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Abstract

We review the use of factor graphs for the modeling and solving of

large-scale inference problems in robotics. Factor graphs are a family of

probabilistic graphical models, other examples of which are Bayesian

networks and Markov random fields, well known from the statistical

modeling and machine learning literature. They provide a powerful ab-

straction that gives insight into particular inference problems, making

it easier to think about and design solutions, and write modular soft-

ware to perform the actual inference. We illustrate their use in the

simultaneous localization and mapping problem and other important

problems associated with deploying robots in the real world. We in-

troduce factor graphs as an economical representation within which

to formulate the different inference problems, setting the stage for the

subsequent sections on practical methods to solve them. We explain the

nonlinear optimization techniques for solving arbitrary nonlinear factor

graphs, which requires repeatedly solving large sparse linear systems.

The sparse structure of the factor graph is the key to understand-

ing this more general algorithm, and hence also understanding (and

improving) sparse factorization methods. We provide insight into the

graphs underlying robotics inference, and how their sparsity is affected

by the implementation choices we make, crucial for achieving highly

performant algorithms. As many inference problems in robotics are in-

cremental, we also discuss the iSAM class of algorithms that can reuse

previous computations, re-interpreting incremental matrix factoriza-

tion methods as operations on graphical models, introducing the Bayes

tree in the process. Because in most practical situations we will have

to deal with 3D rotations and other nonlinear manifolds, we also in-

troduce the more sophisticated machinery to perform optimization on

nonlinear manifolds. Finally, we provide an overview of applications of

factor graphs for robot perception, showing the broad impact factor

graphs had in robot perception.

F. Dellaert and M. Kaess. Factor Graphs for Robot Perception. Foundations and
Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

DOI: 10.1561/2300000043.
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1

Introduction

This article reviews the use of factor graphs for the modeling and solv-

ing of large-scale inference problems in robotics, including the simulta-

neous localization and mapping (SLAM) problem. Factor graphs are a

family of probabilistic graphical models, other examples of which are

Bayesian networks and Markov random fields, which are well known

from the statistical modeling and machine learning literature. They

provide a powerful abstraction to give insight into particular inference

problems, making it easier to think about and design solutions, and

write modular, flexible software to perform the actual inference. Below

we illustrate their use in SLAM, one of the key problems in mobile

robotics. Other important problems associated with deploying robots

in the real world are localization, tracking, and calibration, all of which

can be phrased in terms of factor graphs, as well.

In this first section we introduce Bayesian networks and factor

graphs in the context of robotics problems. We start with Bayesian

networks as they are probably the most familiar to the reader, and

show how they are useful to model problems in robotics. However,

since sensor data is typically given to us, we introduce factor graphs

as a more relevant and economical representation. We show Bayesian

2
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1.1. Inference Problems in Robotics 3

x1 x2 x3

l1 l2

Figure 1.1: A toy SLAM (simultaneous localization and mapping) example with
three robot poses and two landmarks. Above we schematically indicate the robot
motion with arrows, while the dotted lines indicate bearing measurements.

networks can be effortlessly converted to factor graphs by conditioning

on the sensor data. We then formulate the different inference problems

as optimization problems on factor graphs, setting the stage for the

subsequent sections on practical methods to solve them.

1.1 Inference Problems in Robotics

To act sensibly in the world, robots need to infer knowledge about the

world from their sensors, while drawing on a priori knowledge. There

are many different such inference problems in robotics, but none of

them have received as much attention as simultaneous localization and

mapping (SLAM). We discuss SLAM in detail and use it as a moti-

vating example below. Other inference problems include localization in

a known environment, tracking other actors in the environment, and

multi-robot versions of all of the above. More specialized problems are

also of interest, e.g., calibration or long-term inertial navigation.

In the SLAM problem the goal is to localize a robot using the infor-

mation coming from the robot’s sensors. In a simple case this could be

a set of bearing measurements to a set of landmarks. If the landmarks’

positions are known, this comes down to a triangulation problem remi-

niscent of how ships navigate at sea. However, the additional wrinkle in

SLAM is that we do not know the landmark map a priori, and hence we

have to infer the unknown map simultaneously with localization with

respect to the evolving map.

Full text available at: http://dx.doi.org/10.1561/1400000039



4 Introduction

Figure 1.1 shows a simple toy example illustrating the structure

of the problem graphically. A robot located at three successive poses

x1, x2, and x3 makes bearing observations on two landmarks l1 and

l2. To anchor the solution in space, let us also assume there is an ab-

solute position/orientation measurement on the first pose x1. Without

this there would be no information about absolute position, as bearing

measurements are all relative.

1.2 Probabilistic Modeling

Because of measurement uncertainty, we cannot hope to recover the

true state of the world, but we can obtain a probabilistic description

of what can be inferred from the measurements. In the Bayesian prob-

ability framework, we use the language of probability theory to assign

a subjective degree of belief to uncertain events. Many excellent texts

are available and listed at the end of this section that treat this subject

in depth, which we do not have space for here.

In robotics we typically need to model a belief over continuous,

multivariate random variables x ∈ Rn. We do this using probability

density functions (PDFs) p(x) over the variables x, satisfying
∫
p(x)dx = 1. (1.1)

In terms of notation, we use lowercase letters for random variables, and

uppercase letters to denote sets of them.

In SLAM we want to characterize our knowledge about the un-

knowns X, in this case robot poses and the unknown landmark posi-

tions, when given a set of observed measurements Z. Using the language

of Bayesian probability, this is simply the conditional density

p(X|Z), (1.2)

and obtaining a description like this is called probabilistic inference.

A prerequisite is to first specify a probabilistic model for the variables

of interest and how they give rise to (uncertain) measurements. This is

where probabilistic graphical models enter the picture.

Probabilistic graphical models provide a mechanism to com-

pactly describe complex probability densities by exploiting the struc-

Full text available at: http://dx.doi.org/10.1561/1400000039



1.3. Bayesian Networks for Generative Modeling 5

ture in them [121]. In particular, high-dimensional probability densities

can often be factorized as a product of many factors, each of which is a

probability density over a much smaller domain. This will be explicitly

modeled when we introduce factor graphs, later in this section. How-

ever, below we first introduce a different and perhaps more familiar

graphical model, Bayesian networks, as they provide a gentler intro-

duction into generative modeling.

1.3 Bayesian Networks for Generative Modeling

Bayesian networks are an expedient graphical language for modeling

inference problems in robotics. This is because it is often easy to think

about how measurements are generated by sensors. For example, if

someone tells us the exact location of a landmark and the pose of a

robot, as well as the geometry of its sensor configuration, it is not hard

to predict what the measurement should be. And we can either assume

or learn a noise model for a particular sensor. Measurement predictions

and noise models are the core elements of a generative model, which is

well matched with the Bayesian network framework.

Formally, a Bayesian network [163] or Bayes net is a directed

graphical model where the nodes represent variables θj . We denote the

entire set of random variables of interest as Θ = {θ1 . . . θn}. A Bayes

net then defines a joint probability density p(Θ) over all variables Θ as

the product of conditional densities associated with each of the nodes:

p(Θ)
∆
=

∏

j

p(θj |πj). (1.3)

In the equation above p(θj |πj) is the conditional density associated

with node θj , and πj is an assignment of values to the parents of θj .

Hence, in a Bayes net, the factorization of the joint density is dictated

by its graph structure, in particular the node-parent relationships.

As an example, let us consider the Bayes net associated with the

toy SLAM example from Figure 1.1. In this case the random variables

of interest are Θ = {X,Z}, i.e., the unknown poses and landmarks X,

as well as the measurements Z. The corresponding Bayes net for this

toy example is shown in Figure 1.2, with the measurements shown in

Full text available at: http://dx.doi.org/10.1561/1400000039



6 Introduction

x1 x2 x3

l1 l2

z1

z2 z3 z4

Figure 1.2: Bayes net for the toy SLAM example from Figure 1.1. Above we
showed measurements with square nodes, as these variables are typically observed.

boxes as they are observed. Per the general definition of Bayes nets, the

joint density p(X,Z) = p(x1, x2, x3, l1, l2, z1, z2, z3, z4) is obtained as a

product of conditional densities:

p(X,Z) = p(x1)p(x2|x1)p(x3|x2) (1.4)

× p(l1)p(l2) (1.5)

× p(z1|x1) (1.6)

× p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2). (1.7)

One can see that the joint density in this case consists of four qualita-

tively different sets of factors:

• A “Markov chain” p(x1)p(x2|x1)p(x3|x2) on the poses x1, x2, and

x3 [Eq. 1.4]. The conditional densities p(xt+1|xt) might represent

prior knowledge or can be derived from known control inputs.

• “Prior densities” p(l1) and p(l2) on the landmarks l1 and l2 (often

omitted in SLAM settings when there is no prior map) [Eq. 1.5].

• A conditional density p(z1|x1) corresponding to the absolute pose

measurement on the first pose x1 [Eq. 1.6].

• Last but not least, a product of three conditional densities,

p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2), corresponding to the three bear-

ing measurements on the landmarks l1 and l2 from the poses x1,

x2, and x3 [Eq. 1.7].

Full text available at: http://dx.doi.org/10.1561/1400000039



1.4. Specifying Probability Densities 7

Note that the graph structure makes an explicit statement about data

association, i.e., for every measurement zk we know which landmark

it is a measurement of. While it is possible to model unknown data

association in a graphical model context, in this text we assume that

data association is given to us as the result of a pre-processing step.

1.4 Specifying Probability Densities

The exact form of the densities above depends very much on the appli-

cation and the sensors used. The most often-used densities involve the

multivariate Gaussian distribution, with probability density

N (θ;µ,Σ) =
1√
|2πΣ|

exp

{
−

1

2
‖θ − µ‖2Σ

}
, (1.8)

where µ ∈ Rn is the mean, Σ is an n× n covariance matrix, and

‖θ − µ‖2Σ
∆
= (θ − µ)⊤ Σ−1 (θ − µ) (1.9)

denotes the squared Mahalanobis distance. For example, priors on un-

known quantities are often specified using a Gaussian density.

In many cases it is both justified and convenient to model mea-

surements as corrupted by zero-mean Gaussian noise. For example, a

bearing measurement from a given pose x to a given landmark l would

be modeled as

z = h(x, l) + η, (1.10)

where h(.) is a measurement prediction function, and the noise η

is drawn from a zero-mean Gaussian density with measurement covari-

ance R. This yields the following conditional density p(z|x, l) on the

measurement z:

p(z|x, l) = N (z;h(x, l), R) =
1√
|2πR|

exp

{
−

1

2
‖h(x, l)− z‖2R

}
.

(1.11)

The measurement functions h(.) are often nonlinear in practical

robotics applications. Still, while they depend on the actual sensor

used, they are typically not difficult to reason about or write down.

The measurement function for a 2D bearing measurement is simply

h(x, l) = atan2(ly − xy, lx − xx), (1.12)

Full text available at: http://dx.doi.org/10.1561/1400000039



8 Introduction

where atan2 is the well-known two-argument arctangent variant. Hence,

the final probabilistic measurement model p(z|x, l) is obtained as

p(z|x, l) =
1√
|2πR|

exp

{
−

1

2
‖atan2(ly − xy, lx − xx)− z‖2

R

}
. (1.13)

Note that we will not always assume Gaussian measurement noise: to

cope with the occasional data association mistake, for example, many

authors have proposed the use of robust measurement densities, with

heavier tails than a Gaussian density.

Not all probability densities involved are derived from measure-

ments. For example, in the toy SLAM problem we have densities of the

form p(xt+1|xt), specifying a probabilistic motion model which the

robot is assumed to obey. This could be derived from odometry mea-

surements, in which case we would proceed exactly as described above.

Alternatively, such a motion model could arise from known control in-

puts ut. In practice, we often use a conditional Gaussian assumption,

p(xt+1|xt, ut) =
1√
|2πQ|

exp

{
−

1

2
‖g(xt, ut)− xt+1‖

2

Q

}
, (1.14)

where g(.) is a motion model, and Q a covariance matrix of the appro-

priate dimensionality, e.g., 3× 3 in the case of robots operating in the

plane. Note that for robots operating in three-dimensional space, we

will need slightly more sophisticated machinery to specify densities on

nonlinear manifolds such as SE(3), as discussed in Section 6.

1.5 Simulating from a Bayes Net Model

As an aside, once a probability model is specified as a Bayes net, it

is easy to simulate from it. This is the reason why Bayes nets are the

language of choice for generative modeling, and we mention it here

because it is often beneficial to think about this when building models.

In particular, to simulate from P (Θ)
∆
=

∏
j P (θj |πj), one simply

has to topologically sort the nodes in the graph and sample in such a

way that all parent values πj are generated before sampling θj from

the conditional P (θj |πj), which can always be done. This technique is

called ancestral sampling [16].
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As an example, let us again consider the SLAM toy problem. Even

in this tiny problem it is easy to see how the factorization of the joint

density affords us to think locally rather than having to think globally.

Indeed, we can use the Bayes net from Figure 1.2 as a guide to simulate

from the joint density p(x1, x2, x3, l1, l2, z1, z2, z3, z4) by respectively

1. sampling the poses x1, x2, and x3 from p(x1)p(x2|x1)p(x3|x2),

i.e., simulate a robot trajectory;

2. sampling l1 and l2 from p(l1) and p(l2), i.e., generate some plau-

sible landmarks;

3. sampling the measurements from the conditional densities

p(z1|x1), p(z2|x1, l1), p(z3|x2, l1), and p(z4|x3, l2), i.e., simulate

the robot’s sensors.

Many other topological orderings are possible. For example, steps 1 and

2 above can be switched without consequence. Also, we can generate

the pose measurement z1 at any time after x1 is generated, etc.

1.6 Maximum a Posteriori Inference

Now that we have the means to model the world, we can infer knowledge

about the world when given information about it. Above we saw how

to fully specify a joint density P (Θ) in terms of a Bayes net: its factor-

ization is given by its graphical structure, and its exact computational

form by specifying the associated priors and conditional densities.

In robotics we are typically interested in the unknown state vari-

ables X, such as poses and/or landmarks, given the measurements Z.

The most often used estimator for these unknown state variables X

is the maximum a posteriori or MAP estimate, so named because

it maximizes the posterior density p(X|Z) of the states X given the

measurements Z:

XMAP = argmax
X

p(X|Z) (1.15)

= argmax
X

p(Z|X)p(X)

p(Z)
. (1.16)
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The second equation above is Bayes’ law, and expresses the posterior

as the product of the measurement density p(Z|X) and the prior p(X)

over the states, appropriately normalized by the factor p(Z).

However, a different expression of Bayes law is the key to under-

standing the true computation underlying MAP inference. Indeed, all

of the quantities in Bayes’ law as stated in (1.16) can in theory be

computed from the Bayes net. However, as the measurements Z are

given, the normalization factor p(Z) is irrelevant to the maximization

and can be dropped. In addition, while the conditional density p(Z|X)

is a properly normalized Gaussian density in Z, we are only concerned

with it as a function in the unknown states X. Hence the second and

more important form of Bayes’ law:

XMAP = argmax
X

l(X;Z)p(X). (1.17)

Here l(X;Z) is the likelihood of the states X given the mea-

surements Z, and is defined as any function proportional to p(Z|X):

l(X;Z) ∝ p(Z|X). (1.18)

The notation l(X;Z) emphasizes the fact that the likelihood is a func-

tion of X and not Z, which acts merely as a parameter in this context.

It is important to realize that conditioning on the measurements

yields likelihood functions that do not look like Gaussian densities, in

general. To see this, consider again the 2D bearing measurement density

in Equation 1.13. When written as a likelihood function we obtain

l(x, l; z) ∝ exp

{
−

1

2
‖atan2(ly − xy, lx − xx)− z‖2

R

}
, (1.19)

which is Gaussian in z (after normalization), but decidedly not so in

any other variable. Even in the case of a linear measurement function,

the measurement z is often of lower dimensionality than the unknown

variables it depends on. Hence, conditioning on it results in a degen-

erate Gaussian density on the unknowns, at best; it is only when we

fuse the information from several measurements that the density on

the unknowns becomes a proper probability density. In the case that

not enough measurements are available to fully constrain all variables,
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MAP inference will fail, because a unique maximizer of the posterior

(1.17) is not available.

All of the above motivates the introduction of factor graphs in the

next section. The reasons for introducing a new graphical modeling lan-

guage are (a) the distinct division between states X and measurements

Z, and (b) the fact that we are more interested in the non-Gaussian

likelihood functions, which are not proper probability densities. Hence,

the Bayes net language is rather mismatched with the actual optimiza-

tion problem that we are concerned with. Finally, we will see in Section

3 that the structure of factor graphs is intimately connected with the

computational strategies to solve large-scale inference problems.

1.7 Factor Graphs for Inference

While Bayes nets are a great language for modeling, factor graphs are

better suited to perform inference. Like Bayes nets, factor graphs allow

us to specify a joint density as a product of factors. However, they are

more general in that they can be used to specify any factored function

φ(X) over a set of variables X, not just probability densities.

To motivate this, consider performing MAP inference for the toy

SLAM example. After conditioning on the observed measurements Z,

the posterior p(X|Z) can be re-written using Bayes’ law (1.16) as

p(X|Z) ∝ p(x1)p(x2|x1)p(x3|x2) (1.20)

× p(l1)p(l2) (1.21)

× l(x1; z1) (1.22)

× l(x1, l1; z2)l(x2, l1; z3)l(x3, l2; z4). (1.23)

It is clear that the above represents a factored probability density on

the unknowns only, albeit unnormalized.

To make this factorization explicit, we use a factor graph. Figure

1.3 introduces the corresponding factor graph by example: all unknown

states X, both poses and landmarks, have a node associated with them,

as in the Bayes net. However, unlike the Bayes net case, measurements

are not represented explicitly as they are given, and hence not of inter-

est. Rather than associating each node with a conditional density, in
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x1 x2 x3

l1 l2

Figure 1.3: Factor graph resulting from the Bayes net in Figure 1.2 on page 6 after
conditioning on the measurements Z.

factor graphs we explicitly introduce an additional node type to rep-

resent every factor in the posterior p(X|Z). In the figure, each small

black node represents a factor, and—importantly—is connected to only

those state variables it is a function of. For example, the likelihood fac-

tor l(x3, l2; z4) is connected only to the variable nodes x3 and l2. Using

this as a guide, it should be easy to associate each of the 9 factor nodes

in the graph with the 9 factors in the posterior p(X|Z).

Formally a factor graph is a bipartite graph F = (U ,V, E) with two

types of nodes: factors φi ∈ U and variables xj ∈ V. Edges eij ∈ E are

always between factor nodes and variables nodes. The set of variable

nodes adjacent to a factor φi is written as N (φi), and we write Xi

for an assignment to this set. With these definitions, a factor graph F

defines the factorization of a global function φ(X) as

φ(X) =
∏

i

φi(Xi). (1.24)

In other words, the independence relationships are encoded by the edges

eij of the factor graph, with each factor φi a function of only the vari-

ables Xi in its adjacency set N (φi).

Every Bayes net can be trivially converted to a factor graph. Recall

that every node in a Bayes net denotes a conditional density on the

corresponding variable and its parent nodes. Hence, the conversion is

quite simple: every Bayes net node splits in both a variable node and a

factor node in the corresponding factor graph. The factor is connected
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to the variable node, as well as the variable nodes corresponding to

the parent nodes in the Bayes net. If some nodes in the Bayes net are

evidence nodes, i.e., they are given as known variables, we omit the

corresponding variable nodes: the known variable simply becomes a

fixed parameter in the corresponding factor.

Following this recipe, in the simple SLAM example we obtain the

following factor graph factorization,

φ(l1, l2, x1, x2, x3) = φ1(x1)φ2(x2, x1)φ3(x3, x2) (1.25)

× φ4(l1)φ5(l2) (1.26)

× φ6(x1) (1.27)

× φ7(x1, l1)φ8(x2, l1)φ9(x3, l2), (1.28)

where the correspondence between the factors and the original proba-

bility densities and/or likelihood factors in Equations 1.20-1.23 should

be obvious, e.g., φ7(x1, l1) = l(x1, l1; z2) ∝ p(z2|x1, l1).

1.8 Computations Supported by Factor Graphs

While in the remainder of this document we concentrate on fast op-

timization methods for SLAM, it is of interest to ask what types of

computations are supported by factor graphs in general. Converting a

Bayes net p(X,Z) to a factor graph (by conditioning on the evidence

Z) yields a representation of the posterior φ(X) ∝ p(X|Z), and it is

natural to ask what we can do with this. While in SLAM we will be

able to fully exploit the specific form of the factors to perform very

fast inference, some domain-agnostic operations that are supported are

evaluation, several optimization methods, and sampling.

Given any factor graph defining an unnormalized density φ(X), we

can easily evaluate it for any given value, by simply evaluating every

factor and multiplying the results. Often it is easier to work in log

or negative log-space because of the small numbers involved, in which

case we have to sum as many numbers as there are factors. Evaluation

opens up the way to optimization, and nearly all gradient-agnostic

optimization methods can be applied. If the factors are differentiable

functions in continuous variables, gradient-based methods can quickly

Full text available at: http://dx.doi.org/10.1561/1400000039



14 Introduction

find local maxima of the posterior. In the case of discrete variables,

graph search methods can be applied, but they can often be quite costly.

The hardest problems involve both discrete and continuous variables.

While local or global maxima of the posterior are often of most

interest, sampling from a probability density can be used to visualize,

explore, and compute statistics and expected values associated with

the posterior. However, the ancestral sampling method from Section

1.5 only applies to directed acyclic graphs. The general sampling algo-

rithms that are most useful for factor graphs are Markov chain Monte

Carlo (MCMC) methods. One such method is Gibbs sampling, which

proceeds by sampling one variable at a time from its conditional den-

sity given all other variables it is connected to via factors. This assumes

that this conditional density can be easily obtained, however, which is

true for discrete variables but far from obvious in the general case.

Below we use factor graphs as the organizing principle for all sec-

tions on specific inference algorithms. They aptly describe the inde-

pendence assumptions and sparse nature of the large nonlinear least-

squares problems arising in robotics, and that is where we start in the

next section. But their usefulness extends far beyond that: they are

at the core of the sparse linear solvers we use as building blocks, they

clearly show the nature of filtering and incremental inference, and lead

naturally to distributed and/or parallel versions of robotics. Before we

dive in, we first lay out the roadmap for the remainder of the document.

1.9 Roadmap

In the next section, Section 2, we discuss nonlinear optimization

techniques for solving the map inference problem in SLAM. Doing so

requires repeatedly solving large sparse linear systems, but we do not go

into detail on how this is done. The resulting graph-based optimization

methods are now the most popular methods for the SLAM problem,

at least when solved offline or in batch.

In Section 3 we make the connection between factor graphs and

sparse linear algebra more explicit. While there exist efficient soft-

ware libraries to solve sparse linear systems, these are but instantiations

of a much more general algorithm: the elimination algorithm.
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In Section 4 we discuss elimination ordering strategies and their

effect on performance. This will also allow us to understand, in Section

5, the effects of marginalizing out variables, and its possibly delete-

rious effect on sparsity, especially in the SLAM case. Other inference

problems in robotics do benefit from only keeping track of the most re-

cent state estimate, which leads to filtering and/or fixed-lag smoothing

algorithms.

In Section 5 we discuss incremental factorization and re-

interpret it in terms of graphical models. We introduce the Bayes tree to

establish a connection between sparse matrix factorization and graphi-

cal models, based on which incremental smoothing and mapping algo-

rithms are developed.

While in many robotics problems we can get away with vector-

valued unknowns, 3D rotations and other nonlinear manifolds need

slightly more sophisticated machinery. Hence, in Section 6 we discuss

optimization on manifolds.

1.10 Bibliographic Remarks

The SLAM problem [174, 129, 186] has received considerable attention

in mobile robotics as it is one way to enable a robot to explore and nav-

igate previously unknown environments. In addition, in many applica-

tions the map of the environment itself is the artifact of interest, e.g., in

urban reconstruction, search-and-rescue operations, and battlefield re-

connaissance. As such, it is one of the core competencies of autonomous

robots [187]. A comprehensive review was done by Durrant-Whyte and

Bailey in 2006 [59, 6] and more recently by Cadena et al. [19], but the

field is still generating a steady stream of contributions at the top-tier

robotics conferences.

The foundational book by Pearl [163] is still one of the best places

to read about Bayesian probability and Bayesian networks, as is the

tome by Koller and Friedman [121], and the book by Darwiche [38].

Although in these works the emphasis is (mostly) on problems with

discrete-valued unknowns, they can just as easily be applied to contin-

uous estimation problems like SLAM.
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Because of their ability to represent the unnormalized posterior for

MAP inference problems, factor graphs are an ideal graphical model

for probabilistic robotics. However, factor graphs are also used exten-

sively in a variety of other computer science fields, including Boolean

satisfiability, constraint satisfaction, and machine learning. Excellent

overviews of factor graphs and their applications are given by Kschis-

chang et al. [125], and Loeliger [139].

Markov chain Monte Carlo (MCMC) and Gibbs sampling provide

a way to sample over high-dimensional state-spaces as described by

factor graphs, and are discussed in [151, 82, 55].
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A

Multifrontal Cholesky Factorization

We recover sparse multifrontal Cholesky factorization if we in-

stead use partial Cholesky factorization when eliminating a single vari-

able. To enable this, when eliminating the variable xj , the product

factor ψ(xj , Sj) is handled in a slightly different way. In particular, we

define the augmented Jacobian matrix Âj
∆
= [Āj |b̄j ] associated with

the product factor ψ(xj , Sj), and the corresponding augmented state

x̂
∆
= [xj ;Sj ; 1]. We then have

∥∥∥Āj [xj ;Sj ]− b̄j

∥∥∥
2

2
= x̂⊤(Â⊤

j Âj)x̂, (A.1)

where Λ̂j
∆
= Â⊤

j Âj is the augmented Hessian matrix associated with

the product factor ψ(xj , Sj). As an example, eliminating l2 in the toy

example yields the product factor

Λ̂2 =



A⊤

52A52 +A⊤
92A92 A⊤

92A95 A⊤
52b5 +A⊤

92b9

− A⊤
95A95 A⊤

95b9

− − b⊤
5 b5 + b⊤

9 b9


 , (A.2)

which one can see to be the sum of two outer products, corresponding

to the factors φ5 and φ9.

132

Full text available at: http://dx.doi.org/10.1561/1400000039



133

We partition Λ̂j into 4 blocks, isolating the blocks associated with

the variable xj , and perform the following partial Cholesky factoriza-

tion:

Λ̂j =

[
Λ̂11 Λ̂12

Λ̂21 Λ̂22

]
=

[
R⊤

j

S⊤ L⊤

] [
Rj S

L

]
. (A.3)

The upper triangular matrix Rj , satisfying R⊤
j Rj = Λ̂11, will be iden-

tical to the one obtained by QR factorization up to possibly sign flips

on the diagonal. The remaining blocks S and L can be computed by

S = R−⊤

j Λ̂12 (A.4)

L⊤L = S⊤S (A.5)

= Λ̂22 − Λ̂⊤

12Λ̂−1
11 Λ̂12. (A.6)

The latter computation, known as the Schur complement, has a nice

information-theoretic interpretation: we downdate the information Λ̂22

on the separator Sj with the information we “consume” in order to

determine the eliminated variable xj . The more information Λ̂11 we

had on xj , the more information remains on the separator Sj .

After the partial Cholesky step, the algorithm proceeds by creating

a conditional density from R and S, given by

p(xj |Sj) ∝ exp

{
−

1

2
‖Rjxj + TjSj − dj‖

2

2

}
(A.7)

with [Tj |dj ] = S. This conditional is exactly the same as the one we

recover via the QR path. Adding the new factor on the separator Sj

corresponding to L⊤L needs some care: we can indeed create a new

factor, but with the corresponding error

τ(Sj) = exp

{
−

1

2
Ŝj

⊤

(L⊤L)Ŝj

}
(A.8)

rather than the Jacobian form as used in Equation 3.20 on page 39.
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B

Lie Groups and other Manifolds

Many of the unknown variables in robotics live in well-known continu-

ous transformation groups known as Lie groups. A rigorous definition

will take us too far afield, but roughly speaking a Lie group is simply

a manifold with a smooth group operation defined on it. The most

important examples are reviewed below.

B.1 2D Rotations

One of the simplest Lie groups is the space of 2D rotations with com-

position as the group operator, also known as the Circle Group. The

easiest way to define it is as the subset of all 2× 2 invertible matrices

that are both orthogonal and have determinant one, i.e., 2× 2 rotation

matrices. Because of this definition, people often refer to this Lie group

the as the Special Orthogonal Group in dimension 2, written as

SO(2). Here “special” refers to the unit determinant property.

The nonlinear orthogonality and unit determinant constraints

define a nonlinear, one-dimensional manifold within the larger 4-

dimensional space of 2 × 2 invertible matrices. In fact, the manifold

has the topology of a circle, but it remains a group: matrix multiplica-
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B.2. 2D Rigid Transformations 135

tion of two rotation matrices in SO(2) is closed, the identity matrix I2

is in SO(2), and the inverse element of each rotation R is its transpose

R⊤, which is also in SO(2). Hence, SO(2) is a subgroup of the General

Linear Group GL(2) of 2× 2 invertible matrices.

What makes this Lie group stand out from all other groups we dis-

cuss below is that the group operation is commutative: R1R2 = R2R1

for all R1, R2 ∈ SO(2). This explains why people often simply repre-

sent a planar rotation with an angle θ ∈ R, and use scalar addition as

a proxy for the group operation. However, while matrix multiplication

respects the circle topology, scalar addition does not.

An important representation that does respect the wrap-around

property is the group of unit-norm complex numbers cos θ+ i sin θ ∈ C̄

with complex multiplication, which is isomorphic to SO(2).

In summary, these are the three most common representations used

for rotations: angles, complex numbers, and 2× 2 rotation matrices,

R→ C̄↔ SO(2) (B.1)

θ → cos θ + i sin θ ↔

[
cos θ − sin θ

sin θ cos θ

]
, (B.2)

where the first arrow indicates an (undesirable) many to-one mapping.

B.2 2D Rigid Transformations

Equipped with SO(2) we can model the orientation of robots moving

in the plane. Just as it was convenient to embed the one-dimensional

manifold SO(2) in GL(2), we likewise embed both orientation R ∈

SO(2) and position t ∈ R2 in the space of 3× 3 matrices, as follows:

T
∆
=

[
R t

0 1

]
. (B.3)

The above defines the Special Euclidean Group SE(2). It is a sub-

group of the general linear group GL(3), with matrix multiplication as

the group operation. The identity element is I3 ∈ GL(3), and we have

T−1 =

[
R⊤ −R⊤t

0 1

]
(B.4)
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and

T1T2 =

[
R1 t1

0 1

] [
R2 t2

0 1

]
=

[
R1R2 R1t2 + t1

0 1

]
. (B.5)

Note that composition in SE(2) is not commutative.

For planar robots, we can use elements of SE(2) to represent the

2D pose x of the robot, i.e., x ∈ SE(2). We can interpret a pose

xi = Ti ∈ SE(2) as the transformation that would take us from the

origin to the coordinate frame associated with the robot’s current pose.

Relative poses are also elements of SE(2): suppose xi = Ti and

xj = Tj , then we have

xj = Tj = TiT
−1
i Tj = xi(T

−1
i Tj) = xiT

i
j (B.6)

and hence T i
j

∆
= T−1

i Tj is the transformation that takes xi to xj .

The natural group action associated with an element Ti ∈ SE(2)

transforms points pi ∈ R2 in coordinate frame i to points qg ∈ R2 in the

global frame by embedding both in P2 using homogeneous coordinates:

[
qg

1

]
=

[
Ri ti

0 1

] [
pi

1

]
=

[
Rip

i + ti

1

]
. (B.7)

We write qg = Ti⊗ p
i, and the change from local to global coordinates

is qg = Rip
i + ti, i.e., the local point pi is rotated and then translated.

To model measurements taken from a particular robot pose xi = Ti,

a more important question is: if we know the location of a landmark

lj = qg ∈ R2 in the global coordinate frame, what are its coordinates

pi in the robot’s frame? Since the inverse of Ri is R⊤
i , the inverse

transformation follows easily from (B.7) as pi = R⊤
i (qg − ti).

B.3 3D Rotations

The Lie group SO(3) of rotations in 3D (aka spatial rotations) is rep-

resented by the set of 3 × 3 matrices that are orthogonal and have

determinant 1. 3D rotations are important in robotics but also in nav-

igation and many other fields, and hence this Lie group is one of the

most studied and well-known structures in applied math.
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SO(3) is a three-dimensional manifold embedded within a 9-

dimensional ambient space, and forms a subgroup within GL(3) in

the same way SO(2) is a subgroup of GL(2). However, unlike planar

rotations, spatial rotations do not commute. In other words,

R1R2 6= R2R1 (B.8)

for most R1, R2 ∈ SO(3). Of course, since SO(2) is a subgroup of SO(3)

(keep any axis fixed), it is clear that some combinations of rotation

matrices do commute, just not all.

The subgroup relationship between SO(2) and SO(3) gives rise to

the commonly used axis-angle representation for spatial rotations. It

consists of the pair (ω̄, θ), where the axis ω̄ ∈ S2 is a unit vector on

the sphere and θ ∈ R is a rotation angle around this axis. Both can be

combined in a single three-vector ω = θω̄. While convenient for some

operations, composition of two rotations is cumbersome and is best

achieved by converting back to rotation matrices. In addition, because

of the dependence on a scalar angle θ, there is again an undesirable

many-to-one mapping from axis-angle to SO(3).

Another, very common way to represent 3D rotations is using unit

quaternions q ∈ Q̄, analogous to the role unit complex numbers play

for SO(2). Quaternions, like complex numbers, have a real part and

an imaginary part, but the imaginary part in quaternions is three-

dimensional, with axes i, j, and k. The easiest way to introduce unit-

quaternions as a way to represent rotations is by converting from the

axis angle representation,

(ω̄, θ)→ cos
θ

2
+ (ω̄xi+ ω̄yj + ω̄zk) sin

θ

2
, (B.9)

which highlights that the axis ω̄ is encoded in the imaginary part.

Unit quaternions are more compact than 3× 3 matrices and, equipped

with quaternion multiplication, are almost isomorphic to SO(3). In-

deed, their only flaw is that there is a two-to-one mapping from Q̄

to SO(3): q and −q represent the same rotation. Despite this minor

annoyance, they are a popular representation in robotics.

Finally, the most intuitive but often problematic representation for

3D rotations consists of using Euler angles. These are quite useful
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from a readability point of view, because rotations around identity can

be easily understood as a combination of roll φ, pitch θ, and yaw

ψ—making the three degrees of freedom palatable where rotation ma-

trices and unit quaternions obfuscate. However, far from identity, Eu-

ler angles exhibit singularities which complicate optimizing over them

when used in those regimes.

In summary, these are the four most common representations used

for spatial rotations: axis-angle, unit quaternions, and 3 × 3 rotation

matrices, and Euler angles:

S2 × R↔ Q̄ ⇒ SO(3)← R3 (B.10)

(ω̄, θ)↔ cos
θ

2
+ (ω̄xi+ ω̄yj + ω̄zk) sin

θ

2
⇒ R← φ, θ, ψ, (B.11)

where the double arrow represents the double covering property of unit

quaternions, and the last arrow indicates the undesirable many to-one

mapping from Euler angles to rotation matrices (even more so now,

because of the inherent singularities).

B.4 3D Rigid Transformations

The full 6 DOF pose of a robot operating in free space or on undulating

terrain can be represented using rigid 3D transformations. The situa-

tion is completely analogous to the 2D case in Section B.2: we embed

a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3 in a 4× 4

matrix

T
∆
=

[
R t

0 1

]
(B.12)

to define the Special Euclidean Group SE(3) of rigid 3D trans-

formations. Again, the group operation is matrix multiplication, and

SE(3) is a subgroup of the 4× 4 invertible matrices GL(4).

B.5 Directions in 3D

An important nonlinear manifold that is not a group is the set of all

directions in 3D space. These are useful for reasoning about a robot’s
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orientation with respect to gravity, such as measured by an accelerome-

ter for instance. Another use case is visual odometry using a monocular

camera only, in which case absolute scale is unobservable between two

frames, but translation direction is.

A direction in space is conveniently represented by a unit 3-vector,

i.e., p =
[
x y z

]⊤

with the nonlinear constraint x2 + y2 + z2 = 1.

In other words, the manifold of directions in 3D space is the Sphere

in 3D, typically denoted S2. It is a two-dimensional manifold, as the

nonlinear constraint takes away one degree of freedom, and indeed, the

sphere is intuitively familiar to us as a two-dimensional surface.
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