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1 INTRODUCTION

The linear factor analysis (FA) model is a popular tool for exploratory data

analysis or, more precisely, for assessing the dimensionality of sets of items.

Although it is well known that it is meant for continuous observed indica-

tors, it is often used with dichotomous, ordinal, and other types of discrete

variables, yielding results that might be incorrect. Not only parameter es-

timates may be biased, but also goodness-of-fit indices cannot be trusted.

Magidson and Vermunt (2001) presented a nonlinear factor-analytic model

based on latent class (LC) analysis that is especially suited for dealing with

categorical indicators, such as dichotomous, ordinal, and nominal variables,
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and counts. The approach is called latent class factor analysis (LCFA) be-

cause it combines elements from LC and traditional FA. This LCFA model is

one of the LC models implemented in the Latent GOLD program (Vermunt

& Magidson, 2000, 2003).

A disadvantage of the LCFA model is, however, that its parameters may

be somewhat more difficult to interpret than the typical factor-analytic co-

efficients – factor loadings , factor-item correlations, factor correlations, and

communalities . In order to overcome this problem, we propose using a linear

approximation of the maximum likelihood estimates obtained with a LCFA

model. This makes it possible to provide the same type of output measures as

in standard FA, while retaining the fact that the underlying factor structure

is identified by the more reliable nonlinear factor-analytic model.

Bartholomew and Knott (1999) gave a four-fold classification of latent

variable models based on the scale types of the latent and observed variables;

i.e., factor analysis , latent trait (LT) analysis, latent profile (LP) analysis

, and latent class analysis . As shown in Table 1, in FA and LT models,

the latent variables are treated as continuous normally distributed variables.

In LP and LC models on the other hand, the latent variable is assumed

to be discrete and to come from a multinomial distribution. The manifest

variables in FA and LP model are continuous. In most cases, their conditional
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distribution given the latent variables is assumed to be normal. In LT and

LC analysis, the indicators are dichotomous, ordinal, or nominal categorical

variables, and their conditional distributions are assumed to be binomial or

multinomial.

[INSERT TABLE 1 ABOUT HERE]

The distinction between models for continuous and discrete indicators is

not a fundamental one since the choice between the two should simply depend

on the type of data. The specification of the conditional distributions of the

indicators follows naturally from their scale types. A recent development in

latent variable modeling is to allow for a different distributional form for each

indicator. This can, for example, be a normal, student, log-normal, gamma,

or exponential distribution for continuous variables, binomial for dichoto-

mous variables, multinomial for ordinal and nominal variables, and Poisson,

binomial, or negative-binomial for counts. Depending on whether the latent

variable is treated as continuous or discrete, one obtains a generalized LT

(Moustaki & Knott, 2000) or LC (Vermunt & Magidson, 2001) model.

The more fundamental distinction in Bartholomew’s typology is the one

between continuous and discrete latent variables. A researcher has to decide

whether to treat the underlying latent variable(s) as continuous or discrete.
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However, Heinen (1996) demonstrated that the distribution of a continuous

latent variable can be approximated by a discrete distribution, and that such

a discrete approximation may even be superior1 to a misspecified continuous

(usually normal) model. More precisely, Heinen (1996; also, see Vermunt,

2001) showed that constrained LC models can be used to approximate well-

known unidimensional LT or item response theory (IRT) models 2, such

as the Rasch, Birnbaum, nominal-response, and partial credit model. This

suggests that the distinction between continuous and discrete latent variables

is less fundamental than one might initially think, especially if the number

of latent classes is increased. More precisely, as shown by Aitkin (1999;

also, see Vermunt and Van Dijk, 2001; Vermunt, 2004), a continuous latent

distribution can be approximated using a nonparametric specification; that

is, by a finite mixture model with the maximum number of identifiable latent

classes. An advantage of such a nonparametric approach is that it is not

necessary to introduce possibly inappropriate and unverifiable assumptions

about the distribution of the random effects.

1With superior we refer to the fact that mispecification of the distribution of the con-
tinuous latent variables may cause bias in the item parameter estimates. In a discrete or
nonparametric specificaton, on the other hand, no assumptions are made about the latent
distribution and, as a result, parameters cannot be biased because of mispecification of
the latent distribution.

2We will use the terms latent trait (LT) and item response theory (IRT) interchange-
ably.
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The proposed LCFA model is based on a multidimensional generaliza-

tion of Heinen’s (1996) idea: it is a restricted LC model with several latent

variables. As exploratory FA, the LCFA model can be used to determine

which items measure the same dimension. The idea of defining an LC model

with several latent variables is not new: Goodman (1974) and Hagenaars

(1990) proposed such a model and showed that it can be derived from a

standard LC model by specifying a set of equality constraints on the item

conditional probabilities. What is new is that we use IRT-like regression-type

constraints on the item conditional means/probabilities3 in order to be able

to use the LC model with several latent variables as an exploratory factor-

analytic tool. Our approach is also somewhat more general than Heinen’s in

the sense that it cannot only deal with dichotomous, ordinal, and nominal

observed variables, but also with counts and continuous indicators, as well

as any combination of these.

Using a general latent variable model as the starting point, it will be

shown that several important special cases are obtained by varying the model

assumptions. In particular, assuming 1) that the latent variables are dichoto-

3With regression-type constraints on the item conditional probabilities we mean that
the probability of giving a particular response given the latent traits is restricted by means
of a logistic regression model, or another type of regression model. In the case of continuous
responses, the means are restricted by linear regression models, as in standard factor
analysis.
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mous or ordinal, and 2) that the effects of these latent variables on the trans-

formed means are additive, yields the proposed LCFA model. We show how

the results of this LCFA model can be approximated using a linear FA model

, which yields the well-known standard FA output. Special attention is given

to the meaning of the part that is ignored by the linear approximation and

to the handling of nominal variables. Several real life examples are presented

to illustrate our approach.

2 THE LATENT CLASS FACTOR MODEL

Let θ denote a vector of L latent variables and y a vector of K observed

variables. Indices ` and k are used when referring to a specific latent and ob-

served variable, respectively. A basic latent variable model has the following

form:

f(θ,y) = f(θ)f(y|θ) = f(θ)
K∏

k=1

f(yk|θ),

where the primary model assumption is that the K observed variables are

independent of one another given the latent variables θ, usually referred to

as the local independence assumption (Bartholomew and Knott, 1999). The

various types of latent variable models are obtained by specifying the distri-

bution of the latent variables f(θ) and the K conditional item distributions

f(yk|θ). The two most popular choices for f(θ) are continuous multivari-
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ate normal and discrete nominal. The specification for the error functions

f(yk|θ) will depend on the scale type of indicator k.4 Besides the distribu-

tional form of f(yk|θ), an appropriate link or transformation function g(·) is

defined for the expectation of yk given θ, E(yk|θ). With continuous θ (FA

or LT), the effects of the latent variables are assumed to be additive in g(·);

that is,

g[E(yk|θ)] = β0k +
L∑

`=1

β`kθ`, (1)

where the regression intercepts β0k can be interpreted as “difficulty” param-

eters and the slopes β`k as “discrimination” parameters. With a discrete θ

(LC or LP), usually no constraints are imposed on g[E(yk|θ)].

The new element of the LCFA model is that a set of discrete latent vari-

ables is explicitly treated as multidimensional, and that the same additivity

of their effects is assumed as in Equation 1. In the simplest specification, the

latent variables are specified to be dichotomous and mutually independent,

yielding what we call the basic LCFA model. An LCFA model with L dichoto-

mous latent variables is, actually, a restricted LC model with 2L latent classes

(Magidson & Vermunt, 2001) . Our approach is an extension of Heinen’s work

to the multidimensional case. Heinen (1996) showed that LC models with

4The term error function is jargon from the generalized linear modeling framework.
Here, it refers to the distribution of the unexplained or unique part (the error) of yk.
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certain log-linear constraints yield discretized versions of unidimensional LT

models. The proposed LCFA model is a discretized multidimensional LT or

IRT model . With dichotomous observed variables, for instance, we obtain

a discretized version of the multidimensional two-parameter logistic model

(Reckase, 1997).

A disadvantage of the (standard) LC model compared to the LT and

LCFA models is that it does not explicitly distinguish different dimensions,

which makes it less suited for dimensionality detection. Disadvantages of

the LT model compared to the other two models are that it makes stronger

assumptions about the latent distribution and that its estimation is com-

putationally much more intensive, especially with more than a few dimen-

sions. Estimation of LT models via maximum likelihood requires numerical

integration: for example, with 3 dimensions and 10 quadrature points per di-

mension, computation of the log-likelihood function involves summation over

1000 (=103) quadrature points. The LCFA model shares the advantages of

the LT model, but is much easier to estimate, which is a very important

feature if one wishes to use the method for exploratory purposes. Note that

a LCFA model with 3 dimensions requires summation over no more than 8

(=23) discrete nodes. Of course, the number of nodes becomes larger with

more than two categories per latent dimension, but will still be much smaller
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than in the corresponding LT model.

Let us first consider the situation in which all indicators are dichotomous.

In that case, the most natural choices for f(yk|θ) and g(·) are a binomial

distribution function and a logistic transformation function. Alternatives

to the logistic transformation are probit, log-log, and complementary log-

log transformations. Depending on the specification of f(θ) and model for

g[E(yk|θ)], we obtain a LT, LC, or LCFA model. In the LCFA model,

f(θ) = π(θ) =
L∏

`=1

π(θ`)

g[E(yk|θ)] = log

[
π(yk|θ)

1 − π(yk|θ)

]
= β0k +

L∑
`=1

β`kθ`. (2)

The parameters to be estimated are the probabilities π(θ`) and the coeffi-

cients β0k and β`k. The number of categories of each of the L discrete latent

variables is at least 2, and θ` are the fixed category scores assumed to be

equally spaced between 0 and 1. The assumption of mutual independence

between the latent variables θ` can be relaxed by incorporation two-variable

associations in the model for π(θ). Furthermore, the number of categories

of the factors can be specified to be larger than two: A two-level factor has

category scores 0 and 1 for the factor levels, a three-level factor scores 0, 0.5,

and 1, etc.

The above LCFA model for dichotomous indicators can easily be extended
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to other types of indicators. For indicators of other scale types, other distri-

butional assumption are made and other link functions are used. Some of the

possibilities are described in Table 2. For example, the restricted logit model

we use for ordinal variables is an adjacent-category logit model. Letting s

denote one of the Sk categories of variable yk, it can be defined as

log

[
π(yk = s|θ)

π(yk = s − 1|θ)

]
= β0ks +

L∑
`=1

β`kθ`,

for 2 ≤ s ≤ Sk.

[INSERT TABLE 2 ABOUT HERE]

Extensions of the basic LCFA model are among others that local depen-

dencies can be included between indicators and that covariates may influence

the latent variables and the indicators (Magidson & Vermunt, 2001, 2004).

These are similar to extensions proposed for the standard latent class model

(for example, see Dayton & McReady, 1988; Hagenaars, 1988, Van der Heij-

den, Dessens & Böckenholt, 1996) .

Similarly to standard LC models and IRT models, the parameters of a

LCFA model can be estimated by means of maximum likelihood (ML) . We

solved this ML estimation problem by means of a combination of an EM

and a Newton-Raphson algorithm . More specifically, we start with EM and
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switch to Newton-Raphson when close to the maximum likelihood solution.

The interested reader is referred to Vermunt and Magidson (2000: Appendix).

3 LINEAR APPROXIMATION

As mentioned above, the proposed nonlinear LCFA model is estimated by

means of ML. However, as a result of the scale transformations g(·), the

parameters of the LCFA model are more difficult to interpret than the pa-

rameters of the traditional FA model. In order to facilitate the interpretation

of the results, we propose approximating the maximum likelihood solution

for the conditional means Ê(yk|θ) by a linear model, yielding the same type

of output as in traditional FA . While the original model for item k may, for

example, be a logistic model, we approximate the logistic response function

by means of a linear function.

The ML estimates Ê(yk|θ) are approximated by the following linear func-

tion:

Ê(yk|θ) = b0k +
L∑

`=1

b`kθ` + e
k|θ. (3)

The parameters of the K linear regression models are simply estimated by

means of ordinary least squares (OLS). The residual term e
k|θ is needed

because the linear approximation will generally not be perfect.

With 2 dichotomous factors, a perfect description by a linear model is
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obtained by

Ê(yk|θ1, θ2) = bk0 + bk1θ1 + bk2θ2 + bk12θ1θ2;

that is, by the inclusion of the interaction between the two factors. Because

the similarity with standard FA would otherwise get lost, interaction terms

such as bk12 are omitted in the approximation.

Special provisions have to be made for ordinal and nominal variables.

Because of the adjacent-category logit model specification

indexlogistic transformation, for ordinal variables, it is most natural to define

Ê(yk|θ) =
∑S

s=1 s π̂(yk = s|θ).5 With nominal variables, analogous to the

Goodman and Kruskal tau-b (GK-τb), each category is treated as a separate

dichotomous variable, yielding one coefficient per category. For category, we

model the probability of being in the category concerned. These category-

specific coefficients are combined into a single measure in exactly the same

way as is done in the computation of the GK-τb coefficient. As is shown below,

overall measures for nominal variables are defined as weighted averages of the

category-specific coefficients.

The coefficients reported in traditional linear FA are factor loadings (pθ`yk
),

factor correlations (rθ`θ`′
), communalities or proportion explained item vari-

5The same would apply with other link functions for ordinal variables, such as with a
cumulative logit link.
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ances (R2
yk

), factor-item correlations (rθ`yk
), and in the case that there are

local dependencies, also residual item correlations (rekek′ ). The correlations

rθ`θ`′
, rθ`yk

, and rykyk′ can be computed from π̂(θ), Ê(yk|θ), and the observed

item distributions using elementary statistics computation. For example, the

rθ`θ`′
is obtained by dividing the covariance between θ` and θ`′ by the product

of their standard deviations; that is,

rθ`θ`′
=

σθ`θ`′

σθ`′
σθ`′

=

∑
θ`

∑
θ`′

[θ` − Ê(θ`)][θ`′ − Ê(θ`′)] π̂(θ`θ`′)√∑
θ`

[θ` − Ê(θ`)]2 π̂(θ`)
√∑

θ`′
[θ`′ − Ê(θ`′)]2 π̂(θ`′)

,

where Ê(θ`) =
∑

θ`
θ` π̂(θ`).

The factor-factor (rθ`θ`′
) and the factor-item (rθ`yk

) correlations can be

used to compute OLS estimates for the factor loadings (pθ`yk
), which are

standardized versions of the regression coefficients appearing in Equation 3.

The communalities or R2 values (R2
yk

) corresponding to the linear approxi-

mation are obtained with rθ`yk
and pθ`yk

: R2
yk

=
∑L

`=1 rθ`yk
pθ`yk

. The residual

correlations (rekek′ ) are defined as the difference between rykyk′ and the to-

tal correlation (not only the linear part) induced by the factors, denoted by

rθykyk′ .

The linear approximation of Ê(yk|θ) is, of course, not perfect. One error

source is caused by the fact that the approximation excludes higher-order

interaction effects of the factors. More specifically, in the LCFA model pre-
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sented in Equation ??, higher-order interactions are excluded, but this does

not mean that no higher-order interactions are needed to get a perfect linear

approximation. On the other hand, with all interaction included, the linear

approximation would be perfect. For factors having more than two ordered

levels, there is an additional error source caused by the fact that linear effects

on the transformed scale are nonlinear on the nontransformed scale. In order

to get insight in the quality of the linear approximation, we also compute the

R2 treating the joint latent variable as a set of dummies; that is, as a single

nominal latent variable.

As was mentioned above, for nominal variables, we have a separate set

of coefficients for each of the Sk categories because each category is treated

as a separate dichotomous indicator. If s denotes one of the Sk categories of

yk, the category-specific R2 (R2
ys

k
) equals

R2
ys

k
=

σ2
Ê(yk=s|θ)

σ2
ys

k

,

where σ2
Ê(yk=s|θ)

is the explained variance of the dummy variable corre-

sponding to category s of item k, and σ2
ys

k
is its total variance defined as

π(yk = s)[1 − π(yk = s)]. The overall R2
yk

for item k is obtained as a

weighted sum of the Sk category-specific R2 values, where the weights wys
k
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are proportional to the total variances σ2
ys

k
; that is,

R2
yk

=
Sk∑
s

σ2
ys

k∑Sk
t σ2

yt
k

R2
ys

k
=

S∑
s

wys
k
R2

ys
k
.

This weighting method is equivalent to what is done in the computation of the

GK-τb, an asymmetric association measure for nominal dependent variables.

We propose using the same weighting in the computation of pθ`yk
, rθ`yk

,

and rekek′ from their category-specific counterpart. This yields

pθ`yk
=

√√√√ Sk∑
s=1

wys
k

(
pθ`y

s
k

)2

rθ`yk
=

√√√√ Sk∑
s=1

wys
k

(
rθ`y

s
k

)2

rekek′ =

√√√√ Sk∑
s=1

Sk′∑
t=1

wys
k
wyt

k′

(
res

k
,et

k′

)2
.

As can be seen the signs are lost, but that is, of course, not a problem for a

nominal variable.

4 EMPIRICAL EXAMPLES

4.1 Rater Agreement

For our first example we factor analyze dichotomous ratings made by 7

pathologists, each of whom classified 118 slides as to the presence or ab-

sence of carcinoma in the uterine cervix (Landis & Koch, 1977). This is an

example of an inter-rater agreement analysis. We want to know whether the
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ratings of the seven raters are similar or not, and if not, in what sense the

ratings deviate from each other.

Agresti (2002), using standard LC models to analyze these data found

that a two-class solution does not provide an adequate fit to these data.

Using the LCFA framework, Magidson and Vermunt (2004) confirmed that

a single dichotomous factor (equivalent to a two-class LC model) did not fit

the data. They found that a basic two-factor LCFA model provides a good

fit.

Table 3 presents the results of the two-factor model in terms of the condi-

tional probabilities. These results suggest that Factor 1 distinguishes between

slides that are “true negative” or “true positive” for cancer. The first class

(θ1 = 0) is the “true negative” group because it has lower probabilities of a

“+” rating for each of the raters than class two (θ1 = 1), the “true positive”

group. Factor 2 is a bias factor, which suggests that some pathologists bias

their ratings in the direction of a “false +” error (θ2 = 1) while others exhibit

a bias towards “false –” error (θ2 = 0). More precisily, for some raters we see

a too high probability of a “+” rating if θ1 = 0 and θ2 = 1 (raters A, G, E,

and B) and for others we see a too high probability of a “–” rating if θ1 = 1

and θ2 = 0 (raters F and D). These results demonstrate the richness of the

LCFA model to extract meaningful information from these data. Valuable
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information includes an indication of which slides are positive for carcinoma,6

as well as estimates of “false +” and “false –” error for each rater.

[INSERT TABLE 3 ABOUT HERE]

The left-most columns of Table 4 lists the estimates of the logit coefficients

for these data. Although the probability estimates in Table 3 are derived

from these quantities (recall Equation 2), the logit parameters are not as

easy to interpret as the probabilities. For example, the logit effect of θ1

on A, a measure of the validity of the ratings of pathologist A, is a single

quantity, exp(7.74)=2,298. This means that among those slides at θ2 = 0,

the odds of rater A classifying a “true +” slide as “+” is 2,298 times as high

as classifying a “true –” slide as “+”. Similarly, among those slides at θ2 = 1,

the corresponding odds ratio is also 2,298.

[INSERT TABLE 4 ABOUT HERE]

We could instead express the effect of Factor 1 in terms of differences

between probabilities. Such a linear effect is easier to interpret, but is not

the same for both types of slides. For slides at θ2 = 0, the probability of

classifying a “true +” slide as “+” is .94 higher than classifying a “true –”

6For each patient, we can obtain the posterior distribution for the first factor. This
posterior distribution can be used determine whether a patient has carcinoma or not,
corrected for rater bias (the second factor).
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slide as “+”(.99-.06=.94) , while for slides at θ2 = 1, it is .59 higher (1.00

- .41=.59), markedly different quantities. This illustrates that for the linear

model, a large interaction term is needed to reproduce the results obtained

from the logistic LC model.

Given that a substantial interaction must be added to the linear model to

capture the differential biases among the raters, it might be expected that the

traditional (linear) FA model also fails to capture this bias. This turns out

to be the case, as the traditional rule of choosing the number of factors to be

equal to the number of eigenvalues greater than 1 yields only a single factor:

The largest eigenvalue was 4.57, followed by 0.89 for the second largest.

Despite this result, for purposes of comparison with the LCFA solution, we

fitted a two-factor model anyway, using maximum likelihood for estimation.

Table 5 shows that the results obtained from Varimax (orthogonal) and

Quartimax (oblique) rotations differ substantially. Hence, without theoreti-

cal justification for one rotation over another, FA produces arbitrary results

in this example.

[INSERT TABLE 5 ABOUT HERE]

The three right-most columns of Table 4 present results from a lineariza-

tion of the LCFA model using the following equation to obtain “linearized
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loadings” for each variable yk:

Ê(yk|θ1, θ2) = bk0 + bk1θ1 + bk2θ2 + bk12θ1θ2.

These 3 loadings have clear meanings in terms of the magnitude of validity

and bias for each rater. They have been used to sort the raters according to

the magnitude and direction of bias. The logit loadings do not provide such

clear information .

The loading on θ1 corresponds to a measure of validity of the ratings.

Raters C, A, and G who have the highest loadings on the first linearized

factor show the highest level of agreement among all raters. The loading

on θ2 relates to the magnitude of bias and the loading on θ1θ2 indicates the

direction of the bias. For example, from Table 3 we saw that raters F and

B show the most bias, F in the direction of “false –” ratings and B in the

direction of “false +”. This is exactly what is picked up by the nonlinear

term: the magnitude of the loadings on the nonlinear term (Table 4) is

highest for these 2 raters, one occurring as “+”, the other as “–”.

Table 4 also lists the communalities (R2
yk

values) for each rater, and de-

composes these into linear and nonlinear portions (the “Total” column in-

cludes the sum of the linear and nonlinear portions). The linear portion is

the part accounted for by bk1θ1 + bk2θ2, and the nonlinear part concerns the
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factor interaction bk12θ1θ2. Note the substantial amount of nonlinear varia-

tion that is picked up by the LCFA model. For comparison, the left-most

column of Table 5 provides the communalities obtained from the FA model,

which are quite different from the ones obtained with the LCFA model.

4.2 MBTI Personality Items

In our second example we analyzed 19 dichotomous items from the Myers-

Briggs Type Indicator (MBTI) test – 7 indicators of the sensing-intuition

(S-N) dimension, and 12 indicators of the thinking-feeling (T-F) personality

dimension.7 The total sample size was 8,344. These items were designed

to measure 2 hypothetical personality dimensions, which were posited by

Carl Jung to be latent dichotomies. The purpose of the presented analysis

was to investigate whether the LCFA model was able to identify these two

theoretical dimensions and whether results differed from the ones obtained

with a traditional factor analysis.

We fitted 0-, 1-, 2-, and 3-factor models for this data set. Strict adherence

to a fit measure like BIC or a similar criterion suggest that more than 2

latent factors are required to fit these data due to violations of the local

independence assumption. This is due to similar wording used in several

7Each questionnaire item involves making a choice between two categories, such as, for
example, between thinking and feeling, convincing and touching, or analyze and sympa-
thize.
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of the S-N items and similar wording used in some of the T-F items. For

example, in a three-factor solution, all loadings on the third factor are small

except those for S-N items S09 and S73. Both items ask the respondent

to express a preference between “practical” and a second alternative (for

item S09, ’ingenious’; for item S73, “innovative”). In such cases, additional

association between these items exists which is not explainable by the general

S-N (T-F) factor. For our current purpose, we ignore these local dependencies

and present results of the two-factor model.

In contrast to our first example, the decomposition of communalities (R2
yk

values) in the right-most columns of Table 6 shows that a linear model can

approximate the LCFA model here quite well. Only for a couple of items

(T35, T49, and T70) is the total communality not explained to 2 decimal

places by the linear terms only. The left-most columns of Table 6 compares

the logit and linearized “loadings” (pθ`yk
) for each variable. The fact that the

latter numbers are bounded between -1 and +1 offers easier interpretation.

[INSERT TABLE 6 ABOUT HERE]

The traditional FA model also does better here than the first example.

The first four eigenvalues are 4.4, 2.8, 1.1 and 0.9. For comparability to the

LC solution, Table 7 presents the loadings for the two-factor solution under
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Varimax (orthogonal) and Quartimax (oblique) rotations. Unlike the first

example where the corresponding loadings showed considerable differences,

these two sets of loadings are quite similar. The results are also similar to

the linearized loadings obtained from the LCFA solution.

[INSERT TABLE 7 ABOUT HERE]

The right-most column of Table 7 shows that the communalities obtained

from FA are quite similar to those obtained from LCFA. In general, these

communalities are somewhat higher than those for LCFA, especially for items

S27, S44, and S67.

Figure 1 displays the two-factor LCFA bi-plot for these data (see Magid-

son & Vermunt, 2001, 2004). The plot shows how clearly differentiated the

S-N items are from the T-F items on both factors. The seven S-N items are

displayed along the vertical dimension of the plot which is associated with

Factor 2, while the T-F items are displayed along the horizontal dimension,

which is associated with Factor 1. This display turns out to be very similar to

the traditional FA loadings plot for these data. The advantage of this type

of display becomes especially evident when nominal variables are included

among the items.

[INSERT FIGURE 1 ABOUT HERE]
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4.3 Types of Survey Respondents

We will now consider an example that illustrates how these tools are used

with nominal variables. It is based on the analysis of 4 variables from the

1982 General Social Survey (white respondents) given by McCutcheon (1987)

to illustrate how standard LC modeling can be used to identify different types

of survey respondents.

Two of the variables ascertain the 1202 respondent’s opinion regarding

(A) the purpose of surveys (good, depends, or waste of time and money) and

(B) how accurate survey are (mostly true or not true), and the others are

evaluations made by the interviewer of (C) the respondent’s levels of under-

standing of the survey questions (good, fair/poor) and (D) cooperation shown

in answering the questions (interested, cooperative, or impatient/hostile).

McCutcheon initially assumed the existence of 2 latent classes corresponding

to ’ideal’ and ’less than ideal’ types . The purpose of the present analysis

is to show how to apply the LCFA model with nominal indicators; that is,

to answer the question as to whether these four items measure a single di-

mension as hypothesized by McCutcheon or whether there is two underlying

dimensions. Note that it is not possible to use traditional factor analytic

techniques with nominal indicators. A more elaborate analysis of this data
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set is presented in Magidson and Vermunt (2004).

The two-class LC model – or, equivalently, the one-factor LC model –

does not provide a satisfactory description of this data set. Two options for

proceeding are to increase the number of classes or to increase the number of

factors. The two-factor LC model fits very well, and also much better than

the unrestricted three-class model that was selected as the final model by

McCutcheon.

The logit parameter estimates obtained from the two-factor LC model

are given in Table 8 and the linearized parameters are given in Table 9.

The factor loadings (pθ`yk
) show much clearer than the logit parameters the

magnitude of the relationship between the observed variables and the two

factors. As can be seen, the interviewers’ evaluations of respondents and

the respondents’ evaluations of surveys are clearly different factors. The

communalities (R2
yk

) reported in the two right-most columns of Table 9 show

that the linear approximation is accurate for each of the four items.

[INSERT TABLES 8 and 9 ABOUT HERE]

Figure 2 depicts the bi-plot containing the category scores of the four

indicators. The plot shows that the first dimension differentiates between

the categories of understanding and cooperation and the second between
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the categories of purpose and accuracy. This display is similar to the plot

obtained in multiple correspondence analysis (Van der Heijden, Gilula & Van

der Ark, 1999).

[INSERT FIGURE 2 ABOUT HERE]

5 CONCLUSION

In this study, we compared LCFA with FA in 3 example applications where

the assumptions of FA were violated. In the MBTI example, the resulting

linear factor model obtained from standard FA provided results that were

quite similar to those obtained with LCFA, even though the factors were

taken to be dichotomous in the LCFA model. In this case, decomposition

of the LCFA solution into linear and nonlinear portion suggested that the

systematic portion of the results was primarily linear, and the linearized

LCFA solution was quite similar to the FA solution. However, the LCFA

model was able to identify pairs and small groups of items that have similar

wording because of some violations of the assumption of local independence.

In the rater-agreement example, LCFA results suggested that the model

contained a sizeable nonlinear component, and in this case the standard FA

was unable to capture differential biases between the raters. Even when a

second factor was included in the model, no meaningful interpretation of this
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second factor was possible, and the loadings from 2 different rotations yielded

very different solutions.

The third example illustrated the used of LCFA with nominal indicators,

a situation for which standard FA techniques cannot be used at all. For this

example, the factor-analytic loadings and communalities obtained with the

proposed linear approximation provided much easier interpretation than the

original logit parameters.

Overall, the results suggest improved interpretations from the LCFA ap-

proach, especially in cases where the nonlinear terms represent a significant

source of variation. This is due to the increased sensitivity of the LCFA

approach to all kinds of associations among the variables, not being limited

as the standard linear FA model to the explanation of simple correlations.

The linearized LCFA parameters produced improved interpretation , but

in the rater agreement example, a third (nonlinear) component model was

needed in order to extract all of the meaning from the results. This current

investigation was limited to two dichotomous factors. With three or more

dichotomous factors, in addition to each two-way interaction, additional load-

ings associated with components for each higher-order interaction might also

be necessary. Moreover, for factors containing three or more levels, addi-

tional terms are required. Further research is needed to explore these issues
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in practice.
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Table 1. Four-fold Classification of Latent Variable Models

Latent variable(s)
Manifest variables Continuous Categorical
Continuous Factor analysis Latent profile analysis
Categorical Latent trait analysis Latent class analysis
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Table 2. Distribution and Transformation Functions From Gen-

eralized Linear Modeling Family

Scale type yk Distribution f(yk|θ) Transformation g [E(yk|θ)]
Dichotomous Binomial Logit

Nominal Multinomial Logit
Ordinal Multinomial Restricted logit
Count Poisson Log

Continuous Normal Identity
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Table 3: Estimates of the Unconditional Latent Class Proba-

bilities and the Conditional Item Probabilities Obtained from the

two-factor LC Model with the Rater Agreement Data

θ1 = 0 (True –) θ1 = 1 (True +)
θ2 = 0 θ2 = 1 θ2 = 0 θ2 = 1

Class size 0.35 0.18 0.31 0.16
Rater F – 1.00 0.99 0.80 0.11

+ 0.00 0.01 0.20 0.89
Rater D – 1.00 0.98 0.61 0.11

+ 0.00 0.02 0.39 0.89
Rater C – 1.00 1.00 0.22 0.14

+ 0.00 0.00 0.78 0.86
Rater A – 0.94 0.59 0.01 0.00

+ 0.06 0.41 0.99 1.00
Rater G – 0.99 0.46 0.01 0.00

+ 0.01 0.54 0.99 1.00
Rater E – 0.94 0.28 0.03 0.00

+ 0.06 0.72 0.97 1.00
Rater B – 0.87 0.01 0.03 0.00

+ 0.13 0.99 0.97 1.00
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Table 4. Logit and Linearized Parameter Estimates for the Two-

Factor LC Model Applied to the Rater Agreement Data

Logit Communality Linearized
Rater θ1 θ2 Linear Total θ1 θ2 θ1θ2

F 7.2 3.4 0.45 0.60 0.53 0.38 0.40
D 6.0 2.6 0.47 0.54 0.62 0.26 0.26
C 7.2 0.5 0.68 0.68 0.82 0.04 0.04
A 7.7 2.4 0.72 0.75 0.82 0.18 -0.16
G 10.1 5.2 0.76 0.82 0.82 0.27 -0.25
E 6.4 3.8 0.65 0.75 0.72 0.35 -0.31
B 5.3 6.3 0.59 0.76 0.60 0.47 -0.42
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Table 5. Loadings and Communalities Obtained when Applying

a Traditional Two-Factor Model to the Rater Agreement Data

Commu- Varimax Quartimax
Rater nality θ1 θ2 θ1 θ2

F 0.49 0.23 0.66 0.55 0.43
D 0.60 0.29 0.72 0.63 0.45
C 0.62 0.55 0.56 0.77 0.18
A 0.73 0.71 0.48 0.85 0.03
G 0.86 0.83 0.42 0.92 -0.09
E 0.78 0.82 0.31 0.86 -0.18
B 0.69 0.80 0.24 0.80 -0.22
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Table 6. Logit and Linearized Parameter Estimates and Com-

munalities for the Two-Factor LC Model as Applied to 19 MBTI

Items

Logit Linear Communality
Item θ1 θ2 θ1 θ2 Linear Total
S02 -0.03 -1.51 -0.01 -0.61 0.37 0.37
S09 -0.01 -1.16 0.00 -0.50 0.25 0.25
S27 0.03 1.46 0.01 0.55 0.30 0.30
S34 -0.07 -1.08 -0.03 -0.45 0.21 0.21
S44 -0.11 1.13 -0.04 0.47 0.22 0.22
S67 -0.06 1.54 -0.02 0.53 0.28 0.28
S73 -0.01 -1.05 0.00 -0.46 0.21 0.21
T06 1.01 0.53 0.43 0.19 0.22 0.22
T29 1.03 0.59 0.44 0.20 0.23 0.23
T31 -1.23 -0.47 -0.52 -0.15 0.29 0.29
T35 -1.42 -0.29 -0.55 -0.09 0.31 0.32
T49 1.05 0.65 0.44 0.22 0.24 0.25
T51 1.32 0.30 0.53 0.09 0.29 0.29
T53 1.40 0.77 0.56 0.22 0.36 0.36
T58 -1.46 -0.12 -0.62 -0.03 0.38 0.38
T66 -1.23 -0.27 -0.54 -0.09 0.30 0.30
T70 1.07 0.61 0.43 0.19 0.22 0.23
T75 -1.01 -0.39 -0.45 -0.14 0.22 0.22
T87 -1.17 -0.45 -0.50 -0.15 0.28 0.28
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Table 7. Loadings and Communalites from Traditional Factor

Analysis of the 19 MBTI Items

Quartimax Varimax Commu-
θ1 θ2 θ1 θ2 nality

S02 0.08 -0.63 0.06 -0.63 0.40
S09 0.07 -0.50 0.06 -0.50 0.26
S27 -0.06 0.62 -0.05 0.62 0.38
S34 0.07 -0.46 0.06 -0.46 0.22
S44 -0.02 0.55 0.00 0.55 0.30
S67 -0.02 0.64 -0.01 0.64 0.41
S73 0.06 -0.46 0.05 -0.46 0.21
T06 -0.49 0.09 -0.49 0.10 0.25
T29 -0.49 0.10 -0.49 0.11 0.25
T31 0.56 -0.04 0.56 -0.05 0.32
T35 0.58 0.05 0.58 0.04 0.34
T49 -0.50 0.13 -0.50 0.15 0.27
T51 -0.57 -0.03 -0.57 -0.02 0.33
T53 -0.61 0.09 -0.61 0.10 0.38
T58 0.64 0.11 0.64 0.10 0.42
T66 0.58 0.05 0.58 0.03 0.33
T70 -0.49 0.10 -0.49 0.11 0.25
T75 0.50 -0.03 0.50 -0.04 0.25
T87 0.55 -0.04 0.55 -0.05 0.30
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Table 8. Logit Parameter Estimates for the Two-Factor LC

Model as Applied to the GSS’82 Respondent-Type Item

Item Category θ1 θ2

Purpose Good -1.12 2.86
Depends 0.26 -0.82
Waste 0.86 3.68

Accuracy Mostly true -0.52 -1.32
Not true 0.52 1.32

Understanding Good -1.61 0.58
Fair/poor 1.61 -0.58

Cooperation Interested -2.96 -0.57
Cooperative -0.60 -0.12
Impatient/hostile 3.56 0.69
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Table 9. Linearized Parameter Estimates and Communalities

for the Two-Factor LC Model as Applied to the GSS’82 Respondent-

Type Items

Loadings Communalities
θ1 θ2 Linear Total

Purpose 0.14 0.45 0.24 0.26
Accuracy 0.15 0.55 0.33 0.33
Understanding 0.57 0.14 0.35 0.36
Cooperation 0.42 0.07 0.18 0.19
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Figure 1. Bi-plot of Two-Factor LC Model as Applied to the 19

MBTI Items
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Figure 2. Bi-plot of Two-Factor LC Model as Applied to the

GSS’82 Respondent-Type Items
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