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Generalizability theory and common factor analysis
are based upon the random effects model of the analy-
sis of variance, and both are subject to the factor inde-
terminacy problem: The unobserved random variables
(common factor scores or universe scores) are indeter-
minate. In the one-facet (repeated measures) design,
the extent to which true or universe scores and com-
mon factor scores are not uniquely defined is shown to
be a function of the dependability (reliability) of the
data. The minimum possible correlation between
equivalent common factor scores is a lower bound es-
timate of reliability.

The equivalence of the random effects model of
the analysis of variance and the model of factor
analysis is well-established (Bock, 1960; Burt, 1947,
Creasy, 1957), as is the equivalence of the classical
test theory model (the true score model) and the
common factor model (e.g., Steiger & Schéne-
mann, 1978). Generalizability theory (Cronbach,
Gleser, Nanda, & Rajaratnam, 1972) extends clas-
sical test theory by ascribing variations in obser-
vations to specific sources (facets or conditions of
measurement). Because generalizability theory is
based upon the random effects model, problems
associated with the factor model may also be as-
sociated with generalizability studies.

One such problem in the factor model is the lack
of determinacy of the factor scores which presum-
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ably underlie the observed scores (e.g., Cattell,
1973, p. 303; Guttman, 1955; Schonemann, 1971).
In short, there are infinitely many solutions for the
unobserved factor scores, and thus no unique so-
Iution for the factor model as defined in the pop-
ulation. Universe scores (person variables) are
unobserved common factor scores, and they too
are subject to the indeterminacy problem.

There is considerable controversy surrounding
the factor indeterminacy issue (e.g., Jensen, 1983;
McDonald, 1977; Schonemann, 1983; Steiger &
Schonemann, 1978). For example, McDonald (1974,
1977) presented a case for factor variables as being
unique but unknown. The present approach takes
a strictly mathematical view of the linear model
used in generalizability theory, namely that a sys-
tem of linear equations is indeterminate if there are
more unknown variables {common and unique fac-
tors) than known (observed) variables. This study
examined the degree of factor indeterminacy in the
one-facet (repeated measures) design used in gen-
eralizability theory.

Generalizability studies focus on estimating the
variance components associated with sources of
variation rather than on estimating individual uni-
verse scores or the effects associated with the mea-
surement conditions, as in decision studies (e.g.,
Cronbach et al., 1972, pp. 16—17). Variability in
scores is examined rather than estimation of uni-
verse scores, because the levels (e.g., observers,
situations, items) are assumed to be randomly se-
lected from some relevant universe, as in random
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effects analysis of variance. There is considerable
literature on estimation of true scores {(e.g., Lord
& Novick, 1968, pp. 152—153) and universe scores
(e.g., Cronbach et al., 1972, pp. 73ff.), but the
factor indeterminacy problem is not simply one of
estimating universe scores or person effects. Rather,
there is no way to determine a person’s universe
score uniquely, even if a person’s universe score
is defined a priori as a parameter—that is, the ex-
pectation of observed scores over all conditions of
measurement (randomly parallel tests), as in true
score theory. This is equivalent to taking the ex-
pectation over all possible levels of the facet, which
is not feasible, especially with large universes such
as observers, occasions, or situations.

It will be shown that both the generalizability
coefficient and an index of factor indeterminacy
are estimates of reliability. The lowest possible
reliability is the minimum correlation between
equivalent universe (or common factor) scores.
While the goal of this study was determining the
number of observers, occasions, or situations needed
to obtain acceptable reliability in direct behavioral
observation or rating studies, there are also impli-
cations for factor analytic test construction (with
respect to choosing the number of items in a test).
The pragmatic question, then, is: To what extent,
if any, does this indeterminacy have practical sig-
nificance? What is the number of items or obser-
vations needed to achieve a given level of reliable
measurement?

Overview of
Generalizability Theory

Attention here is limited to fully crossed (bal-
anced) one-facet (repeated-measures) designs,
though the results may extend directly to other
models. Working with deviation scores allows con-
siderable simplification without any loss in gen-
erality, because the variance component estimates
are unaffected by subtracting the population mean
from each observation. Thus, an observation in
deviation score form may be decomposed into in-
dependent random variables corresponding to the
sources of variation in the experimental design,
plus a random error variable.

A typical application of a one-facet design, such
as P X § (person X situation), is collecting behav-
ioral observations or ratings on » people in n, dif-
ferent situations. The n people are assumed to be
randomly sampled from the population of all such
people, and the n, levels of facet § are assumed to
be randomly selected from the universe of all such
conditions of measurement. A sample deviation
score (Cronbach et al., 1972, p. 26) is represented
as
Yo =p t s+ ps; +e &y
where y; is the observed deviation score for person

i under condition j;

p; is the effect of person i (the universe
score for person i minus the population
mean);

; 18 the effect of condition j;
ps; is the P X § interaction effect of person
i under condition j; and

e; is random error.

Because differences in means for levels of facet §
do not affect the person-related variance compo-
nent estimates, the different effects due to facet §
can be ignored for the present purposes. The model
assumptions are:

)

E(y) = E(p) = E{ps) = E(e) = 0, @
Var(y) = o7 3)
Var(p) = o; 4)
Var(ps) = o2, (5)
Var(e) = o2 , 6)
and p, ps, and e are independent. Hence,

ol =0} + ok + 02 . Q)

In the usual sample estimation probiem, ps; and
e, cannot be measured separately and are com-
founded (the residual pse;). Thus, the model ac-
tually used is

ylj = pi + psezj B (8)
where p, and pse; are independent, so that
¢ =02+ o}, . 9)

The variance components may be estimated using
the Cornfield-Tukey algorithm,

= (MS, — MS,V/n, , (10)
and
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62, = MS,, , (1)

where MS, and MS,,, are the mean squares for
persons and residual, respectively.

Considering the population case, the so-called
unit-sample generalizability coefficient (g-coeffi-
cient) p? is an intraclass correlation coefficient which
measures the reliability of a single judge, or a single
item in a test, as in traditional reliability (e.g.,
McKeon, 1969; Winer, 1971, pp. 283-286):

2
UP

S —
g (12)

The generalizability of the mean of n, measures,
the full-sample generalizability coefficient (or
coefficient alpha; Mulaik, 1972, p. 209), is given
by

2 0.2
o T e T (U o2, 13
The full-sample g-coefficient corresponds to the
reliability of a whole test comprised of n, items,
which may also be computed using the Spearman-
Brown prophecy formula.

Schénemann (1971) has shown that for a given
set of observations which satisfy the factor model,
a minimally correlated equivalent set of uncotre-
lated factor scores may be generated which cor-
respond to the same observations. This minimally
correlated equivalent set of orthogonal factors rep-
resents the worst possible case of factor indeter-
minacy, and such results may be used to evaluate
the random effects model as used in generaliza-
bility theory.

Factor Indeterminacy

To phrase the random effects model in factor
analysis terms, consider the model in Equation 8.
This discussion holds for any number of repeated
measures, but for illustration, consider the case
n, = 2. This discussion is based on Schénemann
(1971, 1983) and Steiger and Schénemann (1978).
The model in Equation 8 may be writien

Yy = P+ psey; = 0% + 0z (14)
where E(x) = E(z) = 0;
Var(x) = Var(z) = 1; and

x and z; are mutually independent (j = 1,2).

The two observed random variables y, in y’" = (y,,
y,) may be written in vector notation as

x
= (a,@)(z) =ax + Uz , (15
where x 18 an unobserved random vari-
able, the standardized ‘‘com-
mon factor’’;
= (z,, z,) are two unobserved
random variables, standardized
“‘unique factors’’;
a is a2 X 1 vector of factor load-
ings, the common factor pat-
tern, where a’ = (o, 0,);
is a positive definite diagonal
matrix, the unigue factor pat-
tern, where U = o, 1,; and
the matrix (a,U) = (1, 0,.[) is the total pattern
(cf. Schonemann, 1971, p. 22).

The ‘‘person variable’” is p = o,x, and the
person X situation residual variables are pse, =
0,z and pse, = &,,z,. Thus, the one-facet (P
X §) design corresponds to the two-factor model,
where o7 is the person variance component (com-
mon variance or communality), o2, is the residual
variance component (unigue variance, consisting
of “‘true’’ specific and error variance), and the co-
variance matrix of the observations is

3 = o0, + 0l

pse

2 2 2
_ [0* + 05 o J . (16)

the z; in 2’

4

M

2 2 2
g o} + ok,

The universe (or true) scores correspond to the first
centroid of the observed data. (The possibility of
the person variable being composed of more than
one common factor is not pursued here, nor are
the various other generalizability models.)

In the usual sample estimation problem,

Y =6x + 6,12 | a7

pse
where Y(2 X i) are the observed deviation scores;
x'(1 X n) is a vector of standardized ‘‘com-
mon factor scores’’;
Z{2 X n) is a matrix of standardized and un-
correlated ‘unique factor scores’’;
and
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&, and 6, [ are sample estimates of o, and o, L.
Then,

$=YYIin-1 . (18)

The essence of factor indeterminacy is that an
infinite number of solutions for x and z exist which
satisfy Equation 15. More formally, Schénemann
(19713 has shown that for any set of factors (x, z)
which satisfy Equation 15, another set of equiva-
lent factors

(=) =)

may be found which also satisfy

x x
(a,\z/ = (@,U)TT'\z
x
= (a,U)T'\ =
x*
= (a,U)\ z* 20)

and Equation 15, where the transformation matrix
T is an orthogonal right unit of (a,U) (Schone-
mann, 1971, p. 23). An orthogonal right unit of
the mairix (a,U) has the properties: (a,1)T =
(a, U) and TT' = T'T = 1. T is also the corre-
lation matrix between eguivalent sets of factors:

14 o 1 O ] PR

The T which minimizes the correlation between
factor pairs is given by

al

Toin = 2 <EJ’> 2@ - La (22
(Schénemann, 1971, Equation 5.2, based on Gutt-
man, 1955, and Heermann, 1966). Although T,
minimizes the sum of the correlations between
equivalent factor pairs [i.e., tr(T,;,)], which in-
cludes both common and unique factors, the min-
imum possible correlation between the equivalent
common factor scores may even be lower (cf.
Schonemann & Wang, 1972}, In general, the min-
imum average correlation between equivalent sets

of uncorrelated factors is given by

7= [Vp + m)ir(Tr)
ptm
= [+ m) 2 1a
=@ -mlp+m , (23)
where p is the number of observed random vari-

ables,
m is the number of common factors, and
i are the diagonal elements of T, (i.e., the
minimum correlations between equivalent
sets of common and unique factors; Scho-
nemann, 1971).
In a one-facet generalizability model, then, v =
(n, — DN(n, + 1), and forn, = 2, T = 1/3.
Perhaps more relevant is the correlation between
equivalent common factors. Schénemann (1971,
p. 27) discussed the minimum average correlation
between equivalent sets of m uncorrelated common
factors, given by

L= Umy 2y,

=3
il

(Umir2A'Z A — &) 24
where 7, is the mean of the first m diagonal elements
of T ... For the one-common factor model used in
generalizability theory, this minimum correlation
between equivalent sets of universe scores based
on minimizing (T ,,) is #,, element (1,1) of
T.in- For convenience, we can define this corre-
lation as r,,, which is given by

Tom = 0y = 2&'%7'a — 1 (25)
(from Schénemann, 1971, p. 27, and from Equa-
tion 22). Substituting o, and o,,, into this definition

pse

of r;, yields the following in terms of the variance

components:
o — (I/n,) o,
Tmin T 52 L (Uny) o2,
(l/n) -
= p - ——" (26)
UZ + (/n) o2,

The minimum correlation between equivalent com-
mon factors is thus the full-sample generalizability
minus the ratio of the residual variance to the ob-
served score variance used in the denominator of
the full-sample g-coefficient.
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I Teflects the degree of variability in possible
values for the universe scores of a given person in
the population, as a lower bound estimate of reli-
ability. ., is the cosine of the angle formed by
possible equivalent universe score vectors: The
smaller the angle, the less the indeterminacy.

The ratio of r, to p2,

¥ ain 0-2 - (l/n) pse
P2 o2
()—ZSE
=1-— Q7
nG,

For two standardized observed variables (n, =
2), the following relationships hold (where r,, is
the Pearson product-moment correlation between
the two measures):

P = Tuin (28)
and
3r, — 1
o= 2
Vrmin PR 29

Equation 29 is derived by substituting Equation 28
in Equation 12, solving for

0}% = pser12/(1 r) o, 30
and substituting this result in Equation 26. Thus,
ifr,=1,thenp? = landr,, = L;andifr, =
0, then p? = 0 and r,,, = —1. If the observed
pPM correlation is as low as r, = 1/3, then the
correlation between equivalent common factors
(universe scores) may be as low as r;, = 0.

For studies involving more than n, = 2 (i.e.,
more than 2 observers or items), the relationship
between reliability (p? and r,;,) and #n, is shown in
the accompanying figure for a representative value
of the unit-sample g-coefficient (p? = .25, based
on the relationship between o3 and o32,.). The full-
sample generalizability coefﬁcwnt, which is the
reliability of an n-item extended test and represents
the Spearman-Brown prophecy graph, and the min-
imum correlation between equivalent universe
scores, are both monotonically increasing functions
of the number of items or levels of the facet. The
difference between the g-coefficient (top curve)
and r.,, (lower curve) is

o5/ (no} + 0h.) €2Y)
as in Equation 26. Other initial values of the unit-

Figure 1
Generalizability and Minimum Correlation Between Equivalent Common Factors
as a Function of Number of Levels of the Facet
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sample g-coefficient yield similar sorts of curves.
For different measurement problems, there may be
a certain “‘optimal’’ number of items, beyond which
further improvement in reliability is relatively less
cost-effective in terms of time and resources ex-
pended.

Discussion

On the basis of the resulis obtained in this study,
the following conclusions are offered. In a one-
facet design, the degree of indeterminacy decreases
as the reliability or generalizability of the mea-
surement procedure (i.e., instrument, observer, etc.)
increases. The extent of indeterminacy (or con-
versely, the dependability of the data) is indexed
by either the g-coefficient or the correlation be-
tween equivalent common factors from minimally
correlated equivalent sets. Each level {e.g., ob-
server, judge) may be regarded as a test or meas-
uring instrument. According to Mulaik (1972): ““In
a universe of tests common-factor analysis, image
analysis, canonical factor analysis, and image fac-
tor analysis all converge to the model of classic
reliability theory which partitions variables into frue-
score and error-score parts’’ (p. 215). The present
analysis also demonstrates the equivalence of the
simplest generalizability model to the above models,
while more complex and higher-order designs rep-
resent modified factor models.

Further, A. J. Conger’s (personal communica-
tion, 1983) notion of the interchangeability of mea-
surement instruments is addressed by the gener-
alizability across levels of a facet. Both the
generalizability coefficient and the correlation be-
tween equivalent common factors assess the degree
of agreement in rank ordering of persons by
“‘equivalent’” or interchangeable measurement de-
vices, such as observers. The degree of similar rank
ordering is indexed by the person X facet inter-
action variance component: The greater the agree-
ment across levels, the smaller the interaction com-
ponent. Thus, the generalizability increases and the
indeterminacy decreases as the relative contribu-
tion of the person variance component increases
and as the number of levels (n,) increases (cf. Mu-
laik & McDonald, 1978).

This paper has dealt with a relatively simple
measurement problem, namely a unidimensional
scale or unitary construct. More complex mea-
surement situations, such as item selection using
domain sampling methods and construction of multi-
attribute scales, demand different approaches. For
example, especially in questionnaire and test con-
struction, Cattell’s (1973) method of progressive
rectification using parcels of items and Comrey’s
(1973) factored homogeneous item dimensions are
useful conceptual and methodological tools, es-
pecially in an ongoing research program. As a gen-
eral rule, factor analytically constructed scales should
not have fewer than six to eight items per scale,
and more would be preferred to assure adequate
reliability. A related issue is the problem of over-
factoring, extracting toc many factors or compo-
nents, especially as in confirmatory factor analysis
to obtain better fit (e.g., Steiger & Schénemann,
1978, p. 164). Such capitalization on chance leads
to factors being operationalized by only a few items
or variables and thereby being less replicable (Iess
determinate). Generally the first principal factors
or components are most robust (replicable).

Further issues currently being investigated in-
clude: relationships among the measures of factor
indeterminacy discussed here, Guitman’s (1955)
measure based on the regression of true scores on
observed scores, and a shrunken estimate based on
Wherry’s shrinkage formula; the degree of inde-
terminacy in higher-order designs; and the multi-
variate case, in terms of set correlation (Cohen &
Cohen, 1983, pp. 487-518; Cohen & Nee, 1984).
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