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Introduction

• Objective: construct full index for a large set of strings

• We want to efficiently search for factors (subwords)

• Deterministic minimal factor automaton is a good option

• Optimal lookup speed (linear in size of query)

• Set of strings might be given as an automaton

• Smaller representation

• Might be produced by another application

• Hence, consider factor automata of automata
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Past Work

• Factor automaton of a string    has at most            states, 
and            transitions [Crochemore ’85; Blumer et al. ’86]

• Can be constructed by a linear-time online algorithm

• Size bounds for a set of strings    has also previously been 
studied [Blumer et al. ’87]

• If       is the sum of the lengths of all the strings in   

•    
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• Factor automaton of    has at most              states and  
transitions

• We prove a substantially better bound here
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Suffix & Factor Automata

• We start out with an automaton    recognizing strings in 

• Let        and       be the deterministic minimal automata 
recognizing the suffixes and factors of    , respectively

• To construct        make each state of    initial (by adding 
epsilons), determinize, minimize

• To construct        make each state of         final, minimize

• Consequence:
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Size Bound: Strategy

• Goal: a bound on          in terms of

• Work on bounding         – consider suffixes only for now

• Idea: each state in        accepts a distinct set of suffixes, so 
count the number of possible sets of suffixes

• The suffix sets can be arranged in a hierarchy, which is 
directly related in size to 

• Motivated by similar arguments for single-string case in 
[Blumer et al. ’86]; string sets in [Blumer et al. ’87] 

|F (A)| |A|

|S(A)|

S(A)

A

5



Suffix Sets

• Automaton   is  -suffix unique if no two strings accepted 
by   share the same  -length suffix. Suffix-unique if

• Define              : set of states in   reachable after reading

• e.g.,

•          denotes

• This is a right-invariant equivalence relation

•     is the equivalence class of 
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•       is number of strings accepted by

• If   is a state of       ,          is set of suffixes accepted from

• e.g.,

•        is the set of states in   from which a non-empty 
string in           can be read to reach a final state

• e.g.,

Notation
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Suffix Set Inclusion



• Lemma: Let   be a suffix-unique automaton and let    and    
be two states of        such that                       , then

Suffix Set Inclusion
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• Lemma: Let   be a suffix-unique automaton and let    and    
be two states of        such that                       , then

• Proof: Let paths in        to   and    be labeled with   and   .
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• Lemma: Let   be a suffix-unique automaton and let    and    
be two states of        such that                       , then

• Proof: Let paths in        to   and    be labeled with   and   .

• Thus    must have a state                       
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• Lemma: Let   be a suffix-unique automaton and let    and    
be two states of        such that                       , then
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Suffix Set Inclusion

• Since    is suffix-unique, any string accepted by     and 
ending in   must also end in      

• Thus, any path from initial to   must end in

• By same reasoning, it must also end in

• Hence,   is a suffix of   , or vice versa

• Assume the former, then                    , thus                
QED.

x

vu

u’

A

u
′

A

v uv

p u

u
′

u

us, suff(q′) ⊆ suff(q),
obtain similarly the other

′

N(q′) ⊆ N(q).
statement of the
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Suffix-unique Bound

• Theorem: If    is a suffix-unique deterministic and minimal 
automaton, then the number of states of       is bounded as

• Proof (sketch):

• Lemma: For any two states of the suffix automaton, 
either suffix sets are disjoint, or one includes the other

• We can show that each state   of       corresponds to a 
distinct equivalence class    , count these to get bound

• The equivalence sets induce a suffix sets hierarchy which 
we will analyze

|S(A)|Q ≤ 2|A|Q − 3.

A
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q S(A)

[x]
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Suffix Sets: Non-branching

• Count non-branching, branching nodes separately

• Consider state in        with equivalence class    ,    longest

• The only way to have a branching node is if there exist 
factors                   (since   is a right-equivalence relation) 

• Node is only non-branching when   is a prefix or suffix

•            distinct prefixes, suffix only when final state:

• Total non-branching nodes

[x] xS(A)

ax, bx(a != b) ≡

x

most Nnb ≤ |A|Q − 2 + Nstr.
nodes of , observe that

|A|Q − 2 Nstr
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Suffix Sets: Branching

• If                   are the distinct final symbols of each string 
accepted by    then each      is a child of the root

• Let tree rooted at     have     leaves(          branching nodes)

• Total number of leaves is             (not initial and super-final)

• Total branching

• Total size of tree                                        

• Add “super-final” state, get                                QED.

i
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Final Size Result
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Final Size Result

• If    is a prefix tree representing a set of strings     thenA U

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4
|F (U)|Q ≤ 2|A|Q − 2|S(U)|Q ≤ 2|A|Q − 2.
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Final Size Result

• If    is a prefix tree representing a set of strings     then

• Substantial improvement over previous: 
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Final Size Result

• If    is a prefix tree representing a set of strings     then

• Substantial improvement over previous: 

• When     is  -suffix unique, deterministic and minimal, and 
accepts   strings and      is the part of    after removing all 
suffixes of length

• Proof idea: add terminal symbols to make string set suffix-
unique, construct suffix automaton, remove symbols

A U

|S(U)|Q ≤ 2||U || − 1

A k

n Ak A

k

|S(A)|Q ≤ 2|Ak|Q + 2kn − 3, |F (A)|Q ≤ 2|Ak|Q + 2kn − 3.

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4
|F (U)|Q ≤ 2|A|Q − 2|S(U)|Q ≤ 2|A|Q − 2.

|F (U)|E ≤ 3||U || − 3

|S(A)|E ≤ 2|Ak|E + 3kn − 3k − 1 |F (A)|E ≤ 2|Ak|E + 3kn − 3k − 1
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Application

• Application: large-scale music identification

• Matching audio recording to a large song database

• Approach: learn inventory of music sounds (“phonemes”)

• A song is described by unique music phone sequence

• Each song represented by unique string, set of music 
phonemes is the alphabet
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Music ID Experiments

• In our music ID application, we have

• Factor automaton size scales linearly with # of songs
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Music ID Experiments

• For 15,000+ songs,  string set is 45-suffix unique

• Number of “collisions” among song suffixes/factors drops 
off rapidly with increasing length
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Summary

• We have addressed the size of a factor automaton of a 
set of strings, or more generally of another automaton

• We have proven substantially better size bounds

• This suggests factor automata are useful for indexing 
potentially very large sets of strings

• Our conclusions are verified experimentally in our music 
identification system

• In the future, do a finer analysis

• Tighten the     term in the   -suffix unique bound 
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