Factor Automata of Automata and Applications

Mehryar Mohril',2, Pedro Moreno², Eugene Weinstein ${ }^{1,2}$ mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu
${ }^{1}$ Courant Institute of Mathematical Sciences ${ }^{2}$ Google Inc.

Introduction

- Objective: construct full index for a large set of strings
- We want to efficiently search for factors (subwords)
- Deterministic minimal factor automaton is a good option
- Optimal lookup speed (linear in size of query)
- Set of strings might be given as an automaton
- Smaller representation
- Might be produced by another application
- Hence, consider factor automata of automata

Past Work

- Factor automaton of a string x has at most $2|x|-2$ states, and $3|x|-4$ transitions [Crochemore '85; Blumer et al. '86]
- Can be constructed by a linear-time online algorithm
- Size bounds for a set of strings U has also previously been studied [Blumer et al. '87]
- If $|\mid U \|$ is the sum of the lengths of all the strings in U
- Factor automaton of U has at most $2\|U\|-1$ states and $3||U||-3$ transitions
- We prove a substantially better bound here

Suffix \& Factor Automata

- We start out with an automaton A recognizing strings in U
- Let $S(A)$ and $F(A)$ be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct $S(A)$ make each state of A initial (by adding epsilons), determinize, minimize
- To construct $F(A)$ make each state of $S(A)$ final, minimize
- Consequence: $|F(A)| \leq|S(A)|$

Suffix \& Factor Automata

- We start out with an automaton A recognizing strings in U
- Let $S(A)$ and $F(A)$ be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct $S(A)$ make each state of A initial (by adding epsilons), determinize, minimize
- To construct $F(A)$ make each state of $S(A)$ final, minimize
- Consequence: $|F(A)| \leq|S(A)|$

Suffix \& Factor Automata

- We start out with an automaton A recognizing strings in U
- Let $S(A)$ and $F(A)$ be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct $S(A)$ make each state of A initial (by adding epsilons), determinize, minimize
- To construct $F(A)$ make each state of $S(A)$ final, minimize
- Consequence: $|F(A)| \leq|S(A)|$

Suffix \& Factor Automata

- We start out with an automaton A recognizing strings in U
- Let $S(A)$ and $F(A)$ be the deterministic minimal automata recognizing the suffixes and factors of A, respectively
- To construct $S(A)$ make each state of A initial (by adding epsilons), determinize, minimize
- To construct $F(A)$ make each state of $S(A)$ final, minimize
- Consequence: $|F(A)| \leq|S(A)|$

Size Bound: Strategy

- Goal: a bound on $|F(A)|$ in terms of $|A|$
- Work on bounding $|S(A)|$ - consider suffixes only for now
- Idea: each state in $S(A)$ accepts a distinct set of suffixes, so count the number of possible sets of suffixes
- The suffix sets can be arranged in a hierarchy, which is directly related in size to A
- Motivated by similar arguments for single-string case in [Blumer et al. '86]; string sets in [Blumer et al. '87]

Suffix Sets

- Automaton A is k-suffix unique if no two strings accepted by A share the same k-length suffix. Suffix-unique if $k=1$
- Define end-set (x) : set of states in A reachable after reading x
- e.g., end-set $(a c)=\{2,3,4,5\}$
- $x \equiv y$ denotes $\operatorname{end-set}(x)=\operatorname{end-set}(y)$
- This is a right-invariant equivalence relation
- $[x]$ is the equivalence class of x

Notation

- $N_{s t r}$ is number of strings accepted by A
- If q is a state of $S(A)$, $\operatorname{suff}(q)$ is set of suffixes accepted from q
- e.g., $\operatorname{suff}(3)=\{a b, b a\}$
- $N(q)$ is the set of states in A from which a non-empty string in $\operatorname{suff}(q)$ can be read to reach a final state - e.g., $N(3)=\{2,1\}$

A

Suffix Set Inclusion

Suffix Set Inclusion

- Lemma: Let A be a suffix-unique automaton and let q and q^{\prime} be two states of $S(A)$ such that $N(q) \cap N\left(q^{\prime}\right) \neq \emptyset$, then

$$
\begin{aligned}
& \operatorname{suff}(q) \subseteq \operatorname{suff}\left(q^{\prime}\right) \text { and } N(q) \subseteq N\left(q^{\prime}\right) \\
& \operatorname{suff}\left(q^{\prime}\right) \subseteq \operatorname{suff}(q) \text { and } N\left(q^{\prime}\right) \subseteq N(q)
\end{aligned}
$$

Suffix Set Inclusion

- Lemma: Let A be a suffix-unique automaton and let q and q^{\prime} be two states of $S(A)$ such that $N(q) \cap N\left(q^{\prime}\right) \neq \emptyset$, then

$$
\begin{aligned}
& \operatorname{suff}(q) \subseteq \operatorname{suff}\left(q^{\prime}\right) \text { and } N(q) \subseteq N\left(q^{\prime}\right) \text { or } \\
& \operatorname{suff}\left(q^{\prime}\right) \subseteq \operatorname{suff}(q) \text { and } N\left(q^{\prime}\right) \subseteq N(q)
\end{aligned}
$$

- Proof: Let paths in $S(A)$ to q and q^{\prime} be labeled with u and u^{\prime}.

Suffix Set Inclusion

- Lemma: Let A be a suffix-unique automaton and let q and q^{\prime} be two states of $S(A)$ such that $N(q) \cap N\left(q^{\prime}\right) \neq \emptyset$, then

$$
\begin{aligned}
& \operatorname{suff}(q) \subseteq \operatorname{suf}\left(q^{\prime}\right) \text { and } N(q) \subseteq N\left(q^{\prime}\right) \text { or } \\
& \operatorname{suff}\left(q^{\prime}\right) \subseteq \operatorname{suff}(q) \text { and } N\left(q^{\prime}\right) \subseteq N(q)
\end{aligned}
$$

- Proof: Let paths in $S(A)$ to q and q^{\prime} be labeled with u and u^{\prime}.
- Thus A must have a state $p \in N(q) \cap N\left(q^{\prime}\right)$

Suffix Set Inclusion

- Lemma: Let A be a suffix-unique automaton and let q and q^{\prime} be two states of $S(A)$ such that $N(q) \cap N\left(q^{\prime}\right) \neq \emptyset$, then

$$
\begin{aligned}
& \operatorname{suff}(q) \subseteq \operatorname{suff}\left(q^{\prime}\right) \text { and } N(q) \subseteq N\left(q^{\prime}\right) \\
& \operatorname{suff}\left(q^{\prime}\right) \subseteq \operatorname{suff}(q) \text { ord } N\left(q^{\prime}\right) \subseteq N(q)
\end{aligned}
$$

- Proof: Let paths in $S(A)$ to q and q^{\prime} be labeled with u and u^{\prime}.
- Thus A must have a state $p \in N(q) \cap N\left(q^{\prime}\right)$
- Thus, exist paths $v \in \operatorname{suff}(q)$ and $v^{\prime} \in \operatorname{suff}\left(q^{\prime}\right)$ from p to final

Suffix Set Inclusion

- Since A is suffix-unique, any string accepted by A and ending in v must also end in $u v$
- Thus, any path from initial to p must end in u
- By same reasoning, it must also end in u^{\prime}
- Hence, u is a suffix of u^{\prime}, or vice versa
- Assume the former, then $\operatorname{suff}\left(q^{\prime}\right) \subseteq \operatorname{suff}(q)$, thus $N\left(q^{\prime}\right) \subseteq N(q)$ QED.

Suffix-unique Bound

- Theorem: If A is a suffix-unique deterministic and minimal automaton, then the number of states of $S(A)$ is bounded as

$$
|S(A)|_{Q} \leq 2|A|_{Q}-3
$$

- Proof (sketch):
- Lemma: For any two states of the suffix automaton, either suffix sets are disjoint, or one includes the other
- We can show that each state q of $S(A)$ corresponds to a distinct equivalence class $[x]$, count these to get bound
- The equivalence sets induce a suffix sets hierarchy which we will analyze

Suffix Sets: Non-branching

- Count non-branching, branching nodes separately
- Consider state in $S(A)$ with equivalence class $[x], x$ longest
- The only way to have a branching node is if there exist factors $a x, b x(a \neq b)$ (since \equiv is a right-equivalence relation)
- Node is only non-branching when x is a prefix or suffix
- $|A|_{Q}-2$ distinct prefixes, suffix only when final state: $N_{s t r}$
- Total non-branching nodes $N_{n b} \leq|A|_{Q}-2+N_{s t r}$

Suffix Sets: Non-branching

- Count non-branching, branching nodes separately
- Consider state in $S(A)$ with equivalence class $[x], x$ longest
- The only way to have a branching node is if there exist factors $a x, b x(a \neq b)$ (since \equiv is a right-equivalence relation)
- Node is only non-branching when x is a prefix or suffix
- $|A|_{Q}-2$ distinct prefixes, suffix only when final state: $N_{s t r}$
- Total non-branching nodes $N_{n b} \leq|A|_{Q}-2+N_{s t r}$

Suffix Sets: Branching

- If $a_{1}, \ldots, a_{N_{s t r}}$ are the distinct final symbols of each string accepted by A then each $\left[a_{i}\right]$ is a child of the root $[\epsilon]$
- Let tree rooted at $\left[a_{i}\right]$ have $n_{a_{i}}$ leaves ($n_{a_{i}}-1$ branching nodes)
- Total number of leaves is $|A|_{Q}-2$ (not initial and super-final)
- Total branching $N_{b} \leq \sum_{i=1}^{N_{s t r}+k}\left(n_{a_{i}}-1\right)+1 \leq|A|_{Q}-2-N_{s t r}$
- Total size of tree $N_{n b}+N_{b} \leq 2|A|_{Q}-4$
- Add "super-final" state, get $|S(A)|_{Q} \leq 2|A|_{Q}-3 \quad$ QED.

Final Size Result

Final Size Result

- If A is a prefix tree representing a set of strings U then

$$
\begin{array}{ll}
|S(U)|_{Q} \leq 2|A|_{Q}-2 & |F(U)|_{Q} \leq 2|A|_{Q}-2 \\
|S(U)|_{E} \leq 3|A|_{E}-4 & |F(U)|_{E} \leq 3|A|_{E}-4
\end{array}
$$

Final Size Result

- If A is a prefix tree representing a set of strings U then $|S(U)|_{Q} \leq 2|A|_{Q}-2 \quad|F(U)|_{Q} \leq 2|A|_{Q}-2$ $|S(U)|_{E} \leq 3|A|_{E}-4 \quad|F(U)|_{E} \leq 3|A|_{E}-4$
- Substantial improvement over previous: $\begin{aligned} & |S(U)|_{Q} \leq 2\|U\|-1 \\ & |F(U)|_{E} \leq 3\|U\|-3\end{aligned}$

Final Size Result

- If A is a prefix tree representing a set of strings U then

$$
\begin{array}{ll}
|S(U)|_{Q} \leq 2|A|_{Q}-2 & |F(U)|_{Q} \leq 2|A|_{Q}-2 \\
|S(U)|_{E} \leq 3|A|_{E}-4 & |F(U)|_{E} \leq 3|A|_{E}-4
\end{array}
$$

- Substantial improvement over previous: $|S(U)|_{Q} \leq 2| | U \|-1$ $|F(U)|_{E} \leq 3\| \| U-3$
- When A is k-suffix unique, deterministic and minimal, and accepts n strings and A_{k} is the part of A after removing all suffixes of length k

$$
\begin{array}{ll}
|S(A)|_{Q} \leq 2\left|A_{k}\right|_{Q}+2 k n-3 & |F(A)|_{Q} \leq 2\left|A_{k}\right|_{Q}+2 k n-3 \\
|S(A)|_{E} \leq 2\left|A_{k}\right|_{E}+3 k n-3 k-1 & |F(A)|_{E} \leq 2\left|A_{k}\right|_{E}+3 k n-3 k-1
\end{array}
$$

- Proof idea: add terminal symbols to make string set suffixunique, construct suffix automaton, remove symbols

Application

- Application: large-scale music identification
- Matching audio recording to a large song database
- Approach: learn inventory of music sounds ("phonemes")
- A song is described by unique music phone sequence
- Each song represented by unique string, set of music phonemes is the alphabet

Music ID Experiments

- In our music ID application, we have $|F(A)|_{E} \approx 2.1|A|_{E}$
- Factor automaton size scales linearly with \# of songs

Music ID Experiments

- For $15,000+$ songs, string set is 45 -suffix unique
- Number of "collisions" among song suffixes/factors drops off rapidly with increasing length

Summary

- We have addressed the size of a factor automaton of a set of strings, or more generally of another automaton
- We have proven substantially better size bounds
- This suggests factor automata are useful for indexing potentially very large sets of strings
- Our conclusions are verified experimentally in our music identification system
- In the future, do a finer analysis
- Tighten the $k n$ term in the k-suffix unique bound

Factor Automata of Automata and Applications

Mehryar Mohril',2, Pedro Moreno², Eugene Weinstein ${ }^{1,2}$ mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu
${ }^{1}$ Courant Institute of Mathematical Sciences ${ }^{2}$ Google Inc.

