochs, and 700

minutes on FEVER for 3 epochs. For the LABEL-

PREDICTION module, it takes about 130 minutes

to train on SCIFACT for 20 epochs, 160 minutes

on UKP Snopes for 5 epochs, and 640 minutes on

FEVER for 3 epochs.

A.5 Hyperparameter search

The learning rate, batch size, and number of epochs

are the most important hyperparameters. We per-

form manual tuning and select the hyperparameters

that produce the highest F1 on the development

set. For the learning rate, we experiment with 1e-3,

1e-4, 5e-5, 1e-5, and 5e-6. For batch size, we ex-

periment with 64 and 256. The number of epochs

are cutoff after the model converges.

B Statistical analysis

We assess the uncertainty in the results reported

in the main results (Table 4) using a simple boot-

strap approach (Dror et al., 2018; Berg-Kirkpatrick

et al., 2012; Efron and Tibshirani, 1993). Given

our test set with ntest = 300 claims, we gener-

ate nboot = 10, 000 bootstrap-resampled test sets

by resampling (uniformly, with replacement) ntest

claims from the test set. For each resampled test set,

we compute the metrics in Table 4. Table 6 reports

the mean and standard deviation of these metrics,

computed over the bootstrap samples. Table 7 re-

ports dev set metrics. Our conclusion that training

on SCIFACT improves performance is robust to the

uncertainties presented in these tables.

8https://colab.research.google.com/

https://colab.research.google.com/
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Sentence-level
Selection-Only Selection+Label

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.00.0 80.53.3 89.22.1 89.62.7 72.23.7 79.93.0

Zero-shot 2 42.62.2 45.23.2 43.82.0 36.22.5 38.43.0 37.22.3
VERISCI 3 76.22.9 63.93.6 69.42.6 66.53.4 55.73.7 60.63.1

Open

Oracle rationale 4 100.00.0 56.64.0 72.23.3 87.63.5 49.53.9 63.23.7

Zero-shot 5 28.72.3 37.63.4 32.52.3 23.82.3 31.13.1 26.92.3
VERISCI 6 45.03.0 47.43.8 46.13.0 38.53.0 40.63.6 39.53.0

(a) Sentence-level results.

Abstract-level
Label-Only Label+Rationale

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 90.12.2 77.52.8 83.32.4 90.12.2 77.52.8 83.32.4

Zero-shot 2 86.92.9 53.63.4 66.33.1 67.93.9 41.93.2 51.83.4
VERISCI 3 87.32.6 65.33.2 74.72.8 84.92.8 63.53.2 72.62.9

Open

Oracle rationale 4 88.92.7 54.13.5 67.23.2 88.92.7 54.13.5 67.23.2

Zero-shot 5 56.03.9 42.33.4 48.23.3 42.34.0 32.03.2 36.43.3
VERISCI 6 47.53.3 47.33.5 47.43.1 46.63.3 46.43.5 46.43.1

(b) Abstract-level results

Table 6: Test set results as in Table 4, reporting mean and standard deviation over 10,000 bootstrap samples.

Standard deviations are reported as subscripts. Some means reported here are slightly different from Table 4 due

to sampling variability.

Sentence-level
Selection-Only Selection+Label

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 100.00.0 81.93.2 90.01.9 91.42.5 74.93.6 82.32.9

Zero-shot 2 40.72.1 48.13.4 44.02.1 36.12.5 42.63.4 39.02.5
VERISCI 3 79.42.7 59.03.6 67.72.8 71.43.5 53.03.6 60.83.3

Open

Oracle rationale 4 100.00.0 58.44.3 73.73.4 90.23.3 52.74.3 66.43.9

Zero-shot 5 28.62.0 38.53.6 32.82.3 24.82.2 33.43.4 28.42.4
VERISCI 6 52.53.5 43.83.7 47.73.2 46.93.7 39.23.6 42.63.2

(a) Sentence-level results.

Abstract-level
Label-Only Label+Rationale

Retrieval Model Row P R F1 P R F1

Oracle
abstract

Oracle rationale 1 91.42.2 76.13.0 83.02.5 91.42.2 76.13.0 83.02.5

Zero-shot 2 88.92.8 58.33.7 70.43.2 69.23.9 45.43.5 54.83.5
VERISCI 3 91.02.3 67.43.3 77.42.7 85.22.9 63.23.5 72.53.1

Open

Oracle rationale 4 91.02.6 53.13.8 67.03.4 91.02.6 53.13.8 67.03.4

Zero-shot 5 52.73.7 41.63.7 46.53.4 43.63.7 34.43.5 38.43.3
VERISCI 6 55.43.7 47.53.6 51.03.3 52.63.7 45.13.6 48.53.3

(b) Abstract-level results

Table 7: Dev set results as in Table 4, reporting mean and standard deviation over 10,000 bootstrap samples.
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Journal Count

BMJ 60

Blood 8

Cancer Cell 8

Cell 51

Cell Metabolism 10

Cell Stem Cell 41

Circulation 12

Immunity 33

JAMA 79

Molecular Cell 27

Molecular Systems Biology 5

Nature 29

Nature Cell Biology 26

Nature Communications 19

Nature Genetics 8

Nature Medicine 89

Nature Methods 1

Nucleic Acids Research 10

Plos Biology 36

Plos Medicine 38

Science 7

Science Translational Medicine 2

The Lancet 22

Other 120

Total 741

Table 8: Number of cited documents by journal. Some

co-cited articles (§3.1) come from journals outside our

curated set; these are indicated by “Other”.

C Dataset collection and corpus statistics

C.1 Corpus

Source journals Table 8 shows the number of

cited abstracts from each of our selected journals.

The “Other” category includes “co-cited” (§3.1)

abstracts that came from journals not among our

pre-defined set.

Distractor abstracts In §3.1, we mention how

we increase the size of the corpus by adding dis-

tractor abstracts. The reason why we do not use

the entirety of a large research corpus like S2ORC

as our fact-checking corpus is that doing so would

introduce many false negative retrievals: abstracts

containing evidence relevant to a given claim, but

not mentioned in the claim’s source citance. This

can occur either because the citance authors simply

were not aware of these abstracts, or because the

abstracts were published after the citance was writ-

"Future studies are also warranted to evaluate 

the potential association between WNT5A/PCP 

signaling in adipose tissue and 

atherosclerotic CVD, given the major role that 
IL-6 signaling plays in this condition as 

revealed by large Mendelian randomization 

studies 44, 45 ."

IL-6 signaling plays a major role in 

atherosclerotic cardiovascular disease.

Source citance

Claim

Figure 4: A claim written based on a citance. Mate-

rial unrelated to the citation is removed. The acronym

“CVD” is expanded to “cardiovascular disease”.

ten. These retrievals would be incorrectly marked

wrong by our evaluation metrics.

Distractor abstracts as defined in §3.1 have two

qualities that make them a good addition to the

SCIFACT corpus: (1) They are cited in the same

articles as our evidence abstracts, meaning that

they often discuss similar topics and increase the

difficulty of abstract retrieval methods based on

lexical similarity. (2) The authors of our citances

were aware of the distractor abstracts, and chose

not to mention them in the citances used to generate

claims. This makes them unlikely to be a source of

false negative retrievals.

C.2 Annotation examples

Converting citances to claims Figure 4 shows

an example of a citance re-written as a claim.

The citance discusses the relationship between

“atherosclerotic CVD” and “IL-6”, and cites two pa-

pers (44 and 45) as evidence. To convert to a claim,

the acronym “CVD” is expanded to “cardiovascu-

lar disease”, irrelevant information is removed, and

the claim is written as an atomic factual statement.

Multiple rationales Figure 5 shows a claim sup-

ported by two rationales from the same abstract.

The text of each rationale on its own is sufficient to

entail the claim.

C.3 Annotators and quality control

Claim writing Student claim writers attended an

in-person training session where they were intro-

duced to the task and received in-person feedback

from the four experts. Following training, student

annotators continued writing claims remotely. The

expert annotators monitored claims for quality dur-

ing the remote annotation process, and provided
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Antibiotics can have significant and long-

lasting effects on the gastrointestinal tract 

microbiota, reducing colonization resistance 

against pathogens including Clostridium 
difficile.

Antibiotic induced alterations in the gut 

microbiome reduce resistance against 

Clostridium difficile

Decision: SUPPORTS

Claim

Rationale 1

Our results indicate that antibiotic-mediated 

alteration of the gut microbiome converts the 

global metabolic profile to one that favours

C. difficile germination and growth.

Rationale 2

Figure 5: A claim supported by two rationales from the

same abstract. The text of each rationale on its own

provides sufficient evidence to verify the claim.

feedback when necessary; low-quality claims were

returned to the annotators for re-writing. As a final

check, all submitted claims were proofread (and

edited if necessary) by an undergraduate whose

claims were deemed especially high-quality by the

expert annotators.

Claim negations As mentioned in §3.2, an ex-

pert annotator wrote claim negations to introduce

cases where an abstract REFUTES a claim. The an-

notator skipped claims that could only be negated

by adding obvious triggers like “not”. The ma-

jority of claim negations involved a reversal of

effect direction; for instance “A high microerythro-

cyte count protects against severe anemia” can be

negated as “A high microerythrocyte count raises

vulnerability to severe anemia”.

Claim verification Annotations were performed

remotely through a web interface. Annotators were

required to pass a 10-question “quiz” before an-

notating their own claims. After passing the quiz,

subsequent submissions were reviewed by an NLP

expert until that expert deemed the annotator reli-

able. Approved annotators were then assigned to

review each others’ submissions. In general, grad-

uate students were assigned to review annotations

from undergraduates.

D Annotation interfaces and guidelines

We show a screenshot of the claim writing interface

in Figure 6, and the claim verification interface in

Figure 7. The complete annotation guide for claim

verification is available at the following URL:

https://scifact.s3-us-west-2.amazonaws.

com/doc/evidence-annotation-instructions.

pdf.

https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
https://scifact.s3-us-west-2.amazonaws.com/doc/evidence-annotation-instructions.pdf
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Figure 6: The claim-writing interface. The citation sentence is highlighted in blue on the top left. Additional

context is provided on bottom left. The right side shows two claims that could be written based on this citation

sentence.
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Figure 7: The evidence collection interface.


