
Factor Automata of
Automata and Applications

Mehryar Mohri1,2, Pedro Moreno2, Eugene Weinstein1,2

mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu

1 Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

Introduction

• Objective: construct full index for a large set of strings

• We want to efficiently search for factors (subwords)

• Deterministic minimal factor automaton is a good option

• Optimal lookup speed (linear in size of query)

• Set of strings might be given as an automaton

• Smaller representation

• Might be produced by another application

• Hence, consider factor automata of automata

2

Past Work

• Factor automaton of a string has at most states,
and transitions [Crochemore ’85; Blumer et al. ’86]

• Can be constructed by a linear-time online algorithm

• Size bounds for a set of strings has also previously been
studied [Blumer et al. ’87]

• If is the sum of the lengths of all the strings in

•

x 2|x|− 2

3|x|− 4

U

||U || U

U 2||U ||− 1

3||U ||− 3

• Factor automaton of has at most states and
transitions

• We prove a substantially better bound here

3

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

ε

ε
ε

ε

ε

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a
0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a
ε

ε
ε

ε

ε

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a
0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a
ε

ε
ε

ε

ε

A

4

Size Bound: Strategy

• Goal: a bound on in terms of

• Work on bounding – consider suffixes only for now

• Idea: each state in accepts a distinct set of suffixes, so
count the number of possible sets of suffixes

• The suffix sets can be arranged in a hierarchy, which is
directly related in size to

• Motivated by similar arguments for single-string case in
[Blumer et al. ’86]; string sets in [Blumer et al. ’87]

|F (A)| |A|

|S(A)|

S(A)

A

5

Suffix Sets

• Automaton is -suffix unique if no two strings accepted
by share the same -length suffix. Suffix-unique if

• Define : set of states in reachable after reading

• e.g.,

• denotes

• This is a right-invariant equivalence relation

• is the equivalence class of

kA

A k = 1k

0 1
a

2
c

3
a

4

b
5

b

a

end -set(x) xA

end -set(ac) = {2, 3, 4, 5}

x ≡ y end -set(x) = end -set(y)

[x] x

6

• is number of strings accepted by

• If is a state of , is set of suffixes accepted from

• e.g.,

• is the set of states in from which a non-empty
string in can be read to reach a final state

• e.g.,

Notation

A

S(A)

N(q) A

suff(q)

N(3) = {2, 1}

suff(q)q qS(A)

suff(3) = {ab, ba}

0 1
a

2

b

3

c

b

c 4

a

5

a

6b

b

a

0 1
a

2c
4

b

b

3a

5a

b

7

Nstr A

Suffix Set Inclusion

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

Suffix Set Inclusion

q q
′

S(A)
A be a suffix-unique

that N(q) ∩ N(q′) %= ∅,
ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć or

A

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

Suffix Set Inclusion

q q
′

S(A)
A be a suffix-unique

that N(q) ∩ N(q′) %= ∅,
ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć or

A

S(A) q q
′

u u
′

S(A)
u

u
′

q

q
′

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

• Thus must have a state

Suffix Set Inclusion

q q
′

S(A)
A be a suffix-unique

that N(q) ∩ N(q′) %= ∅,
ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć or

A

exists p ∈ N(q) ∩ N(q′).
ff(′) such that both

S(A) q q
′

u u
′

S(A)
u

u
′

p

A
u

u
′

q

q
′

A

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

• Thus must have a state

• Thus, exist paths and from to final

Suffix Set Inclusion

q q
′

S(A)
A be a suffix-unique

that N(q) ∩ N(q′) %= ∅,
ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć or

A

exists p ∈ N(q) ∩ N(q′).
ff(′) such that both

S(A) q q
′

u u
′

S(A)
v

v
′

u

u
′

p

A
u

u
′

q

q
′

v

v
′

v ∈ suff(q) v
′
∈ suff(q′) p

A

Suffix Set Inclusion

• Since is suffix-unique, any string accepted by and
ending in must also end in

• Thus, any path from initial to must end in

• By same reasoning, it must also end in

• Hence, is a suffix of , or vice versa

• Assume the former, then , thus
QED.

x

vu

u’

A

u
′

A

v uv

p u

u
′

u

us, suff(q′) ⊆ suff(q),
obtain similarly the other

′

N(q′) ⊆ N(q).
statement of the

9

S(A)
v

v
′

u

u
′

p

A
u

u
′

q

q
′

v

v
′

Suffix-unique Bound

• Theorem: If is a suffix-unique deterministic and minimal
automaton, then the number of states of is bounded as

• Proof (sketch):

• Lemma: For any two states of the suffix automaton,
either suffix sets are disjoint, or one includes the other

• We can show that each state of corresponds to a
distinct equivalence class , count these to get bound

• The equivalence sets induce a suffix sets hierarchy which
we will analyze

|S(A)|Q ≤ 2|A|Q − 3.

A

S(A)

q S(A)

[x]

10

Suffix Sets: Non-branching

• Count non-branching, branching nodes separately

• Consider state in with equivalence class , longest

• The only way to have a branching node is if there exist
factors (since is a right-equivalence relation)

• Node is only non-branching when is a prefix or suffix

• distinct prefixes, suffix only when final state:

• Total non-branching nodes

[x] xS(A)

ax, bx(a != b) ≡

x

most Nnb ≤ |A|Q − 2 + Nstr.
nodes of , observe that

|A|Q − 2 Nstr

Suffix Sets: Non-branching

• Count non-branching, branching nodes separately

• Consider state in with equivalence class , longest

• The only way to have a branching node is if there exist
factors (since is a right-equivalence relation)

• Node is only non-branching when is a prefix or suffix

• distinct prefixes, suffix only when final state:

• Total non-branching nodes

[x] xS(A)

ax, bx(a != b) ≡

x

most Nnb ≤ |A|Q − 2 + Nstr.
nodes of , observe that

|A|Q − 2 Nstr

Disjoint

Includes Includes

Suffix Sets: Branching

• If are the distinct final symbols of each string
accepted by then each is a child of the root

• Let tree rooted at have leaves(branching nodes)

• Total number of leaves is (not initial and super-final)

• Total branching

• Total size of tree

• Add “super-final” state, get QED.

i

de [ǫ]
sub-tree rooted

A

a1, . . . , aNstr

[ai]

[a1] ...

i

de [ǫ]
sub-tree rooted
[a2] [aNstr

] ... [aNstr+k]

[ai] nai
nai

− 1

|A|Q − 2

Nb ≤
∑Nstr+k

i=1
(nai

− 1) + 1 ≤ |A|Q − 2 − Nstr

∑

≤ | | − −

most Nnb + Nb ≤ 2|A|Q − 4.

|S(A)|Q ≤ 2|A|Q − 3.

Final Size Result

13

Final Size Result

• If is a prefix tree representing a set of strings thenA U

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4
|F (U)|Q ≤ 2|A|Q − 2|S(U)|Q ≤ 2|A|Q − 2.

13

Final Size Result

• If is a prefix tree representing a set of strings then

• Substantial improvement over previous:

A U

|S(U)|Q ≤ 2||U || − 1
|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4

|F (U)|Q ≤ 2|A|Q − 2|S(U)|Q ≤ 2|A|Q − 2.

|F (U)|E ≤ 3||U || − 3

13

Final Size Result

• If is a prefix tree representing a set of strings then

• Substantial improvement over previous:

• When is -suffix unique, deterministic and minimal, and
accepts strings and is the part of after removing all
suffixes of length

• Proof idea: add terminal symbols to make string set suffix-
unique, construct suffix automaton, remove symbols

A U

|S(U)|Q ≤ 2||U || − 1

A k

n Ak A

k

|S(A)|Q ≤ 2|Ak|Q + 2kn − 3, |F (A)|Q ≤ 2|Ak|Q + 2kn − 3.

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4
|F (U)|Q ≤ 2|A|Q − 2|S(U)|Q ≤ 2|A|Q − 2.

|F (U)|E ≤ 3||U || − 3

|S(A)|E ≤ 2|Ak|E + 3kn − 3k − 1 |F (A)|E ≤ 2|Ak|E + 3kn − 3k − 1

13

Application

• Application: large-scale music identification

• Matching audio recording to a large song database

• Approach: learn inventory of music sounds (“phonemes”)

• A song is described by unique music phone sequence

• Each song represented by unique string, set of music
phonemes is the alphabet

14

Music ID Experiments

• In our music ID application, we have

• Factor automaton size scales linearly with # of songs

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

|F (A)|E ≈ 2.1|A|E

Music ID Experiments

• For 15,000+ songs, string set is 45-suffix unique

• Number of “collisions” among song suffixes/factors drops
off rapidly with increasing length

 16000
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
o

n
-u

n
iq

u
e

 s
o

n
g

s

k (suffix length)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120

N
o

n
-u

n
iq

u
e

 F
a

c
to

rs

Factor Length

16

Summary

• We have addressed the size of a factor automaton of a
set of strings, or more generally of another automaton

• We have proven substantially better size bounds

• This suggests factor automata are useful for indexing
potentially very large sets of strings

• Our conclusions are verified experimentally in our music
identification system

• In the future, do a finer analysis

• Tighten the term in the -suffix unique bound

17

kn k

Factor Automata of
Automata and Applications

Mehryar Mohri1,2, Pedro Moreno2, Eugene Weinstein1,2

mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu

1 Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

