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Abstract. Recently, a number of interesting relations have been discovered between genera-
lised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding
a general unifying framework for all these relations. We introduce gradually necessary
and sufficient conditions to be met in order to carry out the following programme: Given
a group G, we first construct vector spaces over GF(p), p a prime, by factorising G over
appropriate normal subgroups. Then, by expressing GF(p) in terms of the commutator
subgroup of G, we construct alternating bilinear forms, which reflect whether or not two
elements of G commute. Restricting to p = 2, we search for “refinements” in terms of
quadratic forms, which capture the fact whether or not the order of an element of G is ≤ 2.
Such factor-group-generated vector spaces admit a natural reinterpretation in the language
of symplectic and orthogonal polar spaces, where each point becomes a “condensation” of
several distinct elements of G. Finally, several well-known physical examples (single- and
two-qubit Pauli groups, both the real and complex case) are worked out in detail to illustrate
the fine traits of the formalism.
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1 Introduction

The purpose of this paper is to establish the most general formal setting for reformulating,
whenever possible, basic properties of groups in terms of vector spaces, alternating bilinear
forms, quadratic forms and associated projective and polar spaces. As far as we know, the first
outline of such an analysis can be tracked back in the textbook of Huppert [1], when addressing
the so-called extra-special groups; however, the assumptions made there were rather specific and
no finite geometry was explicitly mentioned. Another treatment of the issue, with important
physical applications, was given by Shaw and his collaborators [2, 3, 4, 5, 6, 7]. These papers deal
with the Dirac groups and their relationship to projective spaces over GF(2). They include also
a detailed dictionary from group theory to finite geometry and vice versa (see also [8]). Being
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unaware of these developments, Planat and Saniga and others set up a similar programme
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] (see also [23]), and discovered various kinds
of finite geometry behind the generalised Pauli groups of specific finite-level quantum systems,
their results being put into a more general context by Koen Thas [24] (p = 2) and [25] (p > 2);
these works, however, focussed uniquely on symplectic case (alternating bilinear forms), leaving
the importance of quadratic forms simply unnoticed. In what follows we shall not only fill
this gap, but develop the theory to such an extent that the links between the above-mentioned
approaches become clearly visible and, at the same time, differences between some closely related
finite groups (e.g., between the real and complex two-qubit Pauli groups) will be revealed and
properly understood.

2 Preliminaries

We first collect some notions which will be used throughout the paper:
Let (G, ·) be a group with neutral element e. Given a set M ⊆ G we denote by 〈M〉 the

subgroup of G generated by M . Also, we let

M (m) := {xm | x ∈ M} for all m ∈ Z.

The commutator of a, b ∈ G is written as [a, b] := aba−1b−1. The commutator group (derived
group) [G,G] =: G′ is the subgroup of G which is generated by all commutators. The centre
of G is written as Z(G).

Furthermore, let p be a fixed prime. We denote the Galois field with p elements by GF(p) =
Z/(Zp). We shall always use 0, 1, . . . , p − 1 ∈ Z as representatives for the elements of GF(p).
Vector spaces over GF(p) have a series of rather simple, but nevertheless noteworthy properties
which are not shared by vector spaces over arbitrary fields. If (V,+) is vector space over GF(p)
then

mv = v + v + · · ·+ v︸ ︷︷ ︸
m

for all m ∈ GF(p), v ∈ V. (1)

So the additive group (V,+) or, more precisely, V as a Z-module, determines the structure as a
vector space over GF(p) in a unique way. In particular, we have

v + v + · · ·+ v︸ ︷︷ ︸
p

= o for all v ∈ V, (2)

where o denotes the zero element of V . Consequently, any subgroup of V is also a (vector)
subspace. Furthermore, any additive mapping of vector spaces over GF(p) is also linear; see,
among others, [26] and [27]. Conversely, a commutative group (V,+) satisfying (2) can be turned
into a vector space over GF(p) by defining the product of m ∈ GF(p) and v ∈ V by (1).

3 Vector spaces over GF(p)

We aim at constructing vector spaces over GF(p) by factorising G modulo appropriate normal
subgroups.

Let N � G, i.e., N is a normal subgroup of G. The factor group G/N is commutative if,
and only if, the commutator group satisfies G′ ≤ N . Furthermore, G/N is isomorphic to the
additive group of a vector space over GF(p) if, and only if, it satisfies the following condition:

Condition 1. N is a normal subgroup of G which contains the commutator subgroup G′ and
the set G(p) of pth powers.
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Remark 1. Let N ≤ G be a subgroup of G satisfying G′ ≤ N . We recall that N is a normal
subgroup of G in this case, since for all a ∈ N and all x ∈ G we have xax−1 = [x, a]a ∈ N .
This means that Condition 1 can be relaxed by omitting the word “normal”.

Remark 2. The complex product G′G(p) = {xy | x ∈ G′, y ∈ G(p)} is easily seen to be
a subgroup of G. Thus, by Remark 1, we have

G′G(p) = 〈G′ ∪G(p)〉� G. (3)

Remark 3. The case p = 2 deserves particular mention. Here Condition 1 can be further
relaxed by deleting the condition G′ ≤ N , because G(2) ⊆ N implies that all elements of G/N
have order one or two, which in turn guarantees the commutativity of G/N .1

We assume until further notice that Condition 1 holds. Then we let

(V,+) := (G/N , ·),

i.e., the composition in V will be written additively, and we consider V as a vector space over
GF(p) in accordance with (1).

It is an easy exercise to express notions from the vector space V (like linear dependence,
dimension, etc.) in terms of the factor group G/N . For example, a linear combination

∑k
i=1mivi

with mi ∈ GF(p), vi = xiN and xi ∈ G translates into xm1
1 xm2

2 · · ·xmk
k N . The factors in this

product may be rearranged in any order. The set of all subspaces of V is precisely the set

{S/N | N ≤ S ≤ G}. (4)

The factor spaces of V have the form V/(S/N), with S as above. There exists the canonical
isomorphism (of vector spaces)

G/S → (G/N)/(S/N) : xS 7→ (xN)(S/N)

by the homomorphism theorem. Therefore, up to the canonical identification

G/S ≡ (G/N)/(S/N) = V/(S/N), (5)

the set of all factor spaces of V is precisely the set

{G/S | N ≤ S ≤ G}.

The identification (5) will frequently be used in what follows. If V is finite then #V = pd,
where d is the dimension of V . Hence in this case the dimension of V can be found by a simple
counting argument.

We close this section with a complete description of all vector spaces arising from our previous
construction.

Theorem 1. Let G be any group. Then the following assertions hold:

(a) The subgroup N0 := G′G(p) is normal in G and meets the requirements of Condition 1.
Hence it yields the vector space V0 := G/N0 over GF(p).

(b) The set of vector spaces G/N , where N �G is subject to Condition 1, is precisely the set
of all factor spaces of V0, up to the canonical identification G/N ≡ V0/(N/N0) from (5).

1A group of prime exponent p > 2 need not be commutative. For example, the set of upper triangular
3 × 3 matrices over GF(p) with 1s along the diagonal is a non-commutative group of exponent p under matrix
multiplication for p > 2.
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Proof. Ad (a): This is clear by Remarks 1 and 2.
Ad (b): A subgroup N ≤ G satisfies Condition 1 if, and only if, N0 ≤ N . Under these

circumstances the canonical identification from (5) can be applied to G/N . This establishes
the result. �

The previous result can be rephrased as follows: Our construction yields (to within isomorphism)
precisely the homomorphic images of the vector space V0.

Of course, in Theorem 1 the trivial case N0 = G may occur so that V0 turns out to be the
zero vector space over GF(p). Take, for example, G as a cyclic group of prime order 6= p. At
the other extreme, if G is a commutative group of index p then N0 = {e}.

4 The underlying field

For our construction of an alternating bilinear form in Section 5, we shall need an interpretation
of the Galois field GF(p) within the group G in terms of the commutator group G′. The
(multiplicative) group G′ is isomorphic to the additive group of the Galois field GF(p) precisely
when the following is satisfied:

Condition 2. The commutator group G′ has order p.

This is due to the fact that any two groups of order p are cyclic and hence isomorphic.
Condition 2 is very restrictive, in sharp contrast to Condition 1.

Remark 4. Condition 2 implies that G is a non-commutative group, since G′ has to have more
than one element.

Let us assume until the end of this section that Condition 2 holds. For each generator g of G′

(viz. each element g ∈ G′ \ {e}) the mapping

ψg : (G′, ·) →
(
GF(p),+

)
: gm 7→ m with m ∈ {0, 1, . . . , p− 1} (6)

is an isomorphism of groups. Given a generator g̃ ∈ G′ there exists an element k ∈ {1, . . . , p− 1}
such that g = g̃k, whence

(ψg̃ ◦ ψ−1
g )(m) = km for all m ∈ GF(p).

Therefore, loosely speaking, G′ could be identified with GF(p) up to a non-zero scalar k∈GF(p).
In fact, Condition 2 just guarantees that G′ is a one-dimensional vector space over GF(p), but
it does not provide a unique way to identify G′ with GF(p) unless p = 2. Examples of groups
satisfying Condition 2 will be exhibited in Section 9.

Remark 5. If Conditions 1 and 2 are satisfied then, taking into account ψ−1
g (m) = gm and

v = xN for some m ∈ GF(p) and some x ∈ G, it would be incorrect to calculate the product mv
in terms of the factor group G/N as (gmN)(xN) = gmxN . For example, m = 0 and v 6= o
(zero vector) yield 0 · v = o, but g0xN = xN = v 6= o. Observe that this applies even in the
case p = 2, where there is just one possibility for choosing an isomorphism ψg.

5 An alternating bilinear form

Given a group G and a normal subgroup N � G satisfying Condition 1, we want to turn the
commutator mapping [·, ·] : G×G → G′ into a function which is well defined on V × V . This
amounts to requiring that for all x, y ∈ G their commutator [x, y] does not change if x is replaced
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by any element from the coset xN and likewise for y. For any a ∈ N we have [x, y] = [xa, y] if,
and only if,

xyx−1y−1 = xaya−1x−1y−1

or, equivalently, ay = ya. Since here y ∈ G is arbitrary, this holds precisely when a ∈ Z(G).
We are thus led to the following:

Condition 3. The normal subgroup N is contained in the centre of G.

By virtue of this condition, we have indeed [x, y] = [xa, yb] for all x, y ∈ G and all a, b ∈ N .
However, there does not seem to be an obvious meaning of the commutator group G′ for our
vector space V . Hence we assume until further notice that Conditions 1, 2, and 3 hold. Therefore

G′G(p) � N � Z(G) � G (7)

is satisfied. Also, we choose an isomorphism ψg according to (6). This allows us to define
a mapping

[·, ·]g : V × V → GF(p) : (v, w) = (xN , yN) 7→ ψg([x, y]), (8)

where x, y ∈ G. We collect now several basic properties of this mapping.

Theorem 2. Suppose that the group G and the normal subgroup N �G satisfy Conditions 1, 2,
and 3. Also, let g be a generator of the commutator group G′. Then the following assertions
hold:

(a) The mapping [·, ·]g given by (8) is an alternating bilinear form on the vector space V =
G/N .

(b) Two elements x, y ∈ G commute if, and only if, the corresponding vectors v = xN , w =
yN ∈ V are orthogonal with respect to [·, ·]g, i.e., [v, w]g = 0.

(c) The bilinear form [·, ·]g is non-zero and has the radical V ⊥ = Z(G)/N . Consequently, this
form is non-degenerate if, and only if, N coincides with the centre of G.

Proof. Ad (a): Given x, y ∈ G we let v := xN and w := yN . Then

[v, v]g = ψg([x, x]) = ψg(e) = 0

and

[w, v]g = ψg([y, x]) = ψg

(
[x, y]−1

)
= −[w, v]g. (9)

Also, we obtain

[v1 + v2, w]g = ψg

(
(x1x2)y(x1x2)−1y−1

)
= ψg

(
x1x2yx

−1
2 x−1

1 y−1
)

= ψg

(
x1

(
x2yx

−1
2 y−1

)︸ ︷︷ ︸
∈G′

x−1
1 x1yx

−1
1 y−1

)
= ψg

((
x2yx

−1
2 y−1

)(
x1yx

−1
1 y−1

))
= ψg

(
[x2, y] · [x1, y]

)
= [v1, w]g + [v2, w]g. (10)

Here we used that G′ is fixed elementwise under the inner automorphism given by x1 due to (7).
The last equality follows, because Condition 2 forces G′ to be commutative. From (9) and (10),
the function [·, ·]g is biadditive and therefore also bilinear. Hence the assertion follows.

Ad (b): This is immediate from the definition of [·, ·]g.
Ad (c): We noted already in Remark 4 that G is a non-commutative group. Consequently,

the bilinear form [·, ·]g is non-zero. Its radical is

V ⊥ = {v ∈ V | v ⊥ w for all w ∈ V }.

We read off from (b) that V ⊥ = Z(G)/N and the rest is clear. �
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Observe that the bilinear form [·, ·]g has to be degenerate when dimV is an odd integer. See
Examples 1 and 2 in Section 9.

The previous result (b) about commuting elements does not depend on the choice of the iso-
morphism ψg. Replacing g by any generator g̃ of the commutator group G′ changes the bilinear
form [·, ·]g by a non-zero factor k ∈ GF(p), that is [·, ·]g̃ = k[·, ·]g. But the orthogonality relations
with respect to these two forms are identical. We could even rule out the isomorphism ψg by
considering the mapping V × V → G′ : (xN , yN) 7→ [x, y]. The proof of Theorem 2 shows
that this is a non-zero alternating bilinear mapping of vector spaces over GF(p). The interpre-
tation of our results in terms of projective geometry will also eliminate the explicit choice of an
isomorphism ψg. See Section 7.

We end with a complete description of all vector spaces and all alternating bilinear forms
arising from our construction from the above; cf. Theorem 1.

Theorem 3. Let G be a group such that Condition 2 holds. Furthermore, let at least one of
the normal subgroups of G satisfy Conditions 1 and 3. Choose g ∈ G′ \ {e}. Then the following
assertions hold:

(a) The subgroup N0 = G′G(p) is normal in G and meets the requirements of Conditions 1
and 3. It yields the vector space V0 = G/N0 over GF(p), the alternating bilinear form
[·, ·]g,0 on V0, and the radical V ⊥

0 .

(b) The set of vector spaces G/N , where N is subject to Conditions 1 and 3, is precisely the
set of factor spaces V0/S, where S is any subspace of V ⊥

0 , up to the canonical identification
from (5).

(c) In terms of the identification from (5) the alternating bilinear form [·, ·]g on any vector
space G/N ≡ V0/S as in (b) is inherited from the bilinear form [·, ·]g,0 on V0.

Proof. Ad (a): By the hypotheses of the theorem, N0 ≤ Z(G) holds, whence (a) is fulfilled.
Ad (b): A subgroup N ≤ G satisfies Conditions 1 and 3 if, and only if, N0 ≤ N ≤ Z(G)

which in turn is equivalent to

N0 ≤ N and S = N/N0 ≤ Z(G)/N0 = V ⊥
0 .

Ad (c): The bilinear form [·, ·]g,0 induces a well-defined bilinear form on V0/S for any subspace
S ≤ V ⊥

0 via (v+S,w+S) 7→ [v, w]g,0. This induced form coincides with [·, ·]g by its definition. �

6 A quadratic form

We let p := 2 throughout this section. We exhibit a group G and a normal subgroup N satisfying
Conditions 1 and 2, but we do not yet assume Condition 3 to be fulfilled. So G′ = {e, g}, say,
and g = g−1 6= e. Hence the vector space V = G/N and the (only) isomorphism ψg : (G′, ·) →(
GF(2),+

)
are at our disposal. In the sequel the group

K := {x ∈ Z(G) | x2 = e} ≤ Z(G) (11)

will play an important role.
Our first aim is merely to define a mapping G → GF(2) by the assignment x 7→ ψg(x2). This

is possible if, and only if, the following holds:

Condition 4. G is a group such that all its squares belong to its commutator group, i.e.,
G(2) ⊆ G′.
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Remark 6. We note that Conditions 2 and 4 imply

G(2) = G′,

since otherwise G(2) = {e} would force G to be commutative, a contradiction to Remark 4.

We continue by demanding that also Condition 4 is satisfied. Our second aim is to find
necessary and sufficient conditions for the mapping2

Q : V → GF(2) : v = xN 7→ ψg(x2) (12)

to be well-defined. This is the case if, and only if,

x2 = xaxa for all x ∈ G and all a ∈ N . (13)

Let us consider first of all the particular case x = e which yields the necessary condition a2 = e
for all a ∈ N . As N = {e} is impossible due to e 6= g ∈ N , we continue by assuming the
following to be true:

Condition 5. The normal subgroup N � G has exponent 2.

Now, returning to the general case, we can use Condition 5 to rewrite (13) in the form

x2 = x2(x−1a−1xa) for all x ∈ G and all a ∈ N , (14)

because a = a−1. Cancelling x2 shows that (14) holds precisely when N is in the centre of G.
Hence, we also have to impose Condition 3 to be valid.

Conversely, with all five conditions at hand we obtain that the mapping Q in (12) is indeed
well defined. We notice that under these circumstances

{e} = N (2) 6= {e, g} = G′ = G(2) � N � K � Z(G) � G (15)

is satisfied. We are now in a position to describe the mapping Q in detail.

Theorem 4. Suppose that the group G and the normal subgroup N �G satisfy Conditions 1–5
for p = 2. Then the following assertions hold:

(a) The mapping Q : V → GF(2) given by (12) is a quadratic form.

(b) The polar form of Q equals to the alternating bilinear form given in (8). Consequently,
Q is non-zero.

(c) The restriction of Q to the radical V ⊥ is a linear form V ⊥ → GF(2) with kernel
K/N ≤ V ⊥. Hence either K/N = V ⊥ or K/N is a hyperplane of V ⊥.

Proof. Ad (a) and (b): In order to show that Q is a quadratic form, we have to verify two
conditions. Firstly, Q(kv) = k2Q(v) for all k ∈ GF(2) and all v ∈ V . This follows from
Q(o) = ψg(e2) = 0 for k = 0 and is obviously true for k = 1. Secondly, it remains to establish
that the mapping

V × V → GF(2) : (v, w) 7→ Q(v + w)−Q(v)−Q(w)

is biadditive and hence bilinear. Letting v = xN , w = yN with x, y ∈ G gives

(xy)2x−2y−2 = x−2(xy)2y−2 = x−1yxy−1 = [x−1, y]. (16)
2We refrain from writing Qg, since there is only one choice for g, even though we maintain the notation [·, ·]g

from the previous section.
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Here the first equation sign holds, because G(2) is a commutative group by Remark 6, which
allows to rearrange squares. Application of ψg permits us to express (16) as

Q(v + w)−Q(v)−Q(w) = [−v, w]g = [v, w]g. (17)

Since [·, ·]g is non-zero, so is Q. This completes the proof of (a) and (b).
Ad (c): The restriction of Q to the radical V ⊥ = Z(G)/N is additive by (17). Hence Q|V ⊥

is a linear form in GF(2). By its definition, Q|V ⊥ vanishes precisely on the set K/N , which is
therefore all V ⊥, or one of its hyperplanes. �

Our final result of this section is in the spirit of Theorems 1 and 3:

Theorem 5. Let G be a group such that Conditions 2 and 4 hold for p = 2. Furthermore, let
at least one of the normal subgroups of G satisfy Conditions 1, 3, and 5. Then the following
assertions hold:

(a) The normal subgroup N0 = G′G(2) = G′ = G(2) � G meets the requirements of Condi-
tions 1, 3, and 5. It yields the vector space V0 = G/N0 over GF(p), the quadratic form Q0

on V0, and the subspace K/N0 ≤ V ⊥
0 .

(b) The set of vector spaces G/N , where N is subject to Conditions 1, 3, and 5, is precisely
the set of factor spaces V0/S, where S is any subspace of K/N0, up to the canonical
identification from (5).

(c) In terms of the identification from (5) the quadratic form Q on a vector space G/N ≡ V0/S
as in (b) is inherited from the quadratic form Q0 on V0.

Proof. Ad (a): By the hypotheses of the theorem and (15), G′ = G(2) = N0 � K � Z(G),
whence (a) is fulfilled.

Ad (b): A subgroup N ≤ G satisfies Conditions 1, 3 and 5 if, and only if, N0 ≤ N ≤ K
which in turn is equivalent to

N0 ≤ N and S = N/N0 ≤ K/N0.

Ad (c): The quadratic form Q0 induces a well-defined quadratic form on V0/S for any
subspace S ≤ K/N0 via v + S 7→ Q0(v), because Q0(v + s) = Q0(v) +Q0(s) + [v, s]g0 = Q0(v)
for all s ∈ S. This induced form coincides with Q by its definition. �

Under the assumptions of Theorem 5 suppose that K < Z(G). Then there exists a sub-
group N with K < N ≤ Z(G), whence Condition 5 is violated, whereas Conditions 1–3 are
satisfied. This means that the vector space G/N is endowed with an alternating bilinear form
by Theorem 3, but there exists no quadratic form on G/N as in Theorem 5; see Examples 1
and 2 in Section 9.

7 Symplectic polar spaces

Our results from the preceding sections allow a natural interpretation in terms of projective
geometry. Let V be an (n+ 1)-dimensional3 vector space over a field F . Recall that the points
of the projective space on V are its one-dimensional subspaces (“rays through the origin”). We
write P(V ) for the set of all such points. Likewise, each subspace S of V gives rise to a set P(S) of
points. If dimS = k+1 then P(S) ⊆ P(V ) is called a k-flat or k-dimensional projective subspace.
In particular, P(V ) is the only n-flat, i.e., its projective dimension is n. We use the familiar

3We restrict ourselves to the finite-dimensional case even though several results from below could be carried
over – mutatis mutandis – to spaces of infinite dimension.
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terminology for low-dimensional flats: lines, planes, and solids have projective dimension 1, 2,
and 3, respectively. Hyperplanes of P(V ) are those flats P(S) where S has codimension 1 in V .

Assume now that
(
V, [·, ·]

)
is a symplectic vector space. So it is endowed with a non-degenerate

alternating bilinear form [·, ·], and n+1 =: 2r is even. For each subset W ⊆ V we denote by W⊥

its orthogonal subspace, i.e. the set of all vectors in V which are orthogonal to every vector in W .
In particular, v⊥ is a subspace with codimension 1 for each vector v ∈ V \ {o}. In projective
terms we obtain a null polarity4, i.e. the mapping which assigns to each point Fv its null
hyperplane P(v⊥). More generally, one can associate with each k-flat P(S) the (n − k − 1)-
flat P(S⊥); it equals the intersection of all hyperplanes P(v⊥), as Fv ranges over all points
of P(S). A subspace S ≤ V is called totally isotropic if S ≤ S⊥. We use the same terminology
for the flat P(S). The symplectic polar space associated with

(
V, [·, ·]) is the point set P(V )

together with the set of all totally isotropic flats. All maximal totally isotropic flats have
projective dimension r − 1. It is common to denote this polar space by W2r−1(F ) and, in
particular W2r−1(q) if F = GF(q) is a Galois field. For each r and each F there is a unique
symplectic polar space to within isomorphisms; see [28, 29], and the references therein.

Two (not necessarily distinct) points Fv, Fw of W2r−1(F ) are said to be conjugate if v ∈ w⊥

(or w ∈ v⊥). In other words: Two points are conjugate if one of them is in the null hyperplane
of the other. Two distinct points are conjugate precisely when they are on a common totally
isotropic line. Each point is self-conjugate.

It is now a straightforward task to establish a neat connection between our previous results
and symplectic polar spaces:

Theorem 6. Suppose that a group G and its centre Z(G) =: N satisfy Conditions 1–3 for
some prime number p. Furthermore, let V := G/Z(G) be finite and let an alternating bilinear
form [·, ·]g be defined as in (8). Then the following hold:

(a)
(
V, [·, ·]g

)
gives rise to a finite symplectic polar space W2r−1(p).

(b) The totally isotropic flats of W2r−1(p) have the form P
(
C/Z(G)

)
, where C ranges over

the set of all commutative subgroups of G which contain the centre Z(G). In particular,
the points of W2r−1(p) have the form C/Z(G), where C := 〈x〉Z(G) and x ∈ G \ Z(G).

(c) Two elements x, y ∈ G \ Z(G) commute if, and only if, the corresponding points of
W2d−1(p) are conjugate.

Proof. Ad (a): By Theorem 2 (c), the form [·, ·]g is non-degenerate. Therefore dimV =: 2r is
even and the assertion follows.

Ad (b): By (4), any subspace of V has the form S/Z(G) with Z(G) ≤ S ≤ G and vice versa.
The subspace S/Z(G) is totally isotropic if, and only if, [·, ·]g vanishes identically on S/Z(G).
This holds precisely when the subgroup S is commutative. The points of W2r−1(p) are the
one-dimensional subspaces of V , i.e. the subgroups of G/Z(G) which are generated by a single
element xZ(G) with x ∈ G \ Z(G). Hence they have the asserted form.

Ad (c): This holds according to our definition of [·, ·]g and the definition of conjugate
points. �

The structure of the space W2r−1(p) from above “is” the structure of commuting elements
of G. Note that any x ∈ G \Z(G) clearly commutes with all powers of x and with all elements
of Z(G). It is therefore natural to “condense” the commutative subgroup 〈x〉Z(G) ≤ G to
a single entity – a point of W2r−1(p). Also, it is natural that all elements from the centre Z(G)
have no meaning for W2r−1(p), as they commute with every element of G. We add in passing
that the polar space W2r−1(p) does not depend on the choice of the generator g of G′ which is
used to define [·, ·]g.

4Other names for this mapping are symplectic polarity and null system.
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Remark 7. The results from Theorem 6 can be easily generalised to the settings of Theorem 2.
Under these circumstances the factor space V/V ⊥ together with the alternating bilinear form,
which is inherited from V , takes over the role of the symplectic vector space from above. This
means that one gets a symplectic polar space in the projective space P(V/V ⊥). A k-flat of
P(V/V ⊥) has, by definition, the form P(S/V ⊥) with V ⊥ ≤ S ≤ V and dim(S/V ⊥) = k + 1. It
will be convenient to identify this flat with the flat P(S) of the projective space P(V ). From
this point of view the flats of P(V/V ⊥) are the flats of P(V ) which contain P(V ⊥). Note that
such a flat now has two projective dimensions. Its dimension with respect to P(V ) is dimS − 1,
while its dimension with respect to P(V/V ⊥) is dim(S/V ⊥)− 1; see Example 1.

8 Orthogonal polar spaces

In view of Section 6 we adopt the following: Let V be an (n+ 1)-dimensional vector space over
a field F with characteristic 2. Let Q : V → F be a quadratic form and [·, ·] be its (alternating
bilinear) polar form. We assume Q to be non-singular, which means that Q(v) 6= 0 for all non-
zero vectors in the radical V ⊥. A subspace S ≤ V is said to be singular if Q vanishes identically
on S. We use the same terminology for the flat P(S). The singular points of P(V ) constitute a
non-singular quadric Q of P(V ). The orthogonal polar space associated with (V,Q) is the point
set Q together with all singular flats [28, 29]. This orthogonal polar space mirrors the “intrinsic
geometry” of the quadric Q, since the singular flats are precisely those flats which are entirely
contained in Q. For our purposes also the “extrinsic geometry”, i.e. the points of the ambient
space P(V ) off the quadric, will be important.

All maximal singular flats of Q have the same projective dimension r − 1, but the integer
r ≥ 0 depends heavily on the ground field F , the dimension of V , and the quadratic form Q. We
need here only the case F = GF(2). It is well known that to within projective transformations
only the following cases occur [28, p. 58], [30, pp. 121–126]:

n r − 1 Symbol # Point set Name

2k k − 1 Q2k(2) 22k − 1 parabolic
2k + 1 k Q+

2k+1(2) 22k+1 + 2k − 1 hyperbolic
2k + 1 k − 1 Q−

2k+1(2) 22k+1 − 2k − 1 elliptic

For n = 2k the polar form of Q is degenerate, dimV ⊥ = 1. Hence V ⊥ is a distinguished
point, called nucleus, in the ambient projective space of Q2k(2), but it is not a point of Q2k(2).
Otherwise the polar form of Q is non-degenerate. Below we use Q(2) to denote any of the
quadrics from the above table.

Theorem 7. Suppose that a group G and its subgroup K =: N given by (11) satisfy Condi-
tions 1–5 for p = 2. Furthermore, let V := G/K be finite and let a quadratic form Q be defined
as in (12). Then the following hold:

(a) Q gives rise to a non-singular quadric Q(2) of P(V ).

(b) The totally singular flats of Q(2) have the form P
(
T /K), where T ranges over the set of

all subgroups of G which have exponent 2 and contain K. In particular, the points of Q(2)
have the form T /K, where T := 〈x〉K with x ∈ G \K and x2 = e.

Proof. Ad (a): By Theorem 4 (c), the restriction of the quadratic form Q to V ⊥ = Z(G)/K
has the kernel K/K. This is the zero-subspace of V ⊥, so that Q is non-singular.

Ad (b): By (4), any subspace of V has the form S/K with K ≤ S ≤ G and vice versa. The
subspace S/K is singular if, and only if, Q vanishes identically on S/K. This holds precisely
when the subgroup S has exponent 2. The points of Q(2) are the one-dimensional subspaces
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of V , i.e. the subgroups of G/K which are generated by a single element xK with x ∈ G \K
and x2 = e. Hence they have the asserted form. �

The structure of the polar space which is based on the quadric Q(2) from above “is” the
structure of elements with order 2 of the group G. Note that for any x ∈ G\K with order 2 the
complex product 〈x〉K is a subgroup of G with exponent 2. It is therefore natural to “condense”
the subgroup 〈x〉K ≤ G to a single entity – a point of Q(2). In our further discussion we have
to distinguish two cases:

If n = 2k + 1 is odd then the polar form of Q is non-degenerate which implies K = Z(G).
So the results of Theorems 6 and 7 can be merged immediately. We obtain a symplectic polar
space which is “refined” by an orthogonal one. The fact that subgroups of exponent 2 are
commutative is mirrored in the fact that singular subspaces are totally isotropic.

If n = 2k is even then K 6= Z(G). The point V ⊥ = Z(G)/K is the nucleus of the quad-
ric Q2k(2). We have here the orthogonal polar space given by Q2k(2) and the symplectic polar
space W2k−1(2) which is defined in P(V/V ⊥) according to Remark 7. It is well known that these
two spaces are isomorphic. An isomorphism is given by “joining the quadric with its nucleus”:
If P(S) is a singular subspace ofQ2k(2) then its join with the point V ⊥, i.e. P(S+V ⊥), is a totally
isotropic subspace of P(V/V ⊥) and vice versa. In algebraic terms this gives the following bijection
from the set of all subgroups T with exponent 2 and K ≤ T ≤ G onto the set of all commutative
subgroups C with Z(G) ≤ C ≤ G:

T 7→ C := TZ(G).

9 Illustrative examples from quantum theory

Example 1. We consider the complex Pauli matrices

σ0 :=
(

1 0
0 1

)
, σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
. (18)

The matrices iασβ with α ∈ {0, 1, 2, 3} and β = {0, x, y, z} constitute the Pauli group of order 16,
which is now our G. It acts on the two-dimensional complex Hilbert space of a single qubit.
In our terminology (with p := 2) we have Z(G) = {±σ0,±iσ0}, G′ = G(2) = K = {±σ0} and
g = −σ0. The group G satisfies Conditions 2 and 4.

The normal subgroup K = N0 satisfies Conditions 1, 3, and 5. The factor group G/K has
23 elements; it gives rise to a three-dimensional vector space V0 over GF(2) as in Theorem 2 (a)
with a degenerate alternating bilinear form [·, ·]g,0. The projective space P(V0) is the Fano
plane; see Fig. 1. The points of the Fano plane fall into three classes: The three dark-shaded
points form a non-degenerate quadric Q2(2) (i.e. a conic). They correspond to those elements
of G \K whose square is σ0 (i.e. Hermitian matrices). The three light-shaded points represent
the elements of G\K whose square is −σ0 (i.e. skew-Hermitian matrices). The remaining point,
which is depicted by a double circle, is the only point of P(V ⊥

0 ) or, in other words, the nucleus
of Q2(2). It represents the matrices of Z(G)\K, which are also skew-Hermitian. The three lines
through the nucleus (bold-faced) are to be identified with the three “points” of the symplectic
polar space P(V0/V

⊥
0 ) ∼= W1(2) (Fig. 2), which has projective dimension one. Its null-polarity

is the identity mapping. Two operators of G \K commute if, and only if, their corresponding
points are on a common line through the nucleus.

The normal subgroup Z(G) satisfies Conditions 1 and 3, but not 5. The factor group G/Z(G)
has 22 elements; it gives rise to a two-dimensional symplectic vector space V over GF(2) and the
symplectic polar space W1(2) = P(V ); see Fig. 2. The factor space V0/V

⊥
0 from above and V are

isomorphic (as symplectic vector spaces). Each point of W1(2) is totally isotropic. We have no
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Figure 1. The fine structure of the complex
single-qubit Pauli group in terms of the Fano
plane.

Figure 2. A coarser representation, W1(2),
aka the projection from the nucleus of the
conic.

quadratic form on V . Two operators of G \ Z(G) commute if, and only if, their corresponding
points are identical.

Example 2. We exhibit the group comprising the Kronecker products iασβ ⊗ σγ with β, γ ∈
{0, x, y, z}; cf. (18). This group acts on the four-dimensional Hilbert space of two qubits. In
contrast to Example 1, the symbol G denotes now this group of order 64. In our terminology
(with p := 2) we have Z(G) = {±σ0 ⊗ σ0,±iσ0 ⊗ σ0}, G′ = G(2) = K = {±σ0 ⊗ σ0}, and
g = −σ0 ⊗ σ0. Up to a change of dimensions, the situation here completely parallels that of the
preceding example:

The factor group G/K gives rise to a four-dimensional projective space P(V0) over GF(2)
and a non-degenerate quadric Q4(2). We are not familiar with any neatly arranged picture of
this projective space with its 31 points and 155 lines. However, the 15 points and 15 singular
lines of Q4(2), together with its nucleus and several points/lines of its ambient space, can be
illustrated as in Fig. 3. There are 15 lines joining the nucleus P(V ⊥

0 ) with the points of the
quadric Q4(2); these lines become the “points” of the factor space P(V/V ⊥) ∼= W3(2).

The factor group G/Z(G) yields a four-dimensional symplectic vector space V and the sym-
plectic polar space W3(2) with P(V ) as set of points. It is depicted in Fig. 4 which is known as
the doily5. We have no quadratic form on V . Two operators of G \Z(G) commute if, and only
if, their corresponding points are on a totally isotropic line.

Example 3. The real orthogonal matrices ±I, ±X, ±Y , ±Z, where

I :=
(

1 0
0 1

)
, X :=

(
0 1
1 0

)
, Y :=

(
0 1

−1 0

)
, Z :=

(
1 0
0 −1

)
,

constitute the real Pauli group G. It acts on the Hilbert space R2 of a real single qubit. In
our terminology (with p := 2) we have G′ = G(2) = K = Z(G) = {±I} and g = −I. Hence
there is only one possibility for factorisation, namely G/Z(G). This gives the symplectic polar
space W1(2) based on the projective line over GF(2) which we already encountered in Examp-
le 1. However, now this space is refined by an orthogonal polar space based on a hyperbolic
quadric Q+

1 (2). The two points of this quadric represent those matrices in G \ Z(G) whose
square is I (i.e. symmetric matrices), the remaining point corresponds to matrices in G with
square −I (i.e. skew-symmetric matrices); see Fig. 5.

5Another remarkable illustration of W3(2) exhibiting, like the doily, a pentagonal cyclic symmetry is the
so-called Cremona–Richmond conf iguration.
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Figure 3. Q4(2), its nucleus, and a portion
of its ambient space as the geometry behind
the complex two-qubit Pauli group.

Figure 4. A coarser view in terms of W3(2);
xy is a short-hand for iασx ⊗ σy, α ∈ {0, 1,
2, 3}, etc.

Figure 5. W1(2) and Q+
1 (2) (shaded) of the

real single-qubit Pauli group.
Figure 6. W3(2) and Q+

3 (2) (shaded) of the
real two-qubit Pauli group. XY is a short-
hand for ±X ⊗ Y , etc.

Example 4. Here we deal with the group comprising the Kronecker products of the matrices
from Example 3. We change notation as now this group of order 32 is denoted by G. With
p := 2 we have G′ = G(2) = K = Z(G) = {±I⊗I}. Up to a change of dimensions, the situation
here completely parallels that of the preceding example: The factor group G/Z(G) gives rise
to the symplectic polar space W3(2) which is refined by an orthogonal polar space based on
a hyperbolic quadric Q+

3 (2). The nine points of this quadric represent matrices in G \ Z(G)
whose square is I ⊗ I (i.e. symmetric matrices), the remaining points correspond to matrices
in G which square to −I ⊗ I (i.e. skew-symmetric matrices); see Fig. 6.

Example 5. Finally, we mention the (p = 3) case of two-qutrit Pauli group (see also [19]).
This group G possesses 35 elements, which can be written in the form ωaXbY c ⊗XdY e, where
a, b, c, d, e ∈ {0, 1, 2}, ω is a primitive 3-rd root of unity, and X and Z are so-called shift and
clock operators given by0 0 1

1 0 0
0 1 0

 and

1 0 0
0 ω 0
0 0 ω2

 ,
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respectively (see, e. g., [14, 18]). Its factor group G/Z(G) is of cardinality 34 = 81 and generates
the symplectic polar space W3(3) of 40 points/lines, with 4 points on each line and, dually,
4 lines through each point. This case is noteworthy in two crucial aspects. First, it is one of the
simplest instances where a single point of the associated polar space represents not only a single
operator (up to complex multiples), but encompasses the two distinct powers of an operator
(up to complex multiples). Second, it leads to far-reaching physical implications for the so-
called black-hole analogy (see, e.g., [31]). As per the latter fact, it has recently been shown [22]
that the E6(6) symmetric entropy formula describing black holes and black strings in D = 5
is intimately tied to the geometry of the generalised quadrangle GQ(2, 4), where 27 black-hole
charges correspond to the points and 45 terms in the entropy formula to the lines of GQ(2, 4).
And there exists a very intimate connection betweenW3(3) and GQ(2, 4) [32]. Given any point U
of W3(3), we can “derive” GQ(2, 4) as follows. The points of GQ(2, 4) are all the points of W3(3)
not collinear with U , whereas the lines of GQ(2, 4) are on the one side the lines of W3(3) not
containing U and on the other hand hyperbolic lines through U (natural incidence). Hence,
this link between the two finite geometries not only unveils the mystery why D = 5 black hole
solutions are related with qutrits, but knowing that each point of W3(3) comprises a couple
(p−1 = 3−1 = 2) of elements of G/Z(G), it also provides a straightforward recipe for labelling
the 45 members of the entropy formula in terms of all elements of the two-qutrit Pauli group G.

Following these examples the interested reader should be able to find out the symplectic and
orthogonal polar spaces behind any (multiple-)qudit Pauli group as long as the rank d of the
qudit is a prime number.
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