

Factor Automata of Automata and Applications

Mehryar Mohri^{1,2}, Pedro Moreno², Eugene Weinstein^{1,2} <u>mohri@cs.nyu.edu</u>, <u>pedro@google.com</u>, <u>eugenew@cs.nyu.edu</u>

> ¹ Courant Institute of Mathematical Sciences ² Google Inc.

Introduction

- Objective: construct full index for a large set of strings
 - We want to efficiently search for factors (subwords)
- Deterministic minimal factor automaton is a good option
 - Optimal lookup speed (linear in size of query)
- Set of strings might be given as an automaton
 - Smaller representation
 - Might be produced by another application
- Hence, consider factor automata of automata

Past Work

- Factor automaton of a string x has at most 2|x| 2 states, and 3|x| - 4 transitions [Crochemore '85; Blumer et al. '86]
 - Can be constructed by a linear-time online algorithm
- Size bounds for a set of strings *U* has also previously been studied [Blumer et al. '87]
 - If ||U|| is the sum of the lengths of all the strings in U
 - Factor automaton of U has at most 2||U|| 1 states and 3||U|| 3 transitions
 - We prove a substantially better bound here

- We start out with an automaton A recognizing strings in U
- Let S(A) and F(A) be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct S(A) make each state of A initial (by adding epsilons), determinize, minimize
- To construct F(A) make each state of S(A) final, minimize
- **Consequence:** $|F(A)| \le |S(A)|$

- We start out with an automaton A recognizing strings in U
- Let S(A) and F(A) be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct S(A) make each state of A initial (by adding epsilons), determinize, minimize
- To construct F(A) make each state of S(A) final, minimize
- Consequence: $|F(A)| \le |S(A)|$

- We start out with an automaton A recognizing strings in U
- Let S(A) and F(A) be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct S(A) make each state of A initial (by adding epsilons), determinize, minimize
- To construct F(A) make each state of S(A) final, minimize

- We start out with an automaton A recognizing strings in U
- Let S(A) and F(A) be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct S(A) make each state of A initial (by adding epsilons), determinize, minimize
- To construct F(A) make each state of S(A) final, minimize

Size Bound: Strategy

- Goal: a bound on |F(A)| in terms of |A|
- Work on bounding |S(A)| consider suffixes only for now
- Idea: each state in S(A) accepts a distinct set of suffixes, so count the number of possible sets of suffixes
 - The suffix sets can be arranged in a hierarchy, which is directly related in size to A
 - Motivated by similar arguments for single-string case in [Blumer et al. '86]; string sets in [Blumer et al. '87]

Suffix Sets

- Automaton A is k-suffix unique if no two strings accepted by A share the same k-length suffix. Suffix-unique if k = 1
- Define end-set(x): set of states in A reachable after reading x

• e.g.,
$$end-set(ac) = \{2, 3, 4, 5\}$$

- $x \equiv y$ denotes end-set(x) = end-set(y)
 - This is a right-invariant equivalence relation
 - [x] is the equivalence class of x

Notation

- N_{str} is number of strings accepted by A
- If q is a state of S(A), suff(q) is set of suffixes accepted from q

• e.g.,
$$suff(3) = \{ab, ba\}$$

• N(q) is the set of states in A from which a non-empty string in suff(q) can be read to reach a final state

• e.g.,
$$N(3) = \{2, 1\}$$

• Lemma: Let A be a suffix-unique automaton and let q and q' be two states of S(A) such that $N(q) \cap N(q') \neq \emptyset$, then

 $\begin{aligned} \operatorname{suff}(q) &\subseteq \operatorname{suff}(q') \text{ and } N(q) \subseteq N(q') \\ \operatorname{suff}(q') &\subseteq \operatorname{suff}(q) \text{ and } N(q') \subseteq N(q) \end{aligned} \mathsf{or}$

- Lemma: Let *A* be a suffix-unique automaton and let q and q'be two states of S(A) such that $N(q) \cap N(q') \neq \emptyset$, then $\operatorname{suff}(q) \subseteq \operatorname{suff}(q') \text{ and } N(q) \subseteq N(q')$ $\operatorname{suff}(q') \subseteq \operatorname{suff}(q) \text{ and } N(q') \subseteq N(q)$ or
- Proof: Let paths in S(A) to q and q' be labeled with u and u'.

S(A)

- Lemma: Let *A* be a suffix-unique automaton and let q and q'be two states of S(A) such that $N(q) \cap N(q') \neq \emptyset$, then $\operatorname{suff}(q) \subseteq \operatorname{suff}(q') \text{ and } N(q) \subseteq N(q')$ $\operatorname{suff}(q') \subseteq \operatorname{suff}(q) \text{ and } N(q') \subseteq N(q)$ or
- Proof: Let paths in S(A) to q and q' be labeled with u and u'.
 - Thus A must have a state $p \in N(q) \cap N(q')$

- Lemma: Let A be a suffix-unique automaton and let q and q'be two states of S(A) such that $N(q) \cap N(q') \neq \emptyset$, then $\operatorname{suff}(q) \subseteq \operatorname{suff}(q') \text{ and } N(q) \subseteq N(q')$ $\operatorname{suff}(q') \subseteq \operatorname{suff}(q) \text{ and } N(q') \subseteq N(q)$ or
- Proof: Let paths in S(A) to q and q' be labeled with u and u'.
 - Thus A must have a state $p \in N(q) \cap N(q')$
 - Thus, exist paths $v \in suff(q)$ and $v' \in suff(q')$ from p to final

- Since A is suffix-unique, any string accepted by A and ending in v must also end in uv
 - Thus, any path from initial to p must end in u
 - By same reasoning, it must also end in u'
 - Hence, u is a suffix of u', or vice versa
 - Assume the former, then $\operatorname{suff}(q') \subseteq \operatorname{suff}(q)$, thus $N(q') \subseteq N(q)$ QED.

Suffix-unique Bound

• Theorem: If A is a suffix-unique deterministic and minimal automaton, then the number of states of S(A) is bounded as

 $|S(A)|_Q \le 2|A|_Q - 3$

- **Proof** (sketch):
 - Lemma: For any two states of the suffix automaton, either suffix sets are disjoint, or one includes the other
 - We can show that each state q of S(A) corresponds to a distinct equivalence class [x], count these to get bound
 - The equivalence sets induce a suffix sets hierarchy which we will analyze

Suffix Sets: Non-branching

- Count non-branching, branching nodes separately
- Consider state in S(A) with equivalence class [x], x longest
- The only way to have a branching node is if there exist factors $ax, bx(a \neq b)$ (since \equiv is a right-equivalence relation)
 - Node is only non-branching when x is a prefix or suffix
 - $|A|_Q 2$ distinct prefixes, suffix only when final state: N_{str}
- Total non-branching nodes $N_{nb} \leq |A|_Q 2 + N_{str}$

Suffix Sets: Non-branching

- Count non-branching, branching nodes separately
- Consider state in S(A) with equivalence class [x], x longest
- The only way to have a branching node is if there exist factors $ax, bx(a \neq b)$ (since \equiv is a right-equivalence relation)
 - Node is only non-branching when x is a prefix or suffix
 - $|A|_Q 2$ distinct prefixes, suffix only when final state: N_{str}
- Total non-branching nodes $N_{nb} \leq |A|_Q 2 + N_{str}$

- If $a_1, \ldots, \overline{a_{N_{str}}}$ are the distinct final symbols of each string accepted by A then each $[a_i]$ is a child of the root $[\epsilon]$
- Let tree rooted at $[a_i]$ have n_{a_i} leaves $(n_{a_i} 1 \text{ branching nodes})$
- Total number of leaves is $|A|_Q 2$ (not initial and super-final)
- Total branching $N_b \leq \sum_{i=1}^{N_{str}+k} (n_{a_i} 1) + 1 \leq |A|_Q 2 N_{str}$
- Total size of tree $N_{nb} + N_b \le 2|A|_Q 4$
- Add "super-final" state, get $|S(A)|_Q \le 2|A|_Q 3$ QED.

• If A is a prefix tree representing a set of strings U then $|S(U)|_Q \leq 2|A|_Q - 2$ $|F(U)|_Q \leq 2|A|_Q - 2$ $|S(U)|_E \leq 3|A|_E - 4$ $|F(U)|_E \leq 3|A|_E - 4$

- If A is a prefix tree representing a set of strings U then $|S(U)|_Q \le 2|A|_Q - 2 \quad |F(U)|_Q \le 2|A|_Q - 2$ $|S(U)|_E \le 3|A|_E - 4 |F(U)|_E \le 3|A|_E - 4$
- Substantial improvement over previous: $\frac{|S(U)|_Q \le 2||U|| 1}{|F(U)|_E \le 3||U|| 3}$

- If A is a prefix tree representing a set of strings U then $|S(U)|_Q \leq 2|A|_Q - 2$ $|F(U)|_Q \leq 2|A|_Q - 2$ $|S(U)|_E \leq 3|A|_E - 4$ $|F(U)|_E \leq 3|A|_E - 4$
- Substantial improvement over previous: $\frac{|S(U)|_Q \le 2||U|| 1}{|F(U)|_E \le 3||U|| 3}$
- When A is k-suffix unique, deterministic and minimal, and accepts n strings and A_k is the part of A after removing all suffixes of length k

 $|S(A)|_Q \le 2|A_k|_Q + 2kn - 3 \qquad |F(A)|_Q \le 2|A_k|_Q + 2kn - 3$ $|S(A)|_E \le 2|A_k|_E + 3kn - 3k - 1 \quad |F(A)|_E \le 2|A_k|_E + 3kn - 3k - 1$

• Proof idea: add terminal symbols to make string set suffixunique, construct suffix automaton, remove symbols

Application

- Application: large-scale music identification
 - Matching audio recording to a large song database
- Approach: learn inventory of music sounds ("phonemes")
 - A song is described by unique music phone sequence
 - Each song represented by unique string, set of music phonemes is the alphabet

Music ID Experiments

- In our music ID application, we have $|F(A)|_E \approx 2.1 |A|_E$
- Factor automaton size scales linearly with # of songs

Music ID Experiments

- For 15,000+ songs, string set is 45-suffix unique
- Number of "collisions" among song suffixes/factors drops off rapidly with increasing length

Summary

- We have addressed the size of a factor automaton of a set of strings, or more generally of another automaton
 - We have proven substantially better size bounds
 - This suggests factor automata are useful for indexing potentially very large sets of strings
- Our conclusions are verified experimentally in our music identification system
- In the future, do a finer analysis
 - Tighten the kn term in the k-suffix unique bound

Factor Automata of Automata and Applications

Mehryar Mohri^{1,2}, Pedro Moreno², Eugene Weinstein^{1,2} <u>mohri@cs.nyu.edu</u>, <u>pedro@google.com</u>, <u>eugenew@cs.nyu.edu</u>

> ¹ Courant Institute of Mathematical Sciences ² Google Inc.