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Abstract

We propose a new copula model that can be used with replicated spatial data. Unlike the mul-

tivariate normal copula, the proposed copula is based on the assumption that a common factor

exists and affects the joint dependence of all measurements of the process. Moreover, the proposed

copula can model tail dependence and tail asymmetry. The model is parameterized in terms of a

covariance function that may be chosen from the many models proposed in the literature, such as

the Mat́ern model. For some choice of common factors, the joint copula density is given in closed

form and therefore likelihood estimation is very fast. In the general case, one-dimensional numer-

ical integration is needed to calculate the likelihood, but estimation is still reasonably fast even

with large data sets. We use simulation studies to show the wide range of dependence structures

that can be generated by the proposed model with different choices of common factors. We apply

the proposed model to spatial temperature data and compare its performance with some popular

geostatistics models.

Some key words:copula; heavy tails; non-Gaussian random field; spatial statistics; tail asymme-
try.
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1 Introduction

Flexible but simple and interpretable models are often needed to model spatial data. Models based
on multivariate normality have been widely used for modeling spatial data and for interpolation at
new locations, as well as for uncertainty analysis. However, Gaussian models do not account for
strong dependencies in the tails and asymmetric dependencies between left and right tails, which
are often found in real data. More flexible models that retain the appealing tractability of Gaussian
random fields are therefore needed.

To model data with asymmetric dependencies and strong tail dependence, a copula-based ap-
proach is particularly convenient. Copula models have been applied in a wide range of actuarial,
financial and environmental studies; see Krupskii and Joe (2015a), Genest and Favre (2007), Pat-
ton (2006), Jondeau and Rockinger (2006) among others. A copula is defined as a multivariate
cumulative distribution function with uniformU(0,1) margins; it may be used to link univariate
marginals to construct a joint distribution. For a continuousn-dimensional cumulative distribution
function,F, with univariate margins,F1, . . . , Fn, Sklar (1959) showed that a unique copula,C, ex-
ists such thatF(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)}. In practice, inference is typically performed
in two steps: univariate marginal distributions,F1, . . . , Fn, are first estimated and a copula is then
used to model the joint dependencies governing the data transformed to the uniform scale. To in-
crease efficiency of the estimates, both marginal and copula parameters can be estimated jointly in
one step. A detailed overview of copulas is presented by Nelsen (2006) and Joe (2014).

Many copulas proposed in the literature, however, are not suitable for modeling spatial data.
For example, multivariate Archimedean copulas have exchangeable dependence structures, while
spatial processes typically have stronger dependencies at smaller distances. The factor copula
models proposed by Krupskii and Joe (2015a) are not permutation symmetric, although the order of
variables is not important when dependencies between different observations from a spatial process
are modeled. The Farlie-Gumbel-Morgenstern copula studied by Farlie (1960), Gumbel (1960) and
Morgenstern (1956) is permutation symmetric but this model is suitable only for modeling weak
dependencies between variables.

The Gaussian copula is quite convenient for modeling spatial data as it may be parameterized
in terms of a covariance function that controls the strength of dependencies as a function of dis-
tance. Usually, covariance functions impose a monotonically decaying correlation with distance,
which is often realistic in applications. Furthermore, Gaussian conditional distributions are avail-
able in closed form and Gaussian data are easily simulated. However, the Gaussian copula lacks
tail dependence and is reflection symmetric. The Student’st copula can handle tail dependence,
but is reflection symmetric, similarly to the Gaussian copula. The skew-t and skew-normal copulas
obtained from skew-t and skew-normal distributions, respectively, may not be suitable as the re-
lationship between asymmetry and tail dependence is quite complicated and quantile calculations
can be computationally demanding; see for example the skew-t distribution of Azzalini and Cap-
itanio (2003). Extreme-value copulas are tailored for extremes and can capture tail dependence
and asymmetry (Segers, 2012), but computation of joint densities is excessively prohibitive in high
dimensions (Castruccio et al., 2016), which makes them difficult to use. More importantly, they are
justified for the extremes but may not be suitable for data in the center of the distribution. Figure 1
in Li and Genton (2013) depicts the relationships among various copula structures.

Alternatively, one may use vine copula models, the joint distribution of which is constructed
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using bivariate, conditional linking copulas, including models with general structures, R-vines,
and special cases such as C-vines; see Kurowicka and Cooke (2006) and Aas et al. (2009) for
details. C-vines may be used to model joint dependencies andk = 5–10 closest neighbors may
be used for interpolation with the help of the C-vine copula rooted in an unknown location. To
achieve greater flexibility, different copula families and convex combinations may be used; see
Gräler and Pebesma (2011) and Gräler (2014). More general R-vine models may be selected and
different spatial covariates can be included to reduce the number of dependence parameters in the
model; see Erhardt et al. (2014). However, these models lack interpretability and their dependence
structures depend on the likelihood value. Also, estimation for high-dimensional data can be very
time consuming.

For spatial data, it is natural to have a parameterization in terms of pairwise dependencies.
Bárdossy and Li (2008) advocated a V-transformed copula obtained from a non-monotonic trans-
formation of multivariate normal variables and Bárdossy (2011) used their copula for modeling and
interpolation of asymmetric groundwater data. The chi-squared asymmetric copula of Bárdossy
(2006) was obtained similarly. The main drawback of such marginally transformed normal vari-
ables is that the resulting copula is tail independent and the likelihood is a sum of 2n terms, where
n is the number of locations. Parameter estimation and interpolation using these models is thus not
an easy task.

Spatial factor models, which are based on the assumption that a common latent random factor
affects all spatial locations simultaneously, turn out to remedy many of the drawbacks described
above. These models include the generalized common factor spatial models of Wang and Wall
(2003), Hogan and Tchernis (2004) and Irincheeva et al. (2012), the nonparametric model of Chris-
tensen and Amemiya (2002) and others. Factor models are appealing as they may be interpreted
in many applications in which an unobserved variable explains the dependence between measured
variables. However, no flexible copulas associated with these models have been discussed in the
literature, and the dependence properties of these models have not been studied in detail.

We propose a model that combines the flexibility of a copula modeling approach, the inter-
pretability and parsimony of factor models, the tractability of the Gaussian copula in high dimen-
sions, and that may be efficiently fitted to spatial data with temporal replicates. The model and the
corresponding copula are based on the following random process:

W(s) = Z(s) + V0, s ∈ Rd, (1)

whereZ(s) is a Gaussian process andV0 is a common factor, which does not depend on the spatial
location, s. A skew-Gaussian random field is the special case of this model whenV0 = |Z0|,
Z0 ∼ N(0,1). Genton and Zhang (2012) discussed some identifiability issues with this model
when applied to purely spatial data (i.e., with no replicates) and proposed some simple remedies.
However, their approach is not applicable to the more general case in (1); replicates are needed to
estimate parameters in (1). With an appropriate choice of the common factor,V0, model (1) allows
for both tail dependence and asymmetric dependence between the two tails, and is parameterized
in a way that is convenient for spatial data. Parameter estimation may be efficiently performed
using an adjusted Newton-Raphson algorithm even if the data dimension is fairly large.

The rest of the paper is organized as follows. In Section 2 we study model (1) and its tail
properties, and illustrate some examples with different choices of common factorV0. In Section 3,
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we give some details on likelihood estimation and derive the conditional distributions that may be
used for spatial interpolation (i.e., kriging). We conduct a simulation study in Section 4 to show the
performance of the estimation procedure. We also apply the proposed model to temperature data
and compare its performance with some classical models used in geostatistics. Section 5 concludes
with a discussion.

2 The Common Factor Model for Spatial Data

2.1 Model and tail properties

We use the following notation:Φ(∙) is the cumulative distribution function of the univariate stan-
dard normal variable, whereasΦΣ(∙) is that of a multivariate standard normal random variable with
correlation matrixΣ. Small symbols denote the corresponding densities.

We consider measurements of a random process in a specific area that is not very large, or, at
least, is quite homogeneous. We assume that there exists an unobserved random factor that affects
the joint dependence of all measurements of this process. Specifically, we construct the corre-
sponding copula by restricting model (1) to a finite set of locationss1, . . . , sn ∈ Rd. By simplicity,
we writeZj = Z(sj),Wj = W(sj), j = 1, . . . , n, andZ = (Z1, . . . ,Zn)T, W = (W1, . . . ,Wn)T. The
finite-dimensional restricted model is

Wj = Zj + V0, j = 1, . . . , n, Z ∼ N(0,ΣZ), (2)

whereΣZ is a correlation matrix andV0 ∼ FV0 is a common factor that is independent ofZ. It can
be verified that the correlation matrix ofW is

ΣW := cor(W) = (ΣZ + σ2
0)/(1+ σ2

0),

assuming that the varianceσ2
0 = var(V0) exists. The correlationΣW, j1, j2 decreases as the correlation

ΣZ, j1, j2 decreases. Moreover, the matrixΣZ can be parameterized using a correlation function for
spatial data as, e.g., the exponential or Matérn correlation function.

Note thatΣZ, j1, j2 = 1 is equivalent toΣW, j1, j2 = 1, butΣZ, j1, j2 = 0 impliesΣW, j1, j2 = σ2
0/(1 +

σ2
0) > 0. This is expected as model (1) is in fact a mixture ofZ(s) with a perfectly dependent spa-

tial process,V0. As we will see below, this subtle construction allows us to obtain a tail dependent
process in some cases. To capture low correlations, we might need to use correlation functions for
Z that can take negative values, such as the damped cosine functionρ(h) = cos(h) exp(−λh), λ > 0;
see Gneiting et al. (2007) for a review of correlation functions. Although this is an oscillating cor-
relation function and such a behavior is rarely seen in practice, it can be appropriate for modeling
data in a small domain when the maximum distanceH is not very large andρ(h) is a decreas-
ing function forh ∈ (0,H). Alternatively, one could assume that distinct independent (or weakly
dependent) random factors affect different regions separately. This could be a possible extension
of the proposed model for handling data in a larger domain with nearly independent observations
at large distances. In this paper we focus on modeling spatial data in a small domain and hence
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assume model (1). All realizations from this random process will be dependent; however, the
dependence is weaker for pairs separated by larger distances.

We now obtain the distribution of the vectorW in (2) in a general form. We have:

FW
n (w1, . . . ,wn) =

∫ ∞

−∞
ΦΣZ (w1 − v0, . . . ,wn − v0)dFV0(v0),

and the density may therefore be expressed in terms of a one-dimensional integral; that is,

f W
n (w1, . . . ,wn) =

∫ ∞

−∞
φΣZ (w1 − v0, . . . ,wn − v0)dFV0(v0).

Consequently, the resulting copula and its density may be expressed as

CW
n (u1, . . . , un) = FW

n

{
(FW

1 )−1(u1), . . . , (FW
1 )−1(un)

}
, FW

1 (w1) =
∫ ∞

−∞
Φ(w1 − v0)dFV0(v0),

cW
n (u1, . . . , un) =

f W
n

{
(FW

1 )−1(u1), . . . , (FW
1 )−1(un)

}

f W
1

{
(FW

1 )−1(u1)
}
× ∙ ∙ ∙ × f W

1

{
(FW

1 )−1(un)
} . (3)

Note that the distribution ofW1, FW
1 , is only used to construct the copulaCW

n which, in turn,
can be used to model the joint dependence for data with any univariate marginals.

The distribution of the common factor,V0, in (2) determines the tail properties of the resulting
copula. In spatial applications, data often show stronger dependencies in the tails than is predicted
using a multivariate normal copula. So-called tail dependence coefficients are standard measures
of tail dependence for a pair of variables, used in the copula literature. For any bivariate copula,C,
such coefficients are defined as limiting quantities:

λL := lim
q→0

C(q,q)/q ∈ [0,1] and λU := lim
q→0

C̄(1− q,1− q)/q ∈ [0,1], (4)

whereC̄(u1,u2) := 1− u1− u2 +C(u1,u2) is the survival copula. The copula,C, has lower or upper
tail dependence ifλL > 0 orλU > 0, respectively. For (U1,U2) ∼ C, λL = limq→0 pr(U1 ≤ q|U2 ≤ q)
andλU = limq→1 pr(U1 ≥ q|U2 ≥ q). For copulas with tail dependence, the limiting conditional
probabilities of extreme events are therefore positive. For the normal copula,λL = λU = 0.
This means that a standard model based on multivariate normality might underestimate the joint
probability of extreme events and their probability of simultaneous occurrence. Asymmetric tail
dependence withλL , λU is often found in data as well, a feature that the Gaussian copula cannot
capture.

If the common factorV0 in (2) is Gaussian, the joint distribution ofW is multivariate normal
and therefore there is no modeling gain. Furthermore, the resulting model is overparameterized.
To generate tail dependence, we need to use a distribution forV0 that has heavier tails than the
normal distribution. The normal density has a quadratic exponential order of tail decay, and tail
dependence can be obtained using a random variable,V0, with a sublinear exponential order of
decay, as Proposition 1 shows. The proof is in the Appendix.
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Proposition 1 Let 1− FV0(v0) ∼ Kvβ0 exp(−θvα0), α ≥ 0, β ∈ R, θ > 0, K > 0, asv0 → ∞. Let
ρ = ΣZ,1,2 < 1. If 0 < α < 1 or α = 0, β < 0, then the bivariate copula,CW

2 (u1,u2), has perfect
upper tail dependence, i.e.,λU = 1. If α = 1, the copulaCW

2 (u1,u2) has upper tail dependence
with λU = 2Φ

[
−θ{(1− ρ)/2}1/2

]
. If α > 1, the copulaCW

2 (u1,u2) is tail independent, i.e.,λU = 0.
Similar results hold for the lower tail.

Following Proposition 1, tail dependence can also be obtained when using a common factor
that has power law decay. The examples of such distributions include the Student’st distribution,
the Pareto distribution and others. We now list some interesting models.

Example 1: Consider the Weibull distribution,FV0(v0) = 1 − exp(−θvα0), v0 > 0 andθ >
0, α > 0. It is easy to check that the marginal distribution may be expressed asFW

1 (w) = Φ(w) −
(2π)−1/2

∫ w

−∞
exp{−θ(w−z)α−z2/2}dz. Whenα = 1, i.e.,V0 is exponentially distributed, the formula

simplifies toFW
1 (w) = Φ(w)− exp(θ20/2− θ0w)Φ(w− θ0), which can be easily numerically inverted

and used in (3) to calculate the likelihood. In the general case withα , 1, the computation of
the inverse distribution function, (FW

1 )−1, is still relatively easy but requires more time. Moreover,
it can be seen that, forα ≤ 1, the resulting bivariate copula,CW

2 , is asymmetric with upper tail
dependence: ifα = 1,λU = 2Φ

[
−θ{(1− ρ)/2}1/2

]
, and if 0< α < 1,λU = 1 (perfect co-monotonic

tail dependence). By contrast, ifα > 1, the copula,CW
2 , is upper tail independent. In other words,

tail properties of this copula depend on the shape parameter,α, of the Weibull factor.
Example 2:Let V0 = V1 − V2, whereV1 ∼ Exp(θ1), V2 ∼ Exp(θ2) are independent exponential

random factors with distributionFVj (v0) = 1 − exp(−θ jv0), v0 > 0 andθ j > 0 ( j = 1,2). We can
find thatFV0(v0) = exp{−θ2(−v0)+}

{
1− θ2 exp(−θ1v0+)/(θ1 + θ2)

}
, wherev0+ = max{v0,0}.We can

then obtain a simple formula for the marginal distribution:FW
1 (w) = Φ(w)−exp(θ21/2− θ1w)Φ(w−

θ1)θ2/(θ1 + θ2) + exp(θ22/2 + θ2w)Φ(−w − θ2)θ1/(θ1 + θ2). Consequently, the inverse distribution
function can be quickly computed using numerical inversion. Furthermore, the copula density
can be computed in closed form. From Proposition 1, the resulting copula,CW

2 , is asymmetric
wheneverθ1 , θ2 with lower and upper tail dependence coefficientsλL = 2Φ

[
−θ2{(1− ρ)/2}1/2

]
,

λU = 2Φ
[
−θ1{(1− ρ)/2}1/2

]
.

Example 3:Consider the Pareto distribution withFV0(v0) = 1− (v0/θ)−β, v0 > θ andθ > 0, β >
0. In practice it may be useful to restrictβ > 2, so that the variance ofV0 exists and we can obtain
decreasing correlations with larger distances. We find thatFW

1 (w) = Φ(w−θ)−θβ(2π)−1/2
∫ w−θ

−∞
(w−

z)−β exp(−z2/2)dz. From Proposition 1, the resulting copula,CW
2 , is asymmetric with perfect (co-

monotonic) upper tail dependence, i.e.,λU = 1.
Remark 1. When the copulaCW

2 hasλU = 0 orλU = 1, the limiting extreme value copula is the
independence or co-monotonic copula, respectively; see, for example, Joe et al. (2010), Hua and
Joe (2011, 2012). As a result, the limiting copula in the Weibull factor model withα > 1 (Example
1) will be the independence copula. By contrast, for the Weibull factor model withα < 1 and for
the Pareto factor model (Example 3), the co-monotonic copula arises as the limiting extreme value
copula. We next show that the stable upper tail dependence function (Segers, 2012) of the limiting
extreme-value copula in the exponential factor model (Example 2) corresponds to the Hüsler and
Reiss (1989) distribution, which has been widely used as a flexible family to model extreme events
(Davison et al., 2013, 2012; Huser and Davison, 2013; Thibaud et al., 2013). The proof of this
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result is in the Supplementary Material. A similar result holds for the lower tail.

Proposition 2 Let `q(x1, x2) = {1−CW
2 (1− qx1,1− qx2)}/q. Then in the exponential factor model

(Example 2) we get limq→0 `q(x1, x2) = x1Φ
{
λ/2+ log(x1/x2)/λ

}
+x2Φ

{
λ/2+ log(x2/x1)/λ

}
where

λ = θ1{2(1− ρ)}1/2.

This result describes the type of the joint distribution that arises at high levels (i.e., in the joint
upper tail), or equivalently the limiting distribution for normalized componentwise maxima of
i.i.d. copies of the process observed at two sites. One can generalize this result and show that
the process described by model (1) is in the max-domain of attraction of the (max-stable) Brown-
Resnick process (Kabluchko et al., 2009). However, although the asymptotic tail properties of our
model and the Brown-Resnick model are similar, inference is much easier using our model; see
Section 3 and Castruccio et al. (2016).

2.2 Tail flexibility for di fferent factors

To show the flexibility of our model, we assume that the common factor in (2) can be decom-
posed asV0 = V1 − V2, whereV1 ≥ 0 andV2 ≥ 0 are independent random variables control-
ling the strength of the joint dependence in the upper and lower tails, respectively. We consider
bivariate data withWj = Zj + V0 ( j = 1,2), where (Z1,Z2) has a bivariate standard normal dis-
tribution with correlation parameterρZ := cor(Z1,Z2). We select three models and calculate
λ

q
L := CW

2 (q,q)/q, λq
U := [2q − 1 + CW

2 (1 − q,1 − q)]/q for different values ofq, whereλq
L and

λ
q
U converge asq→ 0 to the lower and upper tail dependence coefficients,λL andλU , respectively.

The ratioA(q) = λq
L/λ

q
U , 0 ≤ q ≤ 0.5, can be used as a measure of asymmetry. IfCW

2 is a symmetric
copula,A(q) ≡ 1. If A(q) > 1 (A(q) < 1), dependence along the main diagonal is stronger in the
lower (upper, respectively) tail. In addition, we computeζ1 = E(U1 + U2 − 1)3 for (U1,U2) ∼ CW

2 .
The measureζ1 can be used as a measure of skewness forCW

2 ; see Rosco and Joe (2013). Unlike
tail dependence coefficients, the measures of asymmetry,A(q) andζ1 cannot be obtained in closed
form and therefore we rely on Monte Carlo simulations. We focus on the following models: 1)
Vj ∼ Exp(θ j); 2) Vj ∼ Pareto(θ j , β j); 3) Vj ∼Weibull(θ j , α j) ( j = 1,2).

The distributions of the common factors are parameterized in the same way as in Examples
1–3 in Section 2. We select dependence parameters such that the corresponding copula,CW

2 , has
the Spearman’sρ equal to 0.3, 0.5 and 0.7 in all these models. For the exponential common factor
model (model 1) we useρZ = 0.04, 0.33, 0.60 andθ1 = 1.7, θ2 = 3, with stronger dependence in
the upper tail andλL = 0.04, 0.08, 0.18 andλU = 0.24, 0.33, 0.45, respectively. For model 2 we
useρZ = 0.08, 0.35, 0.62 andθ1 = 1.5, β1 = 4, θ2 = 1, β2 = 5, with stronger dependence in the
upper tail. For model 3, we useρZ = 0.10, 0.37, 0.63 andθ1 = 3, α1 = 0.8, θ2 = 2.5, α = 0.6,
with stronger dependence in the lower tail. Models 2 and 3 have asymptotic perfect co-monotonic
dependence in both tails so thatλL = λU = 1. However, forq > 0 the values ofλq

L, λ
q
U are different.

We plotλq
L, λ

q
U andA(q) for models 1, 2 and 3 with the Spearman’sρ = 0.3,0.5,0.7 for 0.001≤

q ≤ 0.5 to show that we can generate models with different tail properties depending on the choice
of common factors; see Fig. 1. Tail dependence and tail asymmetry can be obtained using all
these models; however, dependence in the tails is much stronger with Pareto and Weibull factors
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where the shape parameters,β andα, are smaller. Such common factors may therefore be used in
applications with strong or increasing tail dependence.

We also found thatζ1 = 0.007,0.005,0.003 for model 1,ζ1 = 0.008,0.006,0.004 for model 2,
andζ1 = −0.006,−0.004,−0.002 for model 3 for Spearman’sρ = 0.3,0.5,0.7, respectively. The
negative sign ofζ1 for model 3 implies stronger dependence in the lower tail unlike models 1 and 2.
The maximum possible value of|ζ1| for a continuous copula is about 0.027 (Rosco and Joe, 2013).
It implies that, with stronger overall dependence, tail asymmetry (as measured byA(q)) and overall
asymmetry (as measured byζ1) of the copulaCW

2 is weaker. To capture stronger asymmetry, one
therefore needs to use factors with stronger tail dependence (Pareto factors or exponential factors
with larger scale parameters).

3 Maximum Likelihood Estimation and Interpolation

3.1 The likelihood function and its gradient

We show how to perform maximum likelihood estimation for model (2). We assume that we
observeN independent samplesyi = (yi1, . . . , yin)T (i = 1, . . . ,N) from model (2) with essentially
arbitrary marginals, not necessarily given by the distribution functionFW

1 . To estimate the copula
parameters, we need to transform the data to a uniform scale. This can be done non-parametrically
as follows: for eachj = 1, . . . , n, we can define the uniform scores,ui j = {rank(yi j ) − 0.5}/N
(i = 1, . . . ,N), and letzi j (θF) = (FW

1 )−1(ui j ; θF), whereθF is a vector of parameters forFW
1 (i =

1, . . . ,N, j = 1, . . . , n). In this case, the uniform scores are an approximation to uniformU(0,1)
data. From (3), the pseudo log-likelihood is:

`(y1, . . . , yN; θF , θΣ) =
N∑

i=1

log f W
n {zi1(θF), . . . , zin(θF); θF , θΣ} −

N,n∑

i, j=1

log f W
1 {zi j (θF); θF}, (5)

whereθΣ is used to parameterize the correlation matrix,ΣZ.
Alternatively, one can specify parametric margins,Gj(∙; θ j), for each locationj = 1, . . . , n.

The marginal parameters,θ1, . . . , θn, can be estimated in a first step and pseudo-uniform data can
be obtained by applying the integral transform:ui j = Gj(yi j ; θ̂ j), i = 1, . . . ,N, j = 1, . . . , n.
Copula parameters can then be estimated in a second step using the pseudo log-likelihood in (5).
To increase efficiency, the marginal parameters,θG = (θT

1 , . . . , θ
T
n)T, and the copula parameters,

θF , θΣ, may be estimated jointly. Denotezi j (θ j , θF) = (FW
1 )−1(ui j (θ j); θF) andui j (θ j) = Gj(yi j ; θ j),

i = 1, . . . ,N, j = 1, . . . , n. The full log-likelihood is

`(y1, . . . , yN; θF , θΣ, θG) =
N∑

i=1

log f W
n {zi1(θ j , θF), . . . , zin(θ j , θF); θF , θΣ}

−
N∑

i=1

n∑

j=1

log f W
1 {zi j (θ j , θF); θF} +

N∑

i=1

n∑

j=1

loggj(yi j ; θ j), (6)
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wheregj is the density function corresponding toGj, j = 1, . . . , n. Here, the parametersθ j = θ(sj)
may be parameterized as a function of locationsj and potentially other covariates to reduce the
number of marginal parameters in the model.

The maximum likelihood estimates are consistent and asymptotically normal if the copula fam-
ily is correctly specified. The asymptotic variance of the estimates depends on the estimation
method; see§§5.4, 5.5 and 5.9 of Joe (2014) for the detailed review of asymptotic theory when
estimates are obtained using the joint likelihood, the two-step approach with parametric margins
and the two-step approach with non-parametric ranks, respectively.

For the Newton-Raphson algorithm, the first- and second-order derivatives of`(y1, . . . , yN) with
respect toθF , θΣ are required at each iteration. If there is no simple form for the derivatives, they
can be obtained numerically, but this requires multiple calculations of the log-likelihood. In our
model, the functioǹ (y1, . . . , yN) involves one-dimensional integration and therefore calculating
derivatives numerically can slow down the estimation process significantly. To avoid this problem,
we obtain a simple form for the first-order derivatives. We show how to calculate the gradient of
the log-likelihood in the Supplementary Material.

Remark 2. In the special case of the exponential common factor (Example 2 in Section 2),
the log-likelihood can be obtained in closed form. With this model, numerical integration is not
required to calculate the likelihood function and its derivatives. More details are given in the
Supplementary Material.

3.2 Conditional copula and interpolation

In spatial applications, prediction at unobserved locations (i.e., kriging) is often required. Let
θ̂F, θ̂Σ be estimates ofθF and θΣ, respectively. For a given vector of data (u1, . . . , un) on the
uniform scale, observed at locationss1, . . . , sn, we can obtain the conditional distribution at any
other locations0:

ĈW
0|n(u0|u1, . . . , un) :=

∫ u0

0
cW

n+1(ũ0,u1, . . . , un; θ̂F , θ̂Σ)dũ0

cW
n (u1, . . . , un; θ̂F , θ̂Σ)

.

Using this conditional distribution, we can calculate different quantities of interest, including the
conditional expectation or conditional median:

m̂1 :=
∫ 1

0
ũ0 ĉW

0|n(ũ0|u1, . . . , un) dũ0, q̂0.5 := (ĈW
0|n)
−1(0.5|u1, . . . , un),

where

ĉW
0|n(ũ0|u1, . . . , un) =

∂ĈW
0|n(ũ0|u1, . . . , un)

∂u0
=

cW
n+1(ũ0,u1, . . . , un; θ̂F , θ̂Σ)

cW
n (u1, . . . , un; θ̂F , θ̂Σ)

.

Numerical integration can be used to computeĈW
0|n(u0|u1, . . . , un) and the inverse function (̂CW

0|n)
−1(q|u1, . . . , un)

can then be used for interpolation. If̂Gj(∙) = Gj(∙; θ̂ j) denotes the estimated univariate marginal
distribution function at locationsj, the predicted median on the original scale isẑj,0.5 = Ĝ−1

j (̂q0.5).
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4 Empirical Studies

In this section, we check the algorithm performance using simulated data sets. We show that the
exponential factor model can fit data quite well even if the distribution of the common factor is
misspecified. Using a Core i5-2410M CPU@2.3 GHz, the running time to fit the exponential
factor model is about 10 minutes withn = 100 locations andN = 2000 replicates when copula
parameters are estimated using the pseudo likelihood (5). The running time is about 30 minutes
when both marginal and copula parameters are estimated jointly using the full likelihood (6). For
the Pareto factor, the running time is longer: withn = 15–20 andN = 100–200, it takes about
10–30 minutes using (5).

4.1 Maximum likelihood estimation for the exponential common factor model

We performed a simulation study to check the accuracy of the maximum likelihood estimates for
the exponential factor model. We calculated the maximum likelihood estimates for data sets simu-
lated on a 3× 3, 5× 5 and 10× 10 uniform grid on [0,1] × [0,1] (so that there aren = 9,25,100
locations, respectively) from the exponential factor model withθ1, θ2 as the upper and lower tail
parameters (see Example 2, Section 2), respectively. The powered-exponential correlation func-
tion, ρ(h) = exp(−θZhα), andN = 500,1000,2000 independent replicates were simulated. These
experiments were repeated 500 times to calculate the bias and standard deviation for a given set of
dependence parameters,θ = (θ1, θ2, θZ, α)T. We considered four different estimation procedures:

1. Known univariate margins; copula parameters are estimated using data with trueU(0,1)
marginals;

2. Unknown univariate margins, estimated non-parametrically and transformed to uniform scores.
Copula parameters are estimated using the pseudo likelihood (5);

3. Unknown univariate margins, but well-specified marginal model. The margins have the
Student-t distribution with meanm = 1.5, standard deviationσ = 0.85 andν = 8 degrees
of freedom. Marginal parameters are estimated first and then the integral transform is used
to convert data to uniform marginals. The copula parameters are then estimated using the
pseudo likelihood (5);

4. Same as in procedure 3 but all parameters are estimated jointly using (6).

We first present results for two sets of parameters:θ = (1.2,2.5,1.2,1.5)T andθ = (0.8,1.1,0.7,0.5)T

(with weak and strong dependence, respectively) for a 10× 10 grid withN = 2000 replicates; see
Table 1. As expected, the procedure 1 gives the best results in terms of bias and standard deviation
and provides an optimal benchmark for the other procedures. In more realistic scenarios, where
margins are unknown and need to be estimated, we found that estimates obtained with procedure
2 are less accurate and can be quite heavily biased, especially with a larger number of locationsn
or when dependence in the tails is weaker. Nevertheless, when the number of locations,n, is small
relative toN (e.g.,n = 9 andN = 2000), procedure 2 yields quite accurate results. The estimates
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with procedure 4 are very accurate and the two-step estimation procedure 3 gives estimates with a
higher standard deviation as this method is less efficient than estimating all parameters jointly in
one step.

We now report more detailed results using procedure 4 withθ = (1.2,2.5,1.2,1.5)T, where
marginal and copula parameters are estimated jointly. Fig. 2 shows boxplots of the estimated cop-
ula parameters for data sets generated on a 10× 10 grid withN = 500,1000 and 2000 replicates.
With a larger sample size, both the bias and variability of the maximum likelihood estimates de-
crease as expected because the maximum likelihood estimator is consistent asN→ ∞. Moreover,
the width of boxplots decreases roughly proportionally to

√
N. Fig. 3 shows boxplots for data sets

with N = 2000 replicates but with different numbers of spatial locations: 9, 25 and 100. One can
see that the bias and standard deviation also decrease in this case although the maximum likelihood
estimator is not necessarily consistent ifN is fixed, asn→ ∞. This is because the domain in our
study is fixed ([0,1] × [0,1]) and many spatial estimators are inconsistent under infill asymptotics.
Nevertheless, the maximum likelihood estimator has a much better performance for largern, es-
pecially for the parameterα, which controls the smoothness of the realized random field. Similar
results were observed by Huser and Genton (2016) among others.

4.2 Simulation experiment under model misspecification

In this section, we show that model (2) with the exponential common factor can fit data well even
if the distribution ofV0 is misspecified. We simulated data on a 5×5 uniform grid on [0,1]× [0,1]
(so that there aren = 25 locations) from the Pareto common factor model (2) withV0 = V1 − V2,
whereV1 ∼ Pareto(0.8,3), V2 ∼ Pareto(2.5,5); the powered-exponential correlation function,
ρ(h) = exp(−0.6h1.2) was used to model the correlation structure ofZ. We fitted the following
misspecified models to the simulated data: 1) Factor copula model withV0 = V1 − V2, where a)
Vj ∼ Pareto(θ j ,4); b)Vj ∼ Exp(θ j) ( j = 1,2); and 2) Gaussian copula with no common factor.

To compare the fitted dependence structures with the data, we calculated the empirical and fit-
ted model-based Spearman’s correlation matrices. We denote thesen×n matrices bŷρS andρ̂MLEm

S ,
respectively, wherem = 1a,1b,2 denotes the estimated model. However, the Spearman’s correla-
tion is not a good measure of dependence for the tails of a multivariate distribution. To compare the
tail behavior of the two models, we therefore used the tail-weighted measures of dependence pro-
posed by Krupskii and Joe (2015b). The measures provide useful summaries of the strength of the
tail dependence for each pair of variables, with values close to 0 or 1 corresponding to very weak
(strong, respectively) dependence in the tails. Unlike many goodness-of-fit procedures studied in
the literature, the tail-weighted measures of dependence give information on how the model can
be improved to fit data better in the tails. Furthermore, they are more robust than tail dependence
coefficients that can only be accurately estimated with a big sample size. We denote the empirical
and fitted, model-based, tail-weighted measures of dependence in the lower/upper tail byα̂L/α̂U

andα̂MLEm
L /α̂MLEm

U (m = 1a,1b,2), respectively. We obtained the model-based estimates by simu-
lating 105 samples from models 1a, 1b and 2 with parameters set to the corresponding maximum
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likelihood estimates. We calculated

Δρ,m :=
1
n2

∑n

j1, j2=1
[ρ̂S − ρ̂

MLEm
S ] j1, j2, |Δρ,m| :=

1
n2

∑n

j1, j2=1
|[ρ̂S − ρ̂

MLEm
S ] j1, j2|,

ΔL,m :=
1
n2

∑n

j1, j2=1
[α̂L − α̂

MLEm
L ] j1, j2, |ΔL,m| :=

1
n2

∑n

j1, j2=1
|[α̂L − α̂

MLEm
L ] j1, j2|,

ΔU,m :=
1
n2

∑n

j1, j2=1
[α̂U − α̂

MLEm
U ] j1, j2, |ΔU,m| :=

1
n2

∑n

j1, j2=1
|[α̂U − α̂

MLEm
U ] j1, j2|.

The results are reported in Table 2. They show that, although the scale parameterβ = 4 for the
Pareto factors in model 1a is different from the true value, the estimated structure fits the data
quite well. Moreover, if the distribution for the common factor is misspecified as in model 1b, one
can still get a model that fits the data reasonably well. Similar results are obtained with different
choices of parameters. We therefore suggest using the exponential common factor model (Example
2 in Section 2) as a tractable, parsimonious, and fairly flexible model. Parameter estimation for this
model is almost instantaneous, and the strength of dependence can be controlled in the lower and
upper tails, depending on the choice of parametersθ1 andθ2. The Gaussian copula fails to handle
tail dependence, as shown by model 2 significantly underestimating the strength of the lower tail
dependence.

4.3 Application to temperature data

We fit our factor copula model (1) to investigate the joint behavior of daily mean temperatures in
Switzerland and compare the model’s performance with some other popular models. We select
10 monitoring stations located in Switzerland: 1. Basel-Binningen, 2. Bern-Zollikofen, 3. Buchs-
Aarau, 4. Cham, 5. Fahy, 6. Luzern, 7. Neuchâtel, 8. Payerne, 9. Runenberg and 10. Wynau. The
minimum and maximum altitudes of the selected stations are 316 and 611 meters, respectively.
Therefore, we do not expect the altitude to have a significant effect on temperature for these sta-
tions. All stations are fairly close geographically, between the Alps and Jura mountains, and are
typically subject to common weather patterns. The latter might thus be modelled as a “common
latent random factor” affecting the region of study, hence providing support for our factor copula
models. We use only the measurements obtained from May to September 2011, accounting for
153 days in total. Because of the short period of observations, we expect the marginal and the joint
distributions of daily temperatures to be near-stationary.

For data with spatio-temporal dependence, one can specify a marginal distribution and estimate
its parameters in a first step. The joint dependence of the residuals from the estimated marginal
model (filtered data) can then be modeled by the factor copula model proposed in this paper. For
the univariate marginals, we use an autoregressive-moving-average (ARMA) model to account
for temporal dependence. In the summer time, there might be long periods of sunny weather
with high temperatures, resulting in a strong temporal dependence. Also, the mean temperatures
are higher in the middle of the selected time period. We therefore use a marginal model with
one autoregressive lag and one moving average lag with a quadratic trend and skew-t innovations
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(Azzalini and Capitanio, 2003):

Mt, j = α0 + α1t + α2t
2 + β1Mt−1, j + εt, j + γ1εt−1, j , εt, j

i.i.d.∼ Skew-t(ν, δ),

whereMt, j is the mean temperature measured at thej-th station on dayt (t = 1, . . . , 153). The pa-
rametersν, δ are the degrees of freedom and the skewness parameter, respectively. The parameters
α0, α1, α2, β1, γ1, ν, δ do not depend on the indexj, so that we use the same marginal model for all
stations. This is because we found that adding spatial covariates (latitude, longitude and altitude)
did not significantly improve the fit.

We checked uncorrelatedness of the residuals using the Ljung-Box test. The p-value of the test
at lags 1 to 20 is greater than 0.05 for all variables. The filtered data (residuals for each stationj)
were then transformed to the uniform scale using ranks,ut, j = {rank(εt, j−0.5)/153} (t = 1, . . . , 153).
The parametric integral transform could be used as well, but we found no significant difference
between the two methods. In fact, withn = 10 locations, a non-parametric approach works quite
well as we mentioned in Section 4.1.

We used the ranked data to compute the Spearman’sρ, and tail-weighted measuresαL andαU

for each pair of variables. We found that the values ofαL are mostly larger than those ofαU ,
suggesting that dependence is stronger in the lower tail. We use normal score plots to visualize
the dependence structure. To obtain normal scores, the ranked data are transformed to standard
normal variables by applying the standard normal inverse distribution function:zt, j = Φ−1(ut, j)
(t = 1, . . . , 153, j = 1, . . . , 10). If the residuals had a multivariate normal dependence structure,
the normal scores would form ellipses. In the presence of tail dependence, the tails of the cloud of
points are sharper.

In Fig. 4, we see that the scatter plots of normal scores for these pairs of stations have sharp
tails and that dependence in the lower tail is stronger than the upper tail. This implies that the data
have both tail dependence and asymmetric dependence, suggesting that classical models based on
the normal and Student’st copulas might not be appropriate. Nevertheless, we include these two
models for comparison. We fit the following models: 1) The normal copula; 2) The Student’st
copula; 3) The common factor model withV0 = V1 − V2, whereV1,V2 are independent and a)
Vj ∼ Pareto(θ j ,4); b)Vj ∼ Exp(θ j) ( j = 1,2).

As mentioned in Section 4.2, it is difficult to obtain accurate estimates for the scale and shape
parameters for the Pareto common factor, and different parameters may result in models with very
close dependence properties. We therefore fix the shape parameter for Pareto factors,V1, V2, in
model 3a, and set it equal to 4. We do not use smaller values for the shape parameter as they
result in very strong dependence, which may not be realistic. For all the above models we use
the powered-exponential correlation function,ρ(h) = exp(−θZhα), θZ > 0, 0 < α ≤ 2. For these
models we calculate the maximum likelihood estimates and then computeΔρ,m, |Δρ,m|, ΔL,m, |ΔL,m|
andΔU,m, |ΔU,m|, as defined in Section 4.2, for modelsm= 1,2,3a,3b. The results are presented in
Table 3.

We can see that the covariance structure is well estimated for all models, though there are
significant differences in the tails. The likelihood value is mostly influenced by the data in the
middle of the distribution; therefore using Akaike/Bayesian information criteria (AIC/BIC) for
model selection may be not appropriate as far as the fit in the tails is concerned. Indeed, both the
normal and Student’st copulas underestimate dependence in the lower tail and overestimate it in
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the upper tail; this is because these copulas do not allow for asymmetric dependence. However,
the Student’st copula yields a likelihood value fairly close to the one obtained in model 3b. The
Pareto common factor model has a better fit in the tails and the exponential common factor model
has the best fit in the tails. Overall, common factor models can handle both tail dependence and
asymmetry, while fitting the data quite well in the center of the distribution.

Finally, we compute the predicted quantiles for the mean temperatures as shown in Section
3.2 for a 60× 60 uniform grid in the region located between 46.6◦ and 47.7◦ North and between
6.5◦ and 8.9◦ East. We use the model with the best fit (model 3b) and the Gaussian copula (model
1) for comparison. We construct the map for the predicted medians as well as the 5% and 95%
quantiles, conditional on the observed values on August 1, 2011; see Fig. 5. One can clearly see
the differences between these two models as expressed by lower 5% and greater 95% predicted
quantiles for the exponential common factor model.

5 Discussion

We proposed a new common factor copula model for spatial data. Unlike classical models in the
literature, this large family of models can handle tail dependence and tail asymmetry. The common
factor structure makes interpretation in practical applications easier than do vine copula models,
in which the structure depends on the likelihood value and the vine construction. Maximum like-
lihood estimation can be quite easily performed using numerical integration. For some common
factors, the joint density is available in closed form and therefore estimation is very fast even if the
number of spatial locations is fairly large.

Despite its flexibility, the proposed model requires replicates for consistent inference. The rea-
son is that the underlying spatial process (1) is not ergodic, which entails large-scale dependence.
One remedy might be to consider mixtures of truncated processes constructed using a compact ran-
dom set (Huser and Davison, 2014). This construction would also allow to capture independence
at large distances and therefore the resulting model might be applied to data in larger domains.
Alternatively, a spatial model with a nested structure of independent random factors may be envi-
sioned.

The proposed factor copula model can be naturally extended to a multivariate spatial process
with K variables measured atn different locations. Define

W jk = Z jk + Vk + V∗0 ( j = 1, . . . , n, k = 1, . . . ,K),

whereVk,V∗0 are independent. Here,Vk is a common factor for thek-th variable andV∗0 is a
common factor for all variables. The properties of this extended model, which depend on the
choice of common factors,Vk andV∗0, will be a topic for future research. Another research direction
is to include different types of common factors, for example models with multiplicative common
factors (Opitz, 2016), which might be plausible in some applications, e.g., related to the modeling
of extremes; see Ferreira and de Haan (2014).
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Appendix

Proof of Proposition 1

We have:

FW
2 (z, z) := pr(W1 ≤ z,W2 ≤ z) =

∫

R2
pr(V0 ≤ z− w1,V0 ≤ z− w2)φρ(w1,w2)dw1dw2

= 2
∫

R1
pr(V0 ≤ z− w1)

∫ w1

−∞
φρ(w1,w2)dw2dw1,

and
∫ w1

−∞
φρ(w1,w2)dw2 =

∂ pr{Z1 ≤ w,Z2 ≤ w1}
∂w

∣∣∣
w=w1

= pr{Z2 ≤ w1|Z1 = w1}φ(w1) = φ(w1)Φ





(
1− ρ
1+ ρ

)1/2

w1




.

It implies

FW
2 (z, z) = 2

∫

R1
pr(V0 ≤ z− w)φ(w)Φ





(
1− ρ
1+ ρ

)1/2

w





dw,

FW
1 (z) =

∫

R1
pr(V0 ≤ z− w)φ(w)dw.

Similarly, we can show that

F̄W
2 (z, z) := pr{W1 ≥ z,W2 ≥ z} = 2

∫

R1
pr(V0 ≥ z− w)φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw,

F̄W
1 (z) := pr{W1 ≥ z} =

∫

R1
pr(V0 ≥ z− w)φ(w)dw. (7)

For 0< ε < 1− α/2 andw∗(z) = zα/2+ε, from (7) we get:F̄W
1 (z) = I1(w, z) + g1(z), F̄W

2 (z, z) =
2I2(w, z) + 2g2(z), where

I1(w, z) :=
∫

|w|<w∗(z)
pr(V0 ≥ z− w)φ(w)dw,

I2(w, z) :=
∫

|w|<w∗(z)
pr(V0 ≥ z− w)φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw,

where 0≤ gj(z) ≤ 2Φ{−w∗(z)}, j = 1,2.
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As z→ ∞, z− w→ ∞ for |w| < w∗(z) andgj(z) exp(θzα)→ 0, j = 1,2, and therefore

λU = lim
z→∞

F̄W
2 (z, z)

F̄W
1 (z)

= lim
z→∞

2
∫
|w|<w∗(z)

exp(θzα)pr(V0 ≥ z− w)φ(w)Φ
{
−

(
1−ρ
1+ρ

)1/2
w
}

dw
∫
|w|<w∗(z)

exp(θzα)pr(V0 ≥ z− w)φ(w)dw
.

For |w| < w∗(z), we have: pr(V0 ≥ z− w) ∼z→∞ K(z− w)β exp{−θ(z− w)α} and thus

exp(θzα)pr(V0 ≥ z− w) ∼z→∞ P(w, z), P(w, z) := K(z− w)β exp[θ{zα − (z− w)α}].

Case 1:α = 0, β < 0. We have:

P{−w∗(z), z} ≤ P(w, z) ≤ P{w∗(z), z}, |w| < w∗(z)

and therefore

lim
z→∞

[
P{−w∗(z), z}
P{w∗(z), z}

∙ M∗
]

≤ λU ≤ lim
z→∞

[
P{w∗(z), z}

P{−w∗(z), z}
∙ M∗

]

,

where

lim
z→∞

P{−w∗(z), z}
P{w∗(z), z}

= lim
z→∞

{
1+ w∗(z)/z
1− w∗(z)/z

}β
= 1,

M∗ := lim
z→∞

2
∫
|w|<w∗(z)

φ(w)Φ
{
−

(
1−ρ
1+ρ

)1/2
w
}

dw
∫
|w|<w∗(z)

φ(w)dw
= 1,

since the integrand in the numerator is the skew-normal random variable density (Azzalini and
Capitanio, 2003). It implies thatλU = 1.

Case 2:α = 1, β = 0. We have:P(w, z) = K exp(θw) and

λU =

2
∫ ∞
−∞

exp(θw)φ(w)Φ
{
−

(
1−ρ
1+ρ

)1/2
w
}

dw
∫ ∞
−∞

exp(θw)φ(w)dw
.

It is easy to see that the denominator equals exp(θ2/2). The numerator can be calculated by
differentiating with respect toρ, and it is equal to exp

(
θ2/2

)
Φ

[
−θ{(1− ρ)/2}1/2

]
. Therefore,

λU = 2Φ
[
−θ{(1− ρ)/2}1/2

]
.

Case 3:α = 1 andβ > 0 (the proof forβ < 0 is similar). It is easy to see that

P{w∗(z), z} ≤ P(w, z) ≤ P{−w∗(z), z}, |w| < w∗(z)

and

lim
z→∞

[
P{w∗(z), z}

P{−w∗(z), z}
∙ M∗∗

]

≤ λU ≤ lim
z→∞

[
P{−w∗(z), z}
P{w∗(z), z}

∙ M∗∗
]

,
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where

lim
z→∞

P{w∗(z), z}
P{−w∗(z), z}

= lim
z→∞

[
exp(θw){1− w∗(z)/z}
exp(θw){1+ w∗(z)/z}

]β
= 1,

M∗∗ := lim
z→∞

2
∫
|w|<w∗(z)

exp(θw)φ(w)Φ
{
−

(
1−ρ
1+ρ

)1/2
w
}

dw
∫
|w|<w∗(z)

exp(θw)φ(w)dw
= 2Φ




−θ

(
1− ρ

2

)1/2



,

and thereforeλU = 2Φ
[
−θ {(1− ρ)/2}1/2

]
.

Case 4:α , 0,α , 1, β > 0 (the proof forβ < 0 is similar). Asz→ ∞ and 0< α < 2,

∫

|w|>w∗(z)
exp

(
αθwzα−1

)
φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw ≤ (2π)−1/2
∫

|w|>w∗(z)
exp

(

αθwzα−1 −
w2

2

)

dw

= exp

(
α2θ2z2α−2

2

) [
Φ{−w∗(z) − αθzα−1} + Φ{−w∗(z) + αθzα−1}

]
→ 0. (8)

Define

M1(z) := 2K
∫

|w|<w∗(z)
exp(θzα)pr(V0 ≥ z− w)φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw,

M2(z) := K
∫

|w|<w∗(z)
exp(θzα)pr(V0 ≥ z− w)φ(w)dw.

Forα < 1 we have asz→ ∞:

K exp(α−θzα
−−1w) < P(w, z) < K exp(α+θzα

+−1w), 0 < α− < α < α+ < 1,

if |w| < w∗(z), and for|w| > w∗(z), we use (8) to get:

M∗1(z;α−) < M1(z) < M∗1(z;α+), M∗2(z;α−) < M2(z) < M∗2(z;α+),

where

M∗1(z;α) = 2K ∙
∫

R1
exp(αθzα−1w)φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw

= 2K ∙ exp

{
α2θ2z2(α−1)

2

}

Φ




−α2θ2z2(α−1)

(
1− ρ

2

)1/2



,

M∗2(z;α) = K ∙
∫

R1
exp(αθzα−1w)φ(w)dw = K ∙ exp

{
α2θ2z2(α−1)

2

}

,

and thereforeλU = limz→∞
M1(z)
M2(z) = 1.
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For 1< α < 2,α < α+ < 2, |w| < w∗(z) andz→ ∞, P(w, z) ≤ K exp(α+θzα
+−1w) and

P(w, z) ≥ K exp

{

αθzα−1w−
α(α − 1)

2
∙
θzα−2w2

1− |w/z|

}

≥ K exp
{
αθzα−1w− α(α − 1) ∙ θzα−2w2

}

for z large enough so that|w/z| < 1/2.
This implies that, forα > 1 andz→ ∞,

M1(z) ≤ 2K ∙
∫

R1
exp(α+θzα

+−1w)φ(w)Φ




−

(
1− ρ
1+ ρ

)1/2

w





dw

= 2K exp

{
[α+]2θ2z2(α+−1)

2

}

Φ




−α+θzα

+−1

(
1− ρ

2

)1/2



,

M2(z) ≥ K
∫

|w|≤w∗(z)
exp

[
αθzα−1w− α(α − 1)θzα−2w2

]
φ(w)dw

=
K

c1/2
α

exp

(
α2θ2z2(α−1)

2cα

) [

Φ

{
w∗(z) − αθzα−1

c1/2
α

}

− Φ

{
−w∗(z) − αθzα−1

c1/2
α

}]

,

wherecα = 1+ 2α(α − 1)θzα−2/3. It follows thatλU = limz→∞ M1(z)/M2(z) = 0. �
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Table 1:Bias and standard deviation for maximum likelihood estimates in the exponential common factor model for

4 different procedures; standard errors are shown in small font. 500 experiments were done.

θ = (1.2,2.5,1.2,1.5)T θ = (0.8,1.1,0.7,0.5)T

Procedure 1 (0.000.01,0.000.06, 0.000.02, 0.000.00)T (0.000.01,0.000.01, 0.000.01, 0.000.00)T

Procedure 2 (0.250.15,4.894.76,−0.200.07,−0.010.00)T (0.060.13,0.030.07,−0.030.11,−0.010.01)T

Procedure 3 (0.030.08,0.360.83,−0.020.08, 0.000.00)T (0.000.11,0.000.06, 0.010.11, 0.010.01)T

Procedure 4 (0.000.03,0.010.13, 0.000.03, 0.000.00)T (0.000.03,0.000.02, 0.000.03, 0.000.00)T
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Table 2: Δρ,m, |Δρ,m|,ΔL,m, |ΔL,m|,ΔU,m, |ΔU,m| for different modelsm. Simulated data were used to calculate these

values; number of replicates wasN = 105.

Modelm Δρ,m/|Δρ,m| ΔL,m/|ΔL,m| ΔU,m/|ΔU,m|
1a 0.00/0.01 0.05/0.05 0.01/0.03
1b −0.02/0.02 0.00/0.01 −0.01/0.02
2 −0.01/0.02 0.17/0.17 0.02/0.04
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Table 3: Δρ,m, |Δρ,m|,ΔL,m, |ΔL,m|,ΔU,m, |ΔU,m| for different modelsm. Simulated data were used to calculate these

values; number of replicates wasN = 105.

Modelm Log-likelihood Δρ,m/|Δρ,m| ΔL,m/|ΔL,m| ΔU,m/|ΔU,m|

1 1,342 0.00/0.03 0.13/0.13 −0.10/0.12
2 1,369 0.00/0.03 0.11/0.11 −0.13/0.14
3a 1,359 0.00/0.03 0.07/0.07 −0.09/0.11
3b 1,381 0.00/0.03 0.02/0.04 −0.03/0.09
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Figure 1: λq
L (top), λq

U (middle) andA(q) (bottom), 0.001 ≤ q ≤ 0.5, for CW
2 in models 1 (left), 2 (middle) and 3

(right); Spearman’sρ = 0.3 (thin), 0.5 (normal), 0.7 (thick).
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Figure 2: Boxplots of estimated copula parameters using procedure 4 (joint estimation of marginal and copula

parameters) for data sets withn = 100 locations andN = 500 (left), N = 1000 (middle) andN = 2000 replicates

(right); 500 experiments were performed. Red line shows true values of parameters.
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Figure 3: Boxplots of estimated copula parameters using procedure 4 (joint estimation of marginal and copula

parameters) for data sets withN = 2000 replicates andn = 9 (left), n = 25 (middle) andn = 100 locations (right); 500

experiments were performed. Red line shows true values of parameters.
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Figure 4:Scatter plots of normal scores for daily mean temperatures: Cham, Luzern (left); Fahy, Payerne (middle);

Cham, Payerne (right).
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Figure 5:The predicted 5% (top), 50% (middle) and 95% (bottom) quantiles for the Gaussian model 1 (left) and the

new factor copula model 3b (right) for mean daily temperatures in the area of study (degrees Celsius), calculated for

August 1, 2011. The 10 stations with recorded temperature data are shown as circles (numbers refer to station names

in Section 4.3). The black line is the border of Switzerland and the blue lines are the main rivers.
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