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dual FACTOR ANALYSIS FOR CLUSTERED OBSERVATIONS

N. T. LoNGFORD
ms. EpucATIONAL TESTING SERVICE
ion. B. O. MUTHEN
les UNIVERSITY OF CALIFORNIA, LOS ANGELES
yer, Classical factor analysis assumes a random sample of vectors of observations. For clus-
ean tered vectors of observations, such as data for students from colleges, or individuals within
) households, it may be necessary to consider different within-group and between-group factor
ag. structures. Such a two-level model for factor analysis is defined, and formulas for a scoring
z(;a. algorithm for estimation with this model are derived. A simple noniterative method based on a
ds.

: decomposition of the total sums of squares and crossproducts is discussed. This method pro-
11n vides a suitable starting solution for the iterative algorithm, but it is also a very good approx-
imation to the maximum likelihood solution. Extensions for higher levels of nesting are indi-
cated. With judicious application of quasi-Newton methods, the amount of computation
involved in the scoring algorithm is moderate even for complex problems; in particular, no
inversion of matrices with large dimensions is involved. The methods are illustrated on two
examples.

Key words: factor analysis, Fisher scoring algorithm, maximum likelihood, multilevel analysis.

1. Introduction and Motivation

Classical factor analysis (see, e.g., Lawley & Maxwell, 1971) is a commonly ap-
plied multivariate statistical technique. The estimation theory is well-developed for
both exploratory and confirmatory modes (see, e.g., Jéreskog, 1977, and Joreskog &
Sérbom, 1979). Factor analysis is, however, frequently applied to observational data
for which the standard assumption of independence of the vectors of observations, or
that of simple random sampling, is not appropriate. For example, students are usually
observed within classrooms and schools, and individuals are observed within house-
holds. It is often reasonable to assume that the observations within a group are more
similar, because the subjects share common environment, experiences, and interac-
tions. This within-group homogeneity, or between-group variation, can be modeled by
a group-level correlation structure; at the same time an individual-level correlation
structure is considered. Such a development runs parallel with the extension of the
ordinary regression to random coefficient (mixed) models for clustered observations
(see, e.g., Aitkin & Longford, 1986; de Leeuw & Kreft, 1986; Goldstein, 1986, 1987;
Jennrich & Schluchter, 1986; Longford, 1987; Mason, Wong, & Entwisle, 1984; Rau-
denbush & Bryk, 1985), since factor analysis models can be formally regarded as
ordinary regression models with unknown regressors.

Recent work related to extensions of factor analysis and of structural equations for
correlated vectors of observations is that of Goldstein and McDonald (1988), McDonald
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and Goldstein (1989), Lee (1990), Muthén and Satorra (1989), and Muthén (1989, 1992).
The former three papers outline maximum likelihood estimation in a general two-leve]
structural model with the aim of developing specially designed software to carry out the
complex computational tasks. Muthén and Satorra (1989) and Muthén (1989) discuss
model specification and estimation for two-level structural equation models with bal-
anced data, and Muthén (in press) describes an implementation in structural equation
modeling software for the unbalanced case.

The present paper focuses on efficient computation for maximum likelihood esti-
mation in the factor analysis model. In particular, the Fisher scoring algorithm for a
two-level analysis is described. The algorithm relies on formulas similar to those de-
rived by McDonald and Goldstein (1989) for a more general class of models with
balanced design, whereas here a general unbalanced design is assumed. The framework
of models is described in section 2, and section 3 presents the scoring algorithm. In
section 4 a noniterative method for fitting the ‘‘unrestricted’’ model that imposes no
constraints on the factor structure at either level is discussed. This method, in con-
Junction with the Fisher-scoring method, provides a computationally economic way of
calculating the likelihood ratio x? test statistic for a model fit.

The methods presented in this paper are easy to implement using any software with
standard matrix algebra tools. They do not require balanced data and in principle they
can be extended to data structures with further layers of nesting, such as subjects
within groups within areas.

The focus of a substantive analysis may be on the within-group, the between-group
factor structure, on the structure at both levels, or on the comparison of the factor
structures. Although McDonald and Goldstein (1989) suggest that the within- and be-
tween-group factor structures may be equal, or parallel, counterexamples are bound to
arise with more frequent application of these methods. For example, in studies of
academic performance of students (with students within schools), the within-school
factor structure may be interpreted as a description for natural variation in the student
population, while the between-school factor structure would describe a composite of
the school *‘effect’” and of the selection procedures that lead to a specific set of students
attending the school. Obviously, the latter processes may be unrelated to the within-
school factor structure.

Longford (1990) reported an analysis of the covariance structures underlying the
subscores of an educational test. The test was administered to students, but the as-
sessment was focused on colleges, and so the aggregate (within-college average) sub-
scores corresponding to certain academic skills were of principal interest. The purpose
of the analysis was to establish usefulness of these aggregate subscores. On the one
hand, if the subscores represent the same underlying trait, then they are only less
reliable versions of a linear combination of the subscores (such as their total), and the
report would be more useful if it contained this single score. On the other hand, each
subscore may contain some unique information, in which case reporting of the sub-
scores would be justified. The test administrators have to decide which (linear) com-
binations of the subscores to report. This problem can be formulated in a factor analytic
framework, with college- and student-level factor structures.

The analysis reported in Longford (1990) proceeded as follows: A multivariate
variance component model was fitted for the data, decomposing the fitted variance of
a set of subscores into within- and between-college components, 3, = 2w + 35, and
then these two estimated variance matrices were subjected to (informal) factor analy-
ses. The decomposition of the total variance was carried out using the software
VARCL (Longford, 1988). In section 4 a computationally more efficient method for this
decomposition is described. Section 5 deals with the generalization for three levels of
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nesting. An example with real data and one with artificially generated data, both with
two levels, are discussed in section 6. See Muthén (1991) for a detailed background to
the former example.

2. Models for Multilevel Factor Analysis

Suppose there are M groups indexed j = 1, 2, ..., M, and within each group j
there are n; p-variate normally distributed random vectors of observations, y;;, i = 1,
2, ..., nj; the total number of observations is N (= Z;n;). Assume that, conditionally
on the group mean m;, observations within each group have a common factor structure:

yijlm; ~ Np(m;j, Vy), (iid) (1)
Vi=A T A +0,,

where A isap X r| matrix of constants (r; =< p), ¥ isanr; X ry correlation matrix,
and O, is a diagonal covariance matrix. Further, assume that the mean-vectors {m;}
also have an underlying factor structure; m; ~ N,(p, V3), iid, with

V, = A WA, + 0y, (2)

where A, is a p X r, matrix of constants (r, < p), ¥, an r, X r, correlation matrix,
and ©, a diagonal covariance matrix. The marginal covariance matrix for a vector of
observations is

(W; =) var(y;) =V2®J, +V; ®I,, 3)

where ® stands for the direct product, y; is the vector of length pn; composed of the
n; vectors y;, J, = 1, 1,/ is the n X n matrix of ones (1, is a column vector of ones
of length n), and I,, is the n X n identity matrix. We also use the notation 0, for the
(column) n-vector of zeros.

An alternative model description for (1) and (2), involving random terms, is

Yi =1+ A2dy; + A1dy; t €2 + €y, 4)

where 82j ~ N(O,z, ‘1'2), EZj ~ N(0p, @2), Sl.ij ~ N(O,I, \1’1), and el,l:i ~ N(Op, @1)
are mutually independent normal random vectors. In a typical application to assess
differences among educational units (e.g., colleges or classrooms), the term &, ;; rep-
resents the unexplained variation among the individuals, and the between-group term
8y is often interpreted as the ‘‘effect’” of the unit, the selection ‘‘effect,” or as their
aggregate. Linear regression can be easily accommodated in (4) by replacing the vector
of means p with a general linear predictor term x,-}' B, in which x;; is the matrix of the
regression variables augmented by the dummy variables associated with the compo-
nents of the random vector y;;. The matrix of regressors x;; may also contain interac-
tions (products) of these dummy variables with the explanatory variables. Denote the
associated design matrix, formed by vertical stacking of the matrices x;;, by X. The
model (4) is a special case of the class of two-level structural relations models of
McDonald and Goldstein (1989).

In exploratory factor analysis there are r# and r7 indeterminacies in V, and V,,
respectively. Therefore, it is assumed that ¥, and ¥, are identity matrices and impose
ry(ry — 1)/2 and ry(r, — 1)/2 independent restrictions on A; and A,, respectively. In
confirmatory factor analysis it is assumed that ¥, and ¥, are arbitrary correlation
matrices. No loss of generality is involved by assuming unit variance of each compo-
nent of 8 ;; and 8,; because scalar multiples can be accommodated in the matrices of
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loadings A and A,. However, when consiraints involving parameters for both V; and
V, (cross-level constraints, such as A = A,) are imposed, only one of the matrices ¥,
and ¥, is assumed to be a correlation or the identity matrix.

3. Maximum Likelihood Estimation

The log likelihood associated with the observationsy,y ' = (y,",y5 , ..., ¥ay), is

1
L= —E{Np log (27) + log (det W) + tr (W ~lee 7)}, 5

where e = y — XB is the Np-vector of residuals, and W is the covariance matrix for the
observations y, W = diag(W;, W,, ..., Wy,) with the block diagonals given by (3)
corresponding to the groups. The block-pattern of the covariance matrices W; enables
expressions for their inverses and the determinants in terms of the inverses and deter-
minants of the (p X p) matrices Hy; = V; + n;V,:

Wil=Vvi'®L, - (Hy'V,Vi) ®J, (6)
det W; = (det V;)™ ! det Hy;. (7)

Furthermore, if r| and r, are much smaller than p, then it is advantageous to use the
identities

Hy;' = Hyj' — n;Hj'A, ¥,G5'Ay H, (8)
H;'=07'-07'A,¥,G;'A O, 9
det H,; = {det (V| + n;0,)} det H,, (10)

det H;, = det © det G, (11)

where sz = I"z + njAzTHGlAz‘pz, G] = I,.‘ + A]TG_IAl‘I'l, Hlj = Vl + nj®2,
and ® = @, + n;0,, so that it is necessary to invert or evaluate determinants of
matrices of sizes r; and r, only. The familiar decomposition for the sample total sum
of squares and crossproducts into its within- and between-group components is used:

220,_,,] TI+ZD,
where T; = X; 2 i(e; —e;)(e; — J) , e.; is the within-group residual, e.; = n; 13, i€

—e.,e. = N I's; 2 i€ and D; = n; (ejeJT + e.e.”). It can be shown by elementary
operations that Vl - sz = n JH21 V,V; !, and by using (6) and (7) that

1
L= —-Z-{Np log (27) + (N — M) log (det V) + Z; log (det Hj;)

+ tr (V{'Ty) + 3, tr (Hy'D))}. (12)

Thus the matrix of raw sample crossproducts, Y'Y, and the vectors of within-group
totals, {Z,y;;}, are a set of sufficient statistics for the model in (4). In the balanced case
(nj = n), Hy; is constant across the groups (H; = H,), and (12) simplifies to
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= _E{an log 27) + M(n — 1) log (det V,) + M log (det H,)

+ tr (V{ITy) + tr (H7'Ty)}, (13)

where T, = X;D;. The log likelihood (13) depends on the data only by means of the
within- and between-group sums of squares and crossproducts, T; and T,, respec-
tively; Y'Y and 3;(Y;" 1)(Y;" 1) T are a set of minimal sufficient statistics.

In the balanced case the cluster-vectors Y; are iid, and so, subject to regularity
conditions, standard asymptotic results apply: For large number of clusters (M — ),
the distribution of the maximum likelihood estimator of the model parameters is normal
with the mean equal to the vector of parameters, and the variance equal to the inverse
of the information matrix. Lee (1990) extends this result to the unbalanced case, as-
suming that the group-sizes n; are close to the average group size 7iyy = (ny + +++ +
ny)/M. We conjecture that standard asymptotic results apply whenever all the limiting
points of the sequence of average sizes, 77)s, are greater than 1.

The first- and second-order partial derivatives of (5) with respect to the vector of
regression parameters 3 are

oL XTw-li(y-X
B y B)
92L
——s = -XTW7IX,
IpopT

respectively, so that the estimate of B is updated as
Boew = Boia + XTWIX) TIXTW ! (y — XBoua).
This implies the generalized least squares formula
B =XTw-Ix) " IxTw-ly, (14)

Note that for the model in (4) (no explanatory variables), X = I, @ 15, and xTw-!
= (Hy', Hy', ..., Hy'). If in addition the clustering design is balanced, n j = n, then
dL/dp = Hy '(F — n), and so p = §.

For the derivative with respect to a general covariance structure parameter ¢
(involved in Vy, V,, or both), we have

oL 1 ~ L 9VL : _, 0Hy;
i 2{(N M) ur(v1 a¢)+%:tr(H2 a¢)
oH

. aVy _ 25 o
—U@H——WW»—ZU@JEfHMW”;Uﬂ
J

el

the derivative matrices 0V,/d¢ and dH,;/d ¢ have the general form

aU
e (AA,ATB + BTA,ATAT),

where A and B are matrices and A; and A, are indicator vectors. For example, for the
(k, h) element of the matrix A, of factor loadings at level 2, we have
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oHy;

TV nj(Ma s + M3 ), (16)
2,kh

where Mj 4, = AzAk,,zAhT, p» and A; , is the p X 1 (indicator) vector of length p
containing a 1 in its i-th position and zeros elsewhere. The formulas for the first-order
partial derivatives are obtained by substitution of (16) and of the inversion formulas (6),
(8), and (9) into (15).

The terms required for an element of the scoring vector involving a parameter
represented in V, or V, are:

dH>;
tr (H;j‘ - ¢’) =2n;AJBH3;'AA,,

which is a weighted sum of an element of the matrices BHZ}IA,
_y OHy _ -
tr (HZjI _(g— szlDJ) = anzeEHZj]AAle};szlBTAz,
and additionally, for an element of the scoring vector for a parameter in V,,
oV,
tr [Vi! —|=2ATBv 'AA,,
( Y ) 2BV, 1
and

_1aV1 -1 P S -1
tr Vl V‘__lvl T, —2AzBV1 T1V1 AA].
1

Second-order Partial Derivatives

A general second-order partial derivative of the log-likelihood (5) with respect to a
pair of elements involved in the covariance matrix W is equal to

9L 1 | oW oW\ 1 9°W
=—tr (W~ w-! —=tr { Wl ——

019y 2 0, 0d,/ 2 01990,
oW oW 1 9°W
Ty -1 -1 -1 Tw —1 -1
—e'W w Wiet—e W W 'e, (17)
ad 0d, 2 0100,

and the negative of its expectation, the (¢, ¢,) element of the information matrix, is
equal to

{U( )—} lt w—l ﬂw—l _6_‘1 18
¢l’¢2— 21' 6¢| a¢2 ( )

The form of the expectation in (18) is substantially simpler than that of the derivatives
in (17), and so the Fisher-scoring algorithm is preferred to the Newton-Raphson one. In
fact, the ‘‘building blocks’’ for (18), W~ !9W/a¢, are also required for the first-order
partial derivatives. For a pair of parameters ¢; and ¢, involved in V, we have

U1, ¢2) =3;n}(AgBoH;'A 1A Ag BiH5'ArA 4

+ Aq2A2H7'A1A4 AR B H'B Apy),
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. for the appropriate matrices Ay, By, A;, and B, and indicator vectors Ay, Aqz, Ay,
and Ag,. The element of the information matrix corresponding to a pair of parameters
for V, is equal to

Uy, ¢2) = (N — M)(AjBoVi'A1A41Ag B VI 'AzA L,
+ As2A2V'A1A4 A5 BV 'B] ARy)
+ EJ(ABTszﬂz;lAlAAlAsTxBlﬂz—lezAAz
+ AAzAzﬂz—lelAmABTlBIHz_lezTAsz),
and the element corresponding to a parameter ¢; for V; and a parameter ¢, for V, is
U(d1, 62) = Sn;(AgBaHy'A1A4 Ag BiHS A28k

+ AAzszrlAlAAlABTlBlvl_lB;Agz).

Elements of the information matrix for parameters involved in both V; and V; are
linear combinations of these expressions.

If W is known estimation of B requires a single iteration of (14). Otherwise W in
(14) is replaced by its current estimate, W, and since in the iterations of the Fisher
scoring algorithm the estimate of W is updated, 8 also has to be updated.

In summary, the elements of the information matrix for the covariance structure
parameters are multiples of (sums of) products of elements of the quadratic forms
ATFB, where F is either V{! or Hy;', and A and B are I, Ay, or A, Wy, (h =1, 2).
These formulas have a similar form to those for the two-level regression model (see
Longford, 1987; or Jennrich & Schluchter, 1986), because the covariance structures
corresponding to these models are similar.

The iterations of the Fisher-scoring algorithm involve calculation of the vector of
corrections for the estimated parameters based on the vectors of first-order partial
derivatives and the expected information matrix, both evaluated for the current values
of the parameters. A choice for the starting solution is discussed in section 4. At each
iteration an updated solution is obtained, and iterations are stopped when the correc-
tions to the current solution are small (have a small norm), the value of the log likeli-
hood' L changes by less than a prescribed tolerance and/or the norm of the scoring
vector is sufficiently small. The algorithm can be easily adapted for various constraints
on the parameters by application of the chain-rule (e.g., constraining a set of parame-
ters to be equal), or of the method of Lagrange multipliers (e.g., for orthogonality of the
factors), although for the latter the convergence properties usually get worse. Similar
problems are often encountered in classical confirmatory analysis. Standard adapta-
tions of the algorithm, such as step-halving, can be employed, although they appeared
not necessary in the examples discussed in section 6.

Hypothesis testing can be based on the value of the deviance (-2 log likelihood),
the calculation of which is a minor component of the scoring algorithm. Note that the
likelihood ratio test statistics have the x* distribution with the usual number of degrees
of freedom only when the vector of true parameters is in the interior of the parameter
space. In particular, when one of the correlation matrices W, is singular, the difference
of the deviances of two nested models does not have a x* distribution. The familiar
problem of Heywood cases is equally applicable to two-level factor analysis.

For problems with a large number of parameters, quasi-Newton methods (see,
e.g., Luenberger, 1984) can be used with advantage. The models presented here share
the problem of large numbers of parameters with the confirmatory mode of the classical




588 PSYCHOMETRIKA

factor analysis, and in the two-level factor analysis this issue is even more acute.
Quasi-Newton methods require evaluation of the scoring function, but avoid inversion
of the information matrix (Hessian) by approximating its inverse through the iterations.
A suitable initial approximation for the inverse of the information matrix is obtained by
inverting the block-diagonal matrix, with the blocks corresponding to the ®- and to the
columns of the A-parameters, formed from the information matrix by deleting the
elements outside the diagonal blocks. The LISREL software for structural equation
modeling (Jéreskog & Sérbom, 1979) also employs a quasi-Newton method. Exploring
estimation procedures for classical factor analysis, Jamshidian and Jennrich (1988)
found that simple quasi-Newton and conjugate gradient methods have reasonable con-
vergence properties, and are computationally more economic than the Newton-Raph-
son algorithm, principally because they avoid inversion of very large Hessian matrices.
Asymptotic standard errors for the estimated parameters are obtained from the inverse
of the fitted information matrix. See Lee and Jennrich (1979) for derivation of standard
errors when a quasi-Newton method is used.

4. The Saturated Factor Analysis Model

In many settings it is of interest to compare the adopted parsimonious factor
analysis model with the saturated factor analysis model that contains p factors at either
level. The saturated model contains p X (p + 1) covariance structure parameters, and
so each iteration of the algorithm would require solving a system of p X (p + 1) linear
equations. This may be impractical even for moderately large p (say, p > 12).

The saturated two-level factor analysis model can be fitted by a noniterative pro-
cedure based on the method of moments. The likelihood in (5), as a function of the
parameters (i, £2) = (u, Oy, Ay, ¥, Oy, A,, ¥,), belongs to the exponential family
of distributions; it has the general form

exp {as(p) + a.(Q) + u(p, Q) "b(y)},

where a¢ and a, are real functions, and u and b are vector functions of the parameters
and the data, respectively. Note that b is a linear function of the sufficient statistics T,
and {D;}. The scoring vector for Q has the form
da.(12) . du(p, Q) 7
oQ oQb(y) ’

and since the expectation of the scoring vector is equal to 0,

ou(p, Q) 7 9a.(Q)
o ! i

in other words, E{b(y)|p, 2} is the root of (19). If the maximum likelihood estimate (ji,
Q) is in the interior of the parameter space, then it is also a root of (19), and so
necessarily b(y) = E{b(y|jx, Q)}. Hence, maximum likelihood estimation is equivalent to
moment matching. In particular, the expectation of any statistic that is a linear function
of b(y), suchas Ty and T, = X jDj, evaluated at the maximum likelihood solution, is
equal to this statistic. In addition,

E{T|n, Q} = (N — M)V,, and

(19)

E{b(y)|m, 2} = —{

Ejnf
E{T;|p, Q} =MV, + {N - ~ V2
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Hence, the maximum likelihood estimators are given by the formulas:

A

V,=(N-M"'T,, (20)

2 nZ -1
v, =< ) (T, — MV,). 21

Models with a saturated factor structure at one level but a restricted structure at
the other level can be efficiently fitted by combining moment matching (for the cova-
riance matrix at the saturated level) and the scoring algorithm (for the parameters at the
level with restrictions). For example, a model with restricted factor structure for the
individual level and a saturated one at the group level could be fitted by the following
iterative procedure: Start with the initial solution given by (20) and the decomposition
of (21), iteratively estimate the individual-level parameters by the Fisher-scoring algo-
rithm at each 1terat10n, and obtain the fitted variance matrix for the group level from
(21). Note that V, does not depend on Vz, and so when fitting models with saturated
factor structure at the individual level, V, does not change with the iterations for V.

Restricted maximum likelihood estimates (REML, Patterson & Thompson, 1971)
for any factor analysns model can be computed by adjusting the scoring vector by the
partial derivatives of ! log {det (XTW"IX)} (see Harville, 1974). REML is preferable
to ML when the locatlon parameters are nuisance parameters, as is usually the case
when no explanatory variables are considered.

Two-Stage Procedures

The problem of different covariance structures for individual and aggregate data
has been well understood and various two-stage procedures have been used to estimate
separate covariance structures for each level of aggregation. These procedures rely on
a decomposition of the total variation into within- and between-group covariance com-
ponents (matrices), which are then subjected to separate factor analyses (see Cronbach,
1976; and Harnquist, 1978, for examples). The estimators (20) and (21) provide such a
decomposition. Although such a procedure is not fully efficient, the loss of efficiency
may be quite modest: The within-group statistic T, has the Wishart distribution
W,(Vy, N — M), and since our data contain less information than N independent
observatlons from N, (@, V), the efficiency of the two-stage estimator for the within-
group factor structure is at least 1 — M/(N — 1). Since T, contains no information
about V,, for balanced data the two-stage estimator for V is almost fully efficient. Loss
of efficiency of this estimator is likely to be most serious for extremely unbalanced data
although the analysis of the SIMS dataset in section 6 is an example to the contrary. In
any case, this two-stage estimator for the within- and between-group factor structures
is a suitable initial solution for the scoring (or any other iterative) algorithm.

5. Multiple Levels of Nesting

Extensions of the factor analysis model to multiple layers of nesting present no
conceptual difficulties. For example, in a three-level model assume that each district
(with groups, and individuals within groups) has the two-level factor structure (4), with
common factor structure parameters Ay, ¥, and @, (h = 1, 2); but the (conditional)
mean, ll in (4), is a random vector with the distribution N, (p*, V3), where V3 = 0; +
A;W3Ay . The parameters contained in the matrices A3, W3, and @3, describe the
between-district factor structure.

The two-stage algorithm has a straightforward extension for estimation with the
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three-level model; the decomposition of thie total sum of squares and crossproducts into
its within-group, within-district, and between-district components, and the moment-
matching equations analogous to (20) and (21) yield:

Vi=(N-M'T,,

. =T2—(M—Q)V1

Vv, s
E.injzk
N —
2N
Ejnfk Ekz,-n}k . .
T; — - V, —(Q -1V
A % N, N 2 —(Q 1
V3 = ,
} EkN,%
N

where N = Z;nj is the number of observations in the district k, N, M and Q are the
respective numbers of individuals, groups and districts, and T;, (V,,), h =1, 2, 3, are
the within-group, between-group, and between-district matrices of the sums of squares
and crossproducts (unbiased estimates of covariance matrices), respectively.

The Fisher scoring algorithm can be extended for the three-level analysis. The
formulas for the scoring vector and the information matrix become more extensive but
inversion of matrices can still be restricted to matrices of small sizes, with the exception
of one inversion of the expected information matrix per iteration. To avoid the latter,
a quasi-Newton method or various adaptations of the Fisher-scoring algorithm can be
used. ‘

The covariance matrix for all the observations has the form

(W3 =) diagy (Wo i + V3 @ Jy,).

where W5, = V; @ Iy, + V, ® Jy, is the (conditional) within-district covariance
matrix for the district k. The inverse and the determinant of W5 are given by the
formulas

Wi = diag, (W7 i) — diage (W5 DK, V3G5 (K, diagi (W0, (22)
det W3 = det Wz’k det G3,k,

where K, =1, ® 1y,,and G3 4, = I, + K, Wz‘j K. The inverses and the determi-
nants of the matrices W, ; are given by (6) and (7), respectively. The scoring function
is now obtained by formal differentiation of the log-likelihood (5), with W = Wj3, and
the derivatives can be economically evaluated using (22). Even the simplest versions of
these models are likely to contain large numbers of parameters that render the use of
the Fisher scoring method in its original form computationally inefficient, and in general
it is preferable to use a quasi-Newton method. A natural starting solution for any
iterative fitting algorithm is provided by the means (ordinary regression solution) and
the classical factor analysis solutions for the moment estimates of the subject-, group-
and district-level covariance matrices V,, V,, and V;, ignoring any constraints for
covariance structure parameters across the levels of nesting.
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6. Examples _

A Simulated Dataset

A simulation of a balanced 5-variate dataset with 50 groups with 10 subjects in each
group, according to the model in (4), with

1 11 1 1\T
u:O’A = A, = ,
TR 210 -1 1

1.25 1
‘I"l = IZ’ \1’2 = >
1 1.25

and ®; = I, and @, = 0.2I was used to demonstrate the scoring algorithm with
constrained maximization. In the fitted models ®;, ®, and p are always estimated.
When no constraints on A and A, are imposed ¥, and ¥, are both constrained to the
identity matrix. When a common set of factor loadings is assumed (A; = A,, and the
common value is denoted by A), ¥, = I was set and W, was estimated as an arbitrary
covariance matrix. To ensure identifiability of A the constraint that AT@®{ A be di-
agonal was imposed.

The deviance of the saturated model solution given by (20) and (21) is 9199.54. The
level-wise decomposition of this solution for one factoreach (r; =r, = 1, Ay and A,
unrelated, and ¥, = ¥, = 1) has the deviance 9622.85, and the deviance for the
corresponding maximum likelihood estimate is 9609.54. If the cross-level constraint A,
= A, is imposed and ¥, estimated, the deviance increases to 9785.15. Clearly, no
model with one factor at each level provides a satisfactory fit for the data. Also,
relationship of the factor structures at the individual and group levels using two factors
cannot be assessed from a single factor solution.

The top panel of Table 1 gives the maximum likelihood solution for the exploratory
model with two factors at each level (A and A, unrelated). The deviance of this model,
9199.75, is only 0.21 higher than for the saturated model which involves two additional
free parameters. The bottom panel of Table 1 contains the maximum likelihood solution
for the two-factor model with a common matrix of factor loadings A(W, = I, ¥,
estimated). The associated deviance is 9202.04, 2.50 higher than the deviance for the
saturated model (30 parameters), but the model contains only 22 free parameters (9
involved in A, 10 in ®, and ®; and 3 in ¥>).

Initial estimates for the variances in ¥, were obtained by a naive noniterative
method, and the initial value for the covariance was set to 0. For the single factor
models the scoring algorithm, starting with the moment solution described in section 4,
required 6 iterations, and one or two additional iterations when starting with more
distant solutions. Convergence for two-factor models was much slower, requiring up to
20 iterations. No multiple local maxima of the log-likelihood function were found for
any of these models. Iterations were terminated when the change in the value of the
deviance was less than 0.001. In each instance, the corrections of the estimated pa-
rameters as well as the scoring vector had a norm smaller than 10~%. With very rare
exceptions the deviance decreased at every iteration. For multifactor models the con-
straint of orthogonality of the factor loadings was implemented by the Lagrange mul-
tiplier method.

Comparison of the deviances indicates that the model used for generating data
would be selected by the likelihood ratio criterion. The elements of the ‘“‘fitted —
observed’’ difference matrices are in the ranges —0.08 — 0.06 for the within-group \z




592 ' PSYCHOMETRIKA

TABLE 1
Maximum Likelihood Solutions for Two-Factor Models
with Unrelated Factor Structures and Common Factor Loadings
diag(e,)
1.026 1.048 0.975 0.908 0.967
AT
0.916 1216 1.029 1210 0919
1.138 -0.876 0.097 -0.893 1.143
diag(e,)
0.197 0.200 0.206 0.137 0271
A7
-2.268 0313  -0.936 0476 -2.215
-1287 0454 -0.854 -0.401 1.080
Note: Deviance is 9199.75;
—
diag(e,)
0.975 1.065 0.968 0.890 1.033
AT
0.988 1.052 0.988 1.026 0.947
0976 -0933 -0.003 -0.985 0.945
diag(e,)
0.208 0.188 0.216 0.150 0274
Y,
1.157 1.269
1.269 1.686
Note: Deviance is 9202.04.
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— 3$,), —0.16 — 0.13 for between-group (V> - 3,), and —0.08 — 0.10 for the total
covariance matrices (V; + V, — T; — T,). Asymptotic standard errors (referring to M
— o) for all the estimated parameters can be obtained from the scoring method. The
standard errors for the parameters in A are in the range 0.05 — 0.08, for ®, 0.08 — 0.13,
and for ®, 0.08 — 0.15. The standard errors for the elements of ¥,, (1.157, 1.269,
1.686), are (0.273, 0.325, 0.291). Note that although ¥, and \ifz are almost singular, the
information submatrix for the unique elements of ¥, is well-conditioned.

Second International Mathematics Study

The Mathematics achievement data on U.S. eighth-grade students from the Second
International Mathematics Study (Crosswhite, Dossey, Swafford, McKnight, &
Cooney, 1985) was used to further illustrate the two-level factor analysis techniques. In
the study, two classes were randomly selected within each of a set of schools and
school districts. An achievement test was administered at the end of Spring 1982 con-
taining 75 items in the areas of arithmetic, algebra, geometry, and measurement. Our
analysis considers the items of the core and a rotated form (Form A) taken by 819
students from 179 different classrooms (within 112 schools). A simple random sampling
of classrooms is assumed, ignoring the clustering of classes within schools and school
districts. Eight achievement variable totals were created from the 75 right-wrong scored
items corresponding to two sums for each of arithmetic, algebra, measurement, and
geometry. The topic classifications used in the study were: ratio, proportion, percent
(11 items); common and decimal fractions (12 items); equations and expressions (10
items); integers, numbers (9 items); standard units, estimation (6 items); area, volume
(5 items); coordinates, visualization (9 items); plane figures (8 items). Note that the
discrete nature of these subscores renders the validity of the factor analysis conten-
tious.

The U.S. eighth grade mathematics curriculum varies a great deal across class-
rooms due to tracking (selection) into remedial, typical, algebra, and enriched classes.
In each type of class a different mix of topics is taught. In more advanced classes
algebra and geometry are taught earlier than in typical classes that focus more on
arithmetic. In this way, opportunity to learn varies for the eight studied achievement
variables from classroom to classroom. Assuming that within-class correlations follow
a unidimensional model and that the between-classroom variation is to a large extent
due to tracking based on previous overall mathematics performance, a one-factor
model at each level is applied. The size of the between-class variation of the individual
variables and its factor structure are of principal interest. Due to the variable-specific
variation in learning opportunities, the group-level variances @, were expected to be
positive and large.

Over 70% of the classrooms (129) have 3-6 students in the sample. There are 10
classrooms with a single student in the sample, while the classroom with the largest
representation has 10 students in the sample. The maximum likelihood solution is given
in the top panel of Table 2. The goodness of fit statistic, comparing this solution (V,,
V,) with the saturated model fit (20) and (1), (Vy,, V), is equal to 60.4 (x? null-
distribution with 40 df), indicating that the model fit could be improved by including
another factor at either or both levels. Inspection of the differences of the saturated and
the fitted (single factor) variance matrices suggests that the model fit can be significantly
improved at both levels. In particular, most of the entries in the matrix of differences
Vs — V, are positive. The maximum likelihood solution for the (exploratory) model
with two factors at each level is displayed in the bottom panel of Table 2. Note that a
Heywood case is obtained; the solution at an iteration is such that the matrices H,; for
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TABLE 2

Maximum Likelihood Solution for the Single Factors Model and the
Model with Two Factors at Both Levels; SIMS Dataset.

diag(e,)
2.103 2.502 1.668 1.625 1.002 0.885 1502 1.666
A
1.725 1.641 1.133 1236 0.794 0.722 0.865 0.984
diag(e,)
0.095 0.231 0.297 0.078 0.074 0.108 0.113 0.179
A
1.728 1.943 1.770 1.551 0.898 0.707 0.879 1.121
Note: Deviance is 23,834.65.
diag(e,)
2.115 2.218 1.579 1.622 1.004 0.878 1.396 1.647
A
1.705 1.666 1.150 1.245 0.790 0.723 0.876 0:971
0.147 -0406  -0.242 0.104 0.047 0.102 0.336 0.176
diag(e,)
0.000' 0.151 0.100 0.064 0.074 0.108 0.075 0.164
A
1.757 1.965 1.774 1.536 0.902 0.701 0.866 1.137
0.269 0263 -0.407 -0.158 0.036 -0.049 -0.167 0.107

Note: Deviance is 23,805.74.

! Constrained to zero.
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the largest groups j have a negative eigenvalue. In this case, a variance has a negative
estimate at an iteration: it is set to zero, and from then on its value remains unaltered.

The difference of the deviances for the two discussed factor analysis models is
31.1. Because of the Heywood case, the null-distribution of this statistic does not have
a x* distribution with 14 degrees of freedom, but the improvement in the model fit can
be assessed informally. While the fit for the student level appears to be very good, the
differences st - Vz are reduced only marginally. Addition of a third factor at the
classroom level leads to further negative estimated variances in ®,, and smaller re-
duction of the deviance, but the differences V55 — V, get reduced substantially. Sim-
ilarly, addition of another factor at the student level improves the model fit only mar-
ginally; the deviance is reduced by less than the associated number of degrees of
freedom. It appears that for the classroom level, the informal model checking proce-
dure is in conflict with the likelihood ratio criterion. (We conjecture that this is caused
by the severely unbalanced nature of the data.) In the analysis of the simulated dataset
the likelihood ratio criterion appears to be in agreement with the informal model check-
ing. Lack of balance and association of outcomes with cluster size are illustrated by
substantial differences between the arithmetic mean y,

y = (5.22, 6.86, 4.77, 4.82, 3.84, 2.00, 3.93, 3.68)

and the maximum likelihood estimate j. (which is essentially independent of the factor
structure specification),

p = (5.07, 6.68, 4.62, 4.67, 3.76, 1.94, 3.86, 3.58).

Note that ju is uniformly smaller than y.

In conclusion, the first factor at both levels can be described as weighted mean
scores, with weights approximately proportional to the number of items in each topic
classification, that is, the total score is a suitable description for the first factor at each
level. Second factors are significant at both levels, but they appear to be mutually
different. Search for a suitable interpretation would proceed by rotation of the factors,
in analogy with the classical exploratory factor analysis, and therefore it is not pursued
here. Note that the expectation that @, is positive and large is not fulfilled by the
two-factors solution. These results are in agreement with those obtained by Muthén (in
press). See Muthén (1991) for a fuller analysis of the dataset.

The factor analyses reported above have been replicated for the same dataset with
the 112 schools as clusters, ignoring classroom identification. Very similar results were
obtained. A three-level analysis, accounting for clustering of students within class-
rooms within schools is likely to result in severe confounding of the parameter esti-
mates because most schools have only one classroom in the data. For both datasets,
and all the models fitted, the deviances of the initial solutions based on the moment
estimates V;, and V,, are only 3-7 points higher than the corresponding maximum
likelihood solutions.

Approximate methods, such as the exploratory factor analysis of the pooled set of
observations (ignoring the clustering of students within classes), and the factor analysis
of the within- and between-group statistics T; and T, succeed in recovering the total
score as the first factor. The within-group means and the pooled-data analyses produce
only one set of factors, and neither of them agrees with either second factor of the
maximum likelihood solution. The factor analyses of the within- and between-group
statistics T, and T, appear to be satisfactory, though.
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7. - Conclusion

Factor analysis of multilevel data can be motivated in complete analogy with
classical factor analysis. Importance of the maximum likelihood estimation has been
discussed by McDonald and Goldstein (1989) and Muthén (1989). The algorithm pre-
sented in this paper is computationally feasible for datasets with several components
and models with a moderate number of factors; the limitation is given by the number of
estimated parameters, but even that can be overcome by application of quasi-Newton
methods. Analysis of two examples indicates that a noniterative algorithm based on the
method of moments provides a good approximation to the maximum likelihood solution
when no cross-level constraints are used.
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