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1 Introduction

This paper analyzes the role of variable capital utilization rates in propagating shocks over

the business cycle. To this end we formulate and estimate an equilibrium business cycle

model in which cyclical capital utilization rates are viewed as a form of factor hoarding.'

We End that variable capital utilization rates substantially magnify and propagate the

impact of shocks to agents' environments. The strength of these propagation effects is

evident in the dynamic response functions of various economy wide aggregates to shocks

in agents' environments, in the statistics that we construct to snmmarizethe strength of

the propagation mechanisms in the model and in the volatility of exogenous technology

shocks needed to explain the observed variability in aggregate U.S. output. Other au-

thors have argued that standard Real Business Cycle (RBC) models fail to account for

certain features of the data because they do not embody quantitatively important prop-

agation mechanisms. These features include (i) the observed positive serial correlation

in the growth rate of output (Cogley and Nason 1993), (ii) the shape of the spectrum

of the growth rate of real output (King and Watson 1993, Watson 1993) and (iii) the
correlation between the forecastable component of real output and various other economic

aggregates (Rotemberg and Woodford 1994). Allowing for variable capital utilization rates

substantially improves the ability of the model to account for these features of the data.

It is well known that standard Real Business Cycle models do no embody quantita-

tively important propagation mechanisms? As a result, these models must rely on highly

variable, exogenous, aggregate technology shocks to account for the observed fluctuations

in aggregate economic activity. The primary evidence for these types of shocks consists

of interpreting movements in the Solow residual as reflecting stochastic movements in the

aggregate production technology. But, by now, there is abundant evidence castingdoubt

on this interpretation. In addition to reviewing this evidence, Cochrane (1994) discusses

the difficulty in finding quantitatively large sources of aggregate shocks - monetary or real

'Other authors who have recently studied the role of different type. of factor hoarding in business cycle
guctuations include Baa (1993), Bib and Cho (1993), Bunuide, Eichenbauin and Itebelo (1993), Cocky,
Hansen and Prescott (1993), Finn (1991), Gordon (1990), Greenwood, Hercowiti and Huffmaa (1988),
Greenwood, Hercowit. and Kmsel (1992), Kydland and Prescott (1988), Rotemberg and Summers (1990),
and Sbordone (1993).

3See for example Chriitiano (1988), Cogley and Nason (1993), King and Rebelo (1993.4, King and
Watson (1993), Watson (1993) and Rotemberg and Woodford (1994).
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- to the postwar U.S. economy. This serves as our motivation for understanding how the

shocks that do occur are magnified and propagated over time. In this paper we pursue one
obvious source of propagation - variable capital utilization (as well as labor hoarding) -
and investigates its quantitative importance in an otherwise standard Real Business Cycle
model.

To model variable capital utilization, we assume that the aggregate technology for

producing goods depends on effective capital services and effective hours of work. The

latter is defined as labor effort times total hours of work. The former is defined as the

capital utilization rate times the stock of capital. The rate at which capital depreciates

is assumed to be a function of the capital utilization rate.3 In equilibrium, finns will, on

average, choose to 'hoard' capital, i.e. they will set capital utilization rates to less than

capacity. Because of this they can immediately increase the effective stock of capital in

response to shocks that raise the marginal product of capital. In the standard model,
firms would have to wait at least one period to raise the stock of capital. To the extent

that capital takes time to build, they would have to wait even longer.

We face two key difficulties in empirically implementing our model. The first difficulty

is that labor effort is not directly observable and existing measures ofcapacity utiliza-
tion are sector specific and subject to substantial measurement error (see Shapiro 1989).
However we can exploit the restrictions of our model to measure these variables as func-
tions of other observable variables and certain estimable parameters of the model. The
resulting measure of capacity utilization tracks the analog time series published by the
Federal Reserve (which coven only the manufacturing sector over the period we study)

quite closely. The second difficulty is that, according to our model, technology shocks
cannot be measured by the Solow residual. But given our measures of labor effort and

capital utilization rates we can purge the Solow residual of the measurementerror induced

by factor hoarding. The flip side of this calculation is that we can assess the contribution
of variable capital utilization rates to the volatility of total factorproductivity.

Our main quantitative findings can be summarized as follows. First, capital utilization
rates are very volatile relative to the stock of physical capital. Specifically, we estimate

3This is consistent with the assumption, made in Greenwood, Hercowits and Huffman (1988), Greenwood,Renown, and Krussel (1992) and Finn (1991), among others. See Bile and Cbo (ig9a) or Cooley, Hansen
and Prescott (1993) for alternative models in which avenge capital utilization rates are less than one.
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that the standard deviation of the growth rate of effective capital services is roughly

4.5 times higher than the standard deviation of the growth rate of the stock of physical

capital. Concentrating on cyclical movements in the stock of capital gives a misleading

picture of cyclical movements in effective capital services. Second, we find that allowing

for variable capital utilization rates and labor hoarding leads to a roughly 60% reduction

in the estimated variance of the innovation to technology shocks. Most of this reduction

is attributable to cyclical movements in the capital utilization rate.

Third, we find that variable capital utilization rates substantially magnify and prop-

agate the impact of shocks to agents' environments. The magnification and propagation
effects induced by factor hoarding are sufficiently large that the model does as well as

standard RBC models in accounting for the volatility of output. This is true despite the

fact that the estimated volatility of technology shocks is much smaller in our model than

in the standard RBC model. What distinguishes the models is not whether but howthey

account for the volatility of output. Virtually all of the output movements in standard

RBC models reflect the direct impact of technology shocks on the aggregate production

technology. With variable capital utilization rates, only about half of the variance of

output is due to the direct impact of technology shocks.
Fourth, we find that our model is able to account for various features of postwar

U.S. business cycles that standard RBC mod& •unot account for. Cogley and Nason

(1993) highlight the weak propagation mechanisms in standard RBC models by focusing

on the autocorrelation function of the growth rate of output. They show that, to a first

approximation, output movements in the model reflect only exogenous technology shocks.

So when these shocks are modeled as a random walk, output is very close to being a

random walk. This implication is counterfactual: unlike the Solow residual, U.S. output

growth is positively serially correlated. With variable capital utilization rates, the model

can simultaneously account for the univariate time series propertiesof the growth rate of

output and the Solow residual.

A closely related observation is that standard B.BC models do not reproduce the basic

shape of the spectrum of poet war U.S. output growth (see King and Watson 1993, Watson

1993). According to the standard RBC model, the spectral shape of output growth is the

same as the spectral shape of the growth rate of technology shocks. So when the latter are

modeled as white noise, the implied spectrum of output growth does not have a peakat
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business cycle frequencies. But with variable utilization rates, the spectrum of the growth

rate of output has a significant peak at business cycle frequencies even when the growth

rate of technology shocks is white noise.

Rotemberg and Woodford (1994) have highlighted the weak propagation mechanisms

in standard RBC models by focusing on the correlation between expected output growth

(at various horizons) with objects like the growth rates of output and average productivity,

and the logarithms of hours worked and the ratio of consumption to output. One way

in which they motivate the importance of these correlations is by connecting the cyclical

component of output growth, as defined by Beveridge and Nelson (1981), to its forecastable

component. Using the same multivariate time series specification for output, we investigate

the performance of our model on the dimensions of the data stressed by Rotemberg and

Woodford (1994). Cenerally speaking, we find that our model does a substantially better

job of accounting for these statistics than the standard RBC model. The improvement is

particularly marked with respect to the dynamic correlations of the expected growth rate

of output (at various horizons) with the current growth rate of output, the expected growth

rate of hours worked and the growth rate of average productivity. Even so the model is

unable to fully account for the expected growth rate of output or hours worked. This

highlights the importance of finding additional sources of shocks to agents' environments

and propagation mechanisms for those shocks.

The remainder of this paper is organized as follows. Section 2 displays our model.

Section 3 discusses our econometric methodology. Our empirical results are reported in

Section 4. Concluding remarks are contained in Section 5.

2 The Model

In this section we present a variant of Hansen's (1985) indivisible labor model, modified

to incorporate factor hoarding in the form of variable capital utilization rates and varying

labor effort. The model economy is populated by a large number of infinitely lived mdi-

viduals. To go to work an individual must incur a fixed cost of ç hours. Once at work,

an individual stays for a fixed shift length of / hours. The time t instantaneous utility of
such a person is given by

ln(Cg) + Oln(T— ç — W,f) (i)
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Here T denotes the individual's time endowment, C, denotes time t privately purchased

consumption, U � 0, and Vi, denotes the time t level of effort. According to (1) labor

suppliers care about effective hours of work. The time t instantaneous utility of a person

who does not go to work is given by ln(Ct) + U ln(T).

Time t output, Y, is produced via the Cobb-Douglas production function

Z = (KjJ,y_o(N1JW,X1]a (2)

where 0 .c a < 1, K, denotes the beginning of time I capital stock, U1 represents the
capital utilization rate, N1 denotes the number of individuals at work during time t, and

K, represents the time t level of technology. According to (2) what matters for output

is the total amount of effective capital, K,L11, and total effective hours of work, N,fW,,

used in production. As in Greenwood, Uercowitz and Huffman (1988), Finn (1991) and

Greenwood, Hercowita and Krussel (1992), we suppose that using capital more intensively

increases the rate at which capital depreciates. Speciftcally, we assume that the time

depreciation rate of capital, 6,, is given by

(3)

where 0 <6 C 1 and > 1. The stock of capital evolves according to

(4)

where I denotes time t gross investment. Under our assumptions, firms will not, in general,

and it optimal to fully utilize the stock of capital, preferring to 'hoard' some capital so

that they can use it more intensively when the returns to doing so are unusually large.

We assume that the level of technology, Kg, evolves according to

Kg = X_1 exp(y + v,) (5)

where V1 is a serially uncorrelated process with mean 0 and standard deviation c. The

aggregate resource constraint is given by

c,+I,÷GcY, (6)

where G, denotes the time t level of government consumption. We assume that (3 evolves

according to
(7)
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Here g is the stationary component of government consumption. We assume that g, =

ln(gfl evolves according to

(8)

where p is a scalar, p c 1 and €, is a serially uncorrelated process with mean 0 and

standard deviation a1.

In the presence of complete markets, it is straightforward to show that the competitive

equilibrium of this economy corresponds to the solution of the following social planning

problem:

Maximize

EoE13'[ln(Ci) ÷ ON,In(T— c— W,f) + 0(1 — N,) ln(T)] (9)

subject to (2), (3) and (5) - (8) by choice of contingency plans for (C,, K,÷1, N,, U,, W
t � Q}.'

To allow for a simple form of labor hoarding, we proceed as in Burnside, Eichenbauxn,

and Rebelo (1993) and assume that N1 must be chosen before X, and 9, are seen. Let 11,

denote the information set that includes the lagged values of all time t variables in the
model. Let consist of the union of fi, and (X,,gg). We assume that N, is chosen on the

basis of U, while {C,,14÷1,U,,W,} is chosen on the basis of n;. This formulation of the

problem incorporates the idea that firms must make employment decisions conditional on

their views about the future state of demand and technology, and firma cannot adjust the

number of employees instantly in response to the shocks affecting their environment. Once

employment decisions are made, firms adjust to observed shocks along other dimensions.

In Burnside, Eichenbaum and Rebelo (1993), the only way this adjustment can occur is

via variations in the labor effort that workers are asked to supply.5 In this model, firms

can also vary capital's effort, i.e. the utilization rate of capital.

Variations in capital utilization involve trade-oils between the effects on output and the

effects on the depreciation rate of capital. We can examine these trade-ofl by considering
'In (9) we have exploited the fact that1 since agents aiierion function. are separable across consumption

and leisure, the planner will equate theconsumption of employed and unemployed individuals. In addition,
we have normalized the number of agents in the economy to one.

'Note that work effort, W1, and shift length, f, appear nstrica.lly in production and preferences. As
a result, the properties of some aspect, of the model are unchanged if the interpretations of these variables
are reversed. For example, output's uninriate dynamics are identical. However, as noted in DEft (1993)
reversing the interpretation implies that all movements in labor input are observable, which has different
implication, for the joini behavior of output and average productivity.
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the planner's Euler equation for U1:

(1. — a). = ,böUf'K1 (10)

According to (10) the optimal plan for U sets the marginal product of an increase in the

utilization rate equal to the marginal change in depreciation of the capital stock. Other

things equal, factors that increase the marginal product of capital utilization, such as

and/or N lead to an increase in the rate of capital utilization. (See section 4 for a more

detailed discussion).
A number of related models are of interest. First, when the rate of capital utilization

cannot be varied, the model reduces to that of Burriside, Eichenbaum and Rebelo (1993).

For convenience we refer to this as the laborhoarding model. Second, if in addition, N1 and

P4 are chosen after )C and g are seen, then the model is observationally equivalent to the

standard RBC indivisible labor model, modified to incorporate government consumption

into the analysis, that is analyzed in Christiano and Eichenbaum (1992). For convenience

we refer to this as the benchmark model.

In general it is not possible to solve any of these models analytically. Here we use

King, Plosser and Rebelo's (1988) log linear solution procedure to obtain an approximate

solution to the planning problem. According to our model, K1+1/X, Y1/X1, C/X, gg,Ng,

Pf and U1 all converge in non-stochastic steady state. It is possible to write the planning

problem entirely in terms of these variables. Let k+1 = ln(Kg+t/Xg), Vt = ln(lc/Xg),
= ln(Cg/Xg), Wg = ln(Wg), ,t4 = ln(Ne), and U = ln(Ue). Our (approximate) decision

rules express {k1+1, c1, u, t+t, ut} as linear functions of {k, n, v1, g}. We refer the

reader to Burnside (1993) for details.

3 Econometric Method

In this section we discuss our methodology for estimating and evaluating the empirical

performance of the factor hoarding model.

3.1 Measuring Capital, Depreciation, Capital Utilization and Labor Effort

We face several problems in implementing our model. First, we do not have data on labor

effort. In addition, existing measures of capital utilization are sector specific and subject
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to substantial measurement error (see Shapiro 1989). Second, our mode! implies that
technology shocks cannot be measured by the Solow residual. The conventional method of

calculating the Solow residual (at least in the RBC literature) begins from the assumption

that output is produced via the Cobb-Douglas production function:

(11)

where H1 denotes total time t hours worked. Given a consistent estimate of a, the log of

Solow residual can be computed using the relationship

ln(Si) = ln(Yg) —(1— a) ln(Kg) — aln(fft) (12)

But, abstracting from measurement error in capital,our model implies that

In(s1) = aln(X1) +ln(F) (13)

where the time t factor hoarding component F1 is given by

ln(Fg) = (1— a) ln(Ut) + ab(Wj (14)

Consequently shocks which cause capita! utilization or labor effort to vary over time drive

a wedge between actual technology shocks and the Solow residual.6

Third, we cannot measure capital using the official government data on the stock of

capital. This is because, according to our model, the depreciation rate on capital varies as

a (unction of the capital utilization rate. The official government data assumes (roughly

speaking) a straight-line rate of depreciation over fixed service lives of different types of
capital. 1

Our strategy for dealing with these problems is as follows. To identify capital utilization

we exploit functional form assumptions on the aggregate production technology and the

assumption of perfect competition to derive a time series for U1 that is a function of
observable variables and a subset of the model's parameters. Given this time series,

5Allowing for measurement error in the capital stock induced by time va.ying capital utilintion rates
(see below), the Solo,. residual ii given by Ia(S1) = a ln(Xs) + ln(Fs) + (1— c)tIn(K,) — In(Ke)J where K1is th. tnt capital stock and K1 it the official series.

7The official data do imply a time-vaiying depreciation series. However this I. an artifact of small change.
in the distribution of the stock of capital acres. different types of capital. For detail., .ee the Bureau of
Economic Analysis (1993).
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we exploit the equilibrium relationship between effort, capital utilization and the Solow

residual to measure effort and the actual shocks to technology.

Consider first the problem of measuring capital utilization. The planner's first order

condition for fig equates the marginal product of an increase in capital utilization with

the resulting increase in depreciation of the capital stock. Given our functional form

assumptions, this condition can be expressed as:

1(1—a)Yg '/=
[ 44Kg

(15)

Relation (15) allows us to deduce a time series for fig given a time series on (Ye/Kg) and

values for a, and 6.8
To identify effort, W1, we exploit the fact that the linearized equilibrium law of motion

for Wg can be expressed as

ln(Wt) = w0 + ir1 ln(Kg) + ,riln(Hg) + ,r3ln(Cg) + ir4ln(Xg) (16)

where Hg equals total hours worked, Ngf. The scalars w1 are functions of the model's

underlying structural parameters. The production function implies that

ln(Xe) = a'(ln(Y1) —(1— a) ln(Kg) —(1— a) ln(Ug) — aln(Hg) — aln(W1)] (17)

Given the time series on U implied by (15), relations (16) and (17) can be solved to obtain

a time series on W1 and X as functions of the observable variables {Y,, K1, Hg, C1} and

the model's structural parameters.
To obtain a measure of the stock of capital we proceed as follows. The Euler equation

for utilization, (10), can be solved for depreciation, as

(18)

Given data on Y1, a vector of parameters and an initial value for Ki, we can calculate

6 using (18)Y Then, using data on investment, I, (4) can be used to calculate K,.
This leads to a recursive procedure for determining the capital stock corresponding to any

vector of parameters.

'In our empirical analysis we only need to identify ln((Jt) up to a constant. As a reuult, we do not identify
the parameter 6.

°We discuss the choice of initial value for K1 below.
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3.2 Estimation and Diagnostic Procedures

In order to estimate and diagnose the performance of our model we use a variant of the

Generalized Method of Moments (GMM) procedure discussed in Christiano and Eichen-
baum (1992). The basic idea underlying the procedure is as follows. The GMM criterion
is set up so that the estimated model exactly matches the sample analog of certain un-

conditional moments of the data generating process. The model is then used to calculate
various other second moments of the data. These other second moments can also be es-
timated in ways that do not involve the model. In population, the two sets of estimates

ought to be the same. To test such hypotheses we use a simple Wald statistic discussed
in Christiano and Eichenbaum (1992).

For the most part we report the results of testing only one moment restriction at a time
in this paper. Our decision to do this reflects our view of the small sample properties of
GMM based Wald test statistics. Using a version of the factorhoarding model as the data
generating process Burnside and Eichenbaum (1994) show that asymptotic distribution

theory typically provides a reasonable description of the small sample distribution of the
Wald statistic when we look at individual moment restrictions. However (i) the small
sample size of the Wald statistic increases rapidly as a function of the number ofmoments
being tested, i.e. using asymptotic distribution theory, one rejects the model farmore
often than is warranted in small samples, (ii) even when testing a moderate number of
moments, the small sample size is dramatically larger than the asymptotic size of the
test,10 and (iii) the fundamental source of the problem has to do with the difficulty in
estimating the optimal weighting matrix used in GMM based inference procedures.

We did not estimate the parameters T, fi, f and ç. Instead we fixed T at 1369 hours
per quarter, fi was set at i.oa-' and f was chosen so that the nonstochastic steady
state value of effort equals one. We experimented with various values ofc and found that
our results were insensitive to choices between 20 and 120. The results reported here
correspond to a. value of ç equal to 60.

Let 'P1 denote the vector of remaining model structural parameters. As it turns out,
we do not separately identi& 6 and . However, we can identify S = ÔU', where U is the
nonstochastic steady state value of U. Furthermore, as detailed in the Appendix, when

'°For example, joint tests of fifteen mojueni restriction, that ought to have asymptotic size ofS%, typically
have small sample (ioo obsenatioa,) 515.s exceeding 30%.

10



the first-order conditions of the planner's problem are evaluated in nonstochastic steady

state, they lead to the parametric restriction

fleci)1+1 (19)

Therefore, we do not estimate as a free parameter, and instead include I in our spec-

ification of 'Ps)' In addition, we found that the variable g, = ln(Gt) — ln(Xe) exhibited

a time trend in our sample. Consequently we allowed g to depend on a constant, a time

trend as well as one lag of itself. The parameters Qo and g, denote the constant and the

coefficient on time in this specification. With these modifications the 10 x 1 vector of

structural parameters W is given by,

= {8,l,a,',c,,g/y,go,gi,p,o.} (20)

In the Appendix we formally describe the unconditional moment restrictions used to

define our GMM estimator for 'I',. Since our estimator is exactly identified, it has a very

simple interpretation. Roughly speaking, the estimators of 8 and a are chosen so that

the model reproduces the sample average of per capita hours worked while satisfying, on

average, the Euler equation for capital.

The log of our point estimate of I corresponds to the log of the cample average of the

depreciation rate implied by the official data on capital and investment, S1 = 1 + (I —

k1+,)/k1. This corresponds to the assumption that, while the official measure of the

capital stock, k1, does not match the actual capital stock on a quarter to quarter to basis,

the Bureau of Economic Analysis does measure the average rate of depreciation correctly.

Specifically, we assume that the population mean of 5t is the same as the population mean

of %. Absent such an assumption the official and actual capital stock data would diverge

over time.'2

Our point estimate of the log of g/y corresponds to the sample average of ln(C,) —ln(Y).

Our point estimate of o equals the sample variance of the time series on ln(X,) —ln(Xg_,).

The parameters 9o, g, and p were estimated by regressing Qg on a constant, t and 9t-i•

"The fact that we do not identify I and U separately presents no djfficulties in solving the model, as our
log-linear approximation to the tnt-order necessary condition, depends only on 5 and #.

13j it turnu out our results are inseasitive to how capital is measured. 1eating the official series as &
measure of the true capital stock leads to qualitatively and quantitatively similar results. Different methods

for choosing K, also lead to similar results.
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Finally, u was estimated by the sample standard deviation of the residuals from that

regression.

Finally, we need to specify a value of K1 in order to implement our strategy for obtain-

ing a time series on the stock of capital. One choice would be K1 =K1. However, there
is no a priori reason for this choice. We choose K1 so that the resulting capital series,

K,, and the official capital stock series, k,, imply the same average output-capital ratio.

Since our model implies that deviations between k, and K, are transitory, this moment

restriction ought to hold in population. An advantage of imposing this choice in sample

is that it results in an estimate of a that is very similar to that used in the literature.

To diagnose the empirical performance of our model we must estimate various moments

of the data in ways that do not involve the model. Let W, denote a vector of population

moments to be estimated. These include objects like the relative standard deviations and

dynamic correlations between different variables. In the Appendix we formally describe the

unconditional moment restrictions underlying our estimator of W, as well as our procedure

for testing hypotheses.

One problem with specifying the elements of W, is that variables like C,, Y,, K,, G1,

and APL, exhibit a marked trend. For the objects in 'P2 to be meaningful, they must

refer to the moments of stationary time series. Depending on the context, we work with

the stationary inducing transformation of the data discussed in ilodrick and Prescott

(1980) and Prescott (1986) or with growth rates of different variables.'3 Therefore the

moments in t, pertain to Hodrick and Prescott (HP) filtered or first differenced time
series.'4 To assess the robustness of resujts obtained with HP filtered data we redid all of

our calculations working with growth rates of the data. These are reported in an appendix

to this paper that is available upon request. As it turns out, the choice of whether to work

with growth rates or HP filtered data has little impact on our qualitative results.

"That the lIP filter is a stationary inducing transformation for difference stationary stochasticprocess
follows directly from result, in King and Rebelo (1993b).

"Tb. data used. to estimate t were not HP filtered or Grst differences. In all cats, the nuconditional
moment, used to estimate the models' structural parameters pertain to ratio. of variables like Y,/.K, that
are stationary stochastic processes according to our modeL
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3.3 Data

Private consumption, C,, was measured as the sum of private sector expenditures on non-

durable goods plus services plus the imputed service flow from the stock of durable goods.

The first two measures were obtained from the Survey of Current Business. The third

measure was obtained from Brayton and Mauskopf (1985). Government consumption, C,,

was measured by real government (federal, state and local) purchases of goods minus real

government investment. The government data was provided to us by John Musgrave at

the Bureau of Economic Analysis. The official capital stock, k,, was measured as the sum

of consumer durables, producer structures and equipment, and government and private

residential capital plus government non-residential capital. Data on gross investment, I,,

are the flow data that conceptually match the capital stock data. Gross output, Ij, was

measured as (C, + C, + I,) plus time t inventory investment. Our basic measure of hours

worked is the quarterly time series constructed by Hansen (1984), which we refer to as

household hours. The data cover the period 1955:3-1984:1 and were converted to per

capita terms using an efficiency weighted measure of the population.16 We use Prescott's

(1986) model of measurement error in hours worked. In particular we assume that the

log of measured hours worked differs from the log of actual hours worked by an i.i.d.

random variable that has mean zero and standard deviation °c To estimate o- we need

two measures of hours worked. The first is Hansen's measure of hours worked which is

based on the household survey conducted by the Bureau of the Census. The second is

the establishment survey conducted by the Bureau of Labor Statistics. The Appendix

provides details regarding the estimation procedure and how measurement error affects

the moment restrictions that define our estimator of 'P1.

4 Empirical Results

Columns 1 and 2 of Table 1 report parameter estimates for the benchmark and factor
hoarding models, respectively. A number of interesting results can be seen here. First,

except for e,, the standard deviation of the technology shock, the parameter estimates

for both models are very similar. This greatly facilitate comparisons across the models.

Note in particular that a is estimated to equal 0.642 and 0.655 in the factor hoarding and

'5See Christiano (1988. appendix) for fwtber details.
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benchmark models, respectively. So the time series on the Solow residual that emerge from

the two models are very similar to those used in existing RBC analyses (see for example

Hansen (1985) and Prescott (1986)). Second, the estimated value of 1(.0208) implies that

is roughly equal to 1.54, so that the concavity restriction on the depreciation technology

is satisfied ( > 1). Third, the expected value of the rate of depreciation, 5, is equal to

.0208 (or an expected annual rate of depreciation of 8.6%). The implied two standard

deviation band for quarterly depreciation is (.0191, .0226)."

Figure 1 displays the time series on the capacity utilization rate implied by our model.17

We also display the Federal Reserve's measure of capacity utilization for the manufacturing

sector. There are at least two reasons why the time series might differ: (i) our measures

of output and capital cover a broader segment of the economy than the Fed's , and (ii)
the Fed's measure is subject to substantial measurement error (see Shapiro (1989)). Still

it is comforting that the series track each other reasonably well.

Next, notice that, according to our model, capital utilization is quite volatile. In
particular, our point estimates imply that the standard deviation of the growth rate of

the effective stock of capital (U.K,) equals 0.0068 whereas the standard deviation of the

growth rate of the stock of capital equals 0.0015. Focusing on the physical stock of capital

would give a very misleading picture of the volatility of effective capital input.

Finally, notice that incorporating factor hoarding into the analysis leads to a substan-

tially smaller estimate of the volatility of technology shocks. Relative to the benchmark

model, correcting for factor hoarding leads to a 58% reduction in the variance of the in-

novation to technology shocks. To assess how much of this decline is attributable to time

varying effort as opposed to variable capital utilization, we estimated the labor hoarding

version of the model in which (4 is set equal to its non-stochastic steady state value.'8

Correcting for labor hoarding alone leads to a 21% reduction in the variance of the info-

"Recall that E(6,) = JE(U7) = 6t{expl#In(U41}. Assuming that the underlying disturbances to
the economy are normally distributed, In(LJ,) is normally distributed with mean p. and variance a. It
follows that E(6,) Sexp(#p.)exp(1#2e!). Using the fact thai, in our model, the log of the steady state
of a variable is equal to the expected value of the log of that variable, we obtain Jexp(#p.) = LU# =
1. So E(4) = Sexp(2a). Solving the model we obtain a. = 0.027. The variance of 5, is given by

—
IE(6e)12 = I2Iexp(2#2afl — Pexp(Ø'a!)J.

'TTo produce this graph, we have chosen 6 0.0285.
'5Tbis model is closely related to the one analysed in BElt (1993). One important difference is that,

here, X1 is assumed to be a difference stationary stochastic proces. BElt (1993) assume that Ig is a trend
stationary process.
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vation to technology shocks.'9 Evidently capital utilization plays a larger role than labor

hoarding in reducing the estimated volatility of technology shocks.

4.1 Some Simple Diagnostics

Before discussing the quantitative role of variable capital utilization in propagating shocks,

we briefly assess the performance of the benchmark and factor hoarding models in terms

of their ability to account for some of the standard statistics emphasized in the ItBC lit-

erature. Columns 1 and 2 of Table 2 present the implications of the two models for the

volatility of consumption, investment and hours worked relative to output and the volatil-

ity of hours worked relative to average productivity {a./a,,ct/c,,, ok/c, and uh/o,,}.'°
Column 3 reports non-model based estimates of these moments. Numbers in parentheses

are the standard errors of the corresponding point estimates. Numbers in brackets are the

probability values of the W statistics discussed in the Appendix for testing whether the

model and data population moment are the same. Notice that both models do very well

on these dimensions of the data. In no case can we reject the individual hypotheses that

were investigated (at even the 15% significance level).

Next we consider the models' implications for the dynamic correlations between hours

worked and average productivity as welt as the dynamic correlations between average

productivity and output. These are summarized in Figures 2 and 3, respectively. Columns

1 and 2 of these figures pertain to the benchmark and factor hoarding models. The

dotted lines in row 1 correspond to non-model based estimates of p(APLg,Ht+1) I =

(—4,3,. ..,O,.. .,3,4} and p(APL.,Y+,) :1 = {—4,3,...,O,...,3,4} while the solid lines

denote the values of those moments implied by the models. The solid lines in row 2 graph

the difference between model and non-model based estimates while the dotted lines denote

a two standard deviation band for this difference.

From Figure 2 we see that the factor hoarding model does quite well at accounting

for the individual dynamic correlations between avenge productivity, hours worked and

output. Let p"(APL,,Hij) and ,P(APL1,1c4) denote the difference between model and

non model values of p(APL, H1+) and p(AP4, 1.,.4, I = (—4, —3,..., 0,... ,+3,4}. Ac-
cording to Figure 2, we cannot reject the individual hypotheses that p°(APL1, H1÷) = 0

'9Our point estimate of a, in the labor hoarding model equals 0.012 with astandard error of 0.0007.
20These refer to moments of the HF Sitered dat;.
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for {i = —2, —2, 1,. . , 4}. Comparing the relative performance of the benchmark and
factor hoarding models, we see that the latter seems more consistent with the asymmet-.

nc lead lag relationship between average productivity and hours worked, although these

differences are not particularly marked once sampling uncertainty is taken into account.

Turning to Figure 3 we see that the models also do quite well at accounting for the

dynamic correlations between average productivity and output. In the case of the factor

hoarding model, we cannot reject the hypothesis that p"(AFL, Z4.1) for {i = —2, —1,..., 4).
For the benchmark model we cannot reject the hypothesis that p"(APL,Yg) for (1 =

4.3 Propagation of Shocks

We now consider the implications of factor hoarding for the propagation of shocks to

agents' environments and the volatility of output. Rows 1, 2 and 3 of Table 3 report a

variety of statistics pertaining to the volatility of output. Column I reports the value
of a implied by the different models. Column 2 reports our estimate ofc in the data.
Numbers in parentheses denote standard errors. Column 3 reports the 34) statistic for
testing the hypothesis that the model value of c equals the data population value ofo,.
The number in brackets equals the probability value of the corresponding 34) statistic.

Table 3 reveals that it is very difficult to distinguish between the models on the basis of
their ability to account for the volatility of output. Specifically, we cannot reject, at even
the 25% significance level, the null hypotheses that the values of for the benchmark
and factor hoarding models both equal the data population value ofc. There is some
marginal evidence against this hypothesis for the labor hoarding model (itcan be rejected
at the 10% but not at the 5% significance level). But, all in all, the three models doquite
well at accounting for the volatility of aggregate output.2'

What distinguishes among the models is how they account for thevolatility of output.
The estimated volatility of technology shocks is very different in the three models. But
all of them can account for the volatility of output.33 Since the estimated volatility of

21This evidence is robust to using the first-differenc, filter to render output stationary. In this case,the p-values are 0.08 for the benchmark model, 0.42 for the labor hoarding model and 0.40 for the factor
hoarding model.

Recali that the estimated law of motion forPt is very uin,ilar in the different models, so that this cannot
account for large differences among them.
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technology shocks is smallest in the factorhoarding model, factor hoarding must somehow

act to magnify and propagate those shocks.

Before analyzing how factor hoarding does this, we first quantify the relative strength

of the internal propagation mechanisms in the different models. One simple way to do this

is to compare the variability of output when the propagation mechanisms in the models

are and are not operative. According to the factor hoarding model, hours worked, effort,

capital utilization and K,/X1_1 are stationary stochastic processes. Consequently the log
level of output can be represented as

ln(Y) = ln(Xg) + v (21)

where Ye represents the time t stationary deviation of the log of output away from its trend

path. We can think of y as corresponding to the part of output variation that is explained

by the model's internal mechanisms for propagating shocks, as distinct from the variation

that is due directly to (exogenous) movements in Xg.

Suppose that we shut down these propagation mechanisms. In particular, suppose that

hours worked, effort and capital utilization equal their constant non-stochastic steady state

values and that K1 varies in direction proportion to X1_1, with K1 = k exp(X1_1). Here
k denotes the nonstochastic steady state value of K1/X_1. Then output, 17, evolves

according to

ln(17) = ln(Xg) + e (22)

where y denotes the non-stochastic steady state value of y.

One measure of propagation is the standard deviation of ln(1i) relative to the standard

deviation of ln(}7). Since the latter equals the standard deviation of ln(Xg), we denote

this ratio by c/a. This statistic can be calculated for all three models by applying a
stationary-inducing filter to both ln(lc) and ln(Xg).23 Columns 4 and 5 of Table 3 report

a and a/a, respectively, using the HP filter.
A number of interesting results emerge here. First, in the case of the benchmark

model, c9/a. z 1.05, i.e. the propagation mechanisms embedded in that model generate

only a &% increase in the volatility of output. In contrast, the propagation mechanisms

ln principle one could either shut down the shocks to p. or shut down the shocks to X. when performing
these calculations. Since shocks to g contribute very little to the volatility of output, we allowed for both
shocks.
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embedded in the factor hoarding model lead to a 47% increase in the volatility of output

n 1.47). Second, c1,/c is actually lower in the labor hoarding model than in the

benchmark model (1.01 versus 1.05). This finding is consistent with the fact that, of the

three models, the value of o is lowest in the labor hoarding model.24

A different way to assess the importance of factor hoarding as a propagation mechanism

is to consider the dynamic response functions of different variables in the factor hoarding

and benchmark models to shocks in X and g,. Rows 1 and 2 of Figure 4 report the
dynamic response of the log level of output to 1% shocks in X and g. Columns 1 and

2 pertain to the benchmark and factor hoarding models, respectively. The dotted lines

denote a two standard deviation band about the impulse response functions.

Consider the effect of a 1% shock to X1. In the impact period, the response of output

is quite similar in the two models, with l'g rising by 1.043% in the benchmark model

and 1.078% in the factor hoarding model. Thereafter, the response path is different. In

the benchmark model, output smoothly declines to its new steady state growth path,

approaching it from above. In the factor hoarding model, the one period ahead effect is

larger than the impact effect (1.51% venus 1.078%). Thereafter output smoothly declines

to its new steady state growth path, approaching it from above. Notice that the rate of

convergence is reasonably slow with output up by more than 1.1% twenty four quarters

after the technology shock. Row 2 of Figure 4 reveals a similar if less dramatic pattern in

the case of a shock to g1. So, as with a shock to Z, factor hoarding serves, at least after

a one period delay, to magnify and propagate the effects of the shock to gg.

Figure 5 displays the dynamic response functions of the log of hours worked in the

benchmark and factor hoarding models to 1% shocks in Xg and g,. In the impact period

of the shock to X1, hours worked rise by roughly 0.59% in the benchmark model and

then smoothly return to their (unaffected) non-stochastic steady state level. In the factor

hoarding model, hours worked do not, by construction, respond contemporaneously to a

shock in X1. In the period after the shock they rise by 0.8% and then slowly converge to

their (unaffected) non-stochastic steady state level. Notice that, after the impact period of

the shock, the rise in hours worked in the factor hoarding model exceeds the corresponding

34fleee result, are robust to the applied to ln(1',) and ln(X,). Specifically, for the first-difference
fifter u,/o, ii 1.05 for the benchmark model, 0.89 for the labor boarding model and 1.19 for the factor
hoarding model.

These bands reEect sampling uncertainty in our estimate, of the models' structural parameters.
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rise in the benchmark model along the entire adjustment path to non-stochastic steady

state. A similar pattern is observed in the response of the two models to a shock in g,

The reason for the 'hump-shaped' response of output to shocks in the factor hoarding

model can be understood by considering the dynamic response functions of the log of effort

and the log of capital utilization in that model. These are displayed in Figure 6a

In the impact period of the shock to Xi, effort rises by 0.29% and then immediately

reverts to its non-stochastic steady state level. The absence of a persistent response in

effort reflects our assumption that it is costless to adjust hours worked in the period after

the shock. By contrast, capital utilization initially rises by 0.7% and then climbs by even

more (to 0.96%) in the nat period. Thereafter capital utilization smoothly approaches
its (unaffected) steady state level from above. To understand the hump shaped response

of capital utilization, notice that impact period response of effort is small relative to the

second period response of hours worked.2' Therefore, the response of the log of effective

labor input, being the sum of the log of effort and the log of hours worked responses

displays a hump shape pattern. it is not surprising that utilization, being a complement
to labor input, displays a similar, hump-shaped response to shocks. Since variations in

effort, hours and utilization account for most of the transitory movement in output, the

level of output also displays a hump-shaped response. Similar patterns arise in response

to shocks to Ut.

To gain further intuition for our results, it is useful to consider the dynamic response

functions of consumption and investment to 1% shocks in Xg and g. These axe displayed

in Figures 7 and 8, respectively. We begin by discussing the case of a technology shock.

Equation (5) implies that a 1% technology shock leads to a permanent 1% increase in

the level of X1. Given the balanced growth nature of our model, this generates a 1%

upward shift in the steady state growth path of C, ICE, I, G and Y. To build up the
capital stock, investment must approach its new steady state growth path from above.28

Other things equal, this suggests that consumption will approaches its new steady state

path from below. By increasing capital utilization and labor effort in the impact period

Given our normalizations, the responze function of capital utilization is proportional to the response
(unction of depreciation, provided that we interpret the vertical axes as denoting the percent deviation of
depreciation from its non-stochastic steady state value. The factor of proportionality ii equal to .

2TThis reflects the relative curvature of agents' preferences over effort and employment.
21This corresponds to X approaching its steady state growth path from below.
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of the shock, the planner can generate a more than 1% output change in response to a

1% technology shock even though hours are fixed. Given the concavity of the planner's

criterion function in C1/X,, and the resulting desire of the planner to smooth consumption

relative to its new steady state growth path, the optimality of this type of response is not

surprising.

In the period after the shock, there is a large increase in hours worked and capital

utilization. This accounts for the large percentage increase in output that occurs in the

period after the shock. This extra output allows for a burst of investment while consump-

tion continues to climb upwards to its new steady state growth path. Thereafter, hours

worked, capital utilization and investment smoothly fall towards their steady state paths

from above, while consumption continues to climb to its steady state path from below.

Consistent with this interpretation of factor hoarding, Figure 7 reveals that consump-

tion approaches its new steady state growth path more quickly in the factor hoarding
model than in the benchmark model. We can quantify the speed of adjustment by calcu-

lating how many periods it takes consumption to climb 75% of the way to its new steady

state growth path. In the factor hoarding model, this occurs within 4 periods, but in the

benchmark model this takes 15 periods. Notice that factor hoarding also serves to speed

the convergence of consumption to its steady state growth path after a shock to gg. The

key difference is that the steady state growth paths of C, K1, I,, Y and C1 are unaffected
by a shock to g1.

Figure 9 depicts the dynamic response of the Solow residual in the factor hoarding

model to 1% shocks in X1 and g1. The key point here is that factor hoarding induces a

large persistent deviation between the actual technology shock and the measured Solow

residual. In the impact period of the shock both effort and capital utilization rise. Since

the Solow residual is calculated using measured hours worked and the stock of capital, it

rises by more than implied by the shock to technology (1.07% versus 0.64%). In the periods

after the shock, effort reverts to its steady state level but capital utilization continues to

be high relative to its steady state level. Consequently the Solow residual continues to be

above its (new) steady state growth path of 0.64%. As capital utilization slowly declines

to its steady state level, the Solow residual approaches its steady state growth path from

above. Naive Solow residual accounting which attributes all of the movements in total

factor productivity to movements in Z, clearly overstates the volatility of technology
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shocks. In contrast to the labor hoarding model considered in Buruside, Eichenbaum and

Rebelo (1993), the deviation between the Solow residual and the technology shock is highly

persistent, reflecting the persistent deviation of capital utilization from its steady state

level. This is the basic reason that our model generates a much smaller estimate of the

volatility of technology shocks than do the labor hoarding and benchmark models.

Finally, note that in response to a 1% shock in g, the Solow residual initially rises (by

roughly .07%) and then slowly approaches its unchanged steady state value from above as

capital utilization reverts to its unchanged steady state value. Again, naive Solow residual

accounting overstates the volatility of technology shocks. Indeed here the analyst would

infer that a sequence of technology shocks has occurred even though there has only been

a one time shock to aggregate demand and no shock to technology whatsoever.

4.3 Persistence of Output Growth

Cogley and Nason (1993) discuss the propagation mechanisms in REC models by focusing

on the autocorrelation function of output growth. They show that many RBC models

imply that the growth rate of output is close to being a white noise process. In contrast,

the actual growth rate of U.S. output displays positive persistence. Cogley and Nason

(1993) interpret this discrepancy as reflecting the weakness of the propagation mechanisms

embedded within standard RBC models. A simple way to see this is to recall that output

can be decomposed according to:

in(Z) = ln(Xt) + Yt• (23)

Under our assumptions about X, the growth rate of output is given by

Ain(Z),+vg+Ayt. (24)

where v1 is white noise. The absence of significant correlation in (model) output growth

reflects the fact that, in standard REC models, v1 is the dominant stochastic component of

A ln(Z). The key question addressed in this subsection is whether the propagation mecha-

nisms in the factor hoarding model are sufficiently strong so as to allow it to quantitatively

account for the autocorrelation function of A ln(}).

The first row of Figure 10 illustrates our unconstrained estimates of the autocorrela-

tion function of A ln(}') as well as those implied by the benchmark and factor hoarding
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models. As noted above, the actual growth rate of U.S. output is positively autocorre-

lated: specifically the first two autocorrelation coefficients are positive and significant.

Though it is difficult to discern from Figure 10, the benchmark model implies that all

the autocorrelations are negative. In contrast, the factor hoarding model does very well

at accounting for the autocorrelation function of A ln(Ye). The joint hypothesis that the

first two autocorrelation coefficients implied by the factor hoarding model are the same as

those in the data cannot be rejected at conventional significance levels. This hypothesis

is strongly rejected for the case of the benchmark model.

The impulse response functions discussed in the previous section provide some intuition

for these results. In the benchmark model, A ln(Z) is significantly affected only in the

impact period of a technology shock. It follows that since innovations to technology are a

white noise process, output growth closely resembles white noise. In the factor hoarding

model, a 1% shock to technology causes output to rise by 1.08% in the period of the

shock. In the second period after the shock output climbs by an additional 0.43%. So the

initial spurt in output growth is a signal of further growth in output. A similar pattern

is observed in response to shocks to gg. Not surprisingly, the growth rate of output is

predicted to display positive serial correlation.

Notice from the second row of Figure 11, that both models predict the correct pattern

of autocorrelation in the growth rate of the Solow residual.29 So the factor hoarding model

is able to generate positive serial correlation in output growth without generating counter-

factual predictions for the growth rate of the Solow residual. This is not the case for the

benchmark model. It must choose which of the two correlation structures to match. As

things stand, it matches the correlation structure of Mn(Sg) but not Aln(Z). We could

improve the model's performance regarding A ln(Yt) by assuming that A In(st) is positively

serially correlated but this would simply substitute one counterfactual implication for
another.

We can obtain a slightly different perspective on the performance of the models by

examining their implications for the spectnim of output growth:

1(w) = VarlAln(Z)] [1+
2Ecos(iw)Pij

(25)

The benchmark model predicts negative serial correlation because we allow for LLd. rnea.uremenl error
in hours worked. The (actor hoarding model makes ik. correlation slightly more negative.
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where P is the 5th autocorrelation of output growth. The spectrum implied by the
estimated benchmark and factor hoarding models, as well as an unconstrained estimate,

are presented in Figure 12. For the benchmark model the spectrum of A In(Ys) is almost

identical to the spectrum of A ln(Xi). The model adds almost no volatility over and above

the direct effect of the shocks, nor does the structure of the model significantly alter the

spectral shape of the technology shocks. In contrast, the factor hoarding model magnifies

the volatility of technology shocks in addition to significantly distorting their spectral

shape. Notice in particular that it induces a significant spectral peak in output growth at

business cycle frequencies from technology shocks which do not have a spectral peak.

4.4 Alternate Measures of Cyclical Behavior

In this subsection we assess the ability of the factor hoarding model to account for a subset

of the diagnostic statistics emphasized by Rotemberg and Woodlord (1994). These pertain

to the time series properties of the forecastable component of the growth in economic

aggregates like real output. To motivate these diagnostic statistics, it is useful to note

the connection between the expected growth of a variable at different forecast horizons

and the cyclical component of that variable as defined by Beveridge and Nelson (1981).

Suppose that we define the trend in a difference stationary random variable X as

= limE(X1 — k1), (26)

where i is the unconditional mean of the growth rate of X. The cyclical component of X1

at time t is just X7 = X1 — Xi', or

X7= —limEg(X.+k—Xe—ki). (27)

So the cyclical component of X is negative whenever the series is expected to grow more

in the long run than predicted by its unconditional mean growth rate. Strictly speaking,

the cyclical component of X1, so defined, is directly related to forecastable changes in X

at the infinite horizon. This motivates Roteznberg and Woodford's (1994) desire to focus

on forecastable changes in output (and other variables) at various finite horizons. Note

that if output was a random walk, as it is (approximately) in the benchmark model, it

could (and does) exhibit substantial variation even if its cyclical component is identically

equal to zero. As long as the cyclical component of aggregate U.S. output is not i.i.d., the
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benchmark RBC model will not be able to account for any of its variation, even if it could

account for all of the variance in the actual growth rate of output.
To generate the forecasts needed to make their diagnostic tests operational, Rotemberg

and Woodford (1994) use a second-order VAR representation for the growth rate of output,

the log of hours worked and the log difference between consumption and output. In light

of this1 we too estimated an unconstrained second-order VAR for these variables. We then

calculated the population values of the VAR implied by the estimated benchmark and

factor hoarding models.30 Unlike Rotemberg and Woodlord (1994), the VARs implied by

our models do not have singular innovation covariance matrices. This is because we allow

for three sources of randomness in the variables observed by the econometrician: shocks

to technology, shocks to government purchases and classical measurement error in hours
worked.

Let Ej, and A7L,, denote the forecastable components of the k period ahead
growth of output, the log of hours worked and average productivity:

Yf,k = E (ln(Z+s) — ln(Z)]
= Eg [ln(Ht5)] — ln(HjJ

APL = E [ln(APL,+5) — ln(APLg)J

We consider the ability of the benchmark and factor hoarding models to account for (i)
the volatility of 2, E, and A7L15, (ii) the correlations among these variables, and (iii)
the correlation between and a1 ln(}), ln(Ct) — ln(Y,), ln(H,) and A In(APLg).

Results for (i) and (ii) are summarized in Figure 13, while results for (iii) are sum-
marized in Figure 14. Column 1 of each graph depicts point estimates of the relevant

moments calculated from the unconstrained VAR and the models. Column 2 depicts the

difference between the benchmark model and unconstrained VAR estimates along with a
two standard error band around the difference. Column 3 is thesame as Column 2 except
that it pertainsto the factor hoarding model.

Consider first the models' ability to account for the standard deviation of 2,j, II,e and
A7L. Figure 13 indicates that the most important failing of the benchmark model in
this regard lies in its inability to generate sufficient variation in thepredictable component

30Th1 diagnostic statistic. which we discuss can be calculated from these VAR's. A detailed appendix i.
available from the author, upon request.
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of output growth. In fact, this model generates virtually no variation in This is

consistent with our finding that output is close to being a random walk in the benchmark

model. Figure 14 indicates that the factor hoarding model does considerably better at

accounting for the standard deviation of Y,1.

Next consider the correlation of with ft1,1 and A7LI,k. From Figure 13 we see that

both models do very well at matching the strong positive correlation between Y and

ft111 found in the data at long forecast horizons. However, neither model fully accounts

for the magnitude of the correlation found at short horizons ( k S 8). Still the factor
hoarding model does better on this dimension than the benchmark model, in that it
predicts a stronger positive correlation at short forecast horizons. Both models do a

reasonably good job of matching the correlations between and A7L1,1 at short forecast

horizons. In large part this 'success' reflects the imprecision with which those correlations

are estimated. The performance of both models deteriorates somewhat at longer forecast

horizons, although the factor hoarding model does better than the benchmark model.

Finally, consider the models' implications for the correlations between ,a and A ln(fl,

ln(Cj) — lnflc), ln(Hg) and A ln(APL4). Figure 14 indicates that the most important

failings of the benchmark model lie in

1. its inability to account for the strong positive correlation between A Ln(Z) and .a

at short forecast horizons, and

2. its inability to generate a positive correlation between A In(APL1) and at all

forecast horizons.

These failures reflect the nature of the propagation mechanisms embedded in the bench-

mark model. Recall that in that model, output initially responds by just over 1% to a

1% shock in technology. Thereafter output is expected to decline to its long-run path.

So other things equal, the model predicts a counterfactually negative correlation between

the current change in output and the expected growth rate of future output relative to

the current level of output. Since avenge productivity also rises in the impact period of

the shock, the model also generates a counterfactually negative correlation between the

growth rate of average productivity and the expected growth rate of output.

Figure 14 reveals that the factor hoarding model does significantly better at accounting

for these features of the data. Indeed the model fully accounts for the correlations between
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,k and A ln(Y) as well as the correlations between '(, and A ln(AP4). To see why,

recall that, in the factor hoarding model, output initially rises by i.os% in responseto a

1% technology shock. In the period after the shock output continues to grow, climbing

i.si% above its initial level. So the initial 1.08% increase is followed by another predictable

0.43% increase. Thereafter, output falls steadily. However, it does not return tothe level

it attained in the impact period of the shock until more than 24 quartershave elapsed. So

the initial positive growth rate in output, A ln(Z), is expected to be followed by at least 24

quarters of growth relative to the time I level of output. So here we expect A bfl) to be

positively correlated with 2 for a large range of k. Since the impact period response of

average productivity is identical to the output response the model also generates positive

correlations between A ln(APLt) and 2.
We conclude that while there are certainly dimensions along which the factor hoarding

model does not fully account for the diagnostic statistics proposed by Rotembergand

Woodford it does substantially better than the benchmark model.

5 Conclusion

This paper formulated and estimated an equilibrium business cycle model in which capital

utilization rates vary over the business cycle. We argue that cyclical movements in effective

capital services are substantially more volatile than cyclical movements in the stock of

capital. In addition we argued that variable capital utilization rates are a quantitatively

important source of propagation to business cycle shocks. Because of this feature, our

model is able to account for various features of post war business cycles that are anomalous

from the perspective of existing RBC models.

A virtue of our model, is that it represents a minimal perturbation of the standard RBC

model. This greatly simplifies comparisons with existing work in the literature. However

this simplicity is purchased at the cost of descriptive realism. For example, using data

from the auto industry, Bresnahan and Ramey (1993) argue that of the multiple margins

used by the managers of an automobile assembly plant, varying regular hours by shutting

the plant down for a week is the most important. Second most important is adding or

dropping a shift. We view the model considered in this paper as approximating these

sorts of adjustments. We conjecture that the aggregate capital utilization rate that would

26



emerge from explicitly modeling those richer environments would also respond positively

to technology shocks and innovation to government purchases. In this sense we expect
the qualitative features of our model to be quite robust to alternative ways of modeling

variable capital utilization. However the robustness of our quantitative results remains

very much an open issue to be addressed in future research.
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TABLE 1

Model Parameters W1
Estimates and Standard Error?

Benchmark Mode! Factor Hoarding Model
Parameter Estimate Std. Error Estimate Std. Error
9 5.1199 (0.0577) 3.5955 (0.0440)
a 0.6553 (0.0062) 0.6422. (0.0225)

0.0208 (0.0002) 0.0208 (0.0003)
-1 0.0031 (0.0018) 0.0038 (0.0014)
a 0.0135 (0.0014) 0.0088 (0.0008)
g/y 0.1763 (0.0024) 0.1763 (0.0025)
Po -1.8753 (0.0366) 1.7885 (0.0943)
gi -0.0013 (0.0002) -0.0019 (0.0003)
p 0.9150 (0.0453) 0.9456 (0.0349)
C 0.0163 (0.0014) 0.0152 (0.0014)
a 0.0088 (0.0012) 0.0088 (0.0012)
111. 2.51 2.77

All standard errors shown in this table are based on estimates of S. computed using
the Bartlett window suggested by Newey and West (1987). The row BT indicates the
bandwidth of the lag window used to estimate 5T as chosen by the automated procedure
described in the text.
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TABLE 2

Tests of the ModeV

Moment U.S. Data Benchmark Factor Hoarding
Model Model

a/o, 0.437 0.453 0.480

(0.034) (0.005) (0.010)
[0.6331 10.2251

o/o 2.224 2.224 2.244

(0.079) (0.069) (0.085)
[0.999] (0.858]

Ch/Cv 0.859 0.757 0.795

(0.080) (0.050) (0.059)
[0.183) (0.394]

a,./o 1.221 1.171 1.033

(0.132) (0.032) (0.043)
(o.729J (0.198]

TABLE 3

Propagation and the Volatility of OutpuC

Model a, (Model) a, (Data) W c c1/u
Benchmark 0.0183

(0.0019)

0.0192

(0.0021)

0.137

(0.712]

0.0174
(0.0018)

1.051

(0.014)
Labor Hoarding 0.0157

(0.0012)

0.0192

(0.0021)

2.951

[o.086J

0.0155

(0.0013)

1.011

(0.014)
Factor Hoarding 0.0167

(0.0015)

0.0192

(0.0021)

1.185

[0.276]

0.0114

(0.0010)

1.467

(0.031)

The statistic c is the standard deviation of HP filtered output. The statistic a, is the
standard deviation of the HP filtered level of technology. Standard errors of the statistics
are in parentheses. )4) statistics are for tests of the hypothesis a (Model) = ° (Data).
P-values are in brackets.
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FIGURE 1
MEASURES 0)' CAPITAL AND UTILIZATION

• The thick line is the Federal Reserve's measure of capacity utilization in the manufac.-
turing sector. The thin line is our measure of capital utilization.
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CORRELATION OF
FIGURE 3

AFL WITH Z+ (HP FILTER)

'In the Correlation panels: solid line — model predicted correlations, dashed line — sample
correlations. In the Difference panels the dashed lines represent a 2-standard error band
around the difference.
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FIGURE 4
IMPULSE RESPONSE FUNCTION OF OUTPUT

FIGURE 5
IMPULSE RESPONSE FUNCTION OF Houas

The dashed lines represent a 2-standard error band around the impuise response functions
due to parameter uncertainty.
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FIGURE 6
IMPULSE RESPONSE FUNCTIONS — FACTOR HOARDING MODEL
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FIGURE 8
IMPULSE RESPONSE FUNCTION OF INVESTMENT

Benchmark Model Factor Hoarding Model
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FIGURE 9
IMPULSE RESPONSE FUNCTIONS — FACTOR HOARDING MODEL
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The dashed lines represent a 2-standard error band around the impulse response functions
due to parameter uncertainty.
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FIGURE 12
THE SPECTRUM OP OUTPUT GR0WTIV

Factor Hoarding Model

The solid line represents the spectrum of output growth, while the dashed line represents
the spectrum of technology shocks. The spectrum for U.S. data was computed using the
RATS 4.0 example program SPECTRUM.SRC.
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FIGURE 13
MOMENTS OF PREDICTED GROWTH IN OUTPUT, Houas AND PRODUCTIVITY
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FIGURE 14
CORRELATIONS OF PREDICTED GROWTH IN OUTPUT WITH MACRO TIME SERIES
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Appendix
A.1 A Note on Steady State Conditions in the Factor Hoarding Model

In this section we show that the parameter is restricted by the nonstochastic steady state
conditions from the factor hoarding model. Furthermore, since the linearized model does
not depend on us being able to separately identify the values of 6 and the nonstochastic
steady state value of capital utilization, denoted U, we only estimate the nonstochastic
steady state value of depreciation, 6 = SU#. Take the planner's Euler equations for
utilization and the next period's capital stock. These are, respectively,

(1 — a). = 46Uf'K (A.i)

C' = flE,C [(1 — a).±!. + (1 —
6+i)]

. (A.2)

Given that & = out, it follows that the nonstochastic steady state value of 6,, which we
denote 6 is equal to 6U, where U is the nonstochastic steady state value of if,. Rewrite
(A.2) as

1 = flE1i!±! [(1 — a)±-—+ (1— &+1)-—)]. (A.3)
X,4.1

Denote the nonstochastic steady state value of Y,/X1 and K,/X,_1 as y and Ic respectively.
Then, in the nonstochastic steady state (A.2) is given by

V -= — a) + (1— O)ex(—i)j. (A.4)

This can be solved for the output-capital ratio

= —(1 —1) cc(—i)
(A.5)

Ic 1—a

Notice that (A.1) can be rearranged as (1 —a)Y/Kg = coSU,. This implies that in the
nonstochastic steady state

(1— a)exp) = ØU = a. (A.6)

Substituting (A.5) into (A.6) and solving for we have

flapey)11 (A.7)

Therefore, given values of fi, y and 6 the parameter need not be treated as a free
parameter. We estimate 6 by matching its logarithm to the mean of the logarithm of our
othcial depreciation series. This implies a value of #. The reader may refer to Burnside
(1993) to see that in order to compute the coefficients in the linearized model we never
require speciftc values of 6 and U.
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A.3 Measuring Capital, Depreciation, Utilization, Effort and Technology
In this section we describe how we can measure various series given a vector of model
parameters, In the next section we describe our scheme for identifying Wi. The
first measure of capital we have is the official series K1. We treat this as an imperfect
measure of the true capital stock. Our first (imperfect) measure of the depreciation rate
is A1 = i+ (I — 11+1)/k1. Given values of the parameters 6,0 and i and a we recursively
generate time series on 4 and 1G. We parameterize the ratio of the initial true capital
stock to the initial official capital stock by defining, A5 J11/Ki. Our recursive procedure
exploits the progression

K1 = A5K1

Si = (1 — a)Yt/(Ki)
K7 = (1—6)1C+I
6, = (1—a)Y,/(ØC7)

= (1—a)Yr/(sbKr).

The value of is determined by the values of , fi and -y according to (19).
The only purpose for which we need a series on utilization is in order to create Figure 1.

For this purpose we chose 8 = 0.0285, and used the relationship LI1 = (4/8)1/0. However,
we do not estimate 8 so it is not included in our specification of 'P1.

The variable W1 is not observable, nor is the level of technology Xe. However, as
described in section 3, we can construct measures of these variables using the decision rule
for the log of effort, w,, and using the form of the production function. The decision rule
for effort is

Wg = Ito + ,c1k1 + 1C2fl1 ÷ 1C3U1 + %9e, (A.8)

where the vector of coefficients it depends on the parameters of the model. Notice that

Wg = IC + its[b(Ks) — ln(Xe..i)] + c,[ln(Hfl — ln(f)1 +
ac3[ln(Xe)

— ln(Xe_s) — y] + ec.(ln(Cg) — ln(Xg)).

Here we use the notation ln(Hfl to refer to true hours worked. In the next section we
adjust our analysis to take into account the effects of measurement error.

An artifact of the model is that it1 = —it3. Therefore, for some constant ir0 the decision
rule for effort implies that

ln(Wt) = xc ÷ r1 ln(Kt) + r2 ln(Hfl + r3 ln(Cj) + x4 ln(Xi), (A.9)

where r1 = Kj, R3 = Sc2, w3 = it4 and r4 = Sc3
— it4.

The production function implies that

ln(Z) = (1— a) ln(K1) ÷ (1— a) ln(Ui) + a ln(fl7) + a ln(Wt) + aln(Xg). (Ado)

Substituting in the expression for ln(W,) and noting that ln(Ug) =' [In(S1) — ln(6)] =

r' (ln(1 — a) — ln() + ln(Y) — ln(Kjj, and solving for the value of ln(Xt) we see that

ln(Xe) = 'Po + ln(Z) + ln(Kg) + w,ln(Hfl ÷ O4 ln(Gg), (A.11)
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where

= — a)'/a — a]/(1 + 7tt)

= — [i — a) — ')/a + riJ/(1 + 2i4)
¶03 = —(1+ri)/(1+ir4)
¶04 = —1'.a/ + '.4),

and 'p is some constant which depends on W1. Given the values of X,, (A.8) can be used
to determine W,.

A.3 The Moment Restrictions Underlying the GMM Estimator

This section describes our method for estimating the parameter vector W. We use an
exactly identified GMM (Hansen 1982) estimator as in Christiano and Eichenbaum (1992)
and Burnside, Eichenbaum and R.ebelo (1993). In the previous section we described our
method for measuring effort, utilization, capital and the level of technology given a vector
of parameters. In this section we describe moment restrictions which enable us to identify
these parameters.

As in the latter two papers we assume that the measures of hours worked available to us
are measured with error. In our model the true measure of hours is defined as H =P1,1,
the number of workers employed times the fixed shift length. The two measures of hours
we have are Hansen's (1985) hours series based on the household survey, denoted H1, and
a measure of hours based on the establishment survey, denoted H,. We assume that in
logarithms each of these deviates from the true level of hours worked according to inde-
pendent white noise processes, g and U4, with standard deviations e and °E respectively.
The primary hours series we use is the household series. In order to obtain an estimate
of the standard deviation of the measurement error in this series we use the following
identifying restriction,

E{a — ln(H,)] + ln(H1).A ln(ftt) } = a. (A.12)

We fix the parameters fi = 1.Q31/4, T = 1369 and ç = 60 as in Burnside, Eichenbaum
and Rebelo (1993). Furthermore, / is chosen in order to normalize the nonstochastic
steady state value of effort to 1. The remaining parameters to be estimated are 8, a,, c, (g/y), g, g1, p, e and A. Measurement error in hours worked forces us to adjust
several of the natural restrictions that would identify these parameters.

The nonstochastic steady state level of employment N is implicitly a function of W1.
Therefore, we use the following restriction implied by the model

E{ln(Hg) — ln(Nf)] =0. (A.13)

Note that measurement error in hours worked does not change the mean of the log of
hours.
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We assume that the official capital series, while not capturing variations in capital
utilization, leads to the correct depreciation rates on average. I.e. we assume that

E[ln(o.) — ln()] = o, (A.14)

even though bg St.
We use the intertemporal Euler equation

£ [1 — fl(_2L) ((1 — cz)(1 — + = 0. (k's)C.1 K141

In the previous section we derived an expression for the level of technology in terms of
model parameters, observable.s and true hours worked. If we simply substitute measured
household hours into this expression we obtain a measured level of technology, ln(Xfl
related to the true level of technology according to ln(Xfl =ln(X,) + ss•

Since Ct is mean zero we can use the condition

Ev° = £[ln(x;) — —i] = 0. (A.16)

Furthermore, we have

= — = c + (A.17)

Since we only identify ln(Xt) up to a constant, we do not estimate the value of g, the
steady state value of G1 relative to X1. Instead, we estimate the value of (g/y) the steady
state share of government expenditure out of output. This parameter is identified using
the moment restriction

E[ln(Gg) — ln(Z) — ln(g/y)] = o. (A.18)

Our measure of ln(G1) — ln(Xfl displays a downward trend. Since our model does not
capture this feature, we define g = ln(G,) — ln(X() — g0 — g1t, in order to obtain a mean
zero, trendless process for shocks to government expenditure consistent with our model's
specification. We then impose the following restrictions

Egg' = E[ln(Ct) — ln(Xfl — g0 — git] = 0 (A.19)

E(gt/T) = E[ln(Ci)
— ln(Xfl —go— git]t/T = 0 (A.20)

The measurement error in implies that g = g — Thus we have the moment
restrictions

—
pg'_1) ln(g_1)] = —poc (A.21)

— pg_1)2J = (1 + p)çoc! + (A.22)

Finally, since deviations between K1 and k1 are transitory, we impose the restriction
that the capital-output ratios implied by these two series have the same mean. I.e. we
impose the restriction

E[ln(Kt/Ye) — ln(kt/Ydj = 0. (A.23)
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Equations (A.12) and (A.l3)—(A.23) are used to identify the 12 elements of W. These
equations identify the parameters since our measures of technology, X1, and capital K,,
both depend on WI.

As in Christiano and Eichenbaum(1992), we focus on three types of moments as
diagnostics for the performance of our model.

i. the standard deviation of a variable of interest, zg, denoted a,,

ii. the standard deviation of one variable, s,, relative to that of another variable,
z,, denoted a,/a,,

iii. the correlation between a, and zt, denoted p4.

Ignoring means (which are zero for HP filtered data), in order to identify these moments
in our data, we use moment restrictions of the form

= o

E[a
— = o

— p.,o.o.} = a

A.4 GMM Estimation Procedure and Diagnostic Tests
To define our joint estimator of W1 and W, consider the following generic representation
of our moment conditions:

E [M(w°)} = 0 Vt � 0 (A.24)

where 'P0 is the true value of (WI, t2). Here M, is a vector valued function of dimension
equal to the dimension of 'P0. Let 9r denote the vector valued function

iT
g(W) = TEMt(W) (A.2S)

Under the conditions discussed in Hansen (1982), 'P° can be consistently estimated by
choosing the value of W, say Wi., that minimizes the quadratic form

Jr = Tgr(W)'Sf1gr(W) (A.26)

where $' is a consistent estimate of 2r times the spectral density matrix of M,(W°) at
frequency zero. For the sake of convenience, we refer to S. as 'the weighting matrix'.

A consistent estimator of the variance-covariance matrix of 'Pr is given by

Var(W) = [VrS1Dr]' (A.27)

where D = ögr(Wr)/8W'.
Suppose we wish to assess the empirical plausibility of the model's implications for

a q x I subset of 'P3 which we denote by w. Let the value of w implied by the model,
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given the structural parameters 'I's be denoted by 11(W). Here 11 denotes the (nonlinear)
mapping between the model's structural parameters and the relevant population moments.
The value of w obtained directly from the data (without imposing the restrictions of the
model) is given by rw, where 1' is a conformable matrix of zeros and ones that selects the

vector c from 'Il'. Many of the hypotheses we are interested in investigating are of the
form

H0 : F(W°) = 11(W°)
— N'° = 0 (A.28)

Christiano and Eichenbaum (1992) show that

Var(F(Wr)J = IF(tr)1[var(Wr)][P(*r)Y (A.29)

and that the test statistic

= F(*r)'Var[F(Wr)111F(*r)j (A.30)

is asymptotically distributed as a x2 random variable with q degrees of freedom.
In exactly identified systems, 'Vr is invariant to the way the weighting matrix 5r is

estimated. However the covariance matrix of and the Wr statistic in (A.30) do depend
on ST. We report results based on Andrews' (1991) modification of the estimator suggested
by Newey and West (1987). We treat this estimator as a benchmark because the results
in Burnside and Eichenbaum (1994) suggest that it has attractive small sample properties
relative to other widely used alternatives.3' Our estimator is of the form:

T
T—d E k(f.)31 (A.31)

j=—(T—1)
T

where d is the dimension of '1', T is the sample size,

= f r' E!1÷ M((WT)Mt_j(WT)' for 5 � °
(A 32)

1 T sL_5÷1 M+,(Wr)M(Wr)' for 5 <0

and

ka(z) = j '—N for lxi 1
(A.33)

1
otherwise

Here (T/T — d) is a small sample degrees of freedom adjustment suggested by Andrews
(1991), and Br is a scalar that determines the bandwidth of the lag window, k(.). Applying
Andrews' (1991) automatic bandwidth selection procedure to our problem yields a value
of Br equal to 2.77.

32For a more complete discunion of alternative estimator. for S lee Bunseide and Eicbenbaum (1994)
or Chriitiano and den Han (1993).
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