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Abstract 

 

The calculation of groundwater reserves in shaly sand aquifers requires a reliable estimation of 

effective porosity and permeability. The amount of shaliness as a related quantity can be 

extracted from geophysical well log analysis. The conventionally used linear model connecting 

natural gamma-ray index to shale content often gives a rough estimate in shallow boreholes. To 

get a better result a non-linear model is suggested, which is derived from the factor analysis of 

well-logging data. An earlier study of hydrocarbon wells revealed an empirical relationship 

between the factor scores and shale volume independent of the well site. Borehole logs 

measured from three groundwater wells drilled in Hungary are analyzed to estimate the logs of 

factor variables, which are then correlated with shale volumes given from the method of 

Larionov. Shale volume logs estimated by the statistical procedure are in sufficiently close 

agreement with those derived from the Larionov’s formula that confirms the validity of the non-

linear approximation. The statistical results are accordance with laboratory measurements made 

on core samples. However, whereas the conventional borehole geophysical methods normally 

use a single well log as an input, factor analysis processes all available logs to provide 

groundwater exploration with highly reliable estimation results. 

 

Keywords: shale volume, well-logging data, factor analysis, factor log, Larionov’s formula 

 

1. Introduction 

 

Shale is a fine-grained sedimentary rock composed of a half-and-half mixture of clay minerals 

and silt. It can appear in three different forms, i.e. dispersed shale that distributes within the 

interstices of the rock, structural clays that are incorporated in the rock matrix, and shale 

laminae that build thin beds between porous-permeable formations. Petrophysical properties of 

clastic formations generally vary with the distribution and quantity of shale. According to 

empirical studies, the seismic velocity is proportional to clay volume (Han et al. 1986; Klimentos 

1991). Since the effective porosity decreases with shale volume, well-logging data usually need 
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to be corrected for shale effect (Thomas and Stieber 1975). The electrical resistivity 

measurement used to extract information on water saturation gives a minimum reading in shale, 

which is usually caused by the high surface conductivity of clay minerals. Resistivity models 

applied in well log analysis assume that free-water and dispersed clay particles conduct an 

electrical current like a mixture of electrolytes (De Witte 1955). The variation of grain size affect 

greatly the permeability of shallow formations, thus the permeability is strongly influenced by 

shale volume. Some authors suggest empirical formulae between permeability and shale 

volume based on field or laboratory measurements (Revil and Cathles 1999; Slater and Lesmes 

2002). 

 The total volume of shale as one of the key-parameters can be calculated by 

deterministic, inverse or statistical modeling procedures. The most common deterministic 

approach is based on the individual analysis of well logs. Measurements that are the most 

sensitive to the variation of shale content such as spontaneous potential and natural gamma-ray 

intensity are substituted into explicit equations to calculate the amount of shale separately 

(Asquith and Krygowski 2004). More reliable estimation can be given by using more well logs 

simultaneously, e.g. the combination of porosity logs (Poupon and Gaymard 1970). Several 

near-surface geophysical and hydrogeological studies apply deterministic techniques to extract 

shale volume from well-logging data for the characterization of shallow geology (Paillet 1995; 

Fisher et al. 1998; Cripps and McCann 2000; Kvapil and Mares 2003; Doveton and Merriam 

2004; Hsieh et al. 2007; Adeoti et al. 2009; Maliva et al. 2009). 

 Advanced shale volume estimation methods are based on the simultaneous processing 

of all suitable well logs. Well-logging data are usually integrated into a joint inversion procedure 

to evaluate petrophysical parameters such as porosity, water saturation, mineral content and 

shale volume. Probe response equations represent the link between the measurements and the 

petrophysical model, which are used to calculate theoretical data in the straightforward 

modeling phase of the inversion procedure. The optimal solution of the inverse problem can be 

developed by using an appropriate optimization algorithm that fits the calculated data to the 

measured data. Since the number of data types observed in a given depth is barely more than 

that of the unknowns and the noise level of the data are different, a marginally overdetermined 
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inverse problem has to be solved in each depth by using the weighted least squares method 

(Menke 1984). The principles of the well-logging inverse problem are detailed in Mayer and 

Sibbit (1980), Alberty and Hashmy (1984), Ball et al. (1987), and a novel inversion methodology 

(called interval inversion) was suggested by the research team of the Department of 

Geophysics, University of Miskolc (Dobróka and Szabó 2005; Dobróka et al. 2009; Dobróka and 

Szabó 2011; Dobróka and Szabó 2012; Dobróka et al. 2012). Applications of inversion 

processing of well-logging data for the shallow region can be found, e.g. in Paillet and Crowder 

(1996), Beltrami et al. (1997), Moret et al. (2004), Drahos (2005), Jang and Kim (2008). 

 The third alternative for data processing is represented by statistical methods which 

describe the empirical relationships between the observed physical quantities and petrophysical 

parameters not directly measurable by well-logging. In this study, a multivariate statistical 

procedure is offered to find correlation between well-logging data and shale volume. Factor 

analysis is commonly used to reduce high-dimensional data sets to lower dimensions (Lawley 

and Maxwell 1962). Hempkins (1978) mentioned first that factor analysis seemed to be a 

powerful tool in formation evaluation. Principal component analysis as an option of solving the 

problem of factor analysis has been widely used in petrophysics and hydrogeology (Elek 1988; 

Elek 1990; Kazmierczuk and Jarzyna 2006; Tanos et al. 2011; Magyar et al. 2013). The 

feasibility of factor analysis has been demonstrated by the solution of various borehole 

geophysical problems (Rao and Pal 1980; Herron 1986; Buoro and Silva 1994; Grana et al. 

2011; Szabó et al. 2012; Szabó 2012). A modern approach that is useful for considering the 

time dependence of factor variables is the dynamic factor analysis, which was used successfully 

in hydrogeological problems by Márkus et al. (1999) and Kovács et al. (2004). 

 An earlier study of deep wells revealed a non-linear relationship between one of the 

new variables derived by factor analysis and shale volume, which proved to be nearly 

independent of the measurement area (Szabó 2011). Szabó and Dobróka (2011) presented a 

field case for the factor analysis of a data set measured in a Hungarian thermal-water well, too. 

It is assumed that the same statistical methodology applied to geophysical data originated from 

shallow boreholes finds a similar regression relationship between the above quantities and the 

method can be applied also to shallow freshwater formations. In the present study, three field 
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examples are shown to demonstrate that the correlation between a given factor and shale 

volume is strong and practically independent from the measurement area. The aim of the study 

is to establish an independent shale volume estimation method for hydrogeophysical 

applications that underlie the prediction of effective porosity and permeability of aquifers. 

 

2. Conventional interpretation methods 

 

2.1 Borehole logging in hydrogeophysics 

 

A comprehensive summary of applying well-logging techniques to evaluate petrophysical 

parameters of aquifers was given by Tselentis (1985). The classification of measurements can 

be made by different principles. A practical approach was chosen, which is based on the 

concept of parameter sensitivities (Gyulai 1995; Dobróka and Szabó 2011). The parameter 

sensitivity in borehole geophysics informs us about the extent of influence on well-logging data, 

which is exerted by a given petrophysical parameter. Based on the theory of parameter 

sensitivities, three main classes can be distinguished that comprise well logs primarily sensitive 

to lithology, porosity and water saturation, separately. It can be mentioned that all types of well 

logs are sensitive to each petrophysical properties to some extent. For instance, the 

spontaneous potential (SP) log is highly sensitive to the variation of shale content, but the 

amount of influence is much higher than it is caused by the change in pore-fluid content. It 

means that the deflections of the SP curve can be easily transformed into shale volumes, but 

the suppression on the same curve caused by the presence of gas or other pore-fluids is not 

adequate to estimate the amount of saturation or permeability. As opposed to SP log, the 

neutron porosity (NPHI) log is also influenced by lithology, but it is the water-filled porosity which 

can be determined quantitatively from the measurement. Therewith, the precise interpretation of 

the neutron log requires the application of corrections on the log readings for the type of 

lithology and other environmental effects. From the point of view of corrections, nuclear 

magnetic resonance logging (NMR) is a highly favorable technique because it is marginally 
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sensitive to lithology and provides direct (quantitative) information of effective porosity and 

permeability (Coates et al. 1999). 

 In groundwater prospecting lower cost logging programs are generally performed than 

used in hydrocarbon exploration. Therefore, the extraction of reliable petrophysical information 

from the observations requires advanced data processing techniques. In the present study, 

natural gamma ray intensity (GR) and spontaneous potential (SP) logs are applied as lithology 

logs. The former measures the natural radioactivity of formations, in cpm unit, caused by 

different amounts of potassium, thorium and uranium content. The latter records the values of 

electric potential between a surface and a down-hole electrode, in mV-s, excited by the ion 

movement between drilling mud and original pore fluid as well as the presence of shale. Both of 

them can be used to predict shale content quantitatively. For porosity determination nuclear 

logs such as density (DEN) and neutron porosity (NPHI) are used, which is sometimes 

complemented by acoustic traveltime (AT) or full-wave sonic (Variable Density Log - VDL) 

measurements. Bulk density measured by gamma-gamma probes, in g/cm3 units, shows 

inverse proportionality to porosity. Neutron-neutron measurements are mainly sensitive to the 

hydrogen-index of formations, which infer the fluid-filled porosity in the absence of hydrogen 

atoms in the rock matrix. Several types of resistivity tools with different depth of investigation 

and vertical resolution can be applied to detect the invasion profile and to estimate water 

saturation in different zones around the borehole. Since freshwater has normally got higher 

resistivity than brine, traditional (non-focused) probes are generally suitable for groundwater 

exploration. While shallow resistivity (RS) tools measure the apparent resistivity, in ohm-m unit, 

of the zone invaded by mud, the deep resistivity (RD) instrument observes the same quantity in 

the original (non-invaded) formation. The resistivity readings are corrected to predict the true 

formation resistivity, which is of great importance in calculating water and gas (normally air) 

saturation in aquifers. The well-logging programs usually contain also some other types of 

technical measurements that are not used directly in the petrophysical characterization of rocks, 

but give important information on the technical conditions of the borehole wall and its 

environment, pressure, temperature distributions, the flow-rate and composition of original pore 

fluid along the borehole. 
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2.2 Deterministic methods for interpretation  

 

Shale volume (Vsh) as the ratio of the quantity of shale to total volume of rock is most commonly 

determined by the analysis of the intensity of the natural gamma-ray log. Since a non-

radioactive formation is indicated by a minimum (GRmin) in the profile and the radioactive shale 

by a maximum (GRmax) in the same profile, the natural gamma-ray index in a depth is 

 

minmax

minlog

GR
GRGR

GRGR
i




 ,                                                                                                 (1) 

which can be used for the linear approximation of shale volume in the form of Vsh=iGR (Poupon 

and Gaymard 1970), where GRlog is the natural gamma-ray intensity measured in a given depth. 

Equation (1) gives only a rough estimate to the fractional volume of shale, because the 

selection of GRmin and GRmax highly depends on the available information about the local 

geology and, of course, the subjective decision of the log analyst. On the other hand, the 

evaluation assumes that radioactive non-clay minerals are not present in the rock, which can 

also mislead the interpretation of reservoirs with complex lithology. 

 According to field experiences, shale volume calculated by equation (1) is generally 

overestimated especially in young rocks. Lower values of shale volume can be estimated by 

using some non-linear relationships. For instance, Larionov (1969) introduced the following 

empirical formulae for sediments with different ages 
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Similar non-linear models were also introduced by Stieber (1970), Clavier et al. (1971), Bhuyan 

and Passey (1994), which all give more careful estimates than equation (1). Consider the 

results of different shale volume calculations for a field case (Fig. 1). Natural gamma-ray 

intensity data were collected from a shallow part of a South Hungarian deep well. Applying 

equations (1)-(2) and independent inverse modeling (next section), separately, shale volume 

was estimated in percent by different methods. It is concluded that much higher shale volumes 

than desired can be given by the linear approximation (Fig. 1a). As a result, estimated shale 
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volume logs show significant deviations (Fig. 1b), which can greatly affect the calculation of 

other petrophysical parameters involved in the interpretation procedure. 

 

2.3 Inversion methods for interpretation 

 

Inverse modeling represents a different approach to estimate shale volume by processing all 

suitable well-logging data simultaneously. In shallow boreholes the natural gamma-ray intensity 

(GR), spontaneous potential (SP) and resistivity at different tool lengths (deep resistivity RD and 

shallow resistivity RS) are normally measured, which are occasionally expanded with some 

porosity measurements such as density (DEN), acoustic traveltime (AT) or neutron porosity 

(NPHI). Caliper (CAL) and temperature (TE) measurements are usually made for the purpose of 

well construction but in the lack of response equations they cannot be used directly in the 

inversion procedure. The main condition to solve an inverse problem is to have a known 

relationship between the observed data and the petrophysical model of the investigated 

structure. The following simplified probe response equations based on Poupon and Leveaux 

(1971), and Alberty and Hashmy (1984) can be applied to freshwater-saturated formations 
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sdsdshsh NPHIVNPHIVΦNPHI  ,                  (7) 

 
sdsdshsh DENVDENVΦDEN  ,                              (8) 

 
sdsdshshw ATVATVΦATAT  ,                                (9) 

 1VVΦ sdsh  ,                                                               (10) 
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where Φ denotes effective porosity, Sx0 and Sw are water saturation in the flushed and 

undisturbed zones respectively, Vsd is the volume of sand. In the resistivity tool response 

equations Rmf, Rw, Rsh denote the resistivities of mud filtrate, pore-water and shale, respectively. 

Additional parameters with subscripts sh, sd, w refer to physical properties of shale, sand and 

water, respectively. Constants m, n, a represent the textural properties of rocks, that can be 

given from literature or alternatively by a special inversion method called interval inversion 

(Dobróka and Szabó 2011). Equation (10) is the material balance equation in the medium, 

which is used to constrain the search of model parameters in the inversion procedure. 

 Well-logging inversion methods can process various types of data measured in a certain 

depth to determine some petrophysical parameters to the same depth. Consider the column 

vector of the observed data in a given depth 

   ,,,,,,,
T

ATNPHIDENRSRDSPGR
(m)

d                                                           (11) 

where T is the symbol of transpose. Well-logging data in equation (11) are inverted to give an 

estimate for the vector of model parameters 

  Tsdshwx0 V,V,S,SΦ,m .               (12) 

Since Vsd can be derived from equation (10), the total number of data (7) is more than that of the 

unknowns (4), which constitutes an overdetermined inverse problem. Theoretical data are 

calculated by using equations (3)-(9), and the difference between observations and predictions 

is minimized in an iterative procedure. The objective function of the well-logging inverse 

problem is based on the weighted Euclidean norm of overall error (Mayer and Sibbit 1980) 
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where 
(o)

kd  and 
(c)

kd  denote the k-th observed and calculated data, respectively. As the 

uncertainty of well-logging data is different, it is advantageous to use weighting in the data 

space. The standard deviation σk of the k-th data variable depends on the probe type and 

borehole conditions that can be given from the literature (K is the number of applied logging 

instruments). The solution to equation (13) can be written as 
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where J denotes the Jacobi’s (sensitivity) matrix and 
-2

qqq σW   (q=1,2,…K) is the diagonal 

weighting matrix including a priori known data variances. As data and model covariance 

matrices can be related to each other, the inversion procedure can also provide the estimation 

errors of model parameters that characterize the accuracy and reliability of inversion estimates 

(Menke 1984). The result of inverse modeling in the thermal-water well (Section 2.2) can also 

be found in Fig. 1, where lithology (natural gamma-ray intensity, spontaneous potential, 

photoelectric absorption index), porosity (compensated neutron and density) and saturation 

sensitive (shallow and deep resistivity) logs were jointly inverted to quantify porosity, water 

saturation and shale volume. The inversion result emphasizes that deterministic procedures 

based on single log analysis are not universally valid and shale volumes are required to be 

estimated from different sources.  

 

3. New statistical approach for interpretation 

 

An alternative data processing approach based on multivariate statistical principles is suggested 

for improving shale volume estimates. Factor analysis is used to extract information about shale 

content from well-logging data. In the first step, all readings of available data types for the 

logging interval are gathered in one matrix 
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where N is the total number of measuring points in the processed interval. An element of matrix 

D represents a datum collected by a particular probe in a given depth of the well. Such a 

combination of well logs given in equation (15) is only a theoretical possibility for groundwater 

applications, because some columns or submatrix might be missing in the lack of 
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measurements. The minimum number of original variables (i.e. data) is normally four to extract 

new variables (i.e. factors), where natural gamma-ray intensity, spontaneous potential and 

some resistivity logs are always required for an appropriate analysis, because they are the most 

sensitive measurements to lithologic variations of formations. 

 Factor analysis reduces the N-by-K data matrix in equation (15) to a lower dimension by 

the following matrix decomposition 

 EFLD 
T

,                                                                     (16) 

where F denotes the N-by-M matrix of factor scores, L is the K-by-M matrix of factor loadings 

and E is the N-by-K matrix of residuals. Dimension M denotes the number of factors, which is 

less than the number of original variables (M<K). Factor scores obtained in one column of 

matrix F represent a new well (factor) log and matrix L contains the weights of the data 

variables corresponding to the extracted factors. Factors are assumed to be linearly 

independent IFF /N
T

 (I is the identity matrix), thus the correlation matrix of the standardized 

original variables is 

 ΨLLDDR 
TT

N

1
,                                                                    (17) 

where /N
T
EEΨ   is the diagonal matrix of specific variances. Factor loadings can be derived 

by the approximation algorithm of Jöreskog (2007). At first the following matrix is calculated 

    1/21-1/21-
SSSS diagdiag


,                                                     (18) 

where S denotes the sample covariance matrix of the standardized data. Then the eigenvalues 

λ and eigenvectors ω of matrix S* are computed, with which the matrix of factor loadings is 

given by 

     UIΓΩSL
1/2

MM

1/21-
θ



diag ,                                                  (19) 

where ΓM is the diagonal matrix of the first M number of sorted eigenvalues, ΩM is a matrix of 

the first M number of eigenvectors (in its columns) and U is an arbitrary M-by-M orthogonal 

matrix. Parameter θ specifies the smallest number of factors when 

   1  K2M1M λλλ
M-K

1
θ  .                                                   (20) 
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The factor scores are estimated by the maximum likelihood method using the following log-

likelihood function 

     max
T


 T1T

P FLDΨFLD .                                  (21) 

A linear solution to equation (21) can be given by the Bartlett's method (1937), which provides 

factor scores as follows 

   DΨLLΨLF
1-T-11-T

 .                                                          (22) 

Rotation of factor loadings makes it possible to interpret factors more easily. In this study, the 

varimax algorithm suggested by Kaiser (1958) is used to generate rotated factors, which are 

compared to shale volumes by regression analysis. 

Factor analysis can be effectively used to extract shale volume and other petrophysical 

properties of rocks from the well logging data set. The workflow used in this study is based on 

the subsequent application of factor and regression analyses (Fig. 2). As a result, the empirical 

relationships existing between factors and petrophysical properties can be used in the 

comprehensive interpretation of well logs. For instance, petrophysical parameters given from 

factor analysis can be treated as known parameters during the procedure of inverse modeling 

(Section 2.3), thus, because of the increase of overdetermination of the inverse problem, the 

accuracy and reliability of the inversion results can be improved considerably. (The influence of 

data-to-unknowns ratio on the inversion results was detailed in the context of the interval 

inversion in Dobróka and Szabó (2011), Dobróka et al. (2012), Dobróka and Szabó (2012).) The 

feasibility of the statistical method depends on how much amount of data variance in the factors 

is culminated (eps in Fig. 2). We suggest that no less than 70% of variance must be explained 

by the first factor. To preserve the rest of the information, some of the succeeding factors must 

be calculated and maximum 5-10% of variance can be neglected. The degree of correlation 

between the factors and petrophysical properties is also of great importance (alpha in Fig. 2). 

The correlation coefficient between the given factor and petrophysical parameter should be at 

least 0.75 to accept the method feasible. 

Szabó (2011) found a non-linear (exponential) relationship between the first factor (1st 

column of matrix F) and shale volume. The strong correlation can be explained by the high 
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parameter sensitivities of well logs, namely a small difference in the value of shale content is 

followed by significant changes in the well-logging data. Each probe response function contains 

shale volume as it can be seen in Equations (3)-(10), thus, shale volume is responsible for a 

large part of data variance. Consider the following regression function for groundwater 

applications 

 γαV 1F β 

sh 


e ,                                                                       (23) 

where α, β,  are local regression coefficients. For some deep wells the above empirical formula 

proved to be nearly independent of the measurement area. In equation (23) the first factor is 

scaled by the following procedure 
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where F1 is the factor score estimated to a given depth, F1,min and F1,max are the smallest and 

largest values of the first factor log, 
'

min1,F  and 
'

max1,F  are the desired lower and upper limits of 

the scaled factor 
'

1F  respectively. Regression tests on well-logging data originated from 

groundwater wells confirms the validity of equation (23), with a difference that new values of α, 

β,  are required to be specified for the shallow region. The results of regression analysis on 

three data sets are shown in three case studies (Sections 4.1-4.3). For measuring the misfit 

between different shale volume estimation results the root mean squared error is calculated 
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where superscripts (I) and (II) denote the estimation results of the first and second method, 

respectively. The dimensional unit of RMSE is per cent, but if the shaliness is given in fraction, it 

is dimensionless. The correlation relationships between the input data is characterized by the 

mean spread ( S ), which gives the average of correlation coefficients excluding the self-

correlations of data variables 
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where δ denotes the Cronecker-delta symbol (δil=1 in case of i=j, and δil=0 otherwise). For 

characterizing the strength of the non-linear relationship between the relevant factor and shale 

volume, the rank correlation coefficient can be applied (Spearman 1904). 

 

4. Application to groundwater exploration 

 

The test sites are located in the north-eastern part of the Great Hungarian Plain (Fig. 3). Three 

shallow boreholes are investigated, two of them (Well-1 and Well-2) are situated on the bank of 

River Tisza and one (Well-3) is tens of kms away to the east. The investigation areas are part of 

the Pannonian Basin Province of Central Europe, which is a highly explored petroleum area, 

where many hydrocarbon systems have been discovered. The Pannonian Basin consists of a 

large extensional basin of Neogene age overlying Paleogene basins and a Mesozoic (or older) 

basement (Dolton 2006). Above the thick and large-extension Tertiary basin-fill sequence 

containing the oil and gas-bearing formations, there are various Pannonian aged postrift 

sediments including thermal-water resources. The succeeding Quaternary sediments are 

characterized by a high variety of paludal, fluvial and delta-plain deposits including thick gravel 

and sand deposits saturated with good quality fresh water, and confining clays. This shallowest 

region is the target of the present study. 

 

4.1 Case study 1 

 

The location of Well-1 is at the site of Tokaj Waterworks, which is situated at the junction of 

River Tisza and River Bodrog in North-East Hungary (Fig. 3). The aim of the geophysical survey 

composed of induced polarization (IP), vertical electrical sounding (VES) and well-logging 

measurements was to assess the local aquifer system for the purpose of protecting the quality 

of drinking-water supply. In the vicinity of Well-1, the estimated depth of the basement is 

approximately 250 m. The drillhole traversed young sediments overlaying Miocene volcanic 

rocks. The 150 m thick Pannonian (Late Miocene) water-bearing gravel and sand is covered by 
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a dominantly coarse grained sand complex of Pleistocene age with clay interbeds, clayey-silty 

sands and then Holocene flood sediments thereupon.   

The data set measured in Well-1 contains natural gamma-ray intensity (GR), 

spontaneous potential (SP), shallow resistivity (RS), deep resistivity (RD) and neutron porosity 

(NPHI) logs (Fig. 5). The gamma-ray image shows the shaly intervals with dark (brown) colors, 

while the sandy layers are characterized with the light (yellow) ones. The correlation matrix of 

well-logging data is shown in Table 1. The average of Pearson's correlation coefficients 

between the measured variables calculated by equation (26) is 0.58, which indicates a 

moderate linear relationship between the data types. The application of the maximum likelihood 

method requires that the distribution of the data must be near-Gaussian. The kurtosis and 

skewness of the given data set are -0.2 and 0.3, respectively, which practically fulfills the 

condition of normality. 

 Factor analysis is used to extract two new variables called Factor 1 and Factor 2. The 

former explains the 95% of total variance of the original variables. The rest of the information 

falls on to subsequent factors. A second factor is also calculated which is responsible for 3.3% 

of data variance. The rest of information (1.7%) is neglected. In equation (23) the exponential 

connection between the first scaled factor and shale volume is specified. For comparing the 

results of different wells, Factor 1 should be properly scaled. The new interval of factor scores is 

computed by equation (24), where F'1,min=0 and F'1,max=100 are chosen. (The new interval is the 

same that shale volumes fall into in percent). The estimated loadings of the first factor for Well-1 

are shown in Table 2. The largest weights on the first factor are given by logs mainly sensitive 

to lithology (GR and SP). The role of porosity and saturation logs (NPHI and RS) is also 

important in the development of the new variable. The second factor correlates mostly with 

resistivity logs: -0.1 (SP), -0.23 (GR), -0.48 (NPHI), 0.72 (RS), 0.98 (RD). The exponential 

relationship between the first scaled factor and shale volume estimated from equation (2) is 

illustrated in Fig. 4a. The regression coefficients of equation (23) with their lower and upper 

limits are listed in Table 3. We can find an approximate value for parameter , which is valid to 

the fourth decimal figure in the three boreholes, thus, it is fixed during the regression tests. 

Beside a constant value of , the other regression coefficients were specified. The rank 
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correlation coefficient of the nonlinear relationship is 0.96, which indicates a very strong 

correlation between the first scaled factor and shale volume computed from the natural gamma-

ray intensity log based on equation (2). The factor logs and shale volume logs estimated by 

factor analysis and the Larionov's model are plotted in Fig. 5. The resultant logs show a close 

agreement between the independent interpretation results. The RMSE defined in equation (25) 

for measuring the difference between the shale volume logs is 7.2%. If we calculated shale 

volume from equation (1), the misfit between the results of factor analysis and the linear formula 

would increase up to 13.7%. 

 

4.2 Case study 2 

 

Well-2 was drilled in the area of Tiszalök Waterworks situated approximately 12 km south-west 

of Tokaj (Fig. 3). The purpose of geophysical survey and the local geological setting are similar 

as described in Case Study 1.  

The following well logs are utilized such as natural gamma-ray intensity (GR), 

spontaneous potential (SP), shallow resistivity (RS) and caliper (CAL), which can be considered 

as a minimum set and sometimes a typical combination of low-cost measurements (Fig. 6). It 

can be mentioned that CAL log is normally treated as a technical measurement and cannot be 

explicitly used in inversion procedures. However, it is worth integrating into factor analysis, 

because it contains useful information about the lithology of clastic formations, i.e. cavernous 

clay appears with relatively large diameter and sand shows smaller hole size, because of the 

filter cake formed at the borehole wall by the infiltration process of drilling fluid. The mean 

spread of input data is 0.57, which indicates a moderate linear relationship between the data 

(the partial correlations are shown in Table 1). The kurtosis and skewness are 0.4 and 0.5, 

respectively. 

 Factor analysis results in one factor, which contains 99.3% of total variance of the four 

measured variables. The rest of information (0.7%) is neglected. The same scaling procedure is 

performed on the first factor as in Case Study 1. The factor loadings of the scaled factor in Well-

2 are included in Table 2. In the lack of porosity logs the biggest weights go to GR and SP data, 
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which corresponds to earlier results obtained in Case Study 1 and deep wells (Szabó 2011). 

The RS log has got also a great impact on the new variable and the CAL log shows also some 

weak correlation with the factor. Practically the same exponential relationship between the first 

scaled factor and shale volume calculated from equation (2) is obtained (Fig. 4b) as in Case 

Study 1. The misfit between the observed data points and the curve of the regression model is 

smaller than that of given in Case Study 1 (Fig. 4a), which is indicated also by an improved 

value of Spearman's correlation coefficient (0.99). The regression constants of equation (23) 

with their confidence intervals are listed in Table 3. The estimated factor and shale volume logs 

are plotted in Fig. 6. The RMSE value for the shale volume curves estimated by the statistical 

and deterministic (Larionov model) analysis is 1.9%, which shows a remarkable agreement 

between the independent results. (The model distance between the gamma-ray index based 

linear result and statistical calculation increases up to 11.6%.) 

 

4.3 Case study 3 

 

Well-3 is located in Baktalórántháza about 64 km east of Tiszalök and 51 km east south-east of 

Tokaj (Fig. 3). The aim of the geophysical survey was the investigation of the geological 

structure and exploration of thermal water. The local geology shows similar characteristics with 

the two previous surveying areas (Case Studies 1-2). The bottom of the well is at 1200 m where 

drilling information describes Lower Pannonian deposits as gravel, clayey sand, clayey silt, 

clayey marl and bituminous clay. The depth of the Pleistocene complex is approximately at 240 

m, which dominantly consists of coarse grained gravel and sands at the bottom and finer fluvial 

sediments in the shallower region. At the top Holocene soil and aeolian sand can be found. In 

addition to the zone of the Pleistocene sequence of strata (that was investigated in Wells 1-2), 

further 250 m of logging interval is integrated into the statistical procedure. 

 The applied well logs represent natural gamma-ray intensity (GR), spontaneous 

potential (SP), shallow resistivity (RS), gamma-gamma (GG) and neutron-neutron (NN) data 

(Fig. 7). The well-logging data set is incomplete, because the interval of 89-99 m was not 

logged, but it causes no problems in the overall statistical analysis. The rest of the measured 
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intervals can be processed together in one interpretation procedure. The average correlation 

between the measured data is 0.32, which indicates a weak linear relationship between the 

input logs (the correlation coefficients are shown in Table 1). The kurtosis and skewness are 0.8 

and 0.3, respectively, which refer to a little more peaky data distribution than Gaussian. 

The first factor represents the 99.6% of the total variance of the measured variables (the 

rest of 0.4% is neglected). The factor loadings for Well-3 are listed in Table 2. The biggest 

weights are represented by GR, SP and RS logs. The porosity logs (NN, GG) make a relatively 

small contribution to the extracted variable. Factor scores are scaled by the same procedure as 

in Case Studies 1-2. Figure 4c shows that the exponential function of equation (23) 

approximates well the relationship between the first factor and shale content estimated from 

equation (2). The coefficients of the regression function with their confidence intervals are in 

Table 3. The rank correlation coefficient is 0.99, which indicates almost entire correlation 

between the above quantities. This high value of correlation results from the very strong non-

linear relationship and the large statistical sample (23,415 data). In Fig. 7 the factor log and the 

estimated shale volume logs are shown. The RMSE between the statistical and deterministic 

solution is 2.8%, which is 5 times smaller than the model distance between the results of factor 

analysis and linear approximation (14.5%). 

 

5. Discussion 

 

The three parameter regression tests show consistent results for three different well sites. The 

synthesis of field results confirms that the coefficients α, β,  do not change significantly in 

different measurement areas. In Table 3, the values of regression constants with their 

estimation errors can be compared for Wells-1-3. Since β represents almost the same value 

(0.0146) in all drillholes, we can make a simplification by treating it as a fixed parameter 

(0.015). By accepting the average values of regression parameters (and mean estimation 

errors) given in Table 3, a local shale volume estimation formula is suggested in the form as  

5.26
1F0.015

sh 27.4eV .                                                         (27) 
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The results given by equation (27) are 3.3 times better than those of the linear approximation 

based on equation (1) in the three wells. The mean value of RMSE for the shale volume logs 

estimated by factor analysis and the Larionov's formula (applied to Tertiary or younger 

sediments) in the three boreholes is 4%, while it is 13.3% between the results of statistical and 

conventional gamma-ray index based methods. The results of factor analysis are close to the 

solutions given by the Larionov's formula. The biggest difference between the statistical and 

Larionov model can be found in Well-1, which can be explained with that in Well-1 the weight of 

GR log is relatively small and considerable loads are put on the rest of the logs. This causes 

some deflection of estimation results from the GR log based model (Fig. 8). On the other hand, 

the smallest number of data is processed by the statistical method in Well-1. Our experience 

shows that shale volumes calculated directly from natural gamma-ray index are approximately 

20% higher than that of given by factor analysis for the interval of 20%<Vsh<80% independent of 

the measurement area.  

 The proposed exponential model in equation (27) gives more realistic and better 

estimates than the conventional linear approximation (Fig. 8). The results of factor analysis in 

Wells-1-3 are close to the model of Larionov, which confirms the validity of the suggested 

statistical method. To check the reliability of the regression formula, the shale volumes 

estimated from the geophysical well logs were compared to those of laboratory analysis made 

on core samples (grain-size distribution, comprehensive mineralogical and chemical analysis) in 

Well-3. The correlation relationship between shale volumes estimated by factor analysis and 

core measurements is strong (Fig. 9). The shale volume logs obtained by factor analysis and 

independent laboratory measurements are plotted in Track 3 of Fig. 10. Only those depth points 

are indicated by circles where core measurements were made (the red curve representing the 

results of factor analysis connects the same points). The RMSE between the results of core 

measurements and the calculations using the model of Larionov is 5.1%, while it is 4.5% 

between the results of laboratory tests and factor analysis. In this particular case, factor analysis 

showed slightly better estimation than the conventional Larionov’s method (the relative 

improvement is 11%). If the linear approximation based on equation (1) is compared to the 

performance of factor analysis, the relative improvement for the statistical approach is 440% 
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as the RMSE between the laboratory measurements and linear prediction is 19.9 %. The 

correction of linear results is highly recommended for a more accurate and reliable modeling of 

water-bearing formations. 

 

6. Conclusion 

 

It is shown that the presented shale indicator is applicable to estimate the shale content of 

water-bearing formations from the log of one special factor. Shale volume is normally given by 

deterministic or inversion procedures in each depth separately. On the contrary, the new 

statistical method jointly processes all available data within the logging interval allowing some 

shorter intervals of missing data to provide the vertical distribution of shale content. This 

procedure requires only a few seconds of CPU times using a quad-core processor based 

workstation. The method can easily be extended to multiwell applications as it was shown 

earlier by using engineering geophysical sounding data analogously (Szabó et al. 2012; Szabó 

2012). 

 Factor analysis can be used to explore non-measurable petrophysical information from 

several kinds of well-logging data. The relatively large factor loadings of neutron porosity, 

resistivity and caliper logs suggest that the processing of other log types than natural gamma-

ray and spontaneous potential is also advantageous to use for more reliable shale volume 

estimation. The new feature of integrating technical and other type of measurements into the 

interpretation process is different from inversion methodology, which requires a strict (explicit) 

mathematical connection between the data and model parameters. 

 The benefits of the suggested method related to the characterization of aquifers are 

manifold. It may confirm or bring more reliable information about the shale content in primary 

porosity aquifers. Derived quantities such as effective porosity, free and bound water saturation, 

hydraulic conductivity and storage capacity of aquifers can be re-interpreted even in large 

areas. The accuracy and reliability of estimated shale volumes are assured by using several 

types of well logs simultaneously in a joint interpretation problem. Shale volume information 

given by factor analysis can also be used to reduce the number of unknowns of the well-logging 
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inverse problem. Moreover, it can also be applied to resolve the ambiguity existing between 

parameters of the geophysical model. In conclusion, the simultaneous application of the 

resultant shale volume logs and other available geophysical profiles measured by ground 

geophysical surveying methods can significantly improve the solution of hydrogeophysical 

interpretation problems. 
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List of figure captions 

 

Fig. 1 Shale volume estimation example using a South Hungarian well-logging data set. (a) 

Shale volume versus natural gamma-ray index crossplot including curves from different 

empirical models (see section: Deterministic Methods) and inversion results (see section: 

Inversion Methods). (b) Shale volume logs estimated from different interpretation methods 

Fig. 2 Flowchart of the statistical methodology used for petrophysical parameter estimation 

Fig. 3 Location map of the investigated well sites in Northeast Hungary 

Fig. 4 Exponential relationship between the first scaled factor and shale volume estimated from 

the Larionov’s formula in (a) Well-1, (b) Well-2, (c) Well-3  

Fig. 5 Well logs measured from Well-1 as input for factor analysis (Tracks 1-4). GR is natural 

gamma-ray intensity, SP is spontaneous potential, NPHI is neutron porosity, RS and RD are 

shallow and deep resistivity, respectively. Well logs of the first scaled and second factor (Track 

5). Shale volume logs estimated independently by factor analysis and the Larionov's formula 

(Track 6) 

Fig. 6 Well logs measured from Well-2 as input for factor analysis (Tracks 1-4). GR is natural 

gamma-ray intensity, SP is spontaneous potential, CAL is caliper, RS is shallow resistivity. Well 

log of the first scaled factor (Track 5). Shale volume logs estimated independently by factor 

analysis and the Larionov's formula (Track 6) 

Fig. 7 Well logs measured from Well-3 as input for factor analysis (Tracks 1-4). GR is natural 

gamma-ray intensity, SP is spontaneous potential, GG is gamma-gamma intensity, NN is 

neutron-neutron intensity, RS is shallow resistivity. Well log of the first scaled factor (Track 5). 

Shale volume logs estimated independently by factor analysis and the Larionov's formula (Track 

6) 

Fig. 8 Natural gamma-index vs. shale volume crossplot for comparing GR log based models 

with the estimation results of factor analysis in Wells-1-3 
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Fig. 9 Regression relationship between shale volume estimations made by laboratory and factor 

analyses (R denotes the Pearson’s correlation coefficient) 

Fig. 10 Gamma-ray log measured in Well-3 (Track 1) and results of factor analysis. Shale 

volume logs estimated by factor analysis and the Larionov's formula (Track 2). In Track 3 

independent results of laboratory measurements and factor analysis are plotted, where shale 

volumes are represented in points where rock samples were cored out 

 

Tables 

 

Table 1 Correlation matrices calculated for borehole geophysical data sets originated from 

Wells-1-3. 

Well-1 SP GR NPHI RS RD 

SP 1 0.61 0.64 -0.38 -0.16 

GR 0.61 1 0.69 -0.69 -0.32 
NPHI 0.64 0.69 1 -0.68 -0.54 

RS -0.38 -0.69 -0.68 1 0.77 

RD -0.16 -0.32 -0.54 0.77 1 

Well-2 GR SP RS CAL - 

GR 1 -0.01 -0.35 -0.12 - 

SP -0.01 1 -0.82 -0.73 - 

RS -0.35 -0.82 1 0.77 - 

CAL -0.12 -0.73 0.77 1 - 

Well-3 RS SP GR GG NN 

RS 1 -0.01 -0.74 -0.33 -0.05 

SP -0.01 1 -0.12 -0.42 -0.14 

GR -0.74 -0.12 1 0.36 0.05 

GG -0.33 -0.42 0.36 1 0.02 

NN -0.05 -0.14 0.05 0.02 1 

 

Table 2 Loadings of the first factor derived from borehole logging data originated from Wells-1-3 

("missing" represents not available log). 

 GR SP RD RS GG NPHI NN CAL 

Well-1 0.92 0.65 -0.11 -0.56 missing 0.65 missing missing 

Well-2 0.96 0.80 missing -0.84 missing missing missing -0.30 

Well-3 0.92 -0.12 missing -0.81 0.40 missing 0.06 missing 

 

Table 3 Estimated regression coefficients for shale volume versus first scaled factor relationship 

with 95% confidence bounds (beside the fixed value of β=0.015) in Wells-1-3. 
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 αmin α αmax min  max 

Well-1 26.53 27.52 28.52 -29.97 -27.77 -25.58 

Well-2 28.51 28.66 28.81 -27.94 -27.66 -27.37 

Well-3 25.75 25.89 26.03 -24.28 -23.99 -23.69 

Mean 26.93 27.36 27.79 -27.40 -26.48 -25.55 
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