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Factor Analysis via Components Analysis 

Abstract 

Under the null hypothesis, component loadings are linear combinations of factor loadings, and vice 

versa.  This interrelation permits defining new optimization criteria and estimation methods for 

exploratory factor analysis.  Although this note is primarily conceptual in nature, an illustrative example 

shows the methodology to be promising. 
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Factor Analysis Via Components 

Although limiting conditions have been developed under which components, or principal components as 

an important special case, and latent factors of factor analysis coincide (e.g., Guttman, 1956; Bentler & 

Kano, 1990), in most treatments components analysis and factor analysis are considered to be 

alternative but basically unrelated methods for determining sources of variance in variables (e.g., 

Mulaik, 2009).  The goal of this paper is to estimate the parameters of the common factor model via 

components.  To do this, we require a stronger linking between the models than has been previously 

described.  To begin, we provide some matrix background on the existence of a factor analysis model. 

Suppose C is a symmetric positive semidefinite matrix of order p and rank r with 2C U U   , 

where U is a p r orthonormal matrix of eigenvectors withU U I  , and 2 is an r r diagonal matrix 

of eigenvalues.  Then we have 

Result 1. A p q matrix X satisfies C XX  if and only if X U V   , where V is q r and satisfies 

V V I  .  Thus q cannot be smaller than r , and the rank of X is equal to r . 

Postmultiplying X U V   by its transpose givesC , which is of rank r , establishing that q r and the 

rank of X .  Assuming to the contrary that V V I  violates the assumption that 2C U U   , thus 

leading to a contradiction.  Note that X U V   gives its singular value decomposition. 

 Now let us takeC   , a population covariance matrix with eigenvector decomposition 

2U U    .  The orthogonal factor analysis model states that the covariance matrix has decomposition

    where  |   is a ( )p q k p    partitioned matrix of factor loadings that contains a

p k  common factor loading matrix  and the p p diagonal unique loading matrix .1  We apply 

Result 1 to the factor model by letting X   , obtaining 

                                                           
1
 Note that our lower case  is the loading matrix for the common factors that is more typically given as cap . 
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Result 2. The orthogonal factor analysis model    is true if and only if there exists  |  

with , diagonal  , and orthonormal matrix V such that U V    . 

It follows that 0V  , where V is a ( )q q p   orthogonal complement such that 0V V
  .  In the 

following we assume that the factor analysis model holds in the population. 

Interrelations between Models 

Under a component model, a random p -variate vector of observed variables x may be expressed as a 

population model based on a linear combination of underlying components  with coefficients L  

 x L . (1) 

L is typically called a component loading matrix, and is sometimes misleadingly called a factor loading 

matrix.  We take L to be square and full rank, so that this is a complete components representation.  It 

is not necessarily unique, since (1) allows a rotation.  One way to make it unique is to specify that L L  is 

diagonal with elements ordered from large to small, i.e., a principal components representation.  In 

practice, when the decomposition (1) is applied with sample data, it is used as an approximation, and 

the number of columns of L is taken to be substantially below p .  

Under a common factor analysis model, the same p -variate vector of observed variables x is 

given a different population decomposition.  In particular, using the factor notation above, 

  |x        (2) 

where the q random variables   are factors consisting of k common factors and p unique factors.  

Now, accepting Result 2, we assume that both models (1) and (2) are true in the population.  In this 

case, we may write L   , and, since in the complete components loading matrix L is invertible, we 

have 
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1L   . (3) 

That is, we have the obvious result  

Result 3.  Components  are linear combinations of factors . 

In particular, components are combinations of common and unique factors.  Since unique factors 

contain specificity plus random error, components also contain these sources of variance. 

Next we consider the covariance structures of these two models.  Under the usual assumptions 

that ( ) 0, ( ) 0, ( ) 0E x E E    , the components  are mutually uncorrelated, and, in exploratory 

factor analysis, the factors  are mutually uncorrelated, when both models are true we have 

 LL     . (4) 

Now we perform the singular value decomposition given in Result 2, namely, U V    , where U is 

p p with U U I  ,  is a p p diagonal matrix of singular values, and V  is p q with V V I  .  

Furthermore, since VV    , we may write LL VV     .  Since we have specified no special 

structure for L , and since V is of dimension p p , this allows us to take 

 L V  . (5) 

Thus we have  

Result 4.  The component loading matrix L is a rank-reducing linear combination of elements of the 

factor loading matrix . 

It follows trivially from the singular value decomposition of  and (5) that 

 LV   . (6) 

Hence we have 

Result 5.  The factor loading matrix is a rank-increasing linear combination of elements of the 

component loading matrix L .  
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Suppose pD is p p a nonsingular diagonal matrix, and that the observed variables are scaled 

by this matrix.  The effect on the component loadings is to yield D pL D L , and on the factor loadings 

is to yield D pD   .  Clearly, these rescaled loading matrices maintain the relations given by (5) and 

(6), and hence we may without loss of generality perform all analyses on the correlation matrix.  Thus 

we have  

Result 6.  The relations between component and factor loadings given by (5) and (6) are invariant to 

rescaling of the observed variables. 

Earlier we stated that the choice of component representation in the above relations is 

arbitrary.  It may be worthwhile to be explicit why this is so.  Consider transforming the component 

loading matrix by an orthonormal matrix.  If T is a matrix such that T T TT I   , and the left and 

right hand sides of (5) are postmultiplied by T , the relation (5) is maintained for the new loading matrix 

TL LT  and the new TV VT , where TV  possesses the same orthogonality properties as the original 

V .  Hence   

Result 7.  The choice of components, such as principal components, is arbitrary.  Any convenient 

component representation maintains the key relations between components and factors. 

It may be useful to give the explicit interrelations between components and factors at the level 

of population covariances.  We postmultiply (3) by  and take expectations of both sides, yielding 

     1( )E L      .                                                                            (7)    

If the starting point of our analysis had allowed the factors to be correlated with covariance matrix  , 

this covariance  matrix would show up on the right side of (7).  In any case, the interpretation of 

elements of  will hinge critically on the chosen scaling of variables, the identification conditions 

utilized and possible rotations imposed on the components as well as the factors.  Thus we have 
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Result 8.  The covariance matrix relating components and factors, or their correlation matrix when 

standardized, is given by 1L  . 

The above equations are population relations that hold if the hypothesized factor model is true.  

Otherwise, they will only be approximations, and the quality of the approximation will depend on the 

correctness of (2), as well as a correct choice of the number of factors.  For example, if (2) holds with k

common factors, a factor model with 1k  factors would not be consistent with (5)-(6) in either the 

population or in a sample.  Equations (5)-(6) would be approximations rather than equalities.  In 

addition, when applied to real data, where a sample covariance matrix S will replace its corresponding 

population  to yield a sample component loading matrix L̂ , (5) and (6) will no longer hold exactly.  This 

implies the need for a methodology to optimize the approximations. 

Practical Approaches to Factor Analysis via Components 

The interrelations developed above can be used in several ways to obtain new factor analytic 

estimation methods.  The most obvious approach is to define optimization functions based on the 

population relations (5)-(6), and then to apply them to parameter estimation with sample data.  In the 

population, minimized values of these functions provide sample-size independent definitions of 

noncentrality parameters when the chosen factor model is not true, while when implemented with 

sample components, they define discrepancy functions to be minimized in an estimation methodology.  

Because of the scale invariance noted in Result 6, we can work with the correlation matrix without loss 

of generality, i.e., we may consider the above relations based on standardized observed variables.  That 

is, we consider P LL , where P is the population correlation matrix. 

Some interesting population functions can be defined on the discrepancies between the left and 

right sides of (5) and (6).  In this paper, we consider only relatively simple nonnegative functions that 

take on the value of zero under the null hypothesis (2).  First we consider a kind of generalized least 
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squares function based on (5) that, in contrast to previous approaches to factor analysis that fit the 

factor model to the correlation matrix, fits the factor model to the component loading matrix  

     
1

1
( ) ( )

2
tr L V W L V     with 0V  .                               (8) 

W is a weight matrix that can be chosen in various ways.  When 1W P , (8) is a scale-invariant way to 

measure how close 1VL is to an identity matrix based on
1 1

1 .5 ( ) ( )tr I VL I VL     and 

0V  .  Although here we use a trace function to quantify this, it also is possible to use 1VL alone 

or in combination with (8).  When W I this is a least squares (LS) discrepancy function.  When a 

sample L̂ is fitted, the formulation allows such options as 1W R , based on the sample correlation 

matrix R , and 
1ˆW P based on the estimated model ˆ ˆ ˆP   ; these may be called generalized least 

squares (GLS) and reweighted least squares (RLS), respectively. 

In parallel to the above, we also may consider a function based on (6) that fits the factor loading 

matrix to a transformed components loading matrix, specifically  

     
2

1
( ) ( )

2
tr LV W LV       .                                                              (9) 

In this case, when 1W P , the function simplifies to the discrepancy 
1

2 ( )p tr VL    , and as with 

(8), alternative specifications of W lead to LS-, GLS-, and RLS-type methods.  Of course, additional 

methods are possible as noted in the Discussion. 

Although there are a lot of options for estimation, a careful study of alternatives is beyond the 

scope of this paper.  We may call this class of procedures EFAC, exploratory factor analysis via 

components.  We simply illustrate the proposed approach with one method and one data set, taking 

ˆL L from ˆ ˆR LL  and treating it as fixed. 
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Computational Approach 

We illustrate our results by minimizing (9) withW I , i.e., using the least squares special case.  

What is different in our approach is that V is also an unknown parameter matrix that needs to be 

estimated along with , although it will typically not be of special interest.  Here we consider a simple 

alternating least squares approach to obtain the unknown optimum parameter estimates ̂  and V̂ .  

We use two steps   

1. Given a current  , say i , find a V , say iV ; 

2. Given a current iV , find a new  , say 1i , 

repeated in sequence until convergence.  Abstractly, Step 1 is implemented by obtaining the gradient 

/i V   and computing up a type of gradient projection step (Jennrich, 2002) involving a least squares 

orthonormalization similar to that of orthogonal Procrustes rotation (Schönemann, 1966).  This makes 

use of a Lagrangian constraint to assure that V is an orthonormal matrix at each iteration, and assures 

that 0V  .  Step 2 is implemented by a similar gradient project step that assures that the estimated 

̂  has the required form (2).  To obtain a unique ̂ that does not allow rotation, at each step we take it 

to have an upper-right triangle of zeros.  After convergence, we will rotate it into a more interesting 

form, in the example, to maximize the varimax criterion. 

Specifically, in Step 1, using the current estimates we compute the steepest-descent update 

matrix on the left of the equality 

( )V VL L L PDQ       ,                                                  (10) 

and obtain its singular value decomposition as given on the right of (10).  Here,  is a step-size number 

chosen to guarantee a decrease in function (9); Jennrich proved that such a number exists.  The usual 

properties assure that , ,P P I Q Q I   and D is the diagonal matrix of singular values.  Then the new 

estimate 
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           iV PQ                                                               (11) 

is obtained.  This is the least squares orthogonal normal approximation to the matrix in (10).  This new 

estimate iV is used in Step 2, which proceeds by computing 
2 1/ 0 [ ]LS i i fLV 

     where [.] f

extracts the elements corresponding to free parameters in  and ignores the rest.  Then we return to 

Step 1 and continue cycling until a minimum of (9) is obtained, yielding the final ̂  and V̂ .   

Example 

To illustrate this methodology, we analyze the well known Holzinger-Harman 24 psychological tests and 

compare the results to maximum likelihood (ML) and least squares (LS) solutions.  Convergence to the 

minimum of (9) was straightforward.  Since the unrotated solutions of ML and EFAC are not comparable 

due to different conditions on the initial solutions, both results were rotated by varimax.  Table 1 gives 

the two varimax solutions.  The EFAC solution on the left side of Table 1 is remarkably similar to the ML 

solution given in the right side of Table 2: the root mean square difference across all elements of the 

two matrices is .012.  A similar comparison of the EFAC solution to the standard iterative principal axes 

solution (not shown) obtained a root mean square difference of .009. 

Discussion 

As far as can be determined, the interrelations between components and latent factor scores as well as 

between components and factor loading matrices that were developed in this manuscript have not 

previously been recognized.  The results provide the basis for a class of new estimation methods, 

dubbed EFAC, to the century old factor analysis model.  In this approach, the components loading matrix 

rather than the correlation matrix is used to define a discrepancy function.  The illustrative results verify 

that an EFAC solution can be surprisingly similar to the classical maximum likelihood and least squares 

solutions on the classical 24 psychological variables, suggesting that further research into its properties 

may be of interest in the future. 
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Being primarily conceptual in nature, this paper has not addressed the wide variety of 

estimation methods that can be developed based on this conceptualization.  The functions (8) and (9) 

are just illustrative, and many variants are possible.  For example, 
2 is based on a p p weight matrix 

W , but the variant *

2

1
( ) ( )

2
tr LV W LV      would be based on a q q weight matrix.  Or a 

discrepancy function could be based on the differences between the singular values i of L and singular 

values
i of  , such as  

2

i i  .  This is an adaptation of a criterion introduced by de Leeuw 

(2004), the sum of squared differences between singular values of a raw score data matrix and those of 

 .  Especially interesting would be the development of discrepancy functions that provide the type of 

statistics of typical interest in covariance structure analysis, such as goodness-of-fit 2 tests and 

standard error estimates for the parameters.  These might include such obvious variants as 

asymptotically distribution free methods, elliptical, normal theory and robust methods based on 

distribution of L̂ and the data. 

Although we showed that the proposed EFAC methodology can yield results that are equivalent 

to those from standard methods, an important question to consider is whether any variants of this 

methodology actually can yield improvements over existing methods.  If not, our results will be of 

interest mainly in providing a new theoretical perspective on the relations between components and 

factor analysis. 

In this manuscript, for simplicity we considered only the exploratory factor analysis model.  It is 

possible to extend our approach so as to relate components to other latent variable models as well.   
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Table 1 

EFAC (left) and ML (right) Varimax Rotated Solutions for 24 Psychological Variables 

1       0.153   0.704   0.169   0.130 

2       0.119   0.435   0.099   0.081 

3       0.141   0.534  -0.010   0.159 

4       0.227   0.553   0.088   0.054 

5       0.741   0.185   0.216   0.148 

6       0.764   0.209   0.067   0.232 

7       0.809   0.201   0.152   0.070 

8       0.569   0.342   0.233   0.139 

9       0.810   0.209   0.043   0.215 

10      0.168  -0.098   0.824   0.157 

11      0.176   0.111   0.530   0.383 

12      0.019   0.209   0.719   0.087 

13      0.181   0.428   0.535   0.084 

14      0.202   0.045   0.081   0.574 

15      0.120   0.125   0.077   0.514 

16      0.068   0.424   0.053   0.517 

17      0.138   0.069   0.221   0.583 

18      0.022   0.308   0.339   0.447 

19      0.145   0.244   0.167   0.364 

20      0.378   0.421   0.107   0.288 

21      0.175   0.407   0.433   0.200 

22      0.365   0.414   0.125   0.283 

23      0.370   0.517   0.234   0.224 

24      0.367   0.179   0.492   0.294 

 

Col SSQ 3.647   2.975   2.657   2.257 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1    0.160   0.689   0.187   0.161 

  0.117   0.436   0.083   0.096 

     0.137   0.571  -0.020   0.109 

     0.233   0.528   0.099   0.079 

     0.739   0.185   0.213   0.150 

     0.767   0.205   0.066   0.233 

     0.806   0.197   0.153   0.075 

     0.569   0.339   0.242   0.131 

     0.806   0.201   0.040   0.227 

     0.168  -0.118   0.831   0.167 

     0.179   0.119   0.511   0.378 

     0.019   0.210   0.716   0.089 

     0.187   0.437   0.525   0.083 

     0.197   0.050   0.081   0.554 

     0.121   0.116   0.075   0.522 

     0.069   0.408   0.062   0.525 

     0.142   0.062   0.219   0.573 

     0.026   0.294   0.336   0.455 

     0.148   0.240   0.161   0.365 

     0.378   0.402   0.118   0.300 

     0.175   0.381   0.438   0.223 

     0.366   0.399   0.122   0.301 

     0.369   0.501   0.244   0.238 

     0.370   0.158   0.496   0.303 

 

     3.647   2.875   2.654   2.292 

 


