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Abstract

Firm-specific information can affect expected returns if it affects investor uncertainty
about risk-factor loadings. We show that a stock’s expected return is decreasing in factor-
loading uncertainty, controlling for the average level of its factor loading. When loadings
are persistent, learning by investors can induce time-series variation in price-dividend ra-
tios, expected returns, and idiosyncratic volatility, even when the aggregate risk-premium
is constant and fundamental shocks are homoscedastic. Consistent with our predictions,
we estimate that average annual returns of a firm with the median level of factor-loading
uncertainty are 400 to 525 basis points lower than a comparable firm without factor-
loading uncertainty. (JEL: G12, G14)
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Does publicly available information about a firm affect its expected return? The standard
theoretical approach in the literature considers the relation between information and expected
returns in the context of a single firm.1 While these models generally predict a negative relation
between the quality of public information and expected returns, the empirical evidence on this
predicted negative relation has been mixed.2 Moreover, it is not clear whether the intuition
from these single-firm models extends to a large economy with multiple firms, since firm-specific
information may be diversifiable (e.g., Hughes, Liu, and Liu 2007).

Our insight is to recognize that firm-specific information can affect expected returns if it is
about the firm’s systematic risk-factor loadings. In a benchmark model, we show that a firm’s
expected returns are decreasing in the uncertainty about the firm’s risk-factor loadings, even
after controlling for the average level of the factor loading. The basic intuition for our main
result is easily described using a simple example.3 Consider a stock that pays annual dividends,
with current dividend D = $1, and an annual dividend growth rate g = 5%. Further, suppose
the CAPM holds, the risk-free rate is 3%, and the market risk premium is 5%. If investors
know, with certainty, that the beta of the stock is 1, then the CAPM implies an expected
return of 8% (i.e., 3% + 1(5%) = 8%), and the Gordon growth formula implies a price of

P = D(1+g)
r−g = 1.05

8%−5%
= $35. If, instead, investors are uncertain about the stock’s beta, then

this uncertainty affects both its price and expected return. For instance, suppose investors
believe that the beta of the stock is either 0.5 or 1.5, each with probability 50%, and they learn
its value at the end of the year. Conditional on each possible value of beta, the price is given
by the standard Gordon growth formula as follows:

Pβ=0.5 = 1.05
[3%+0.5(5%)]−5%

= $210, and Pβ=1.5 = 1.05
[3%+1.5(5%)]−5%

= $19.09,

and the price of the stock is given by the expectation over the possible values of beta:

P = 0.5× Pβ=0.5 + 0.5× Pβ=1.5 = $114.545.

Importantly, since the stock price is a convex function of its beta, uncertainty about beta leads
to a higher price than would be implied by the average beta (i.e., P = $35). Moreover, the
expected return on the stock over the next year is given by

E [r] =
0.5 [Pβ=0.5 +D] (1 + g) + 0.5 [Pβ=1.5 +D] (1 + g)

P
− 1 = 5.92%.

As such, when investors are uncertain about the firm’s risk-factor loading (or beta), its expected
return is lower than what is predicted by its average factor loading.

1Examples include Diamond and Verrecchia (1991), Baiman and Verrecchia (1996), and Easley and O’Hara
(2004). Lambert, Leuz, and Verrecchia (2007) extend this approach to a multiple firm setting.

2On the one hand, a number of papers, including Easley and O’Hara (2004), Francis, LaFond, Olsson, and
Schipper (2004), Francis, LaFond, Olsson, and Schipper (2005), Barth, Konchitchki, and Landsman (2011),
and Francis, Nanda, and Olsson (2008), document that proxies of higher information quality or increased
transparency are associated with lower expected returns. On the other hand, papers including Botosan (1997),
Botosan and Plumlee (2002), Core, Guay, and Verdi (2008), Duarte and Young (2009), and Ben-Rephael, Kadan,
and Wohl (2010) find either limited or no evidence of a relation between information quality or disclosure and
cost of capital.

3We thank the editor for suggesting the example.
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We develop a dynamic, partial equilibrium model with time-varying factor loadings and
learning by investors that not only captures the intuition from this simple example but also
allows us to analyze the effects of investor uncertainty and learning about factor loadings on
prices and returns more generally. As has been suggested in the literature, estimating factor
loadings and discount rates is difficult for investors, especially given that they vary over time.
For instance, Fama and French (1997) point out that “there is strong variation through time in
the CAPM and three-factor risk loadings of industries. . . . And industries give an understated
picture of the problems that will arise in estimating risk loadings for individual firms and
investment projects.” Our model suggests that factor-loading uncertainty, and learning about
these factors, can have economically important implications for the pricing of returns, both in
the cross-section and over time.

We begin with a benchmark model with i.i.d. shocks to highlight the economic mechanism
through which factor-loading uncertainty affects expected returns in a standard asset pricing
framework. A firm’s risk-factor loading determines the covariance between its cash flows and
the pricing kernel, and the firm’s expected return decreases in this covariance.4 We depart from
the standard setup by assuming that investors face uncertainty about firms’ future risk-factor
loadings, and we show that a firm’s expected return decreases in this factor-loading uncertainty.
This result follows from the fact that the covariance between a firm’s cash flows and the pricing
kernel, and hence the price of these cash flows, is a convex function of the firm’s future risk-
factor loading. Intuitively, in bad states of the world (i.e., when the pricing kernel is high), a
decrease in the firm’s factor loading, or systematic risk, leads to a bigger change in the present
value of its cash flows than an equivalent increase in its factor loading. However, in good
states of the world, the opposite is true—the effect of an increase in the factor loading on the
present value is larger than the effect of an equivalent decrease. As a result, the overall effect of
increasing uncertainty about the risk-factor loading of next period’s cash flow is to increase the
present value of this cash flow, or equivalently, reduce its discount rate (or expected return).

We then generalize the benchmark model to allow for persistence in factor loadings, and
model various ways in which investors can learn about these loadings over time. We show that
the effect of factor-loading uncertainty on expected returns can be significantly amplified when
factor loadings are persistent. Since price-dividend ratios depend on investors’ conditional
beliefs about factor loadings, learning about these loadings over time generates time-series
variation in price-dividend ratios (and returns), even though we assume that the aggregate risk
premium is constant. We also show that when the quality of information available to investors
changes over time, this naturally generates time-series variation in idiosyncratic return volatility.
Finally, we consider an extension of the model in which investors condition on realized dividends
and returns to update their beliefs about firms’ factor loadings. In this case, even though all
fundamental shocks are homoscedastic, the information structure and learning by investors
generates stochastic idiosyncratic return volatility, since investors’ conditional beliefs about
a firm’s factor loadings depend on realizations of the aggregate risk factor, and these beliefs
endogenously determine the firm’s return dynamics.

4Cash flows in bad states of the world (i.e., when the pricing kernel, or marginal utility of the representative
investor, is high) are discounted less—hence, expected returns are decreasing in the covariance between cash
flows and the pricing kernel.
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The primary contribution of our paper is to provide a benchmark model in which to analyze
the effect of investor uncertainty and learning about firm-specific risk-factor loadings on the
pricing of returns. Specifically, we show that uncertainty about factor loadings can generate
additional cross-sectional variation in expected returns that is not captured by the level of the
factor loadings. Since our model predicts a negative relation between firm-specific uncertainty
and expected returns, in contrast to the single-firm models discussed earlier, our results may help
reconcile the apparently conflicting empirical evidence documented in the existing literature.
Our model also provides a rational mechanism that can generate the seemingly “puzzling”
negative relation between idiosyncratic volatility and expected returns documented by Ang,
Hodrick, Xing, and Zhang (2006) and others, since, in our model, factor-loading uncertainty is
negatively related to expected returns but positively related to idiosyncratic volatility.5

More generally, we show that learning about risk-factor loadings can generate time-series
variation in firms’ price-dividend ratios, expected returns, and idiosyncratic return volatility,
even when the aggregate risk premium is constant. While time-series variation in aggregate
risk premia obviously has important economic implications, by shutting down this channel, our
analysis highlights the mechanism through which learning firm-specific information can affect
the dynamics of prices and returns. In fact, we show that when investors condition on realized
dividends and returns, learning about risk-factor loadings naturally leads to stochastic variation
in idiosyncratic return volatility, even when the fundamental shocks are all assumed to be
homoscedastic. Moreover, each firm’s stochastic volatility is affected by shocks to the aggregate
risk factor (or returns to the factor-mimicking portfolio), and therefore the cross-section of
idiosyncratic volatility exhibits a factor structure that is similar to what has been empirically
documented in the literature (e.g., Campbell, Lettau, Malkiel, and Xu 2001). As such, our
model may serve as a useful benchmark in which to study how learning can endogenously give
rise to stochastic volatility at the firm level.

We document evidence that is consistent with our main prediction, using Fama-MacBeth
regressions on the cross-section of CRSP stock returns. In the first stage, we estimate sixty
month rolling window firm-specific regressions to estimate firm-specific factor loadings on the
(log) excess market return, and use the standard error of the factor-loading estimate as a firm-
specific proxy for factor-loading uncertainty. In the second-stage cross-sectional regressions, we
show that uncertainty about market-factor loadings is negatively related to expected returns.
We also find that this relation is statistically significant and is robust to including factor loadings
on the SMB, HML, and UMD portfolios and aggregate volatility risk, and a number of firm
characteristics (including size, market-to-book ratio, turnover, debt-to-equity ratio, volatility
of earnings, return on assets, accruals, and bid-ask spreads). Moreover, the effect appears
to be economically significant. In our sample of firms from January 1964 to December 2011,
our estimates imply that a firm with the median level of uncertainty about the market-factor
loading should have average annualized returns that are 400 to 525 basis points lower than an
otherwise comparable firm with the same average factor loading but no uncertainty.

The next section discusses the marginal contribution of our paper in relation to the existing

5As Ang, Hodrick, Xing, and Zhang (2006) discuss, most models that incorporate market frictions or behav-
ioral biases imply that idiosyncratic volatility should be positively related to expected returns. As such, they
state that their “results on idiosyncratic volatility represent a substantive puzzle.”
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literature. Section 2 presents the benchmark model, which we use to illustrate the intuition
behind our main result. Section 3 presents the general model, which incorporates persistence
in factor loadings and learning by investors, and characterizes the economic magnitudes of the
effects we describe. Section 4 reports the results from our empirical analysis of the model’s
main prediction and summarizes additional implications, and Section 5 concludes. All proofs
are in Appendix A.

1. Related Literature

Our paper relates most closely to Pástor and Veronesi (2003) and Xia (2001), but our results
differ significantly from theirs. Pástor and Veronesi (2003) show that since a firm’s stock price
is convex in its cash-flow growth, higher uncertainty about profitability leads to higher market-
to-book ratios. Like Pástor and Veronesi (2003), we find that firm-specific uncertainty leads
to higher valuations, and when investors learn about this source of firm-specific uncertainty,
price-dividend ratios and idiosyncratic volatility exhibit time-series variation. However, Pástor
and Veronesi (2003) and Johnson (2004) argue that for unlevered firms, learning about firm-
specific profitability has no effect on expected returns.6 In contrast to these earlier papers, we
show that firm-specific uncertainty can have an effect on expected returns even in the absence
of leverage. As we discuss further in Section 2, this is because the firm-specific uncertainty
in our model is about the covariance between cash-flow growth and the pricing kernel, and,
importantly, because this firm-specific uncertainty is resolved simultaneously with aggregate
uncertainty.

As in Xia (2001), investors in our model learn about the predictability of expected returns,
and this leads to stochastic variance of the factor loading. However, in contrast to Xia (2001),
investors’ learning affects the pricing of returns in our model, and hence the stochastic condi-
tional variance that results from learning leads to stochastic volatility in returns. While the
effect of learning in generating stochastic return volatility has been explored at the aggregate
level (e.g., David 1997; Veronesi 1999), to our knowledge, our model is the first to highlight a
natural link between learning about factor loadings from past dividends / returns and stochastic
volatility.

Our paper is also related to the large literature on parameter uncertainty and estimation
risk. Kumar, Sorescu, Boehme, and Danielsen (2008) extend this literature by considering
an economy in which investors are uncertain about the quality of information they can learn
from. They endogenously derive a conditional CAPM in which the market risk premium,
market volatility, and systematic risk of stocks depend on the information available to investors.
Adrian and Franzoni (2009) extend the conditional CAPM by introducing unobservable long-
run changes in factor loadings. They show that when investors learn about these long-run
changes over time, the model generates low-frequency variation in betas that can help explain

6Pástor and Veronesi (2003) show that there is no effect of uncertainty about profitability on expected returns
in the case of no dividends, and a small, local effect in the presence of dividends. Johnson (2004) shows that in
levered firms, an increase in idiosyncratic volatility (which increases total volatility but keeps the risk premium
constant) decreases the expected return on their levered equity.
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the value and size premia in the cross-section of stock returns. Our analysis, which we view as
complementary to these studies, takes the pricing kernel as given and focuses on the effect of
firm-specific uncertainty about factor loadings. As a result, although firm-specific information
has an effect on expected returns, it is not through an effect on the market risk premium (in
contrast to Kumar et. al. 2008). Moreover, by explicitly modeling dividends in a standard
asset pricing setup, we are able to derive implications of uncertainty and learning for not only
expected returns but also other firm-specific attributes such as price-dividend ratios and return
volatility.

2. Benchmark Model

2.1 Model setup

In this section, we consider a simple benchmark model in which dividend growth is assumed
to be independent and identically distributed over time. Although this assumption is made
primarily for tractability, it also makes the effect of uncertainty about risk-factor loadings
on expected returns transparent. In the next section, we generalize the model to allow for
persistence in factor loadings and learning by investors.

The evolution of the pricing kernel is given by:

Mt+1 = Mt exp
{
−rf − 1

2
Vm −mt+1

}
where mt+1 ∼ N (0, Vm) , (1)

and the mt+1 are i.i.d., normally distributed variables with mean zero and variance Vm. The
aggregate source of risk, or risk factor, in the economy is therefore driven by the random variable
mt+1. This implies that the unconditional (log) risk-free rate is given by rf , since

− log
(
E
[
Mt+1

Mt

])
= rf + 1

2
Vm − 1

2
Vm = rf . (2)

The existence of a pricing kernel relies only on the assumption that there is no arbitrage in
the economy, which makes the current setup quite general. In particular, this representation
can capture a variety of pricing models, including consumption-based models and factor-based
models, such as the CAPM.7

7For instance, in an endowment economy in which aggregate consumption growth follows a log-normal
process, i.e., ∆ct+1 ≡ log (Ct+1/Ct) ∼ N

(
µ, σ2

c

)
, and the representative investor has power utility with a

coefficient of relative risk-aversion γ and discount factor eδ, the pricing kernel (or stochastic discount factor) is

given by the marginal utility of the representative investor, Mt+1

Mt
= eδ

(
Ct+1

Ct

)−γ
= exp {δ − γ∆ct+1} , and the

risk-free rate is given by: Rf = exp {rf} ≡ 1/E
[
Mt+1

Mt

]
= exp

{
−δ + γµ− 1

2γ
2σ2
c

}
, which, in turn, implies that

Mt+1 = Mt exp
{
−rf − 1

2γ
2σ2
c − γ (∆ct+1 − µ)

}
≡Mt exp

{
−rf − 1

2Vm −mt+1

}
,

where mt+1 = γ (∆ct+1 − µ) ∼ N
(
0, γ2σ2

c

)
and Vm = γ2σ2

c .
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At the beginning of each period, investors’ beliefs about firm i’s dividends (or cash flows),
at date t+ 1 are given by:

Di,t+1 = Di,t exp
{
d̄i + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)}
, where di,t+1 ∼ N (0, Vd,i)

(3)
and βi,t+1 is assumed to have an i.i.d. distribution given by

βi,t+1 ∼ N (bi, Vβ,i) , (4)

and mt+1, di,t+1, and βi,t+1 are independent. The specification in equation (3) implies that
dividend growth consists of a constant component (i.e., d̄i), a systematic component (i.e.,
βi,t+1mt+1), and an idiosyncratic component (i.e., di,t+1). The systematic component of dividend
growth depends on the firm’s stochastic factor loading, βi,t+1.8 Unlike standard models, we
relax the assumption that investors know (with certainty) the future factor loading that drives
dividend growth at time t + 1. We first assume that factor loadings are i.i.d. over time to
highlight the intuition for our main result, but we relax this assumption in the next section.

Our specification also ensures that (log) expected dividend growth is given by d̄i. In the
standard case, when there is no uncertainty about βi,t+1 = bi, one can adjust the dividend
growth process by a convexity adjustment term 1

2
b2
iVm + 1

2
Vd,i to ensure that (log) expected

dividend growth is given by d̄i, i.e.,

Di,t+1 = Di,t exp
{
d̄i + bimt+1 + di,t+1 − 1

2

(
b2
iVm + Vd,i

)}
⇒ E

[
Di,t+1

Di,t

]
= exp

{
d̄i
}

(5)

In our setup, the convexity adjustment naturally generalizes to 1
2
β2
i,t+1Vm + 1

2
Vd,i, which implies

that the log expected dividend growth is given by d̄i, since

E
[
Di,t+1

Di,t

]
= E

[
E
[
exp

{
d̄i + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)}∣∣ βi,t+1

]]
= exp

{
d̄i
}
.

(6)

This convexity adjustment ensures that the effect of uncertainty about βi,t+1 that we derive
is not simply a consequence of the difference between log expected returns and expected log
returns.9

2.2 The pricing equation and expected returns

By the definition of the pricing kernel, the price of firm i’s stream of dividends is given by:

Pi,t = Et

[
∞∑
s=1

Mt+s

Mt
Di,t+s

]
, (7)

8This is an example of what is known as a random coefficients model (e.g., Cooley and Prescott 1976). Ang
and Chen (2007) use a similar setup to model the uncertainty faced by an econometrician when estimating
time-varying betas, and use this to argue that there is little evidence of a value premium in the long run.

9One can alternatively define the convexity adjustment as logE
[
Di,t+1

Di,t

]
− E

[
log
(
Di,t+1

Di,t

)]
. As we show in

Appendix B, while this alternative specification implies a similar (but larger) effect of uncertainty about βi,t+1

on the expected return, it leads to less-transparent and less-intuitive expressions for expected returns.
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and the unconditional expected return on the firm’s dividend stream is then given by:

E [Ri,t+1] = E
[
Pi,t+1+Di,t+1

Pi,t

]
. (8)

Under an appropriate transversality condition, we have our benchmark result.

Proposition 1. Suppose the sequence of prices Pt satisfies the following transversality condi-
tion:

lim
T→∞

Et
[
Mt+T

Mt
Pt+T

]
= 0. (9)

Then, given that factor loadings are i.i.d., we have the following results:

(a) firm i’s price-dividend ratio is constant, and given by PDi,t ≡ Pi,t/Di,t = pi
1−pi , where

pi = E
[
Mt+1

Mt

Di,t+1

Di,t

]
= exp

{
d̄i − rf − biVm + 1

2
Vβ,iV

2
m

}
, (10)

(b) firm i’s return process is of the form:

Ri,t+1 = exp
{
µi + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)}
, (11)

(c) firm i’s expected return is given by:

E [Ri,t+1] = exp {µi} = exp
{
rf + biVm − 1

2
Vβ,iV

2
m

}
. (12)

The result implies that conditional on the (mean) level of the factor loading (i.e., bi), higher
uncertainty about the factor loading (i.e., Vβ,i) decreases firm i’s expected return. This result
follows from the effect of uncertainty about βi,t+1 on the covariance between dividend growth
and the pricing kernel. To understand this effect, we derive the expression for the covariance
explicitly:

cov
(
Mt+1

Mt
,
Di,t+1

Di,t

)
= E

[
cov
(
Mt+1

Mt
,
Di,t+1

Di,t

∣∣∣ βi,t+1

)]
+ cov

(
E
[
Mt+1

Mt

∣∣∣ βi,t+1

]
,E
[
Di,t+1

Di,t

∣∣∣ βi,t+1

])
= E

[
cov
(
Mt+1

Mt
,
Di,t+1

Di,t

∣∣∣ βi,t+1

)]
(13)

= E
[
exp

{
d̄i − rf

}
(exp {−βi,t+1Vm} − 1)

]
(14)

= exp
{
d̄i − rf

} (
exp

{
−biVm + 1

2
V 2
mVβ,i

}
− 1
)
. (15)

Since the expected value of the pricing kernel and dividend growth conditional on a realization
of βi,t+1 are uncorrelated, the unconditional covariance between the pricing kernel and dividend
growth is just the expectation of the covariance conditional on a realization of βi,t+1 (i.e., it is

given by (13)). Moreover, since conditional on a specific realization of βi,t+1, Mt+1

Mt
and

Di,t+1

Di,t

are lognormal random variables, the covariance between them is a convex function of βi,t+1

(see the expression in equation (14)). As a result, the unconditional covariance between the
pricing kernel and dividend growth is increasing in uncertainty about βi,t+1 through a Jensen’s
inequality effect.
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The convexity of the conditional covariance (given by equation (14)) in βi,t+1 follows from our
assumption that both the pricing kernel and dividend growth are log-linear (convex) functions of
the common shock mt+1. This is a common assumption in much of the asset pricing literature,
which relies on the exponential-affine structure of the setup. Intuitively, the log-linearity implies
that the pricing kernel Mt+1

Mt
is steeper in bad states of the world (i.e., low mt+1, or high Mt+1

Mt
)

than in good states of the world (i.e., high mt+1, or low Mt+1

Mt
). In a representative agent model,

this can be interpreted as the convexity of the representative agent’s marginal utility—the
agent’s marginal utility is steeper in bad states of the world (i.e., low aggregate consumption)
than in good states of the world.

The convexity of the pricing kernel implies that the present value of a dividend Di,t+1 in
the next period, given by Mt+1

Mt
Di,t+1, is convex in the factor loading βi,t+1. As a result, a

mean-preserving spread in βi,t+1 increases the present value of the dividend. Intuitively, in bad
states of the world, the effect of a unit decrease in βi,t+1 (i.e., a decrease in systematic risk)
leads to a bigger increase in the present value of the dividend than the decrease in its present
value from a unit increase in βi,t+1. In good states of the world, the opposite is true i.e., the
effect of an increase in βi,t+1 is bigger. As a result, a mean-preserving spread in βi,t+1 increases
the present value of the dividend in both good and bad states of the world. Figure 1 illustrates
these effects for a specific set of parameters. The bottom panel plots the present value of the
dividend across states of the world given a mean-preserving spread in βi,t+1 (of ±0.1 around
one). For bad states of the world (i.e., mt+1 ≤ 0), the effect of a decrease in βi,t+1 on the
present value is larger, while for good states of the world, the effect of an increase in βi,t+1 is
larger. Consequently, the effect of a mean-preserving spread is to increase the present value
of the dividend (i.e., the average of the dashed and dotted lines lies above the solid line), or,
equivalently, decrease the expected return.

As we show in the proof of Proposition 1, since the pricing kernel and cash-flow growth are
conditionally independent over time, the price-dividend ratio (denoted by PDi,t) is constant.
Moreover, the effect of uncertainty on the present value of the dividend is also reflected in
the expression for the price-dividend ratio. In particular, a firm’s price-dividend ratio PDi,t

is increasing in the price-dividend ratio of a dividend strip, pi, which itself is increasing in
uncertainty about βi,t+1 (see equation (10)). This effect of uncertainty on valuations is analogous
to the effect of uncertainty about profitability on market-to-book ratios in Pástor and Veronesi
(2003).

Since the price-dividend ratio is constant, the Euler equation E
[
Mt+1

Mt
Ri,t+1

]
= 1 implies

that the expected excess return on security i decreases with the covariance between its dividend
growth and the pricing kernel, which, in turn, implies that it is decreasing in the uncertainty
about its factor loading, since

E [Ri,t+1]−Rf = −Rfcov
(
Mt+1

Mt
, Ri,t+1

)
= −Rf

1+PDi,t
PDi,t

cov
(
Mt+1

Mt
,
Di,t+1

Di,t

)
(16)

= −Rf
1
pi

cov
(
Mt+1

Mt
,
Di,t+1

Di,t

)
= Rf

(
exp

{
biVm − 1

2
Vβ,iV

2
m

}
− 1
)
. (17)

As we show in the next section, if the factor loading is persistent, the price-dividend ratio
varies over time, and this amplifies the effect of factor-loading uncertainty on expected returns.
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However, by initially shutting down this additional effect, we are able to characterize the effect
of factor-loading uncertainty on expected returns more transparently.

Expression (11) for returns in Proposition 1 explicitly accounts for the appropriate convexity
adjustments (through the 1

2

(
β2
i,t+1Vm + Vd,i

)
term), and as such, our main result is not simply

an artifact of the difference between log expected returns and expected log returns.10 Finally,
since there is only one source of aggregate uncertainty, the risk-factor loading that drives firm
i’s cash-flow growth also drives the covariance of the firm’s return with the pricing kernel.
Accordingly, if there is a tradable factor-mimicking portfolio, then our model implies a log-
linear, uncertainty-adjusted CAPM that is described in the following corollary.

Corollary 1. Suppose RM,t+1 is the return on the factor-mimicking portfolio—i.e.,

RM,t+1 = exp
{
µM +mt+1 − 1

2
Vm
}
, (18)

where µM = log (E (RM,t+1)) denotes the log expected return. Then the log expected return
µi = log (E (Ri,t+1)) on firm i’s stock with cash-flow loading βi,t+1 ∼ N (bi, Vβ,i) is characterized
by the following expression:

µi − rf = bi (µM − rf )− 1
2
Vβ,iV

2
m. (19)

Moreover, conditional on βi,t+1, the covariance between ri,t+1 = log (Ri,t+1) and rM,t+1 =
log (RM,t+1) is given by βi,t+1Vm.

The above result immediately follows from the definition of the factor-mimicking portfolio
RM,t+1 and Proposition 1. The corollary highlights that, in our model, risk-factor loadings in
cash-flow growth are identical to risk-factor loadings in log returns. The corollary also highlights
that while firm-specific uncertainty about factor loadings (i.e., Vβ,i) affects expected returns,
uncertainty about the idiosyncratic component of dividend growth (i.e., Vd,i) does not. Finally,
in the special case of our model where investors face no uncertainty about risk-factor loadings
(i.e., Vβ,i = 0), we recover the standard log-linear CAPM relation, which is given by

µi − rf = bi (µM − rf ) . (20)

2.3 Discussion

Although our model is very similar to those in Pástor and Veronesi (2003) and Johnson (2004),
in contrast to those studies, we find that firm-specific parameter uncertainty has an effect on
expected returns even in the absence of leverage.11 As noted in these earlier papers, whether
parameter uncertainty affects expected returns depends not only on what parameters investors
are uncertain about, but also when the parameter uncertainty is resolved. In our model,

10Specifically, the object of interest is the log expected return, µi, which is characterized in equation (12).
11As mentioned earlier, Pástor and Veronesi (2003) show that there is no effect of uncertainty about prof-

itability on expected returns in the case of no dividends, and a small, local effect in the presence of dividends.
However, the mechanism through which firm-specific uncertainty affects expected returns in our model is dif-
ferent and, as we discuss in the next section, is potentially substantial in magnitude.
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uncertainty about βi,t+1 affects expected returns because (i) βi,t+1 affects prices and returns
nonlinearly, and (ii) the risk generated by the parameter uncertainty is resolved simultaneously
with aggregate uncertainty (i.e., uncertainty about βi,t+1 and mt+1 are resolved simultaneously).
While the log-normal framework we use is tractable and helps us relate our results to the
literature, these observations suggest that uncertainty about factor loadings should have an
effect on expected returns in other settings if conditions (i) and (ii) are satisfied.12 In a related
point, note that, in our model, investors face uncertainty about the covariance between cash-
flow growth and the pricing kernel, and the nonlinearity this introduces is important for our
results. As such, the effect of uncertainty on expected returns would be different in a model
where investors face uncertainty about the level of cash flows or prices, instead of the risk-factor
loadings.

It is also important to note that investors do not “eventually learn” the factor loading
of a firm’s dividends in our model. Given the distribution of βi,t+1 in (4), investors always
face residual uncertainty about the future factor loadings of a firm’s dividends. Moreover,
since factor loadings are stochastic, regressing past dividend growth on past realizations of the
aggregate risk factor only provides investors with an estimate of past factor loadings, but does
not perfectly reveal future factor loadings, which are relevant for setting current prices. As we
show in the next section, this is true even when factor loadings are persistent.

3. Learning About Persistent Factor Loadings

In this section, we generalize the model by allowing for persistence in firm’s risk-factor load-
ings. We show that the effect of factor-loading uncertainty on expected returns is generally
amplified when βi,t are persistent. We also show that since price-dividend ratios depend on
investors’ conditional beliefs, learning about factor loadings generates time-series variation in
price-dividend ratios and, as a result, is an additional source of variation in returns.

We maintain most of the assumptions of the benchmark model. In particular, investors’
beliefs about the pricing kernel and firm i’s dividend process are given by (1) and (3), respec-
tively. However, we generalize the process for the risk-factor loading to allow for persistence by
assuming that βi,t+1 evolves according to the following process:

βi,t+1 = (1− ai) bi + aiβi,t + φiyt + νi,t+1, where νi,t+1 ∼ N (0, Vβ,i) , yt ∼ N (0, Vy) (21)

and νi,t+1 and yt are independent of each other and independent of mt+1 and di,t+1. We assume
that the persistence, ai, the unconditional mean, bi, the fundamental variance of factor loadings,
Vβ,i, the conditioning variable yt, and the corresponding weight, φi, are known to all investors
at date t, but that the realization of βi,t is not. Without loss of generality, we assume that the
conditioning variable yt is mean zero, so that the unconditional mean of βi,t+1 is bi. We restrict
attention to the simplest specification that allows for persistence in factor loadings to maintain
tractability and to highlight the effect of uncertainty and learning in a transparent manner.

12For instance, our example in the introduction illustrates the effect of factor-loading uncertainty on expected
returns in a setting that does not assume log-normality.
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The specification in equation (21) is a special case of Adrian and Franzoni (2009) applied to
our log-linear setting, and, as discussed in their paper, nests a number of conditional CAPM
models as special cases (including Jagannathan and Wang 1996; Lettau and Ludvigson 2001;
Jostova and Philipov 2005; Ang and Chen 2007).

It is important to note that we maintain the assumption that Vm is constant over time,
which implies that the aggregate risk premium (or, market price of risk) for the economy
remains constant. While we believe that time-series variation in the aggregate risk premium
is empirically and theoretically important, we make this assumption to highlight the effects of
learning about factor loadings in our setting. In particular, any time-series variation in expected
returns and price-dividend ratios will not be driven by time-series variation in the market price
of risk, but by the learning process of investors.

In the following subsections, we consider different models of learning. Subsection 3.1 de-
scribes the general version of the model in which investors learn about the current realization
of βi,t using exogenous signals. In Subsection 3.2, we consider two special cases to refine the
intuition from the general model, and to gauge the economic magnitude of the effects we char-
acterize. In Subsection 3.3, we present an extension of the general model in which investors
condition on realized dividends and returns to update their beliefs about βi,t. In this case, we
show that learning can induce stochastic volatility in the return process, even if all fundamental
shocks are assumed to be homoscedastic.

3.1 Learning from signals

Although we explicitly model how investors can learn about factor loadings from realized div-
idends and returns in a later extension, we begin with a stylized information structure that
provides a useful benchmark. We assume that investors do not observe the factor loadings
themselves, but that they instead observe a signal Yi,t+1 at date t+ 1, given by

Yi,t+1 = βi,t+1 + εi,t+1, where εi,t+1 ∼ N (0, Vε,i,t) , (22)

and εi,t+1 is uncorrelated with mt+1, yt+1, βi,t+1, and di,t+1. Although we allow εi,t+1 to have
time-varying volatility, we assume that conditional on date t information, the volatility of εi,t+1

is known to investors. This assumption allows us to parsimoniously model the possibility of
time-series variation in information quality, without introducing too much additional notation
or complexity. One can interpret the information structure in equation (22) as a reduced-form
representation of investors learning about factor loadings from a variety of information sources
that we do not model explicitly, including fundamental analysis, earnings announcements and
guidance, and firm-level disclosures (e.g., see Beaver, Kettler, and Scholes 1970; Bowman 1979).
The stylized nature of (22) allows us to characterize the first-order effects of learning in a
tractable manner, and we leave more nuanced modeling of richer information structures for
future work.

Denote investors’ distribution of βi,t+1 conditional on date t information by

βi,t+1|It ∼ N (bi,t,Σi,t) (23)
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Given the evolution of factor loadings and the information structure above, an immediate
application of the Kalman filter gives us the following result.

Lemma 1. The expectation of the risk-factor loading at date t + 2, conditional on the infor-
mation available to investors at date t+ 1, is given by:

bi,t+1 ≡ Et+1 [βi,t+2] = (1− ai) bi + ai (bi,t + λi,t (Yi,t+1 − bi,t)) + φiyt+1 (24)

= (1− ai) bi + ai (bi,t + λi,t (βi,t+1 + εi,t+1 − bi,t)) + φiyt+1 (25)

where λi,t =
Σi,t

Σi,t+Vε,i,t
. The variance of the risk-factor loading at date t+ 2, conditional on date

t+ 1 information, is given by:

Σi,t+1 ≡ vart+1 (βi,t+2) = Vβ,i + a2
iΣi,t (1− λi,t) . (26)

Moreover, if the quality of information available to investors is constant (i.e., Vε,i,t = Vε,i), then
the steady-state conditional variance is given by:

Σi = 1
1−a2i (1−λi)

Vβ,i = 1
2

(
Vβ,i − Vε,i

(
1− a2

i

)
+

√
4Vβ,iVε,i + (Vβ,i − Vε,i (1− a2

i ))
2

)
, (27)

where λi = Σi
Σi+Vε,i

.

The Kalman gain parameter, λi,t, is a convenient measure of the quality of information
available to investors at date t, since it is decreasing in the noise of the signal, Vε,i,t, and
is bounded between zero and one. The gain λi,t is zero when the noise in the signal Yi,t is
infinite (i.e., Vε,i,t →∞) and investors learn nothing about the factor loading from their signal.
Conversely, the gain is one if the noise in the signal is zero, and investors perfectly learn the
current realization of βi,t from their signal. As expected, the conditional variance of factor
loadings at date t is decreasing in the quality of information available to investors at date t
(i.e., λi,t).

If the quality of information available to investors is constant (i.e., Vε,i,t = Vε,i), then we
can characterize the steady-state value of the conditional variance in closed form (see equation
(27)). Straightforward calculations also imply the following intuitive results:

lim
λi→1

Σi = Vβ,i, lim
λi→0

Σi = 1
1−a2i

Vβ,i,
∂

∂Vβ,i
Σi > 0, and ∂

∂Vε,i
Σi > 0. (28)

If the quality of information available to investors is perfect (i.e., λi = 1, or Vε,i = 0), then
investors observe the realization of the current factor loading perfectly, and the conditional
variance of the next period’s factor loading is given by Vβ,i. As such, even if investors perfectly
observe current factor loadings, they still face uncertainty about future loadings that are relevant
for pricing returns. At the other extreme, if the signal Yi,t is infinitely noisy (i.e., Vε,i → ∞,
or λi → 0), then investors have no information about the current factor loading, and the
conditional variance of the next period’s factor loading is given by the unconditional variance

1
1−a2i

Vβ,i. This quantity characterizes the upper bound on the uncertainty that investors face

about factor loadings.
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Given the evolution of beliefs described in Lemma 1, we can calculate firm i’s price-dividend
ratio and returns by log-linearizing the price-dividend ratio around its long-run mean (e.g.,
Campbell and Shiller 1988). Under the appropriate transversality condition, we have our main
result.

Proposition 2. Suppose the sequence of prices Pt satisfies the following transversality condi-
tion:

lim
T→∞

Et
[
Mt+T

Mt
Pt+T

]
= 0. (29)

Then, given that factor loadings evolve according to (21), and investors’ beliefs evolve according
to the results of Lemma 1, a log-linearization of the price-dividend ratio around its long-run
mean implies the following:

(a) firm i’s log price-dividend ratio is given by:

pdi,t = log (PDi,t) = Ai,t − 1
1−ρiai bi,tVm, (30)

(b) firm i’s return process is of the form:

Ri,t+1 = exp
{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+ γibi,t+1

}
, (31)

(c) firm i’s expected return, conditional on date t information, is given by:

Et [Ri,t+1] = exp
{
rf + bi,tVm − 1

2

(
1 + 2λi,t

aiρi
1−aiρi

)
Σi,tV

2
m

}
, (32)

where Ai,t, αi,t, and γi are known to investors at date t, and defined in Appendix A, and

ρi ≡
exp{p̄d}

1+exp{p̄d} ∈ (0, 1), where p̄d is the long-run mean of pdi,t.

The above proposition presents our main results, and generalizes the benchmark results of
Proposition 1. As before, the price-dividend ratio is decreasing in the conditional mean bi,t,
and increasing in the conditional variance of the factor loading (i.e., Σi,t), as can be seen from
expression (A10) for Ai,t in Appendix A. As in the i.i.d. case, since the systematic shocks to
returns are driven by βi,t+1mt+1, the covariance between firm i’s return and the factor-mimicking
portfolio is still driven by the factor loading—i.e., the covariance between ri,t+1 = log (Ri,t+1)
and rM,t+1 = log (RM,t+1) (as defined by (18)) is given by βi,t+1Vm. Finally, as in Proposition
1, firm i’s expected return is decreasing in investors’ (conditional) uncertainty about its factor
loadings (i.e., Σi,t), even after controlling for the conditional mean level of its factor loading
(i.e., bi,t).

However, allowing for persistence in firms’ factor loadings generates a number of additional
effects that are not present in the benchmark case of Proposition 1. First, a firm’s price-
dividend ratio is no longer constant, but instead depends on investors’ conditional beliefs about
its factor loadings. This implies that a firm’s price-dividend ratio varies over time, even when
all fundamental shocks have constant variance by assumption, and in particular, the aggregate
risk premium (i.e., Vm) is constant. Moreover, this time-series variation in price-dividend ratios
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leads to an additional source of variation in returns. In particular, a firm’s returns depend not
only on shocks to its dividend growth (as captured by βi,t+1mt+1 + di,t+1), but also on variation
in investors’ beliefs about its factor loading (as captured by bi,t+1).

The effect of investors’ uncertainty about factor loadings (i.e., Vβ,i) on expected returns is
increasing in the persistence of factor loadings (i.e., ai). This amplification effect manifests
through two complementary channels. To illustrate the intuition for this effect, consider the
following expression for firm i’s expected excess return:13

Et [Ri,t+1]−Rf = −Rfcovt

(
Mt+1

Mt
, Ri,t+1

)
= −Rfcovt

(
Mt+1

Mt
,

1+PDi,t+1

PDi,t

Di,t+1

Di,t

)
(33)

= −RfEt
[
covt

(
Mt+1

Mt
,
Di,t+1

Di,t

∣∣∣ βi,t+1

)
1+PDi,t+1

PDi,t

]
(34)

= −RfEt
[
exp

{
d̄i − rf

}
(exp {−βi,t+1Vm} − 1)

1+PDi,t+1

PDi,t

]
(35)

The first channel through which persistence affects expected returns is through its effect on the
conditional covariance between the pricing kernel and dividend growth. As in the i.i.d. case,
the covariance between the pricing kernel and dividend growth, conditional on a realization of
βi,t+1, is a convex function of βi,t+1 (see equation (35)). Moreover, as Lemma 1 implies, the
conditional variance of factor loadings (i.e., Σi,t) ranges from a lower bound of Vβ,i to an upper
bound of 1

1−a2i
Vβ,i, and is increasing in Vβ,i. Hence, even if price-dividend ratios were constant

(as in the i.i.d. case), the effect of the same level of fundamental uncertainty (i.e., Vβ,i) on the
conditional covariance is at least as large as in the i.i.d. case, but is likely to be larger, when
factor loadings are persistent (i.e., ai > 0).

Second, a larger variance of shocks to factor loadings (i.e., a higher Vβ,i) leads to a higher
volatility of conditional expectations (i.e., higher vart (bi,t+1)), which translates into a larger

multiplicative effect on the expected excess return through the
1+PDi,t+1

PDi,t
term, since PDi,t+1

is convex in the conditional expectation bi,t+1. Intuitively, since factor loadings are persistent,
price-dividend ratios are correlated over time. This implies that, when investors learn about the
current factor loading, βi,t, they update their beliefs about the covariance between dividends
and the pricing kernel not only for the next period, but for all future periods. The effect of this
amplification on the current price-dividend ratio is captured by the factor 1

1−ρiai , which scales

bi,tVm in equation (30). Similarly, the amplification effect on expected returns is captured by
the 2λi,t

aiρi
1−aiρi term in equation (32).

Proposition 2 also highlights that in a dynamic setting, an increase in fundamental uncer-
tainty about factor loadings (i.e., higher Vβ,i) and a decrease in information quality about factor
loadings (i.e., lower λi, or higher Vε,i) can have different effects. In static settings, as intuition
suggests, an increase in Vβ,i has a similar effect as a decrease in λi, since both lead to an increase
in conditional uncertainty (i.e., Σi). However, in a dynamic setting, information quality affects

13Mathematically, note that since both the price-dividend ratio (i.e., PDi,t+1) and the covariance be-

tween the pricing kernel and dividend growth, conditional on βi,t+1 (i.e., covt

(
Mt+1

Mt
,
Di,t+1

Di,t

∣∣∣βi,t+1

)
) are

log-convex in βi,t+1, so is their product (see equation (34)). This, in turn, implies that the product

covt

(
Mt+1

Mt
,
Di,t+1

Di,t

∣∣∣βi,t+1

)
1+PDi,t+1

PDi,t
is convex in βi,t+1, and so the expected excess return is decreasing in

uncertainty about βi,t+1.
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future uncertainty in two offsetting ways. To see these channels explicitly in our model, note
that Proposition 2 implies that the effect of uncertainty on expected returns in the steady state
is given by the following term:

− 1
2

(
1 + 2λi

aiρi
1−aiρi

)
ΣiV

2
m, where Σi = 1

1−a2i (1−λi)
Vβ,i. (36)

This expression shows that information quality has two offsetting effects on expected returns
when factor loadings are persistent. First, as in a static model, higher information quality
(i.e., higher λi) decreases the conditional uncertainty about future factor loadings (i.e., lowers
Σi). However, higher information quality also increases the sensitivity of expected returns to
uncertainty about factor loadings through the 2λi

aiρi
1−aiρi term. This is because, in a dynamic

setting, higher information quality also implies that investors put more weight on their signals
when updating their beliefs, which, in turn, implies that conditional expectations are more
volatile in the future (i.e., higher variance of bi,t). The overall effect of information quality
(i.e., λi) on expected returns depends on both of these effects. In particular, by differentiating
expression (36) with respect to λi, one can show that the relation between expected returns
and information quality after controlling for the level of factor-loading uncertainty (i.e., Vβ,i) is
positive when factor-loading persistence is high enough—i.e., when

ai − 2ρi + a2
i ρi > 0, or equivalently, ai >

1
2ρi

(√
1 + 8ρ2

i − 1

)
, (37)

but negative when factor-loading persistence is low (i.e., when ai <
1

2ρi

(√
1 + 8ρ2

i − 1
)

).14

The subtle difference between the notions of uncertainty and information quality in a dy-
namic setting may have important empirical implications. For instance, our model predicts
that the cross-sectional effect of an increase in fundamental uncertainty about factor loadings
(i.e., Vβ,i) is to decrease expected returns. However, after controlling for the level of fundamen-
tal uncertainty (i.e., Vβ,i), our model predicts that expected returns decrease with information
quality when factor-loading persistence (i.e., ai) is low, but increase with information quality
when factor-loading persistence is high.

Similarly, one must be careful when distinguishing between the effects of uncertainty and
information quality on return volatility, as the next result suggests.

Corollary 2. Conditional on date t information, and adjusting for convexity effects, the id-
iosyncratic volatility of log returns ri,t+1 = log (Ri,t+1), is given by σi,t, where

σ2
i,t ≡ vart

(
ri,t+1 −

(
βi,t+1mi,t+1 − 1

2
β2
i,t+1Vm

))
= Vdi +

(
ρi

1−ρiaiVm

)2 ( a2iΣ
2
i,t

Σi,t+Vε,i,t
+ φ2

iVy

)
. (38)

14This mechanism through which higher information quality can lead to higher uncertainty can be found
in other dynamic settings. For instance, Banerjee (2011) highlights a similar effect in a dynamic version of
Hellwig (1980)’s rational expectations model. In the model, investors receive private signals about next period’s
dividends, but also condition on prices to update their beliefs. When the quality of investors’ information
improves, their posterior uncertainty about next period’s dividends decreases, but the total risk they face may
increase. This is because, as a result of more precise signals, prices are more sensitive to investors’ signals and
are therefore more volatile. Since investors care about future dividends and future prices, the total risk they
face may actually increase as information quality improves.
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Note that since factor loadings are stochastic in our model, the systematic component of re-
turn volatility is stochastic by construction. Since we want to identify the effect of factor-loading
uncertainty and learning on volatility that is not mechanically driven by our assumptions, we
focus on the volatility of the idiosyncratic component of returns.

The result shows that idiosyncratic volatility is driven by the volatility of idiosyncratic
shocks to dividend growth (i.e., Vd,i) and the volatility of investors’ future conditional expec-
tations of factor loadings (i.e., vart (bi,t+1)). As a result, idiosyncratic volatility is increasing
in investors’ conditional variance of factor loadings (i.e., Σi,t), the variance of shocks to divi-
dend growth (i.e., Vd,i), and the variance of conditioning variables that investors use to forecast
factor loadings (i.e., Vy). Idiosyncratic volatility is also increasing in the persistence of factor
loadings (i.e., ai) and the volatility of the aggregate risk factor (i.e, Vm), since an increase in
either variable implies that bi,t+1 has a bigger impact on current returns. Finally, the result
implies that if the quality of information available to investors is time-varying (i.e., if Vε,i,t
varies over time), then idiosyncratic volatility also exhibits time variation. Moreover, all else
equal, the conditional idiosyncratic volatility at date t increases with information quality λi,t
(i.e., decreases with Vε,i,t), after controlling for uncertainty (i.e., Σi,t). As discussed above, this
is because lower information quality (i.e., higher Vε,i,t) implies a noisier signal Yi,t+1, which, in
turn, implies a lower sensitivity of bi,t+1 to Yi,t+1, and therefore lower variability of bi,t+1 (i.e.,
lower vart (bi,t+1)).

Note that Proposition 2 and Corollary 2 together imply that controlling for the variation of
factor-loading uncertainty, variation in information quality (i.e., λi,t) leads to a positive relation
between expected returns and idiosyncratic volatility when factor-loading persistence is high

enough (i.e., ai >
1

2ρi

(√
1 + 8ρ2

i − 1
)

), but a negative relation when factor-loading persistence

is low. As such, we expect to find the relation between expected returns and idiosyncratic
volatility, after controlling for factor-loading uncertainty, to be more positive for firms with
more persistent factor loadings. In Section 4, we test this prediction on the cross-section of
stock returns and find evidence consistent with the prediction (see Table 4).

3.2 Special cases

In this subsection, we consider two extreme special cases of the general model to develop a
better understanding of the effects of uncertainty and learning on return dynamics, and to
gauge the economic magnitude of these effects. In the first case, we assume that investors
receive no signals about the current realization of the factor loading (i.e., βi,t), and so they
price securities based on the unconditional distribution of βi,t. In the second case, we assume
that investors observe βi,t perfectly at date t. Together, these two cases characterize the range
of possible effects that uncertainty and learning can have on prices and returns. Without much
loss of generality, we simplify the exposition of this analysis by setting φi to zero.

When investors receive no signals about factor loadings at date t (or equivalently, if the noise
in signals is infinite—i.e., Vε,i,t →∞), then investors calculate prices and expected returns based
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on the unconditional distribution of βi,t+1, which is given by

βi,t+1 ∼ N
(
bi,

1
1−a2i

Vβ,i

)
. (39)

Since investors have no information about either the current or future values of βi,t, investor
uncertainty about factor loadings is highest in this case. Moreover, price-dividend ratios and
expected returns are constant over time, and are characterized by the following corollary to
Proposition 1.

Corollary 3. Suppose the sequence of prices Pt satisfies the following transversality condition:

lim
T→∞

Et
[
Mt+T

Mt
Pt+T

]
= 0. (40)

Then, given that factor loadings evolve according to (21), and investors’ beliefs are given by
(39), we have the following:

(a) firm i’s price-dividend ratio is constant, and given by PDi,t ≡ Pi,t/Di,t = pi
1−pi , where

pi = exp

{
d̄i − rf − biVm + 1

2(1−a2i )
Vβ,iV

2
m

}
, (41)

(b) firm i’s return process is of the form

Ri,t+1 = exp
{
µi + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)}
, (42)

(c) firm i’s expected return is given by

Et [Ri,t+1] = exp {µi} = exp

{
rf + biVm − 1

2(1−a2i )
Vβ,iV

2
m

}
, and (43)

(d) the idiosyncratic volatility of log returns, ri,t+1 = log (Ri,t+1) is given by σi,t, where

σ2
i,t ≡ vart

(
ri,t+1 −

(
βi,t+1mi,t+1 − 1

2
β2
i,t+1Vm

))
= Vd,i. (44)

When investors do not receive any information about firms’ factor loadings, their conditional
and unconditional beliefs coincide, and as a result, the expressions for prices and expected re-
turns look similar to those in the benchmark model in Section 2. However, the effect of uncer-
tainty is magnified by a factor of 1/ (1− a2

i ) relative to the i.i.d. case, since the unconditional
variance of βi,t+1 is given by 1

(1−a2i )
Vβ,i. Finally, since there is no time-series variation in the

conditional expectation of future factor loadings, the idiosyncratic volatility of log returns is
simply given by the volatility of idiosyncratic shocks to dividend growth (i.e., Vd,i).

At the other extreme, the investor uncertainty about factor loadings is lowest when investors
can perfectly observe the realization of βi,t at date t (or equivalently, if the noise in signals is
zero—i.e., Vε,i,t = 0) . In this case, the conditional distribution of βi,t+1, given investors’
information at date t, is given by

βi,t+1|It ∼ N ((1− ai) bi + aiβi,t, Vβ,i) , (45)

and we have the following result.
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Corollary 4. Suppose the sequence of prices Pt satisfies the following transversality condition:

lim
T→∞

Et
[
Mt+T

Mt
Pt+T

]
= 0. (46)

Then, given that factor loadings evolve according to (21), and investors’ beliefs are given by (45),
a log-linearization of the price-dividend ratio around its long-run mean implies the following:

(a) firm i’s price-dividend ratio is given by

pdi,t = log (PDi,t) = Ai,t − 1
1−ρiai ((1− ai) bi + aiβi,t)Vm (47)

(b) firm i’s return process is of the form

Ri,t+1 = exp
{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+ γibi,t+1

}
, (48)

(c) firm i’s expected return, conditional on date t information, is given by

Et [Ri,t+1] = exp
{
rf + ((1− ai) bi + aiβi,t)Vm − 1

2

(
1 + 2 aiρi

1−aiρi

)
Vβ,iV

2
m

}
, and (49)

(d) the idiosyncratic volatility of log returns, ri,t+1 = log (Ri,t+1) is given by σi,t, where

σ2
i,t ≡ vart

(
ri,t+1 −

(
βi,t+1mi,t+1 − 1

2
β2
i,t+1Vm

))
= Vd,i +

(
ρiai

1−ρiaiVm

)2

Vβ,i, (50)

where Ai,t, αi,t, and γi are known to investors at date t, and defined as in Proposition 2 (with

bi,t = (1− ai) bi + aiβi,t and Σi,t = Vβ,i), and ρi ≡
exp{p̄d}

1+exp{p̄d} ∈ (0, 1), where p̄d is the long-run

mean of pdi,t.

Although investors observe the current realization of factor loadings perfectly, they still
face uncertainty about future realizations of βi,t. As in the general case in Proposition 2, the
price-dividend ratio is log-linear in the conditional expectation of next period’s factor loading,
which is given by ((1− ai) bi + aiβi,t) in this case. As before, the effect of uncertainty on
expected returns is increasing in Vβ,i and ai, since persistence in factor loadings implies that
uncertainty about next period’s factor loading leads to uncertainty about factor loadings in all
future periods. Finally, as in the general case with imperfect learning, idiosyncratic volatility is
driven by the volatility of idiosyncratic shocks to dividend growth (i.e., Vd,i) and the volatility
in the conditional expectations of future factor loadings, which in this case is given by a2

iVβ,i.

The two extreme cases characterized by Corollaries 3 and 4 imply that introducing persis-
tence in factor loadings increases the effect of uncertainty on expected returns relative to the
i.i.d. case from Section 2. However, as discussed in the previous subsection, the effect on ex-
pected returns is not monotonic in the information quality of investors’ signal Yi,t. Specifically,
whether the effect of uncertainty is larger in the full-information case of Corollary 4 or the
no-information case of Corollary 3 depends on the persistence in factor loadings, ai, and the
parameter ρi. All else equal (and assuming that βi,t = bi), expected returns are lower in the
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no-information case relative to the full-information case if and only if ρi <
ai

2−a2i
. The expres-

sions in Corollaries 3 and 4 also highlight the result that, all else equal, idiosyncratic volatility
decreases with the variance of the noise in the signals (i.e., Vε,i,t), since noisier signals about
factor loadings imply lower variability in conditional expectations about future factor loadings
(i.e., vart (bi,t+1)).

Corollaries 3 and 4 also allow us to characterize the economic magnitude of these effects in
a tractable manner. We present a numerical example in Figure 2. We plot expected returns
as a function of Vβ,i for the i.i.d. case presented in Section 2, the no-information benchmark
presented in Corollary 3, and the full-information benchmark presented in Corollary 4. We
set the risk-free rate to 2%, the variance of the pricing kernel Vm to 0.2, the unconditional
mean factor loading (i.e., bi) to 1, and the long-run mean price-dividend ratio PDi,t to 4, which
implies ρi = 0.80. The assumed value of Vm is consistent with a Sharpe ratio on the aggregate
stock market of at least 0.5.15 Although there is significant cross-sectional variation in firms’
price-dividend ratios, our estimate of the long-run mean PDi,t is chosen to be conservative
and to highlight the non-monotonic dependence of expected returns on information quality as
described above.

The plots in Figure 2 suggest that the effect of uncertainty about factor loadings on expected
returns can be economically significant, especially when factor loadings are persistent. In the
i.i.d. benchmark model of Section 2, the effect is relatively small—a unit increase in the variance
of βi,t (i.e., Vβ,i = 1) leads to a decrease in annualized expected returns of about 200 basis points.
However, once we allow for persistence, this effect is amplified considerably. For instance, with a
persistence of ai = 0.85, a unit increase in Vβ,i corresponds to a decrease in annualized expected
returns of between 520 and 850 basis points (for the no-information and full-information cases,
respectively). And increasing the persistence to ai = 0.95 implies that a unit increase in Vβ,i
leads to a decrease of between 12 and 19 percent in annualized expected returns. The choice
of mean PDi,t is conservative in that we expect the price-dividend ratios of individual firms to
be larger, which implies a larger value of ρi and, consequently, a larger effect of uncertainty on
expected returns (see equation (32)).

For a sense of how representative these parameter ranges are, we can compare them with
estimates from portfolio-level analysis in the empirical literature. For example, Jostova and
Philipov (2005) find that persistence in betas range from around 0.04 for their “Other” sector
portfolio to 0.93 for their “Finance” sector portfolio, while the volatility of shocks to beta
range from 0.04 for their “Other” sector portfolio to 0.23 for their “Wholesale and Retail”
portfolio.16 Andersen, Bollerslev, Diebold, and Wu (2005) document that the large-growth
and large-value portfolios in their sample exhibit autocorrelation coefficients of 0.91 and 0.97,
respectively. In their sample, Ang and Chen (2007) estimate the persistence in the value and

15This is because the Hansen-Jagannathan bound in this case is given by

σ
(
Mt+1

Mt

)
/E
(
Mt+1

Mt

)
=

√
(exp{Vm}−1) exp{2(−rf− 1

2Vm)+Vm}
exp{−rf} =

√
(exp {Vm} − 1) > 0.5,

which implies Vm > log
(
1 + 0.52

)
≈ 0.22.

16Their “Other” sector consists of all firms excluding those in the “Manufacturing”, “Utilities”, “Wholesale
and Retail”, and “Finance” sectors.
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growth portfolios as 0.988 and 0.981, respectively, and the volatility of shocks to beta for these
portfolios as 0.168 and 0.132, respectively. Adrian and Franzoni (2009) find that persistence in
betas range from -0.26 for their large-growth portfolio to 0.35 for their large-value portfolio and
that the variance in shocks to betas range from 0.01 for their large-growth portfolio to 0.66 for
their small-value portfolio. Moreover, while mapping these empirical estimates to our model
parameters, one must keep in mind that these estimates are based on portfolio returns, which
are likely to substantially underestimate the volatility of firm-level factor loadings. Therefore,
these estimates suggest that there is substantial variation in the persistence and volatility of
factor loadings across firms and that the effect of factor-loading uncertainty on the cross-section
of expected returns implied by our model is potentially large and economically important.

The plots in Figure 2 also highlight the effect of the interaction between persistence and
information quality on expected returns as discussed above. In particular, note that in the first
and second panels of Figure 2, ai is too small relative to condition (37), and as a result, the
effect of uncertainty is bigger in the full-information case (i.e., the full-information expected
returns are lower, all else equal). In contrast, in the third panel of Figure 2, ai satisfies condition
(37) and, as a result, the effect of uncertainty is bigger in the no-information case. As these
panels illustrate, all else equal, and controlling for the level of factor-loading uncertainty (i.e.,
Σi,t), expected returns are increasing in information quality when factor-loading persistence is
high, and decreasing in information quality when factor-loading persistence is low.

3.3 Learning from realized dividends and returns

As before, we assume that the pricing kernel evolves according to (1), the dividend process for
firm i evolves according to (3), and the factor loading of firm i evolves according to (21). To
focus on the effect of learning from realized dividends, we assume that investors do not observe
signals of the form (22), but instead can only condition their beliefs on realized dividends and
returns. In particular, we assume that returns on a factor-mimicking portfolio, RM,t+1, are
observable, where

RM,t+1 = exp
{
µM +mt+1 − 1

2
Vm
}
. (51)

This implies that investors can observe the realization of mt+1 at date t+1.17 Moreover, if they
can observe the realization of Di,t+1, they can recover a signal about βi,t+1 of the form

Yi,t+1 = βi,t+1mt+1 + di,t+1. (52)

Given this information structure, we can again apply the Kalman filter to characterize investors’
conditional distribution of factor loadings as follows.

Lemma 2. The expectation of the risk-factor loading at date t + 2, conditional on the infor-

17This assumption holds in most models of complete information. For instance, in the CAPM, this amounts
to observing the return of the market portfolio, RM,t+1, at date t+1. In a consumption-CAPM, this assumption
is equivalent to the representative investor observing consumption growth ct+1 at date t+ 1.
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mation available to investors at date t+ 1, is given by:

bi,t+1 ≡ Et+1 [βi,t+2] = (1− ai) bi + ai

(
bi,t + λi,t+1

(
1

mt+1
Yi,t+1 − bi,t

))
+ φiyt+1 (53)

= (1− ai) bi + ai

(
bi,t + λi,t+1

(
βi,t+1 − bi,t +

di,t+1

mt+1

))
+ φiyt+1 (54)

where λi,t+1 =
m2
t+1Σi,t

m2
t+1Σi,t+Vd,i

. The variance of the risk-factor loading at date t+ 2, conditional on

date t+ 1 information, is given by:

Σi,t+1 ≡ vart+1 (βi,t+2) = Vβ,i + a2
iΣi,t (1− λi,t+1) . (55)

In contrast to the results in Section 3.1 where the noise in the signal was assumed to
be uncorrelated with other fundamentals, noise in the signal Yi,t+1 is now the idiosyncratic
component of log dividend growth (i.e., di,t+1). More importantly, the above result also implies
that the Kalman gain, λi,t+1, is not only time-varying, but is also stochastic and depends
on realizations of the aggregate risk-factor mt+1. This, in turn, implies that the conditional
variance of factor loadings, Σi,t+1, is also stochastic, and depends on realizations of mt+1. The
stochastic conditional variance of factor loadings is similar to the filtering result in Xia (2001).
Intuitively, investors learn more about the factor loading of a given firm when there are big
moves in the pricing kernel, or equivalently, large realizations (both positive and negative) of the
factor-mimicking portfolio. Moreover, because the conditional variance of the factor loadings
depends on the realization of the aggregate risk factor mt+1, there is a common component
across stocks—all else equal, the conditional factor-loading uncertainty of all stocks decreases
by a larger amount after a large realization of m2

t+1.

So far we have assumed that investors use only realized dividends, and not additional signals,
to keep the analysis tractable. However, as should be apparent from our earlier analysis, we
can easily generalize the setup to allow investors to learn from both realized dividends and
signals of the form in equation (22). In this more general model, the Kalman gain and the
conditional variance would still be stochastic, as in the current setup. Given the evolution of
beliefs described above, we can approximate the price-dividend ratio and the expected return
as specified in the following result.

Proposition 3. Suppose the sequence of prices Pt satisfies the following transversality condi-
tion:

lim
T→∞

Et
[
Mt+T

Mt
Pt+T

]
= 0. (56)

Then, given that factor loadings evolve according to (21), and investors’ beliefs evolve according
to the results of Lemma 2, a linearization and a first-order Taylor expansion in mt+1 and di,t+1

of the (log) price-dividend ratio gives the following approximations:

(a) firm i’s price-dividend ratio is approximately given by

pdi,t = log (PDi,t) = Ai,t − 1
1−ρiai bi,tVm + FiΣi,t (57)

(b) firm i’s return process is approximately given by

Ri,t+1 = exp
{
αi,t+1 + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+ γibi,t+1 + ρiFiΣi,t+1

}
, and

(58)
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(c) firm i’s expected return, conditional on date t information, is approximately given by

Et [Ri,t+1] = exp
{
rf + bi,tVm − 1

2
V 2
mΣi,t

}
, (59)

where Fi = 1

2(1−a2i ρi)
V 2
m, γi = − ρi

1−ρiaiVm, and Ai,t, αi,t+1, and ρi ∈ (0, 1) are known to investors

at date t, and are defined in Appendix A.

As in Proposition 2, the price-dividend ratio varies over time, returns depend on both shocks
to dividend growth and conditional expectations about factor loadings (i.e., bi,t+1), and expected
returns decrease with investors’ conditional uncertainty about factor loadings (i.e., Σi,t), even
after controlling for the level of factor loadings. Moreover, as before, the effect of uncertainty on
expected returns increases with the aggregate risk premium, Vm, and the persistence in factor
loadings, ai (since Σi,t increases in ai), and decreases with the volatility of idiosyncratic shocks
to dividend growth, Vd,i (since λi,t+1 decreases with Vd,i), holding all else fixed. However, unlike
our earlier results, the conditional variance of factor loadings, Σi,t, is stochastic in this case
because it depends on realizations of the aggregate risk factor mt. This implies that Σi,t is an
additional state variable, and affects the (log) price-dividend ratio and returns nonlinearly. As a
result, unlike Proposition 2, a closed-form expression for the exact log-linearized price-dividend
ratio is not analytically tractable. However, using a first-order Taylor expansion of the log
price-dividend ratio (in mt+1 and di,t+1), we can derive approximations that are tractable and
intuitive, and parsimoniously capture the first-order effects of learning about factor loadings
from realized dividends and returns.18

Note that the difference in expected returns across stocks, after controlling for the (mean)
level of their factor loadings, is likely to be smaller following large realizations of m2

t . This is
because, all else equal, one expects the conditional variance Σi,t to be smaller following large
realizations of m2

t , since investors learn more about firms’ factor loadings if they can condition
on large realizations of the aggregate risk factor in either direction (i.e., large positive or negative
realizations of mt). As such, the model generates time-series variation in the cross-section of
expected returns after controlling for the level of factor loadings, or alphas, that is driven by
the aggregate risk factor, even though we assume that the aggregate risk premium (i.e., Vm) is
constant.

The stochastic nature of Σi,t (and λi,t+1) when investors condition on realized dividends
and returns implies that idiosyncratic return volatility is stochastic, even though all shocks to
fundamentals are homoscedastic (i.e., have constant variance).

Corollary 5. Conditional on date t information, adjusting for convexity effects, and given the
approximations in Proposition 3, the idiosyncratic volatility of log returns ri,t+1 = log (Ri,t+1),
denoted by σi,t, is approximately given by

σ2
i,t ≈ γ2

i φ
2
iVy + γ2

i a
2
iΣi,tEt

[
λ2
i,t+1

]
+ Vd,iEt

[(
1 +

λi,t+1

mt+1
γiai

)2
]

+ ρ2
iF

2
i vart (Σi,t+1) (60)

where γi = − ρi
1−ρiaiVm and Fi = 1

2(1−a2i ρi)
V 2
m.

18As we discuss in the proof, we expect higher-order terms of mt+1 and di,t+1 to be small relative to the other
terms in the log price-dividend ratio, and dropping them allows us to cleanly characterize the approximate
price-dividend ratio and expected returns.
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This result follows from an application of the law of total variance.19 As before, the above
result implies that idiosyncratic volatility increases in the volatility of idiosyncratic shocks to
dividend growth (i.e., Vd,i), the variance of conditioning variables that investors use to forecast
factor loadings (i.e., Vy), the persistence of factor loadings (i.e., ai), and the volatility of mt+1

(i.e., Vm). The model also implies that idiosyncratic volatility is stochastic, since it depends on
past realizations of mt and, moreover, is decreasing in past realizations of m2

t . This implies that
there is a common factor to idiosyncratic volatility across firms that is driven by realizations of
the aggregate risk factor. This result is consistent with empirical evidence of a factor structure
in the cross-section of idiosyncratic volatility that is correlated with the business cycle (e.g.,
Campbell, Lettau, Malkiel, and Xu 2001; Duarte, Kamara, Siegel, and Sun 2011).

While the assumptions of a constant aggregate risk premium (i.e., constant Vm) and ho-
moscedastic shocks to fundamentals are restrictive, they serve to isolate the mechanism through
which learning about factor loadings can endogenously generate stochastic volatility. As such,
our model provides a useful benchmark for understanding how stochastic volatility can arise at
the firm level, and we view our analysis as complementary to models of endogenous stochastic
volatility at the aggregate level (e.g., David 1997; Veronesi 1999).

4. Empirical Implications

As the analysis in the previous sections suggests, allowing for uncertainty and learning about
factor loadings in a standard asset pricing framework yields a rich set of empirical predictions.
Our main result is that controlling for the average level of factor loadings, higher fundamental
uncertainty about a firm’s factor loadings (i.e., higher Vβ,i) leads to lower expected returns. In
Subsection 4.1, we present empirical evidence that is both qualitatively and quantitatively con-
sistent with this primary prediction. In Subsection 4.2, we summarize additional implications
of our model that we do not test, but instead leave for future work.

4.1 The effect of factor-loading uncertainty on expected returns

We follow the standard empirical approach of estimating Fama-MacBeth regressions to test
whether uncertainty about factor loadings has explanatory power in the cross-section of stock
returns, after controlling for the level of firms’ factor loadings. To test this prediction, we ideally
need to identify the following: (1) a correctly specified pricing kernel that is used by investors,
(2) estimates of each firm’s risk-factor loadings, and (3) estimates of investors’ uncertainty
about each firm’s risk-factor loadings. Unfortunately, since none of these variables are directly
observable to an econometrician, testing the model’s predictions is challenging. Accordingly,
our empirical analysis is accompanied by a number of important caveats.

First, to keep the empirical specification as parsimonious as possible, we adopt the (log)
CAPM as the benchmark pricing model. This specification implies that the relevant aggregate
risk-factor loading from investors’ perspective (and, therefore, what investors are uncertain

19The law of total variance implies that for random variablesX and Y , var (X) = E [var (X|Y )]+var (E [X|Y ]) .
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about) is firms’ factor loadings with respect to the excess market return. Second, we use factor
loadings estimated with (log) returns instead of (log) cash-flow growth. Although the two
factor loadings are identical in our model, we recognize that these need not be the same more
generally. However, since returns are observable at much a higher frequency than are cash flows,
this allows us to estimate βi,t+1 with greater precision. This also implies that our estimates
of the effect of uncertainty on expected returns is conservative, since investors are likely to be
more uncertain about the factor loadings of firms’ cash-flow growth than they are about the
factor loadings of firms’ returns.

In the first stage, we estimate the average factor loading and the uncertainty about factor
loadings by estimating firm-specific rolling window regressions of the excess (log) return on
stock i on the excess return on the market—i.e.,

ri,t+1 − rf,t = ai + bi (rm,t+1 − rf,t) + ei,t+1, (61)

where ri,t+1 and rm,t+1 are the log return on stock i and the market, respectively, and rf,t
is the log risk-free rate. We follow the standard approach in the literature and use monthly
returns and a rolling window of sixty months to estimate bi, and we define our proxy for
investors’ uncertainty about the factor loading as the squared standard error of this estimate—
i.e., Vβ,i = (std err (bi))

2. In the second stage, we estimate monthly cross-sectional regressions
of excess (log) returns on the estimated bi, our proxy for uncertainty about factor loadings Vβ,i,
a convexity adjustment term b2

i , and a number of additional controls—i.e., for each date t, we
estimate the following cross-sectional regression:

ri,t+1 − rf,t = αi,t + λtbi,t + γtVβ,i,t + κtb
2
i,t + controlsi,t + εi,t+1. (62)

Our model predicts that the coefficient on Vβ,i,t (i.e., γt) is negative. Since we are using log
returns, it is important to include the b2

i,t term in the specification to properly account for the
convexity adjustment. The controls include factor loadings on the (log) SMB, HML, and UMD
portfolios (denoted by bi,SMB, bi,HML, and bi,UMD, respectively), as well as the factor loading
of returns on aggregate volatility risk (denoted by bi,∆V IX).20 The controls also include proxies
for firm characteristics that have been shown to have explanatory power for the cross-section
of expected returns, including (log) market value of equity, (log) turnover, market-to-book
ratio, debt-to-equity ratio, volatility of earnings, return on assets, accruals, and bid-ask spread,
(denoted by log (mve), turn, M/B, D/E, vol (E), ROA, ACC, and spread, respectively). The
variables are constructed using data from the CRSP and Compustat databases, as described
in Appendix C. The t-statistics reported in the table are based on Newey-West standard errors
(with sixty lags) that are adjusted by the Shanken correction for the errors-in-variables bias
(e.g., Shanken 1992; Chordia, Goyal, and Shanken 2011).

20The ∆V IX proxy is based on Ang, Hodrick, Xing, and Zhang (2006). We estimate rolling window regres-
sions (window size of sixty) of monthly stock returns on innovations in the V IX index (i.e., ∆V IXt) and on
the market return (i.e., MKTt) using the specification

Ri,t = a+ bi,MKTMKTt + bi,∆V IX∆V IXt + εi,t. (63)

We then include bi,∆V IX as a control for the factor loading on aggregate volatility risk. We follow Ang, Hodrick,
Xing, and Zhang (2006) in using the VXO index, which is based on the S&P 500 and is available from January
1986.
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Table 1 provides summary statistics for our sample, which consists of monthly returns on
all stocks listed in the CRSP database matched with annual variables from the Compustat
database. We restrict attention to stocks with positive market value of equity and require
that each firm have at least sixty monthly observations. Our sample ranges from January
1964 to December 2011, but some variables in our analysis are available only for a subsample
of this period (e.g., the VXO series used to compute bi,∆V IX begins in 1986, and the bid
and ask series in CRSP that are used to compute spread are available beginning in 1983). The
summary statistics imply that there is substantial cross-sectional variation in uncertainty about
the market-factor loading (i.e., Vβ,i), and that firms’ market-factor loadings appear to be fairly
persistent, which suggests that the effect of factor-loading uncertainty on the cross-section of
average returns is likely to be economically significant.

Table 2 presents our main empirical results. Consistent with the model’s primary prediction,
the coefficient on Vβ,i is negative and statistically significant in every specification. In addition,
the effect of factor-loading uncertainty on expected returns appears to be economically signif-
icant. The estimated coefficient on Vβ,i ranges from –0.0490 to –0.0646, which implies that a
firm with the median level of Vβ,i (of 0.0678) has annualized average returns of around 400 to
525 basis points lower than an otherwise identical firm with the same average factor loading
(i.e., same bi) but no uncertainty.21 Moreover, not only is the effect of Vβ,i on the cross-section
of average returns robust to the inclusion of factor loadings on the SMB, HML, UMD, and
aggregate volatility risk factors, but the coefficient on Vβ,i actually increases in magnitude and
statistical significance when these additional factor loadings are included in the specifications.
This suggests that the effect of Vβ,i on the cross-section of returns is not because it serves as a
proxy for firms’ loadings on aggregate volatility risk, or other risk factors.

While the monthly summary statistics reported in Table 1 are not directly applicable for
calibrating the model’s predictions at the annual frequency, the magnitude of the annual es-
timates from the regression analysis seems to be consistent with reasonable parameter values
for the model. Figure 3 plots (annual) values of Vβ,i, ai, and ρi for which the model generates
a spread of 450 basis points on annualized expected returns due to factor-loading uncertainty,
which is comparable to the magnitude of the effect we estimate in Table 2. As is apparent from
the expressions in Corollaries 3 and 4, the effect of uncertainty increases with Vβ,i and ai, and
so increasing one while decreasing the other can leave the annualized spread unchanged. To
get a sense of specific parameter values that match our empirical estimates, note that in the
full-information case for a conservative value for the price-dividend ratio (i.e., for ρi = 0.8, or
a long-run mean PD of 4), the following pairs of factor-loading uncertainty and persistence all
generate a spread of 450 basis points in annualized expected returns: (i) ai = 0.25, Vβ,i = 1.5,
(ii) ai = 0.5, Vβ,i = 0.97, and (iii) ai = 0.9, Vβ,i = 0.37. Similarly, for the no-information
case, the following pairs generate the same spread in annualized average returns: (i) ai = 0.25,
Vβ,i = 2.25, (ii) ai = 0.9, Vβ,i = 1.615, and (iii) ai = 0.95, Vβ,i = 1. These parameter val-
ues appear plausible at the annual frequency, given the skewness in the distributions of serial
correlation and uncertainty in factor loadings at the monthly frequency (i.e., AC (bi) and Vβ,i,
respectively, in Table 1), and as such, the magnitude of the effects estimated in the regression
analysis appear consistent with our model’s predictions.

21This is because −0.049× 0.0678× 12 ≈ −0.04 and −0.0646× 0.0678× 12 ≈ −0.0525.
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As previously discussed, since we use log returns, the b2
i term in the specification (62) plays

an important role. As the first two columns of Table 2 show, without the convexity adjustment,
the estimated risk premium on the market factor (given by the coefficient of bi in the regression)
is negative. Even though the market risk premium is positive when the convexity adjustment is
made, it is not statistically significant after the standard errors are adjusted for serial correlation
and the errors-in-variables problem. Finally, comparing the second and third columns, note
that the estimate of the market risk premium is significantly higher when we control for cross-
sectional variation in Vβ,i. Given the positive cross-sectional correlation between bi and Vβ,i (see
Table 1), our results suggest that failing to account for cross-sectional variation in factor-loading
uncertainty can lead to estimates of the market risk-premia that are too low, or, alternatively,
an estimated security market line (SML) that is too flat (as has been documented by Frazzini
and Pedersen 2011 and others).

Table 3 provides evidence that the effect of Vβ,i is robust to the inclusion of a number
of firm-level characteristics. As has been documented in the literature, these characteristics
are important in capturing cross-sectional variation in firm-level returns. The importance of
these characteristics is confirmed in our sample, since their coefficients are often statistically
significant and stable across specifications, and their introduction generally leads to an increase
in average and median R2’s. Nevertheless, as in Table 2, the coefficient on Vβ,i remains negative
and statistically significant across all specifications, despite the inclusion of these additional
characteristics. This suggests that the cross-sectional effect of Vβ,i is distinct from the effects
of firm size, market-to-book, leverage, liquidity (as proxied for by turn and spread), growth
and uncertainty about earnings (ROA and vol (E) , respectively), and the level of accruals.
Importantly, note that while factor-loading uncertainty and earnings volatility are positively
correlated (with a correlation coefficient of over 0.4), they each appear to have incremental
explanatory power for the cross-section of average returns.

Since idiosyncratic volatility is positively related to factor-loading uncertainty (as reported
in Table 1, the correlation between these two variables in our sample is over 0.8), our model can
generate a negative cross-sectional relation between expected returns and idiosyncratic volatil-
ity, as documented by Ang, Hodrick, Xing, and Zhang (2006), Ang, Hodrick, Xing, and Zhang
(2009), and others. However, the distinction between uncertainty and information quality in the
dynamic setting that we highlight in Section 3 provides a more subtle prediction about the joint
relation between factor-loading uncertainty, idiosyncratic volatility, and expected returns that
allows us to distinguish our model from other potential explanations for the negative expected
return-idiosyncratic volatility relation. As Corollary 2 highlights, controlling for factor-loading
uncertainty, idiosyncratic volatility increases in information quality. Moreover, as our discussion
in Section 3.2 concludes (and the second and third panels of Figure 2 illustrate), controlling for
factor-loading uncertainty, we expect a negative relation between information quality and ex-
pected returns for firms with low factor-loading persistence, but a positive relation for firms with
high persistence. These results suggest that controlling for cross-sectional variation in factor-
loading uncertainty, cross-sectional variation in information quality should generate a negative
relation between expected returns and idiosyncratic volatility for firms with low factor-loading
persistence, but a positive relation for firms with high factor-loading persistence.

In practice, testing this prediction directly is difficult, since it requires identifying distinct

26



firm-specific proxies for factor-loading uncertainty and information quality. Instead, we test
this prediction indirectly, and report the results in Table 4. For each firm, we estimate the
component of its idiosyncratic volatility that is uncorrelated with its factor-loading uncertainty.
In particular, we estimate firm-specific regressions of idiosyncratic volatility (i.e., σ2

i ) on Vβ,i,
given by

σ2
i,t = ci + diVβ,i,t + ei,t, (64)

and denote the conditional mean by PIVi,t = ci + diVβ,i,t and the residuals by RIVi = ei,t. We
then estimate the following second-stage regression:

ri,t+1−rf,t = αi,t+λtbi,t+γ1,tPIVi,t+γ2,tRIVi,t+γ3,tRIVi,t1HAC+κtb
2
i,t+controlsi,t+εi,t+1, (65)

where 1HAC is an indicator for firms whose factor-loading persistence (i.e., AC (bi)) is in the
top 25th percentile for our sample.22 Since the model predicts a negative relation between
factor-loading uncertainty and expected returns, we expect γ1,t to be negative. Moreover, if
cross-sectional variation in the residual component of idiosyncratic volatility (i.e., RIVi,t) is
driven by cross-sectional variation in information quality, then our model predicts that γ2,t is
negative and γ3,t is positive.

The results in Table 4 are consistent with this prediction. Specifically, the coefficient on
PIV is negative and statistically significant, suggesting a negative relation between expected re-
turns and the component of idiosyncratic volatility that is related to factor-loading uncertainty.
Also consistent with the model’s prediction, the coefficient on RIV is negative (although not
always statistically significant) and the coefficient on RIV 1HAC is positive and almost always
statistically significant. Collectively, these results suggest that after controlling for the effect
of factor-loading uncertainty, the relation between idiosyncratic volatility and expected returns
is quite nuanced and depends on the persistence of firms’ factor-loadings, as predicted by our
model.23

Finally, as a robustness test of our main prediction, we report results from repeating the
analysis in Tables 2 and 3 using simple returns. Although our model is log-linear, and our
benchmark empirical analysis in Table 2 using log returns tests this specification directly, the
main intuition of Proposition 1 is that uncertainty about risk-factor loadings generates cross-
sectional variation in expected returns that is not captured by the average level of firms’ factor
loadings. This intuition suggests that one should expect to find a cross-sectional effect of
uncertainty about factor loadings even when using simple returns. To test this intuition, we
estimate the factor loading on the excess market return (i.e., bi), and the uncertainty about
factor loadings Vβ,i using sixty month rolling window regressions of simple returns, and use
these estimates in the following second-stage cross-sectional regression:

Ri,t+1 −Rf,t = αi,t + λtbi,t + γtVβ,i,t + controlsi,t + εi,t+1. (66)

22The results are qualitatively the same if we consider, instead, firms in the top 20th percentile or the top
10th percentile of factor-loading persistence.

23Recall that the relation between idiosyncratic volatility and expected returns in our model depends not
only on the persistence parameter ai but also on the long-run mean of the log price-dividend ratio ρi. Given
the substantial heterogeneity in ρi across firms, it is not feasible to precisely identify the cutoff level of ai
(in expression (37)) for each firm, and the noise this introduces may partially explain the lack of statistical
significance of our estimates of γ2,t and γ3,t.
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The controls, as before, are loadings on other risk-factors and firm-level characteristics. Also
note that there is no convexity adjustment term in this specification, since we are using simple,
rather than log, returns. The results of this estimation are presented in Table 5. Consistent
with the intuition of our main result, we find that the coefficient on Vβ,i is always negative,
and is statistically significant across almost all specifications. Relative to Tables 2 and 3,
the magnitude and statistical significance of the coefficient estimates are attenuated for some
specifications but remain economically important.24 As in Table 3, the estimates of the risk
premiums are not statistically significant, but the coefficients on the firm-level characteristics
often are, highlighting their importance in explaining the cross-section of firm-level returns.

Overall, the empirical evidence across our tests is both qualitatively and quantitatively
consistent with the model’s main prediction, and suggests that cross-sectional variation in
factor-loading uncertainty may be an important determinant of the cross-section of expected
returns. Our results also suggest that the distinction between factor-loading uncertainty and
information quality may be empirically relevant, and in particular, may be useful to consider
in reconciling the seemingly conflicting empirical evidence about the cross-sectional relation
between expected returns and idiosyncratic volatility that has been documented in the liter-
ature. For instance, while Ang, Hodrick, Xing, and Zhang (2006) and Ang, Hodrick, Xing,
and Zhang (2009) document a negative relation between idiosyncratic volatility and expected
returns, Lehmann (1990), Malkiel and Xu (2006), Boehme, Danielsen, Kumar, and Sorescu
(2009), Fu (2009), Huang, Liu, Rhee, and Zhang (2010), and Spiegel and Wang (2010) docu-
ment a positive relation. Our results show that the unconditional relation between expected
returns and idiosyncratic volatility may be negative if cross-sectional variation idiosyncratic
volatility is dominated by cross-sectional variation in firms’ factor-loading uncertainty. How-
ever, after controlling for the cross-sectional variation in factor-loading uncertainty, the relation
between expected returns and idiosyncratic volatility is driven by information quality, and hence
may be negative for some firms and positive for others. More generally, our model may also
provide insight into the mixed empirical evidence about the relation between expected returns
and other firm-level proxies for uncertainty (e.g., analyst forecast dispersion), to the extent
these proxies capture investor uncertainty and information quality about risk-factor loadings.25

4.2 Additional implications

Although a more exhaustive empirical analysis of our model’s various predictions is beyond the
scope of this paper, we summarize a number of additional implications to guide future empirical

24Note that while the coefficient estimates on Vβ,i in Table 5 are smaller in magnitude than those in Tables 2
and 3, the distribution of Vβ,i across firms is also different when we use simple returns as opposed to log-returns.
In particular, note that the mean and median estimates for Vβ,i when using simple returns are 0.1474 and 0.071,
respectively, which suggests that the effect of uncertainty on expected returns is still economically significant.

25Again, the empirical evidence for this relation is mixed. On one hand, Diether, Malloy, and Scherbina (2002),
Johnson (2004), and others document a negative relation between analyst forecast dispersion and expected
returns. On the other hand, Qu, Starks, and Yan (2004) and Banerjee (2011) document a positive relation
between expected returns and analyst forecast dispersion, while Anderson, Ghysels, and Juergens (2005) find
evidence of a negative relation between expected returns and short-term analyst forecast dispersion, but a
positive relation between expected returns and long-term dispersion.
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research. First, as Corollary 1 highlights, relative to a standard log-linear CAPM, our model
predicts that alpha decreases with firm-specific factor-loading uncertainty (i.e., Vβ,i). This basic
relation generates additional cross-sectional predictions. As previously noted, a positive cross-
sectional correlation between the level of factor loadings and factor-loading uncertainty implies
that the slope of an estimated security market line (SML) in log-return space would be “too”
flat, which is consistent with the evidence documented by Frazzini and Pedersen (2011) and
others. Similarly, since investors are likely to face greater uncertainty about the risk-factor
loadings of young firms that have recently issued stock, our model’s main prediction is also
consistent with the relative underperformance of firms following their initial public offerings
that has been documented in the literature (e.g., Ritter 1991; Teoh, Welch, and Wong 1998).

Our model with persistent factor loadings and learning provides a finer set of empirical
predictions. For instance, the model implies that all else equal, the negative relation between
expected returns and factor-loading uncertainty is stronger for firms with more persistent factor
loadings (i.e., larger ai) and higher long-run mean price-dividend ratios (i.e., higher ρi). As such,
one should expect the strength of the relation between expected returns and firm-specific uncer-
tainty to vary across industries and according to firm characteristics. The model also generates
potentially testable implications for the cross-section of price-dividend ratios and idiosyncratic
return volatility. In particular, the model suggests that price-dividend ratios are increasing in
investors’ conditional uncertainty about factor loadings (i.e., Σi,t). Moreover, price-dividend
ratios should be more sensitive to conditional expectations of future factor loadings (i.e., bi,t)
for firms with more persistent factor loadings (i.e., larger ai) and higher long-run mean price-
dividend ratios (i.e., higher ρi). The model also predicts that idiosyncratic volatility increases
in investors’ uncertainty about factor loadings (i.e., Vβ,i or Σi,t), and all else equal, increases
in both the persistence of factor loadings (i.e., ai) and the long-run mean price-dividend ratio
(i.e., in ρi).

Finally, the version of the model presented in Section 3.3 formalizes a very intuitive mech-
anism for how learning about factor loadings from realized dividends and returns can generate
stochastic volatility in the idiosyncratic component of returns. Since the conditional uncertainty
about factor loadings depends on past realizations of the aggregate risk factor, the model gener-
ates additional testable predictions that condition on past realizations of the factor-mimicking
portfolio. For instance, the results suggest that the spread in expected returns across firms
after controlling for the average level of their factor loadings (i.e., the spread in firms’ alphas
relative to their factor loadings) should be smaller following large realizations (in either di-
rection) of the aggregate risk factor (i.e., large m2

t ). This is because, all else equal, investors
learn more about firms’ factor loadings from large realizations of mt (in either direction), and
as a result, their conditional uncertainty about factor loadings should be small. The model
therefore predicts a factor structure to idiosyncratic volatility across firms, which is driven by
past realizations of m2

t . Finally, the model suggests that in a more general model with multiple
aggregate risk factors that affect the cross-section of stocks differently, one should expect to
find a multifactor structure to the cross-section of idiosyncratic volatility. Accordingly, stocks
that are exposed to the same set of risk factors (e.g., stocks in similar industries) should exhibit
not only comovement in their expected returns, but also comovement in their idiosyncratic
volatility.
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5. Conclusions

We argue that firm-specific information can affect expected returns if it affects investors’ un-
certainty about firms’ risk-factor loadings. We develop a simple, partial equilibrium model in
which we relax the standard assumption that investors know firms’ risk-factor loadings with
certainty. We show that firms with greater uncertainty about their factor loadings have lower
expected returns, even after controlling for the average level of their factor loadings. Moreover,
when factor loadings are persistent and investors can learn about them, this introduces time-
series variation in price-dividend ratios and idiosyncratic volatility. In particular, if investors
use realized dividends and returns to learn about risk-factor loadings, returns exhibit stochastic
volatility even if all fundamental shocks are homoscedastic.

Using Fama-MacBeth regressions of the cross-section of stock returns, we document em-
pirical evidence that is consistent with our main prediction. Specifically, we find that all else
equal, a firm with the median level of factor-loading uncertainty (in our sample) has annualized
average returns that are roughly 400 to 525 basis points lower than an otherwise comparable
firm with the same average factor loading (i.e., same bi) but with no factor-loading uncertainty.
This effect is robust to the inclusion of additional risk-factor loadings and firm characteristics.
Finally, our model helps shed light on the seemingly ambiguous cross-sectional relation between
expected returns and idiosyncratic volatility. Consistent with the model’s prediction, we find
that while the unconditional relation between expected returns and idiosyncratic volatility may
be negative, after controlling for cross-sectional variation in factor-loading uncertainty, the re-
lation depends on the persistence in factor loadings, and may be positive for some firms but
negative for others.

An important limitation of our analysis is that it is done in a partial equilibrium setting. In
particular, we do not impose the general equilibrium restriction that the aggregate dividends
(or cash flows) in the economy must sum to aggregate output or consumption. This is purely
to preserve tractability. As highlighted by Menzly, Santos, and Veronesi (2004), Santos and
Veronesi (2006), Cochrane, Longstaff, and Santa-Clara (2008), Martin (2011), and others, im-
posing the market-clearing condition on dividends in a multiple-asset framework is generally
not analytically tractable since it involves computing the sum of log-normal random variables.
In our framework, this exercise is further complicated by the assumption that the risk-factor
loading of a firm’s dividend growth is stochastic. We leave the general equilibrium analysis
for future work, but conjecture that our model’s predictions should continue to be important
if the number of firms increases and each firm’s dividend becomes a negligible fraction of the
aggregate dividend process.

Finally, although our model is very stylized, it provides a tractable benchmark for more
sophisticated analysis. For instance, in a model with time-varying aggregate risk premia, one
would expect to find that the effect of factor-loading uncertainty also depends on the level of
aggregate uncertainty. In such a model, one would expect that if acquiring information is costly,
investors are likely to condition their information acquisition and portfolio allocation decisions
on the interaction between aggregate and firm-specific uncertainty. Similarly, since our model
predicts that firm-specific information can affect firms’ expected returns, we expect that optimal
disclosure policy should vary over time and according to macroeconomic conditions. A complete
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analysis of these and other extensions is beyond the scope of this paper and is left for future
research.
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Appendix A—Proofs

Proof of Proposition 1. Note that the price-dividend ratio at time t is given by:

PDi,t = Et
[
Mt+1

Mt

Di,t+1

Di,t
(1 + PDi,t+1)

]
= Et

[
Mt+1

Mt

Di,t+1

Di,t

(
1 + Et+1

[
Mt+2
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Di,t+1
(1 + PDi,t+2)

])]
and so on. Importantly, our assumption that βi,t+1is independent over time implies that
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(A1)

is independent of
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}
. (A2)

Moreover, the price-dividend ratio of next period’s dividend is given by

pt = Et
[
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]
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= Et
[
exp
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d̄i − rf − βi,t+1Vm

}]
= exp
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d̄i − rf − biVm + 1

2
V 2
mVβ,i

}
≡ p, (A5)

and hence it is constant (i.e., pt = pt+1 = p) , and therefore

PDi,t = p+ pEt [PDi,t+1] = p+ pEt [p+ pEt+1 [PDi,t+2]] = p+ p2 + ... =
p

1− p.

Since Ri,t+1 =
Di,t+1
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1+PDi,t+1

PDi,t
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Di,t

1
p
, this implies
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= exp

{
rf + biVm − 1

2
Vβ,iV

2
m

}
, (A7)

which implies that the firm i’s expected return is decreasing in its factor-loading uncertainty
Vβ,i.

Proof of Proposition 2. Given persistence in βi,t+1, in general it is not possible to de-
rive exact expressions in closed form for our discrete time model. We shall instead rely on a
log-linearization of the price-dividend ratio that is common in the literature to derive these ex-
pressions. Let PDi,t denote the price-dividend ratio of stock i at date t. Let pdi,t = log (PDi,t),
and note that a first-order Taylor expansion yields:

log (1 + PDi,t+1) = log (1 + exp {pdi,t+1}) ≈ C + ρipdi,t+1 (A8)

where ρi ≡
exp{p̄d}

1+exp{p̄d} , C ≡ log
(
1 + exp

{
p̄d
})
− exp{p̄d}

1+exp{p̄d} p̄d, and p̄d is the long-run mean of
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the log price-dividend ratio. Now conjecture that pdi,t = Ai,t +Bibi,t. Then,
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Matching terms to our conjecture, we get

Bi = (ρiBiai − Vm) or equivalently, Bi = − 1
1−ρiaiVm (A9)
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Note that Ai,t follows the recursion

Ai,t = ρiAi,t+1 + χt, (A11)

where χs = d̄i−rf + 1
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is bounded. This implies that Ai,t has a solution of the form:

Ai,t = Kρ−ti +
∞∑
s=t

ρs−ti χs. (A12)

The transversality condition implies that
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which implies that K ≤ 0. Moreover, note that if K < 0, then log (PDi,T ) decreases exponen-
tially fast as T →∞—that is,

plimT→∞ log (PDi,T ) = plimT→∞Kρ
−T
i +

∞∑
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ρs−ti χs − bi,TVm
1−ρiai = −∞. (A13)
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But log dividend growth (i.e., log(
Di,T
Di,t

)) is linear in T (by assumption). This implies that the

price converges to zero as T →∞ (in probability), since log (PT ) = log (PDi,T ) + log
(
Di,T
Di,t

)
+

log (Di,t) . Since we want to rule out this degeneracy in price, we must have that K = 0,
which implies Ai,t =

∑∞
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s−t
i χs for all t. If Vε,i,t is constant, the stationary equilibrium is

characterized by Ai,t+1 = Ai,t = Ai, where
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where λi and Σi are characterized in Lemma 1.
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1+PDi,t+1

PDi,t

≈ exp
{
d̄i + βi,t+1mt+1 + di,t+1 − 1

2
β2
i,t+1Vm − 1

2
Vd,i + C + ρi (Ai,t+1 +Bibi,t+1)− (Ai,t +Bibi,t)

}
≡ exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+ γibi,t+1

}
,

where γi = − ρi
1−ρiaiVm = ρiBi, and

αi,t = d̄i + C + ρiAi,t+1 − Ai,t −Bibi,t

= rf − 1
2

(ρiBiaiλi,t − Vm)2 Σi,t −Bi (ρi (1− ai) bi + bi,t)− 1
2

(ρiBi)
2 (a2

iλ
2
i,tVε,i,t + φ2

iVy
)
.

Finally, note that expected returns are given by

Et [Ri,t+1] = Et
[
exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+ γibi,t+1

}]
= Et

[
exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2

(
β2
i,t+1Vm + Vd,i

)
+γi ((1− ai) bi + ai (bi,t + λi,t (βi,t+1 + εi,t+1 − bi,t)) + φiyt+1)

}]
= exp

{
rf − 1

2
(ρiBiaiλi,t − Vm)2 Σi,t + 1

2
(ρiBiaiλi,t)

2 Σi,t + (ρiai − 1)Bibi,t
}

= exp
{
rf + bi,tVm − 1

2

(
1 + 2λi,t

ρiai
1−ρiai

)
V 2
mΣi,t

}
,

which gives us the result.

Proof of Proposition 3. As in the proof of Proposition 2, we log-linearize the price-dividend
around its long-run mean. However, given the nonlinearity in the filtering by investors, this is
not sufficient to derive closed form expressions. As such, we derive an approximation to the
log price-dividend ratio by using a first-order Taylor expansion in mt+1 and di,t+1. Specifically,
conjecture a log-linear price-dividend ratio of the form pdi,t = At+Bibi,t+FiΣi,t. Plugging this
conjecture into the definition, we have

PDi,t = Et
[
Mt+1

Mt

Di,t+1

Di,t
(1 + PDi,t+1)

]
≈ Et [exp {G (mt+1, di,t+1, βi,t+1, yi,t+1)}]

where

G =
d̄i − rf + (βi,t+1 − 1)mt+1 + di,t+1 − 1

2
β2
i,t+1Vm − 1

2
Vd,i − 1

2
Vm

+C + ρi (Ai,t+1 +Bibi,t+1 + FiΣi,t+1)
(A14)
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and where bi,t+1, Σi,t+1 and λi,t+1 are given by Lemma 2. A first-order Taylor expansion of G
in mt+1 and di,t+1 around (0, 0) gives:

G =
d̄i − rf + C − 1

2
Vd,i − 1

2
Vm − 1

2
β2
i,t+1Vm + ρiAi,t+1 + ρiBi (bi + ai (bi,t − bi))

+a2
i ρiFiΣi,t + ρiFiVβ,i + ρiφiBiyi,t+1 + di,t+1 + (βi,t+1 − 1)mt+1 +O (x)

(A15)

where x ∈
{
m2
t+1, d

2
i,t+1,mt+1di,t+1

}
. Intuitively, we eliminate the higher order terms of mt+1

and di,t+1 since we expect them to be small. However, we do not eliminate βi,t+1mt+1 terms
since βi,t+1 are not likely to be as small as mt+1 or di,t+1. This implies

PDi,t ≈ Et
[
exp

{
d̄i − rf + C − 1

2Vd,i − 1
2Vm − 1

2β
2
i,t+1Vm + ρiAi,t+1 + ρiBi (bi + ai (bi,t − bi))

+a2
i ρiFiΣi,t + ρiFiVβ,i + ρiφiBiyi,t+1 + di,t+1 + (βi,t+1 − 1)mt+1 +O (x)

}]
= Et

[
exp

{
d̄i − rf + C − 1

2Vd,i − 1
2Vm − 1

2β
2
i,t+1Vm + ρiAi,t+1 + ρiBi (bi + ai (bi,t − bi))

+a2
i ρiFiΣi,t + ρiFiVβ,i + 1

2 (ρiφiBi)
2 Vy + 1

2Vd,i + 1
2 (βi,t+1 − 1)2 Vm

}]
= exp

{
d̄i − rf + C + ρiAi,t+1 + ρiBi (bi + ai (bi,t − bi)) + ρiFiVβ,i

+a2
i ρiFiΣi,t + 1

2 (ρiφiBi)
2 Vy − bi,tVm + 1

2V
2
mΣi,t

}
(A16)

Matching terms with the conjecture, we have

Ai,t = d̄i − rf + C + ρiAi,t+1 + ρiBibi (1− ai) + ρiFiVβ,i + 1
2

(ρiφiBi)
2 Vy (A17)

Bi = ρiBiai − Vm ⇒ Bi = − 1
1−aiρiVm (A18)

Fi = 1
2
V 2
m + a2

i ρiFi ⇒ Fi = 1

2(1−a2i ρi)
V 2
m (A19)

Using arguments analogous to those in the previous proposition, the transversality condition im-
plies thatAi,t =

∑∞
s=t ρ

s−t
i χs, for χs = d̄i − rf + C + ρiBibi (1− ai) + ρiFiVβ,i + 1

2
(ρiφiBi)

2 Vy ,
since χs is bounded. Given the approximation above, returns are given by

Ri,t+1 = exp

{
d̄i + βi,t+1mt+1 + di,t+1 − 1

2β
2
i,t+1Vm − 1

2Vd,i + C

+ρi (Ai,t+1 +Bi,t+1bi,t+1 + FiΣi,t+1)− (Ai,t +Bi,tbi,t + FiΣi,t)

}
= exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2β
2
i,t+1Vm − 1

2Vd,i + γibi,t+1 + ρiFiΣi,t+1

}
where γi = − ρi

1−ρiaiVm = ρiBi, and

αi,t = rf − 1
2

(ρiBiφi)
2 Vy − ρiBibi (1− ai)− ρiFiVβ,i −Bibi,t − FiΣi,t. (A20)

Finally, using the same first-order Taylor expansion as above, we have that expected returns
are given by

Et [Ri,t+1] = Et
[
exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2β
2
i,t+1Vm − 1

2Vd,i + γibi,t+1 + ρiFiΣi,t+1

}]
≈ Et

[
exp

{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2β
2
i,t+1Vm − 1

2Vd,i + ρiFi
(
Vβ,i + a2

iΣi,t

)
+1

2 (ρiBiφi)
2 Vy + ρiBibi (1− ai) + ρiaiBibi,t

}]
= exp

{
αi,t + ρiFi

(
Vβ,i + a2

iΣi,t

)
+ 1

2 (ρiBiφi)
2 Vy + ρiBibi (1− ai) + ρiaiBibi,t

}
= exp

{
rf + bi,tVm − 1

2V
2
mΣi,t

}
.

This concludes the proof.
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Proof of Corollary 5. The log-linearization and Taylor expansion implies that for x ∈{
m2
t+1, d

2
i,t+1,mt+1di,t+1

}
, the return is given by:

Ri,t+1 = exp
{
αi,t + βi,t+1mt+1 + di,t+1 − 1

2β
2
i,t+1Vm − 1

2Vd,i + γibi,t+1 + ρiFiΣi,t+1 +O (x)
}

and so the idiosyncratic volatility of (log) returns can be approximated as follows:

σ2
i,t = vart

(
log (Ri,t+1)−

(
βi,t+1mi,t+1 − 1

2β
2
i,t+1Vm

))
≈ vart (di,t+1 + γibi,t+1 + ρiFiΣi,t+1) (A21)

= vart

(
di,t+1 + γi

(
aiλi,t+1

(
βi,t+1 − bi,t +

di,t+1

mt+1

)
+ φiyt+1

)
+ ρiFiΣi,t+1

)
(A22)

= Et
[
vart

(
di,t+1 + γi

(
aiλi,t+1

(
βi,t+1 − bi,t +

di,t+1

mt+1

)
+ φiyt+1

)
+ ρiFiΣi,t+1|mt+1

)]
+ vart

(
Et
[
di,t+1 + γi

(
aiλi,t+1

(
βi,t+1 − bi,t +

di,t+1

mt+1

)
+ φiyt+1

)
+ ρiFiΣi,t+1|mt+1

])
(A23)

= Et
[
γ2
i a

2
iλ

2
i,t+1Σi,t + γ2

i φ
2
iVy +

(
1 +

λi,t+1

mt+1
γiai

)2
Vd,i

]
+ vart (ρiFiΣi,t+1) (A24)

= γ2
i φ

2
iVy + γ2

i a
2
iΣi,tEt

[
λ2
i,t+1

]
+ Vd,iEt

[(
1 +

λi,t+1

mt+1
γiai

)2
]

+ ρ2
iF

2
i vart (Σi,t+1) (A25)

which gives us the result.
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Appendix B—Alternate specification of the convexity ad-

justment

We shall repeatedly use the result that for a normally distributed random variable X ∼
N (µ, σ2), the expected value of the exponential quadratic form is given by

E
[
exp

{
aX2 + bX + c

}]
= 1√

1−2aσ2 exp

{
c− 1

2
µ2

σ2 + 1
2

(bσ2+µ)
2

σ2(1−2aσ2)

}
(A26)

Suppose, as in the benchmark case, the pricing kernel is given by

Mt+1 = Mt exp
{
−rf − 1

2
Vm −mt+1

}
where mt+1 ∼ N (0, Vm) , (A27)

and that investors’ beliefs about firm i’s dividends (or cash flows), at date t+ 1 are given by:

Di,t+1 = Di,t exp

{
d̄i + βi,t+1mt+1 + di,t+1 − 1

2

(
Vd,i +

b2i Vm
1−VmVβ,i

)
− log

(
1√

1−VmVβ,i

)}
, (A28)

where
di,t+1 ∼ N (0, Vd,i) , and βi,t+1 ∼ N (bi, Vβ,i) , (A29)

and we assume that
1− Vβ,iVm > 0. (A30)

This condition ensures that the expectation of the exponential of the product of βi,t+1 and mt+1

(i.e., E [exp {βi,t+1mt+1}]) is well defined. Moreover, note that

E
[
exp

{
d̄i + βi,t+1mt+1 + di,t+1

}]
= E

[
E
[
exp

{
d̄i + βi,t+1mt+1 + di,t+1

}∣∣ βi,t+1

]]
(A31)

= E
[
exp

{
d̄i + 1

2
Vd,i + 1

2
β2
i,t+1Vm

}]
(A32)

=
1√

1− VmVβ,i
exp

{
d̄i + 1

2

(
Vd,i +

b2i Vm
1−VmVβ,i

)}
, (A33)

and so a convexity adjustment of

logE
[
exp

{
d̄i + βi,t+1mt+1 + di,t+1

}]
− E

[
log
(
exp

{
d̄i + βi,t+1mt+1 + di,t+1

})]
= 1

2

(
Vd,i +

b2i Vm
1−VmVβ,i

)
+ log

(
1√

1−VmVβ,i

)
(A34)

ensures that the log expected dividend growth (i.e., log
(
E
[
Di,t+1

Di,t

])
) is given by d̄i. As in the

benchmark model, Mt+1

Mt

Di,t+1

Di,t
and Mt+2

Mt+1

Di,t+2

Di,t+1
are independent, and the price-dividend ratio of

next period’s dividend is given by

pt = Et
[
Mt+1

Mt

Di,t+1

Di,t

]
= Et

[
Et
[
Mt+1

Mt

Di,t+1

Di,t

∣∣∣ βi,t+1

]]
(A35)

= Et
[
exp

{
d̄i − rf + 1

2
(βi,t+1 − 1)2 Vm − 1

2

b2i Vm
1−VmVβ,i

− log

(
1√

1−VmVβ,i

)}]
(A36)

= exp
{
d̄i − rf − biVm

1−Vβ,iVm
+ 1

2

Vβ,iV
2
m

1−Vβ,iVm

}
≡ p. (A37)
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This implies that Ri,t+1 =
Di,t+1

Di,t

1+PDi,t+1

PDi,t
=

Di,t+1

Di,t

1
p
, which, in turn, implies

E [Ri,t+1] = 1
p
E
[
Di,t+1

Di,t

]
= exp

{
rf + biVm

1−Vβ,iVm
− 1

2

Vβ,iV
2
m

1−Vβ,iVm

}
. (A38)

Note that when 1 − Vβ,iVm ≈ 1, the above expression for expected returns corresponds to the
one described in Proposition 1. In general, when the product of the variances is not small,
the effect of Vβ,i on the expected return is larger than in the benchmark specification (since

1
1−Vβ,iVm

> 1).
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Appendix C—Variable Definitions

The control variables used in the empirical analysis of Section 4.1 are computed using the
monthly CRSP (lower-case variables) and the annual Compustat (upper-case variables) databases
as follows:

1. Factor loadings on the excess market return, the SMB, HML, and UMD portfolios, and
aggregate volatility risk (denoted by bi, bi,SMB, bi,HML, bi,UMD and bi,∆V IX , respectively)
are estimated using monthly returns over sixty month rolling window regressions on the
relevant factors. Idiosyncratic volatility (denoted by σ2

i ) is calculated relative to the four-
factor model (i.e., relative to excess market returns, SMB, HML, and UMD) using sixty
month rolling window regressions.

2. Log market value of equity, turnover, and bid-ask spread (denoted by log (mve), turn, and
spread, respectively) are calculated using the CRSP database, as follows: log (mve) =
log (shrout× abs (prc)), turn = log (vol/shrout), and spread = bid−ask

(bid+ask)/2
. The market

value of equity and spread measures are lagged by one month when included in the
regressions to avoid a mechanical effect on expected returns.

3. Market-to-book ratio, debt-to-equity ratio, volatility of earnings, return on assets, and
accruals (denoted by M/B, D/E, vol (E), ROA, and ACC, respectively) are calculated

using CRSP and Compustat data as follows: M/B = shrout×abs(prc)
AT−LT , D/E = DLTT+DLC

shrout×abs(prc) ,

ROA = OIADP
(AT+lag(AT ))/2

, ACC = (∆ACT−∆CHE)−(∆LCT−∆DLC−∆TXP )−DP
(AT+lag(AT ))/2

, and vol (E) is the

volatility of earnings (i.e., OIADP
(AT+lag(AT ))/2

) over the previous five years.
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Figure 1
The effect of a mean-preserving spread in βi,t+1 across states of the world

This figure plots the pricing kernel Mt+1/Mt and the present value of the dividend Mt+1

Mt
Di,t+1

as functions of the state of the world (i.e., mt+1) for different values of βi,t+1. For the bottom
panel, the solid line corresponds to βi,t+1 = 1, the dashed line corresponds to βi,t+1 = 0.9,
and the dotted line corresponds to βi,t+1 = 1.1. The mean dividend growth rate, d̄i, and the
idiosyncratic shocks, di,t+1, are both set to zero; the risk-free rate rf is set to 2%; the variance
in the pricing kernel Vm is set to 0.2; and Di,t is normalized to 1.
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Figure 2
Log expected returns as a function of uncertainty about factor loadings Vβ,i

This figure plots the (log) expected return on stock i (i.e., log (E [Ri,t+1])) as a function of the
uncertainty about its factor loadings, Vβ,i, for three different levels of persistence, ai, in factor
loadings. The dotted line plots the i.i.d. benchmark presented in Proposition 1, the dashed line
plots the no-information benchmark of Corollary 3, and the solid line plots the full-information
benchmark of Corollary 4. The risk-free rate rf is set to 2%, the variance in the pricing kernel,
Vm, is set to 0.2, the unconditional mean factor loading, bi, is set to 1, and the long-run mean
price-dividend ratio is set to PDi,t = 4, which implies ρi = 0.80.
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Figure 3
Factor-loading uncertainty and persistence pairs

This figure plots parameter values of Vβ,i and ai such that the model-implied effect of factor-
loading uncertainty on annualized expected returns is 450 basis points. The solid line cor-
responds to the no-information benchmark of Corollary 3, and the dash-dotted, dashed, and
dotted lines correspond to the full-information benchmark of Corollary 4, for ρi equal to 0.65,
0.8, and 0.95, respectively. The aggregate risk premium (i.e., Vm) is set to 0.2.
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Table 1
Summary statistics

This table provides summary statistics for our sample, which consists of monthly observations from
January 1964 to December 2011. The variables include the return on stocks from the CRSP database
(i.e., Ri,t+1); excess log returns (i.e., ri,t+1 − rf,t); estimates of factor loadings on the excess market
return, the SMB, HML, and UMD portfolios, and aggregate volatility risk (denoted by bi, bi,SMB,
bi,HML, bi,UMD, and bi,∆V IX , respectively); and our proxy for uncertainty about the factor loading on
excess market returns (i.e., Vβ,i). The table also reports estimates of the following firm-level charac-
teristics computed from the CRSP and Compustat databases: log market value of equity, turnover,
market-to-book ratio, debt-to-equity ratio, volatility of earnings, return on assets, accruals, bid-ask
spread, and idiosyncratic volatility relative to the four-factor model (denoted by log (mve), turn,
M/B, D/E, vol (E), ROA, ACC, spread, and σ2

i , respectively). We also report summary statistics
for the cross-section of autocorrelation coefficients of estimated factor loadings (i.e., AC (bi)). Some
variables are available only for a subsample of our full sample period (e.g., the VXO series used to
compute bi,∆V IX begins in 1986, and the bid and ask series in CRSP used to compute spread begins
in 1983). The table also reports the pairwise correlation coefficients for bi, Vβ,i, vol (E), and σ2

i in our
sample.

Variable Nobs Mean Median Std. Dev Min 5th Perc 95th Perc Max

Ri,t+1 1077532 0.0094 0.0057 0.122 –0.6765 –0.1765 0.2035 1.933

ri,t+1 − rf,t 1077532 –0.0014 0.0022 0.1212 –1.134 –0.1977 0.1819 1.071

bi 1077532 1.133 1.062 0.7005 –5.334 0.1491 2.375 6.613

Vβ,i 1077532 0.1268 0.0678 0.1687 0.0001 0.012 0.4426 4.274

bi,SMB 1077532 0.5895 0.4493 0.8492 –5.365 –0.5374 2.168 7.962

bi,HML 1077532 0.1825 0.2391 0.9179 –9.476 –1.366 1.547 8.729

bi,UMD 1077532 –0.1128 –0.0832 0.5117 –6.475 –0.9666 0.6555 4.933

bi,∆V IX 802243 –0.024 –0.0514 0.5704 –1.767 –0.9296 1.01 2.196

log (mve) 1067498 13.04 12.98 1.816 4.8 10.17 16.18 20.22

turn 1077384 –0.4992 –0.5207 1.141 –6.35 –2.326 1.37 6.37

M/B 941577 0.8839 0.5912 1.235 –0.1828 0.119 2.34 16.09

D/E 941021 0.8816 0.3015 1.948 0.0 0.0 3.518 22.59

vol (E) 748015 0.0797 0.0893 0.1171 –0.6083 –0.1217 0.2376 0.382

ROA 447692 0.0389 0.025 0.0528 0.0 0.005 0.1159 2.497

ACC 375597 –0.0348 –0.0354 0.0792 –1.721 –0.1436 0.0838 1.155

spread 698170 0.013 0.0051 0.0251 –0.1684 0.0002 0.05 1.98

σ2
i 1077532 0.0122 0.0069 0.015 0.0 0.0012 0.042 0.3216

AC (bi) 24294 0.5302 0.6322 0.3683 –0.7558 –0.1402 0.9576 0.9975

Vβ,i vol (E) σ2
i

bi 0.295 0.207 0.345

Vβ,i 0.419 0.804

vol (E) 0.454
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Table 2
The cross-section of expected returns controlling for factor loadings

This table presents the results from a Fama-MacBeth estimation of the following cross-sectional re-
gression:

ri,t+1 − rf,t = αi,t + λtbi,t + γtVβ,i,t + κtb
2
i,t + controlsi,t + εi,t+1,

where bi,t and Vβ,i are estimates from firm-specific first-stage, sixty month rolling window regressions
of excess log returns ri,t+1−rf,t on market excess (log) returns rm,t+1−rf,t. The controls include factor
loadings on the SMB, HML, and UMD portfolios and aggregate volatility risk (denoted by bi,SMB,
bi,HML, bi,UMD, and bi,∆V IX , respectively). The t-statistics (reported below the coefficient estimates)
are computed using Newey-West standard errors using sixty lags, and are adjusted for the Shanken
correction. The sample consists of a maximum 575 monthly cross-sections from January 1964 through
December 2011 and the mean and median adjusted R2’s, and the average number of firms in each
cross-section are reported. The estimates of bi,∆V IX are available for a shorter sample since the data
on the VXO index is only available beginning in January 1986.

Intercept 0.00578 0.00299 0.00461 0.00513 0.00484 0.00445 0.00599

4.05 1.90 2.86 3.97 3.96 3.63 9.79

bi –0.00559 0.00004 0.00111 0.00068 0.00073 0.00116 0.00039

–1.97 0.01 0.41 0.25 0.28 0.45 0.11

b2i –0.00226 –0.00118 –0.00121 –0.00102 –0.00112 –0.00100

–1.09 –0.59 –0.60 –0.50 –0.55 –0.36

Vβ,i –0.04897 –0.06220 –0.06455 –0.06313 –0.06305

–3.11 –6.24 –6.31 –6.38 –4.67

bi,SMB 0.00169 0.00160 0.00151 0.00016

0.86 0.83 0.77 0.06

bi,HML –0.00002 0.00002 –0.00173

–0.01 0.01 –0.69

bi,UMD 0.00070 0.00048

0.31 0.15

bi,∆V IX –0.00305

–0.74

MeanR2 6.1% 6.5% 8.5% 11.1% 13.6% 16.0% 17.6%

Med.R2 3.0% 3.4% 5.5% 7.4% 9.9% 11.1% 12.1%

# months 575 575 575 575 575 575 310

# firms 1874 1874 1874 1874 1874 1874 2588
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Table 3
The cross-section of expected returns controlling for factor loadings and characteristics

This table presents the results from a Fama-MacBeth estimation of the cross-sectional regression in
equation (62) where bi,t and Vβ,i are estimates from firm-specific first-stage, sixty month rolling window
regressions of excess log returns ri,t+1 − rf,t on market excess (log) returns rm,t+1 − rf,t. The controls
include factor loadings on the SMB, HML, and UMD portfolios (denoted by bi,SMB, bi,HML, and
bi,UMD, respectively) and firm characteristics log (mve), M/B, D/E, vol (E), ROA, ACC, spread
(as described in Table 1). The t-statistics (reported below the coefficient estimates) are computed
using Newey-West standard errors using sixty lags, and adjusted for the Shanken correction. The
sample consists of a maximum of 575 monthly cross-sections from January 1964 through December
2011 and the mean and median adjusted R2’s, and the average number of firms in each cross-section
are reported.

Intercept –0.00041 0.02401 0.05734 0.05854 0.06174 0.05686 0.05860 0.05226

–0.09 3.11 6.13 6.30 6.90 6.53 6.40 4.55

bi 0.00038 –0.00738 –0.00703 –0.00735 –0.00834 –0.00844 –0.01241 –0.01202

0.15 –2.77 –2.43 –2.55 –2.80 –2.76 –2.78 –1.86

b2i –0.00092 0.00015 0.00008 0.00020 0.00055 0.00096 0.00264 0.00255

–0.47 0.07 0.04 0.10 0.27 0.47 1.07 0.88

Vβ,i –0.05963 –0.09157 –0.09794 –0.09641 –0.09476 –0.08347 –0.08051 –0.06551

–6.43 –6.59 –6.42 –6.36 –5.89 –5.19 –3.59 –4.05

bi,SMB 0.00160 0.00073 –0.00043 –0.00052 –0.00041 –0.00055 0.00011 –0.00097

0.85 0.41 –0.25 –0.30 –0.24 –0.30 0.05 –0.43

bi,HML –0.00008 0.00062 0.00285 0.00305 0.00261 0.00258 0.00218 –0.00001

–0.05 0.34 1.47 1.58 1.39 1.37 1.11 –0.01

bi,UMD 0.00064 –0.00037 –0.00237 –0.00259 –0.00240 –0.00187 –0.00266 –0.00079

0.30 –0.17 –1.13 –1.22 –1.15 –0.89 –1.18 –0.26

log(mve) 0.00037 0.00018 –0.00169 –0.00175 –0.00196 –0.00171 –0.00184 –0.00223

1.01 0.39 –3.37 –3.51 –4.03 –3.79 –3.85 –5.31

turn 0.01079 0.01134 0.01145 0.01150 0.01003 0.01001 0.00810

6.90 7.65 7.77 8.02 5.98 5.99 3.05

M/B –0.00918 –0.00873 –0.00847 –0.00695 –0.00597 –0.00652

–9.62 –9.15 –8.40 –5.37 –4.91 –2.26

D/E –0.00109 –0.00140 –0.00131 –0.00188 –0.00144

–3.96 –4.75 –3.75 –4.25 –1.90

ROA 0.00406 0.00886 0.01459 0.02606

0.62 1.09 1.78 2.74

vol (E) –0.04130 –0.03244 –0.03791

–4.62 –3.61 –3.63

ACC –0.01407 –0.02185

–1.85 –4.65

spread 0.01294

0.14

MeanR2 16.3% 18.0% 18.7% 18.8% 18.9% 19.9% 20.2% 19.2%

Med.R2 11.6% 13.6% 14.7% 14.8% 14.9% 16.0% 16.8% 14.3%

# months 575 575 575 575 575 575 572 290

# firms 1857 1856 1623 1600 743 732 605 412

49



Table 4
The relation between expected returns and idiosyncratic volatility

This table presents the results from a Fama-MacBeth estimation of the cross-sectional regression in equation (65). The
variables PIV and RIV are the conditional expectation and residual, respectively, from firm-specific regressions of
idiosyncratic volatility on Vβ,i and a constant (see equation (64)), and 1HAC is an indicator variable for firms whose
autocorrelation in estimated factor loadings is in the top 25th percentile. All other variables are defined as in Table 3.
The t-statistics (reported below the coefficient estimates) are computed using Newey-West standard errors using sixty
lags, and adjusted for the Shanken correction. The sample consists of a maximum of 575 monthly cross-sections from
January 1964 through December 2011 and the mean and median adjusted R2’s, and the average number of firms in each
cross-section are reported.

Intercept 0.00452 0.00454 0.00262 0.02783 0.06315 0.06454 0.06727 0.06258 0.06751 0.06138

3.51 3.52 0.61 3.56 6.59 6.79 7.33 7.07 7.32 4.56

bi 0.00130 0.00125 0.00065 –0.00692 –0.00662 –0.00698 –0.00793 –0.00823 –0.01498 –0.01147

0.52 0.50 0.26 –2.62 –2.32 –2.45 –2.69 –2.70 –2.42 –1.85

b2i –0.00111 –0.00109 –0.00095 0.00008 0.00005 0.00020 0.00054 0.001015 0.003829 0.002599

–0.56 –0.55 –0.48 0.04 0.03 0.10 0.26 0.49 1.26 0.89

PIV –0.61140 –0.61240 –0.59470 –0.93130 –1.03500 –1.02500 –1.00000 –0.9436 –1.005 –0.7829

–7.66 –7.69 –7.87 –8.24 –8.08 –8.21 –7.24 –6.94 –4.98 –5.43

RIV –0.03299 –0.17250 –0.16480 –0.36820 –0.39500 –0.37370 –0.37650 –0.3185 –0.5068 –0.2526

–0.23 –1.31 –1.25 –2.24 –2.07 –1.95 –1.81 –1.39 –1.40 –0.97

RIV 1HAC 0.23360 0.25340 0.17900 0.20100 0.22100 0.22750 0.3457 0.6213 0.4986

2.48 2.54 2.30 2.09 2.19 2.20 2.35 1.85 1.80

bi,SMB 0.00122 0.00123 0.00115 –0.00002 –0.00126 –0.00133 –0.00124 –0.0008744 –0.000397 –0.001098

0.65 0.66 0.63 –0.01 –0.75 –0.79 –0.73 –0.50 –0.22 –0.50

bi,HML –0.00014 –0.00014 –0.00026 0.00038 0.00257 0.00277 0.00237 0.002162 0.001826 –0.0006651

–0.08 –0.08 –0.15 0.21 1.35 1.46 1.30 1.16 0.92 –0.26

bi,UMD 0.00086 0.00085 0.00087 0.00001 –0.00200 –0.00223 –0.00205 –0.001682 –0.001716 –0.0003245

0.41 0.40 0.41 0.00 –0.95 –1.06 –0.98 –0.80 –0.82 –0.11

log(mve) 0.00015 –0.00008 –0.00208 –0.00215 –0.00232 –0.002058 –0.002288 –0.002777

0.42 –0.17 –3.88 –4.04 –4.47 –4.28 –4.69 –5.10

turn 0.01082 0.01140 0.01151 0.01156 0.0101 0.009918 0.007921

6.91 7.71 7.83 8.09 6.00 5.82 3.06

M/B –0.00926 –0.00879 –0.00852 –0.006977 –0.006012 –0.006719

–9.74 –9.17 –8.42 –5.39 –4.87 –2.25

D/E –0.00113 –0.00143 –0.001323 –0.001826 –0.001488

–4.10 –4.97 –3.87 –4.44 –2.01

ROA 0.00316 0.006372 0.01063 0.02073

0.50 0.83 1.37 2.11

vol (E) –0.03703 –0.02732 –0.0302

–4.17 –3.15 –3.61

ACC –0.01781 –0.0215

–4.53 –4.30

spread 0.02665

0.36

MeanR2 16.2% 16.2% 16.5% 18.2% 18.8% 19.0% 19.0% 20.3% 20.8% 19.9%

Med.R2 11.3% 11.2% 11.9% 13.8% 14.7% 14.9% 15.2% 16.4% 17.2% 15.9%

# months 575 575 575 575 575 575 575 575 571 290

# firms 1874 1874 1857 1856 1623 1600 1249 732.3 605 412.250



Table 5
Robustness: Using simple returns

This table presents the results from a Fama-MacBeth estimation of the following cross-sectional regression:

Ri,t+1 −Rf,t = αi,t + λtbi,t + γtVβ,i,t + controlsi,t + εi,t+1,

where bi,t and Vβ,i are estimates from firm-specific first-stage, sixty month rolling window regressions of excess returns
Ri,t+1−Rf,t on market excess returns Rm,t+1−Rf,t. The controls include factor loadings on the SMB, HML, and UMD
portfolios (denoted by bi,SMB , bi,HML, and bi,UMD respectively), and firm characteristics log (mve), M/B, D/E, vol (E),
ROA, ACC, spread (as described in Table 1). The t-statistics (reported below the coefficient estimates) are computed
using Newey-West standard errors using sixty lags, and adjusted for the Shanken correction. The sample consists of a
maximum of 575 monthly cross-sections from January 1964 through December 2011 and the mean and median adjusted
R2’s, and the average number of firms in each cross-section are reported.

Intercept 0.00411 –0.00135 0.02246 0.05509 0.05639 0.06020 0.05618 0.05507 0.04620

3.10 –0.27 2.92 5.81 6.00 6.79 6.46 5.80 4.79

bi 0.00191 0.00167 –0.00434 –0.00413 –0.00415 –0.00432 –0.00329 –0.00311 –0.00220

0.85 0.73 –1.92 –1.81 –1.82 –1.89 –1.41 –1.34 –0.65

Vβ,i –0.02108 –0.01878 –0.03838 –0.04429 –0.04331 –0.04216 –0.03239 –0.02652 –0.01833

–3.31 –3.21 –3.88 –3.71 –3.64 –3.42 –2.82 –1.36 –2.37

bi,SMB 0.00179 0.00198 0.00054 –0.00060 –0.00067 –0.00059 –0.00057 0.00031 –0.00036

0.92 1.04 0.31 –0.35 –0.38 –0.33 –0.31 0.15 –0.15

bi,HML 0.00042 0.00032 0.00117 0.00330 0.00345 0.00303 0.00290 0.00255 0.00055

0.25 0.19 0.68 1.79 1.88 1.71 1.61 1.40 0.24

bi,UMD 0.00025 0.00012 –0.00098 –0.00278 –0.00296 –0.00291 –0.00245 –0.00317 –0.00088

0.12 0.06 –0.45 –1.28 –1.35 –1.35 –1.13 –1.38 –0.30

log(mve) 0.00040 0.00027 –0.00157 –0.00164 –0.00192 –0.00173 –0.00184 –0.00212

1.06 0.51 –2.78 –2.95 –3.48 –3.38 –3.51 –4.82

turn 0.01213 0.01281 0.01291 0.01302 0.01151 0.01144 0.01016

7.92 8.97 9.11 9.70 7.13 7.34 3.74

M/B –0.00903 –0.00867 –0.00849 –0.00707 –0.00613 –0.00639

–9.60 –9.23 –8.54 –5.58 –5.24 –2.39

D/E –0.00098 –0.00122 –0.00116 –0.00168 –0.00115

–3.43 –4.17 –3.41 –3.75 –1.79

ROA 0.00363 0.00819 0.01384 0.02463

0.56 1.02 1.73 2.59

vol (E) –0.05077 –0.04216 –0.04877

–5.27 –5.23 –4.31

ACC –0.01491 –0.02238

–2.21 –4.96

spread 0.06360

0.72

MeanR2 15.1% 15.5% 17.3% 18.0% 18.1% 18.3% 19.3% 19.5% 18.7%

Med.R2 10.4% 11.0% 13.3% 13.9% 14.2% 14.6% 15.7% 15.7% 14.4%

# months 575 575 575 575 575 575 575 572 290

# firms 1874 1857 1856 1623 1600 1249 732.3 605 412.2
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