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Abstract

This paper compares di¤erent ways to estimate the current state of the economy using factor

models that can handle unbalanced datasets. Due to the di¤erent release lags of business cycle

indicators, data unbalancedness often emerges at the end of multivariate samples, which is some-

times referred to as the �ragged edge�of the data. Using a large monthly dataset of the German

economy, we compare the performance of di¤erent factor models in the presence of the ragged edge:

static and dynamic principal components based on realigned data, the Expectation-Maximisation

(EM) algorithm and the Kalman smoother in a state-space model context. The monthly factors

are used to estimate current quarter GDP, called the �nowcast�, using di¤erent versions of what

we call factor-based mixed-data sampling (Factor-MIDAS) approaches. We compare all possible

combinations of factor estimation methods and Factor-MIDAS projections with respect to now-

cast performance. Additionally, we compare the performance of the nowcast factor models with

the performance of quarterly factor models based on time-aggregated and thus balanced data,

which neglect the most timely observations of business cycle indicators at the end of the sample.

Our empirical �ndings show that the factor estimation methods don�t di¤er much with respect

to nowcasting accuracy. Concerning the projections, the most parsimonious MIDAS projection

performs best overall. Finally, quarterly models are in general outperformed by the nowcast factor

models that can exploit ragged-edge data.

JEL Classi�cation Codes: E37, C53

Keywords: nowcasting, business cycle, large factor models, mixed-frequency data, missing

values, MIDAS



1 Introduction

Many key indicators of macroeconomic activity are published by the statistical o¢ ces with a

considerable time delay and at low frequencies. In particular, Gross Domestic Product (GDP) is

typically published at quarterly frequency and has a considerable publication lag. In Germany, for

example, GDP is released about �ve to six weeks after the end of the reference quarter. As policy

makers regularly request information on the current state of the economy in terms of GDP, there

is a need to provide estimates of current GDP in order to support policy decisions. For example,

in April, German GDP is available only for the fourth quarter of the previous year. To obtain the

current, second quarter GDP, we have to make a projection with forecast horizon of two quarters

from the end of the GDP sample, using all currently available information in an e¢ cient way.

This projection is what we call the �nowcast�in this paper, following, e.g., Giannone et al. (2005).

In general, it is di¢ cult to exploit all information available for nowcasting, as business cycle

indicators are released in an asynchronous way. Due to these di¤erent publication lags, multivari-

ate datasets typically exhibit complicated patterns of missing values at the end of the sample and

imply unbalanced samples for estimation. This leads to the so-called �ragged-edge�data problem

in econometrics, see Wallis (1986), and nowcast methods are necessary that can tackle this issue.

Another di¢ culty arises, because GDP is quarterly data, whereas many important indicators are

sampled at monthly or higher frequencies. Therefore, also a mixed-frequency problem has to be

resolved for nowcasting.

In this paper, we discuss di¤erent ways to estimate factors from large high-frequency datasets

subject to the ragged-edge problem, and how these factors can be used for nowcasting a low-

frequency variable like GDP. In our description of the methods and the application below, factor

nowcasting is essentially a two-step procedure, where factors are estimated in a �rst step, and

the estimated factors enter speci�c projection models in a second step. Thus, according to the

surveys in Boivin and Ng (2005), Eickmeier and Ziegler (2007), we follow the widely used two-step

technique of factor forecasting, which is standard in case both the factors and the variable to be

predicted are sampled at the same frequency.

For estimating the factors, we distinguish three main methods, which are all derived within a

large scale dynamic factor model framework. First, we discuss the estimator by Altissimo et al.

(2006), which builds upon the one-sided non-parametric dynamic principal component analysis

(DPCA) factor estimator of Forni et al. (2005). To take into account the ragged-edge of the

data, Altissimo et al. (2006) simply apply a realignment of each time series to obtain a balanced

dataset. Second, we consider the Expectation-Maximisation (EM) algorithm combined with the

factor estimator based static principal component analysis (PCA) as introduced by Stock and

Watson (2002) and applied for forecasting and interpolation by Bernanke and Boivin (2003),

Angelini, Henry and Marcellino (2006), and Schumacher and Breitung (2006). Third, we discuss
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the parametric state-space factor estimator of Doz, Giannone and Reichlin (2006), as applied in

Giannone et al. (2005) and Banbura and Rünstler (2007).

Concerning the projection methods, we introduce the Factor-MIDAS approach. The starting

point is the mixed-data sampling (MIDAS) framework proposed by Ghysels et al. (2004), and

applied to macroeconomic variables in Clements and Galvão (2007). The basic MIDAS framework

consists of a regression of a low frequency variable on a set of higher frequency indicators, where

distributed lag functions are employed to specify the dynamic relationship. The Factor-MIDAS

approach exploits estimated factors rather than single or small groups of economic indicators as

regressors. Therefore, it directly translates the factor forecasting two-step approach as discussed in

Boivin and Ng (2006) for the single-frequency case to the mixed-frequency case where factors are

sampled at higher frequencies than the variable to be predicted. As in the standard MIDAS case,

see Clements and Galvão (2007), direct multistep Factor-MIDAS forecasts are easily computed,

which is convenient in our context.

We also evaluate a more general regression approach, where the dynamic relationship between

the low frequency variable (GDP in our case) and the high frequency indicators (factors in our case)

is unrestricted. This approach is based on the theoretical analysis in Marcellino and Schumacher

(2007) and is labeled Factor-MIDAS-U, where U stands for unrestricted. As a third alternative,

we consider a special regression scheme proposed by Altissimo et al. (2006), discuss how it can

be used for nowcasting, and show its close relationship to the MIDAS method.

The main purpose of the paper is to compare empirically the di¤erent approaches of factor

estimation in the presence of unbalanced data, combined with the alternative MIDAS projections.

In particular, we apply the di¤erent methods to a large German dataset of about one hundred

monthly indicators for nowcasting and short term forecasting German GDP growth. Germany

is the largest country within the euro area, and this matters both from an economic and from

a statistical point of view. For example, institutional forecasts for euro area macroeconomic

variables by the Eurosystem and by the European Commission are often based on aggregation of

the national forecasts. In these frameworks, Germany has a large weight, but existing nowcasts

and forecasts for German GDP growth are not fully satisfying, see e.g. Schumacher and Breitung

(2006). Furthermore, the quality of euro area data prior to 1999 is questionable, to the point

that using German data prior to 1999 and euro area data afterwards can be preferable, see e.g.

Lütkepohl and Brüggemann (2006).

In the empirical application, we evaluate the information content of nowcasts computed in each

month of a given quarter, based on increasing information from the indicators. In addition, we in-

vestigate longer forecast horizons, up to two quarters ahead. In our recursive nowcast experiment,

we consider the ragged-edge of the monthly data and the publication delay of GDP.

Furthermore, we discuss how the ragged-edge factor models perform compared with single-

frequency factor models based on quarterly time-aggregated data. Quarterly data has been often
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used to forecast German GDP, see e.g. Schumacher (2007), and for other countries and datasets,

for example by Marcellino et al. (2005) for Euro area countries�GDP using disaggregated and

aggregated data, Banerjee et al. (2005) for euro area GDP, Banerjee and Marcellino (2006) for

US GDP, Kapetanios et al. (2007) for UK GDP, and many others. Due to the widespread use of

quarterly and partly time-aggregated data in the empirical literature, we will employ also factor

forecasting based on time-aggregated quarterly data as a key benchmark for the nowcast factor

models that can tackle ragged-edge data.

Additionally, we discuss the relative importance of static versus dynamic factors for nowcasting

in our context. As there is some disagreement in the literature as to the appropriate estimation

method of the factors, see Boivin and Ng (2005) and D�Agostino and Giannone (2006), a nowcast

comparison should also address this issue.

Finally, since some of the factor estimation methods discussed above allow for an integrated

approach of estimating the factors and nowcasting in one single step, in particular the state-space

approach by Giannone et al. (2005) and Banbura and Rünstler (2007), we compare our two-step

Factor-MIDAS procedure with the integrated approach.

The paper is structured as follows. Section 2 reviews the competing approaches to factor

nowcasting under analysis, and the di¤erent MIDAS projection methods. Section 3 presents the

empirical nowcast exercise, and compares and discusses the results. Section 4 summarises and

concludes.

2 Factor nowcasting with ragged-edge data

In this paper we focus on quarterly GDP growth, which is denoted as ytq where tq is the quarterly

time index tq = 1; 2; 3; : : : ; Tq. GDP growth can also be expressed at the monthly frequency by

setting ytm = ytq8tm = 3tq with tm as the monthly time index. Thus, GDP ytm is observed only
at months tm = 3; 6; 9; : : : ; Tm with Tm = 3Tq. The aim is to nowcast or forecast GDP hq quarters

ahead, or hm = 3hq months ahead, based on information in month Tm, denoted as yTm+hmjTm. For

example, since GDP for the �rst quarter of a given year is released around mid-May, a nowcast

can be produced in January, February, and March of the current year, while a forecast can be

produced in any month of the previous year.

The information set includes a large set of stationary monthly indicators, collected in the N -

dimensional vector Xtm. The time index tm denotes monthly frequency and Xtm is fully available

for each month tm = 1; 2; 3; : : : ; Tm. However, due to publication lags, some elements at the end

of the sample can be missing, thus rendering an unbalanced sample of Xtm.

We want to model Xtm using a dynamic factor speci�cation, and use the estimated factors,

which e¢ ciently summarize the information in Xtm, to nowcast and forecast GDP growth, yTq .

According to Boivin and Ng (2005), factor forecasting with large, single-frequency datasets is often
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carried out using a similar two-step procedure: Firstly, the factors are estimated, and secondly, a

dynamic model for the variable to be predicted is augmented with the estimated factors, see Bai

and Ng (2006) for technical details on the properties of the resulting forecasts. However, to take

into account the speci�c nowcast framework, the following modi�cations are necessary:

1. The �rst step factor estimation methods have to be able to handle ragged-edge data, due to

the missing values at the end of the sample in a real time context.

2. The second step regression methods have to be able to handle mixed frequency data, in

particular a low-frequency target variable and higher-frequency factors.

We will �rstly discuss the proper factor estimation methods in subsection 2.1, and then the

factor based nowcast regression methods in subsection 2.2.1

2.1 Estimating the factors with ragged-edge data

We assume that the monthly observations have a factor structure according to

Xtm = �Ftm + �tm ; (1)

where the r-dimensional factor vector is denoted as Ftm = (f
0
1;tm ; : : : ; f

0
r;tm)

0. The factors times the

(N � r) loadings matrix � represent the common components of each variable. The idiosyncratic
components �tm are that part of Xtm not explained by the factors.

Under the assumption that the (Tm�N) data matrix X is balanced, various ways to estimate

the factors have been provided in the literature. For example, two of the most widely used

approaches are based on PCA as in Stock and Watson (2002) or dynamic PCA according to

Forni et al. (2005). For overviews, see the surveys by Stock and Watson (2006), section 4, and

Boivin and Ng (2005) and the comparisons by D�Agostino and Giannone (2006) and Schumacher

(2007). Note that, according to (1), all the factor models to be discussed below will work at

the higher monthly frequency, thus factor estimates are available for all monthly observations

tm = 1; 2; 3; : : : ; Tm.

Vertical realignment of data and dynamic principal components factors A very conve-

nient way to solve the ragged-edge problem is provided by Altissimo et al. (2006) for estimating

the New Eurocoin indicator. They propose to realign each time series in the sample in order to

obtain a balanced dataset, see also Schneider and Spitzer (2004). Assume that variable i is re-

leased with ki months of publication lag. Thus, given a dataset in period Tm, the �nal observation

1To focus on ragged-edge and mixed-frequency problems, we abstract from additional complications such as
those resulting from seasonal adjustment and data revisions.
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available of this time series is for period Tm � ki. The realignment proposed by Altissimo et al.
(2006) is then simply exi;Tm = xi;Tm�ki (2)

for tm = ki+1; : : : ; Tm. Applying this procedure for each series, and harmonising at the beginning

of the sample, yields a balanced data set eXtm for tm = max(fkigNi=1) + 1; : : : ; Tm.
Given this monthly data, Altissimo et al. (2006) propose to use dynamic PCA to estimate

the factors. As the dataset is balanced, the two-step estimation techniques by Forni et al. (2005)

directly apply. In our applications below, we will denote the combination of vertical realignment

and dynamic principal components factors as �VA-DPCA�.

The vertical realignment solution to the ragged-edge problem is easy to use. A disadvantage

is that the availability of data determines dynamic cross-correlations between variables. Further-

more, statistical release dates for data are not the same over time, for example, due to major

revisions. In this case, dynamic correlations within the data change and factors can change over

time. The same holds if factors are reestimated at a higher frequency than the frequency of the

factor model. This is a very common scenario, for example, if a monthly factor model is reesti-

mated several times within a month when new monthly observations are released. If this the case,

the realignment of the data changes the correlation structure all the time. On the other hand,

dynamic PCA as in Forni et al. (2005) exploits the dynamic cross-correlations in the frequency

domain and might be in principle able to account for these changes in realignments of the data.

Principal components factors and the EM algorithm To consider missing values in the

data for estimating factors, Stock and Watson (2002) propose an EM algorithm together with

the standard PCA. Consider a variable i from the dataset Xtm as a full data column vector

Xi = (xi;1; : : : ; xi;Tm)
0. Assume that not all the observations are available due to the ragged-edge

problem. The vector Xobs
i contains the observations available for variable i, which is only a subset

of Xi due to missing values. We can formulate the relationship between observed and not fully

observed data by

Xobs
i = AiXi; (3)

where Ai is a matrix that can tackle missing values or mixed frequencies. In case no observations

are missing, Ai is the identity matrix. In case an observation is missing at the end of the sample,

the corresponding �nal row of the identity matrix is removed to ensure (3). The EM algorithm

proceeds as follows:

1. Provide an initial (naive) guess of observations bX(0)
i 8i. These guesses together with the

fully observable monthly time series yields a balanced dataset bX(0). Standard PCA provides

initial monthly factors bF(0) and loadings b�(0).
5



2. E-step: An update estimate of the missing observations for variable i is provided by the
expectation of Xi conditional on observations Xobs

i , factors bF(j�1) and loadings b�(j�1)i from

the previous iteration

bX(j)
i = bF(j�1)b�(j�1)i +A0

i(A
0
iAi)

�1
�
Xobs
i �Ai

bF(j�1)b�(j�1)i

�
: (4)

The update consists of two components: the common component from the previous iterationbF(j�1)b�(j�1)i , plus the low-frequency idiosyncratic component Xobs
i �Ai

bF(j�1)b�(j�1)i , distrib-

uted by the projection coe¢ cient A0
i(A

0
iAi)

�1 on the high-frequency periods. For general

issues see Stock and Watson (2002), and for a discussion of the properties in the ragged-edge

case, see Schumacher and Breitung (2006).

3. M-step: Repeat the E-step for all i yielding again a balanced dataset. Reestimate the
factors and loadings, bF(j) and b�(j) by PCA, and go to step 2 until convergence.

After convergence, the EM algorithm provides monthly factor estimates bFtm as well as estimates
of the missing values of the time series. Thus, interpolation of missing values as well as factor

estimation is carried out consistently in the factor framework (1) with factors estimated by PCA.

For a detailed discussion of the properties of the EM algorithm for interpolation and backcasting,

see Angelini et al. (2006). In the applications below, we will denote the this factor estimator as

�EM-PCA�.

Estimation of a large parametric factor model in state-space form The approach fol-

lowed by Doz et al. (2006) and Kapetanios and Marcellino (2006) casts the large factor model in

state-space form. However, Kapetanios and Marcellino (2006) estimate the factors using subspace

algorithms, while Doz et al. (2006) exploit the Kalman �lter and smoother. Here, we follow the

Doz et al. (2006) approach as it can be more directly applied to ragged-edge data, see Giannone

et al. (2005).

To specify a complete model, an explicit dynamic VAR structure is assumed to hold for the

factors. The full state-space model has the form

Xtm = �Ftm + �tm ; (5)

	(Lm)Ftm = B�tm : (6)

Equation (5) is the static factor representation of Xtm as above in (1). Equation (6) speci�es a

VAR of the factors with lag polynomial 	(Lm) =
Pp

i=1	iL
i
m and Lm is the monthly lag operator

with Lmxtm = xtm�1. The q-dimensional vector �tm contains the orthogonal dynamic shocks that

drive the r factors, where the matrix B is (r�q)-dimensional. The model is already in state space
form, since the factors Ftm are the states. If the dimension of Xtm is small, the model can be
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estimated using ML. In order to account for large datasets, Doz et al. (2006) propose quasi-ML

to estimate the factors, as iterative ML is infeasible in this framework. For a given number of

factors r and dynamic shocks q, the estimation proceeds in the following steps:

1. Estimate bFtm using PCA as an initial estimate.
2. Estimate b� by regressing Xtm on the estimated factors bFtm. The covariance of the idiosyn-
cratic components b�tm = Xtm � b�bFtm, denoted as b��, is also estimated.

3. Estimate factor VAR(p) on the factors bFtm yielding b	(L) and the residual covariance ofb& tm = b	(Lm)bFtm, denoted as b�& .
4. To obtain an estimate for B, given the number of dynamic shocks q, apply an eigenvalue

decomposition of b�& . Let M be the (r � q)-dimensional matrix of the eigenvectors corre-
sponding to the q largest eigenvalues, and let the (q � q)-dimensional matrix P contain the
largest eigenvalues on the main diagonal and zero otherwise. Then, the estimate of B isbB =M�P�1=2.

5. The coe¢ cients and auxiliary parameters of the system of equations (5) and (6) is fully spec-

i�ed numerically. The model is cast into state-space form. The Kalman �lter or smoother

then yield new estimates of the monthly factors.2

If missing values at the end of the sample are present, as in our setup, the Kalman �lter

also yields optimal estimates and forecasts conditional on the model structure and properties of

the shocks. Thus, it is well suited to tackle ragged-edge problems as in the present context.

Nonetheless, one has to keep in mind that in this case the coe¢ cients in system matrices have to

be estimated from a balanced sub-sample of data, as in step 1 a fully balanced dataset is needed

for PCA initialisation. However, although the system matrices are estimated on balanced data in

the �rst step, the factor estimation based on the Kalman �lter applies to the unbalanced data and

can tackle ragged-edge problems. The solution is to estimate coe¢ cients outside the state-space

model and avoid estimating a large number of coe¢ cients by iterative ML.

In comparison with the EM algorithm discussed above, the state-space estimation also considers

dynamics of the factors explicitly, whereas the static factor models doesn�t. In the applications

below, we will denote the state-space model Kalman �lter estimator of the factors as �KFS-PCA�.

2It is worth mentioning that when the model parameters are estimated using factors obtained by subspace
algorithms, as in Kapetanios and Marcellino (2006), simulation experiments indicate that the Kalman �lter based
factors are very close to the original subspace factors.
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2.2 Nowcasting and forecasting quarterly GDP with Factor-MIDAS

To forecast quarterly GDP using the estimated monthly factors, we rely on the mixed-data sam-

pling (MIDAS) approach as proposed by Ghysels and Valkanov (2006), Ghysels et al. (2007),

Clements and Galvão (2007), and Marcellino and Schumacher (2007). The MIDAS regression

approach is a direct forecasting tool, as no dynamics on the factors nor joint dynamics for GDP

and the factors are explicitly modelled. Rather, MIDAS forecasts directly relate future GDP to

current and lagged indicators, thus yielding di¤erent forecast models for each forecast horizon,

see Marcellino, Stock and Watson (2006) as well as Chevillon and Hendry (2005) for detailed

discussions of this issue in the single-frequency case.

The basic Factor-MIDAS approach In the standard MIDAS approach economic variables

at higher frequency are used as regressors, while in our Factor-MIDAS the explanatory variables

are estimated factors. Let us assume for simplicity that we have only one factor bftm for forecasting
and r = 1. Hence, the forecast model for forecast horizon hq quarters with hq = hm=3 is

ytq+hq = ytm+hm = �0 + �1b(Lm;�) bf (3)tm + "tm+hm ; (7)

where the polynomial b(Lm;�) is the exponential Almon lag with

b(Lm; �) =
KX
k=0

c(k;�)Lkm; c(k;�) =
exp(�1k + �2k

2)
KX
k=0

exp(�1k + �2k2)

: (8)

In the MIDAS approach, quarterly GDP ytq+hq is directly related to the factor bf (3)tm and its lags,

where bf (3)tm is a skip-sampled version of the monthly factor bftm as estimated in the sections above.
The superscript three indicates that every third observation starting from the tm-th one is included

in the regressor bf (3)tm , thus bf (3)tm = bftm 8 tm = : : : ; Tm � 6; Tm � 3; Tm. Lags of the monthly factors
are treated accordingly, e.g. the k-th lag bf (3)tm�k = bftm�k 8 tm = : : : ; Tm� k� 6; Tm� k� 3; Tm� k.
For given � = f�1; �2g, the exponential lag function b(Lm;�) provides a parsimonious way to

consider monthly lags of the factors as we can allow for large K to approximate the impulse

response function of GDP from the factors. The longer the lead-lag relationship in the data is,

the less MIDAS su¤ers from sampling uncertainty compared with the estimation of unrestricted

lags, where the number of coe¢ cients increases with the lag length.

The MIDAS model can be estimated using nonlinear least squares (NLS) in a regression of ytm
onto bf (3)tm�k, yielding coe¢ cients b�1, b�2, b�0 and b�1. The forecast is given by

yTm+hmjTm =
b�0 + b�1b(Lm; b�) bfTm : (9)
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For the case of r > 1 with Ftm = (f
0
1;tm ; : : : ; f

0
r;tm)

0, the model generalises to

ytq+hq = ytm+hm = �0 +

rX
i=1

�1;ibi(Lm;�i)
bf (3)i;tm + "tm+hm : (10)

Here, the parameters �i, that determine the curvature of the impulse response function, can vary

between the di¤erent factors. The estimation and forecast is otherwise the same.

Since all our applications are factor based, we drop the pre�x �Factor�and denote this approach

as �MIDAS-basic�.

Smoothed MIDAS Another way to formulate a mixed-frequency projection is employed in the

New Eurocoin index, see Altissimo et al. (2006). New Eurocoin is a composite indicator of the

Euro area economy and can be regarded as a projection of smoothed GDP on monthly factors,

see Altissimo et al. (2006), section 4. Although the methods in that paper aim at deriving a

composite coincident indicator, not explicitly now- or forecasts, one can directly generalise them

for these purposes.

In particular, the projection can be written as

yTm+hmjTm = b�+GbFTm ; (11)

G = e�yF(hm)� b��1
F ; (12)

where b� is the sample mean of GDP, assuming that the factors have mean zero, and G is a

projection coe¢ cient matrix. b�F is the estimated sample covariance of the factors, and e�yF(k) is

a particular cross-covariance with k monthly lags between GDP and the factors. The tilde denotes

that e�yF(k) is not an estimate of the sample cross-covariance between factors and GDP, rather
a cross-covariance between smoothed GDP and factors. The smoothing aspect is introduced intoe�yF(k) as follows: Assume that both the factors and GDP are demeaned. Then, let the covariance
between bFtm�k and ytm be estimated by

b�yF(k) =
1

T � � 1

TmX
tm=M+1

ytmbF(3)0tm�k; (13)

where T � =�oor[(Tm � (M + 1))=3] is the number of observations available to compute the cross-

covariances for k = �M; : : : ;M and M � 3hq = hm. Note that skip-sampled factors bF(3)0tm�k
enter b�yF(k), as we have only quarterly observations of GDP. Given b�yF(k), we can estimate the

cross-spectral matrix bSyF(!j) = MX
k=�M

�
1� jkj

M + 1

� b�yF(k)e�i!jk (14)
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at frequencies !j =
2�j
2H

for i = �H; : : : ; H using a Bartlett lead-lag window. The low-frequency

relationship between bFtm�k and ytm in New Eurocoin is obtained by �ltering out cross �uctuations
at frequencies larger than �=6, using the frequency-response function �(!j), which is de�ned

as �(!j) = 18 j!jj < �=6 and zero otherwise. By inverse Fourier transform we obtain the

autocovariance matrix e�yF(k) re�ecting low-frequency comovements between bFtm�k and ytm
e�yF(k) = 1

2H + 1

HX
j=�H

�(!j)bSyF(!j)ei!jk; (15)

which is part of the projection coe¢ cients (12) for k = 1; 2; : : : ; hm = 3hq months. For given M

and H, we can compute the projection (11). We will denote this MIDAS approach as �MIDAS-

smooth�.

The relationship between the basic MIDAS approach in (7) or (10) and MIDAS-smooth is

immediately clear when we disregard the smoothing aspect for a moment, and consider b�yF(k)

instead of e�yF(k) in the projection coe¢ cient b�yF(hm) � b��1
F in (12). First note that b�yF(k)

is a consistent estimator of the true cross-covariance, if the sample size is su¢ ciently large, de-

spite the missing values. MIDAS-basic (7) and its multivariate extension (10) are based on the

same �nding as the smooth projection: one regresses low-frequency GDP on skip-sampled high-

frequency factors, but with a di¤erent functional (exponential lag) form and allows for non-zero

lag orders. Thus, in terms of lags considered, the New Eurocoin projection is a restricted form of

MIDAS-basic, but with a di¤erent weighting.

The unrestricted MIDAS The MIDAS-basic and MIDAS-AR rely on the exponential lag

function, whereas MIDAS-smooth considers only tm-dated factors as regressors in a particular

way. As an alternative to these approaches, we also consider an unrestricted lag order model

ytm+hm = �0 +D(Lm)bF(3)tm + "tm+hm ; (16)

where D(Lm) =
PK

k=0DkL
k
m is an unrestricted lag polynomial of order K. A theoretical justi�-

cation for this speci�cation is provided in Marcellino and Schumacher (2007), who show that it

can be derived as an approximation to the model resulting from mixed sampling from a higher

frequency ARMA model.

We estimate D(Lm) and �0 by OLS. To specify the lag order in the empirical application,

we consider a �xed scheme with k = 0 and an automatic lag length selection using the Bayesian

information criterion (BIC). Note that for k = 0, we consider only tm-dated factors for forecasting.

Thus, with k = 0 the projection model is close to the MIDAS-smooth projection as employed in

the New Eurocoin index, see the discussion above. The di¤erence is of course that the smoothing

aspect is neglected here.
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The unrestricted MIDAS with k = 0 can be regarded as the most simple form of MIDAS,

and can serve as a benchmark against the more distinguished alternatives above. We will denote

the unrestricted MIDAS with k = 0 as �MIDAS-U0�, and with estimated lag order by BIC as

�MIDAS-U�.

3 Empirical nowcast and forecast comparison

The empirical application will be carried out in a recursive nowcast experiment. In subsection

3.1, we describe the design of this exercise, the data used and the speci�cations of the models. In

the following subsections, the empirical results for German GDP nowcasting will be discussed. In

particular, following the methodological discussion above, we present

� a comparison of factor estimation methods that can tackle ragged-edge data in section 3.2,
and

� a comparison of MIDAS projections in section 3.3.

To relate our results to earlier empirical �ndings and conceptual discussions in the factor

forecast literature, further results are provided:

� Section 3.4: A comparison of monthly nowcast models with quarterly factor models,

� Section 3.5: A discussion of static versus dynamic factor estimation, and

� Section 3.6: A comparison of the two-step nowcast approach chosen here with an integrated
state-space model.

3.1 Design of the nowcast and forecast comparison exercise

Data and replication of the ragged edge The dataset contains German quarterly GDP from

1992Q1 until 2006Q3 and 111 monthly indicators from 1992M1 until 2006M11. The dataset is

a �nal dataset. It is not a real-time dataset and does not contain vintages of data, as they are

not available for Germany for such a broad coverage of time series. Furthermore, in Schumacher

and Breitung (2006), a considerably smaller real-time dataset for Germany is used, but the results

indicate that data revisions do not a¤ect the forecast accuracy considerably. Similar results have

been found by Boivin and Ng (2003) for the US in a similar context. More information about the

data can be found in appendix A.

To consider the ragged-edge of the data at the end of the sample due to di¤erent publication

lags, we follow Banbura and Rünstler (2007) and replicate the ragged-edge from the one �nal

vintage of data that is available. When downloading the data - the download date for the data
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used here was 6th December 2006 -, we observe the ragged-edge pattern in terms of the missing

values at the end of the data sample. For example, at the beginning of December 2006, we observe

interest rates until November 2006, thus there is only one missing value at the end of the sample,

whereas industrial production is available up to September 2006, implying three missing values.

For each time series, we store the missing values at the end of the sample. Under the assumption

that these patterns of data availability remain stable over time, we can impose the same missing

values at each point in time of the recursive experiment. Thus, we shift the missing values back

in time to mimic the availability of information as in real time.

Nowcast and forecast design To evaluate the performance of the models, we carry out re-

cursive estimation and nowcasting, where the full sample is split into an evaluation sample and

an estimation sample, which is recursively expanded over time. The evaluation sample is between

1998Q4 and 2006Q3. For each of these quarters, we want to compute nowcasts and forecasts

depending on di¤erent monthly information sets. For example, for the initial evaluation quar-

ter 1998Q4, we want to compute a nowcast in December 1998, one in November, and October,

whereas the forecasts are computed from September 1998 backwards in time accordingly. Thus,

we have three nowcasts computed at the beginning of each of the intra-quarter months. Con-

cerning the forecasts, we present results up to two quarters ahead. Thus, again for the initial

evaluation quarter 1998Q4, we have six forecasts computed based on information available in

April 1998 up to information available in September 1998. Overall, we have nine projections for

each GDP observation of the evaluation period, depending on the information available to make

the projection.

The estimation sample depends on the information available at each period in time when com-

puting the now- and forecasts. Assume again we want to nowcast GDP for 1998Q4 in December

1998, then we have to identify the time series observations available at that period in time. For

this purpose, we exploit the ragged-edge structure from the end of the full sample of data, as

discussed in the previous subsection. For example, for the nowcast GDP for 1998Q4 made in

December 1998, we know from our full sample that at each period in time, we have one missing

value for interest rates and three missing values of industrial production. These missing values

are imposed also for the period December 1998, thus replicating the same ragged-edge pattern of

data availability. We do this accordingly in every recursive subsample to determine the pseudo

real-time �nal observation of each time series. The �rst observation for each time series is the same

for all recursions, namely 1992M1. This implies the recursive design with increasing information

over time available for estimating the factor models. To replicate the publication lags of GDP,

we exploit the fact that GDP of the previous quarter is available for now- and forecasting at the

beginning of the third month of the next quarter. Note that we reestimate the factors and forecast

equations every recursion when new information becomes available, so factor weights and forecast
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model coe¢ cients are allowed to change over time.

For each evaluation period, we compute nine now- and forecasts depending on the available

information. To compare the nowcasts with the realisations of GDP growth, we use the mean-

squared error (MSE). As a measure of informativeness of the nowcasts, we relate the MSE to

the variance of GDP, where the variance is computed over the evaluation period, see Forni et al.

(2003). A relative MSE to GDP variance less than one indicates that the forecast of a model for

the chosen now- and forecast horizon is to some extent informative for current and future GDP.

Note that this relative statistic can also be interpreted as a measure to compare the MSE of the

factor models with the corresponding MSE of the out-of-sample mean of GDP as a naive forecast.

Speci�cation of factor models To specify the number of factors in the applications below, we

follow two approaches: We determine the number of static and dynamic factors, r and q, respec-

tively, using information criteria from Bai and Ng (2002) and Bai and Ng (2007). Additionally,

we compute now- and forecasts for all possible combinations of r and q and evaluate them. In

our application, we consider a maximum of r = 6 and all combinations of r and q with q � r.

Details can be found in the appendix B. The key result from this exercise is that only for the case

r = 1 and partly for r = 2, now- and forecasts have information content for current and future

GDP. Apart from a few exceptions, all other combinations of numbers of factors - including those

determined by information criteria - performed worse than the speci�cations we provide results

for in the main text below. A plausible reason for this result is the combination of the rather short

estimation sample and the substantial likelihood of parameter changes. In this case, Banerjee,

Marcellino and Masten (2007) show that there is a substantial deterioration in the performance

of forecasts based on many factors, and model speci�cation by information criteria is not helpful.

Also for the US, it was shown that only very few factors can obtain satisfactory forecast results,

see Stock and Watson (2002). Due to these �ndings and to preserve space, we only present results

for r = 1 below. We don�t present results for r = 2, as the main results and conclusions are the

same.

For estimating the state-space factor model, a lag order determination is required to specify

the factor VAR(p). For this purpose, we apply the Bayesian information criterion (BIC) with a

maximum lag order of p = 6 months. The chosen lag lengths are usually very small with only one

or two lags in most of the cases. To specify the dynamic PCA estimator and MIDAS-smooth, we

use the frequency-domain parameters M = 24 and H = 60 for estimating the spectral density.

The EM algorithm we implement for monthly factor estimation is slightly di¤erent from what

described above. In particular, we do not update the factor weights during the iterations. We

rather exploit the fact that the covariance matrix of the monthly data can be consistently estimated

despite the missing values at the end of the sample. To estimate the covariance, we simply compute

pairwise covariances over the periods both series are available. Thus, the EM algorithm is only
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used to interpolate the missing values and estimate the factors by the �xed weights times the

data, which partly consists of estimated observations. We adopt this simpli�cation to prevent

convergence problems and to speed up the convergence process. As a stopping rule, we assume

that convergence is achieved if the change in the average sum of squares of the idiosyncratic

components is smaller than 10�5.

Concerning the speci�cations of MIDAS, we use a large variety of initial parameter speci�ca-

tions, and compute the residual sum of squares (RSS). The parameter set with the smallest RSS

then serves as the initial parameter set for NLS estimation. The parameters of the exponential lag

function are restricted to �1 < 2=5 and �1 < 0, in line with Ghysels et al. (2007). The maximum

number of lags chosen for MIDAS is K = 12 months.

3.2 Empirical results: A comparison of factor estimation methods for
ragged-edge data

Now- and forecast results for the di¤erent combinations of MIDAS projections and factor estima-

tion methods can be found in table 1. The table is divided into four parts. For each of the four

MIDAS projections, we can compare the di¤erent factor estimation methods. The table shows

relative MSEs to GDP variance and rankings based on those relative MSEs, where models with

the smallest MSE rank �rst. The now- and forecast horizons are shown for monthly horizons

hm = 1; : : : ; 9, where horizons one to three belong to the nowcast. Horizon hm = 1 is a nowcast

made in the third month of the respective quarter, whereas horizon hm = 2 is the nowcast made

in the second month of the current quarter. Thus, similar to standard forecast comparisons, in-

creasing horizons correspond to less information available for now- and forecasting, and we expect

an increasing MSE for increasing horizons hm.

The projections from the factor models have information content for the nowcast, as the MSEs

of virtually all combinations of factor estimation methods and projection methods yield MSEs

smaller than one, see table 1. For the one-quarter ahead forecast, we �nd borderline results.

Comparing the factor estimation methods at horizons four to six, the results are not clear cut,

where some relative MSEs are larger than one for some horizons and smaller for others. For two

quarters ahead, the relative MSEs are for all factor models larger than one, thus rendering all

factor models at hand uninformative for this horizon. This indicates that the methods employed

here can be regarded as suited for short-term now- and forecasting only.

The di¤erences between the factor estimation methods are relatively small overall. In the

rankings of nowcast performance, EM-PCA factors do best in many cases in terms of ranking.

However, for hm = 1 and using the MIDAS-U and MIDAS-smooth projections together with fac-

tors VA-DPCA and KFS-PCA, respectively, do better than EM-PCA. Across projection methods,

there are no systematic di¤erences in nowcasting performance between factor estimation by VA-

14



Table 1: Comparison of nowcast and forecast results for di¤erent factor estimation methods for
r = 1, MSE relative to GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. MIDAS-basic VA-DPCA 0.71 1.01 1.06 0.94 1.18 1.05 1.16 1.24 1.30
EM-PCA 0.62 0.69 0.78 1.07 0.99 1.01 1.30 1.09 1.05
KFS-PCA 0.79 0.91 0.87 1.16 1.17 1.06 1.23 1.13 1.20

1.b. Ranking VA-DPCA 2 3 3 1 3 2 1 3 3
EM-PCA 1 1 1 2 1 1 3 1 1
KFS-PCA 3 2 2 3 2 3 2 2 2

2.a. MIDAS-U VA-DPCA 0.90 1.05 1.02 1.04 1.15 1.11 1.19 1.13 1.17
EM-PCA 0.92 0.65 0.72 1.08 1.05 0.90 1.19 1.42 1.40
KFS-PCA 0.89 0.90 0.81 0.97 1.03 1.02 1.31 1.49 1.36

2.b. Ranking VA-DPCA 2 3 3 2 3 3 2 1 1
EM-PCA 3 1 1 3 2 1 1 2 3
KFS-PCA 1 2 2 1 1 2 3 3 2

3.a. MIDAS-smooth VA-DPCA 0.69 0.92 0.87 0.95 1.10 1.20 1.18 1.12 1.19
EM-PCA 0.70 0.73 0.84 0.94 0.95 1.00 1.05 1.09 1.13
KFS-PCA 0.76 0.85 0.89 0.98 1.06 1.08 1.10 1.16 1.19

3.b. Ranking VA-DPCA 1 3 2 2 3 3 3 2 3
EM-PCA 2 1 1 1 1 1 1 1 1
KFS-PCA 3 2 3 3 2 2 2 3 2

4.a. MIDAS-U0 VA-DPCA 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12
EM-PCA 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05
KFS-PCA 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06

4.b. Ranking VA-DPCA 3 3 3 1 3 3 1 2 3
EM-PCA 1 1 1 2 1 1 3 3 1
KFS-PCA 2 2 2 3 2 2 2 1 2

Note: The variance of GDP in the evaluation sample is 0.246. In the rankings, models with smallest
MSE rank �rst. The model abbreviations are: VA-DPCA refers to the vertical realignment and dynamic
PCA used in Altissimo et al. (2006), EM-PCA is the EM algorithm together with PCA as in Stock and
Watson (2002), and KFS-PCA is the Kalman smoother of state-space factors according to Doz et al.
(2006). The projection MIDAS-basic is the projection from Ghysels and Valkanov (2006), MIDAS-U is
unrestricted MIDAS without exponential lag polynomial and lag speci�cation using BIC, from Marcellino
and Schumacher (2007). MIDAS-smooth is the projection as employed in Altissimo et al. (2006), and
MIDAS-U0 is the MIDAS projection with unrestricted lag polynomials of order zero.
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DPCA and KFS-PCA, as the relative MSE rankings change depending on the now- and forecast

horizon.

Note that in table 1 increasing the nowcast or forecast horizon month by month not always

leads to an increase of relative MSE, although this happens in most of the cases. This can

be observed across all models under comparison. Thus, as new monthly information becomes

available, the methods employed here cannot always improve the now- and forecasts with this

information. This could be due to the relatively short sample under consideration, that induces

high sampling uncertainty of the estimates and nowcasts.

The relative comparison of the factor estimation methods was based on the MSE as a perfor-

mance measure so far. However, as the MSE averages over observations in the evaluation period,

this statistic can be dominated by di¤erences in performance in only a few periods. Therefore,

we additionally investigate the factor nowcasts over recursions. In �gure 1, the time series of

nowcasts for hm = 1; 2; 3 are shown together with GDP observations and the in-sample mean as

a benchmark nowcast for di¤erent factor estimation methods. Concerning the type of projection,

�gure 1 includes results for MIDAS-U0 only. As the results are very similar for the other types of

MIDAS projections, we leave them out of this comparison here. The same holds for the forecast

horizons hm � 3. For comparative purposes, we include the in-sample mean of GDP as a naive

nowcast into the �gures. The results in �gure 1 show that the three factor models perform clearly

better than the simple benchmark. However, the erratic movements of GDP growth at the begin-

ning of the sample, for example in 2000Q2 and 2000Q3, are not predicted well by all three factor

models. Increasing the nowcast horizon from hm = 1 to hm = 3 shows the decline in variance of

the nowcasts and, thus, a decline in nowcast ability. A common �nding of the �gures is the high

correlation between the forecasts of the three factor models, as periods of good performance and

periods of bad performance are similar. Therefore, in line with the similar MSE �ndings above,

we �nd no clear indications of dramatic di¤erences between the nowcast accuracy of the three

factor models over time.

3.3 Empirical results: A comparison of MIDAS projections

Below, we discuss the di¤erent types of MIDAS projections. The nowcast results can be found in

table 2. The table contains three groups for each of the factor estimation method. For each factor

estimation method, we will compare the di¤erent MIDAS projections.

In table 2, a general �nding is that the di¤erences between the MIDAS approaches are not

big as all approaches lead to nowcasts that have information content for current GDP, and only a

few combinations of factor estimation and MIDAS projection also have predictive ability for the

next quarter. Comparing the methods, we see that the di¤erence between MIDAS-basic based

on exponential lags and MIDAS-U is not clear-cut, as none of them outperforms the other across
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Figure 1: Nowcasts with MIDAS-U0 and di¤erent factor estimation methods for horizon hm =
1; 2; 3 and GDP observations, quarter on quarter growth, number of factors r = 1 and q = 1
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Note: The �gure shows nowcasts for the di¤erent factor estimation methods and the in-sample
mean as a benchmark. For the model descriptions and abbreviations, see table 1.
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Table 2: Comparison of nowcast and forecast results from di¤erent MIDAS projections for r = 1,
MSE relative to GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. VA-DPCA MIDAS-basic 0.71 1.01 1.06 0.94 1.18 1.05 1.16 1.24 1.30
MIDAS-U 0.90 1.05 1.02 1.04 1.15 1.11 1.19 1.13 1.17

MIDAS-smooth 0.69 0.92 0.87 0.95 1.10 1.20 1.18 1.12 1.19
MIDAS-U0 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12

1.b. Ranking MIDAS-basic 3 3 4 2 4 2 2 4 4
MIDAS-U 4 4 3 4 3 3 4 3 2

MIDAS-smooth 1 2 1 3 2 4 3 2 3
MIDAS-U0 2 1 2 1 1 1 1 1 1

2.a. EM-PCA MIDAS-basic 0.62 0.69 0.78 1.07 0.99 1.01 1.30 1.09 1.05
MIDAS-U 0.92 0.65 0.72 1.08 1.05 0.90 1.19 1.42 1.40

MIDAS-smooth 0.70 0.73 0.84 0.94 0.95 1.00 1.05 1.09 1.13
MIDAS-U0 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05

2.b. Ranking MIDAS-basic 2 3 3 3 3 4 4 2 1
MIDAS-U 4 1 1 4 4 2 3 4 4

MIDAS-smooth 3 4 4 2 2 3 1 1 3
MIDAS-U0 1 2 2 1 1 1 2 3 2

3.a. KFS-PCA MIDAS-basic 0.79 0.91 0.87 1.16 1.17 1.06 1.23 1.13 1.20
MIDAS-U 0.89 0.90 0.81 0.97 1.03 1.02 1.31 1.49 1.36

MIDAS-smooth 0.76 0.85 0.89 0.98 1.06 1.08 1.10 1.16 1.19
MIDAS-U0 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06

3.b. Ranking MIDAS-basic 3 4 3 4 4 3 3 2 3
MIDAS-U 4 3 2 2 2 2 4 4 4

MIDAS-smooth 2 2 4 3 3 4 2 3 2
MIDAS-U0 1 1 1 1 1 1 1 1 1

Note: For model abbreviations, see table 1.
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all factor estimation methods and horizons. The most simple MIDAS projections without lags of

the factors, MIDAS-U0 and MIDAS-smooth, provide often better nowcasts than MIDAS based on

exponential lag functions, MIDAS-basic or MIDAS-U. MIDAS-smooth can outperform MIDAS-

U0 only for factors obtained by VA-DPCA for a few horizons. However, based on EM-PCA and

KFS-PCA factors, the projection MIDAS-U0 outperforms MIDAS-smooth at all horizons. Thus,

the simplest projection method MIDAS-U0 seems to work best overall, as it ranks �rst or second

in most of the cases.

As an extension to the basic MIDAS approach, Clements and Galvão (2007) consider autore-

gressive dynamics in the MIDAS approach. In particular, they propose the model

ytm+hm = �0 + �ytm +
rX
i=1

�1;ibi(Lm;�i)(1� �L3m) bf (3)i;tm + "tm+hm : (17)

The autoregressive coe¢ cient � is not estimated unrestrictedly to rule out discontinuities of the

impulse response function of bF(3)tm on ytm+hm, see the discussion in Ghysels et al. (2007), pp. 60. The
restriction on the coe¢ cients is a common-factor restriction to ensure a smooth impulse response

function, see Clements and Galvão (2007). The AR coe¢ cient � can be estimated together with

the other coe¢ cients by NLS. As an AR model is often supposed to be an appropriate benchmark

speci�cation for GDP, the extension of MIDAS might give additional insights in which direction

the other MIDAS approaches considered so far might be improved.

In table 3 below, we will denote this variant as �MIDAS-AR�. It is compared with the MIDAS-

basic without AR terms. The results in table 3 show that considering AR terms doesn�t improve

the now- and forecast performance systematically. For di¤erent horizons and di¤erent factor

estimation methods, the ranking between MIDAS-AR and MIDAS-basic changes. MIDAS-AR

is not generally better than MIDAS-basic, which might also indicate problems with estimating

autoregressive dynamics in German GDP. Note that we also tried to augment the unrestricted

MIDAS with AR terms. However, also this experiment didn�t lead to clear-cut improvements in

forecast performance as well.

3.4 Empirical results: A comparison of monthly factor nowcast models
with quarterly factor models

We now investigate the relative advantages of the nowcast factor models with earlier factor ap-

proaches in the literature. A widely followed way in the previous literature on factor forecasting

is time aggregation. To obtain a balanced sample of data, one can simply aggregate the monthly

data to quarterly data and ignore the most recent observations of high-frequency indicators. Then,

the standard techniques of factor forecasting with single-frequency data can be employed. Note

that previously most of the studies for forecasting of German GDP were based on quarterly, partly
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Table 3: MIDAS-AR versus MIDAS-basic, comparison of relative MSE for r = 1

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. VA-DPCA MIDAS-AR 0.76 0.87 0.91 1.02 1.16 1.05 1.20 1.25 1.29
MIDAS-basic 0.71 1.01 1.06 0.94 1.18 1.05 1.16 1.24 1.30

1.b. Ranking MIDAS-AR 2 1 1 2 1 2 2 2 1
MIDAS-basic 1 2 2 1 2 1 1 1 2

2.a. EM-PCA MIDAS-AR 0.66 0.63 0.74 1.12 1.13 0.96 1.24 1.10 1.35
MIDAS-basic 0.62 0.69 0.78 1.07 0.99 1.01 1.30 1.09 1.05

2.b. Ranking MIDAS-AR 2 1 1 2 2 1 1 2 2
MIDAS-basic 1 2 2 1 1 2 2 1 1

3.a. KFS-PCA MIDAS-AR 0.88 0.93 0.84 1.08 1.18 1.13 1.28 1.16 1.26
MIDAS-basic 0.79 0.91 0.87 1.16 1.17 1.06 1.23 1.13 1.20

3.b. Ranking MIDAS-AR 2 2 1 1 2 2 2 2 2
MIDAS-basic 1 1 2 2 1 1 1 1 1

Note: The projection MIDAS-AR contains one autoregressive term as in Clements and Galvão (2007),
MIDAS basic is wihout AR terms. For factor model abbreviations, see table 1.

time-aggregated data, see e.g. Schumacher (2007). As quarterly data is widely used in the empir-

ical literature for GDP forecasting, we will also compare the mixed-frequency nowcast models to

the quarterly factor models.

In particular, we employ the standard model for factor forecasting following Stock and Watson

(2002). The forecast equation is essentially a quarterly factor-augmented AR model according to

ytq+hq = �0 + �(Lq)ytq + E(Lq)bFQtq + "tq+hq ; (18)

where E(Lq) =
PP

p=0EpL
p
q is an unrestricted lag polynomial of order P , and Lq is the quarterly lag

operator now. �(Lq) is now a lag polynomial of order R for autoregressive terms. The factors bFQtq
are estimated by PCA, which is applied to the quarterly indicators. These time series indicators

are the same as for the nowcast models as discussed above, but aggregated over time to quarterly

frequency. Note that model (18) with static factors bFQtq works quite well for single-frequency data
compared with dynamic factor estimates, see Boivin and Ng (2006), D�Agostino and Giannone

(2006), as well as Schumacher (2007) for German GDP. Thus, it might serve as an interesting

alternative to the nowcast models.

As a benchmark for the factor nowcast models, we employ a univariate quarterly autoregressive
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(AR) model for GDP, speci�ed using the BIC with a maximum lag order of three quarters. It

turns out that in almost all of the recursions, only one lag is chosen. Furthermore, we present

the in-sample mean of GDP as an additional benchmark. In the recent forecasting literature, this

benchmark has turned out to be a strong competitor to more sophisticated approaches, see e.g.

De Mol et al. (2006).

Table 4 contains results for the nowcasts using quarterly factor models as well as the simple

benchmarks. As representatives of the nowcast models, we present results based onMIDAS-U0 and

the three di¤erent ragged-edge factor estimation methods. In the empirical nowcast comparison,

Table 4: Comparison of mixed-frequency nowcast models with MIDAS-U0 and quarterly factor
and benchmark models, MSE relative to GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1. MIDAS-U0 VA-DPCA 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12
EM-PCA 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05
KFS-PCA 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06

2. Quarterly PCA, P = R = 0, r = 1 0.98 1.05 1.05 1.05 1.16 1.16 1.16 1.14 1.14
factor model PCA, P = R = 0, r = 2 1.03 0.94 0.94 0.94 1.31 1.31 1.31 1.25 1.25

PCA-BIC, r = 1 0.91 1.02 1.02 1.02 1.13 1.13 1.13 1.08 1.08
PCA-BIC, r = 2 0.94 0.89 0.89 0.89 1.23 1.23 1.23 1.23 1.23
PCA-BIC 0.99 1.06 1.06 1.06 1.13 1.13 1.13 1.08 1.08

3. Benchmarks AR 1.02 1.17 1.17 1.17 1.08 1.08 1.08 1.08 1.08
in-sample mean 1.03 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06

Note: The quarterly factor model contains factors estimated from quarterly, time-aggregated data using
PCA. The forecast equation The �rst two speci�cations are based on a �xed number of factors and a
�xed number of lags, whereas the third and fourth are based on a �xed number of factors and the number
of lags is chosen by BIC. PCA-BIC selects the number of factors as well as the lag orders using BIC as
in Stock and Watson (2002). Concerning the nowcast models, the abbreviations are explained in table 1.

the simple benchmarks do not perform well, as can be seen from the bottom rows of table 4. Both

the AR model and the in-sample mean have relative MSEs larger than one. Note that, whereas

the nowcast factor models employ monthly information which is updated every month and, thus,

can lead to changes in now- and forecast MSEs, the benchmark models and the quarterly factor

models change only every third month (when a new observations of GDP is available), implying

a constant MSE for three months.

The quarterly factor model performs better than the naive benchmarks, and has some infor-

mation content for GDP for horizons up to three months. For longer horizons, there is almost no

information content in the forecasts. Compared with the monthly nowcast models, the quarterly
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factor model is generally outperformed for the nowcast for hm � 3. In many cases, this also holds
for the one-quarter ahead forecast, although the di¤erences are smaller at these horizons. Thus,

according to these results, taking into account ragged-edge information as in the nowcast models

with monthly indicators can improve the current estimate of GDP. As the use of time-aggregated

data implies a loss of information at the end of the sample, the results imply that the nowcast

methods employed here can to some extent exploit this information. In summary, we can con�rm

that in general it is advisable to employ the ragged-edge data together with the di¤erent factor

estimation techniques for nowcasting.

3.5 Empirical results: Static versus dynamic factors

Following the discussion in Boivin and Ng (2005), there is some disagreement in the literature

concerning the appropriate factor estimation method to be employed for forecasting. In particular,

it is unclear whether DPCA or PCA are favourable for predictive purposes. In general, there is

no consensus as to the appropriate estimation method, see also the discussion in Schneider and

Spitzer (2004), Den Reijer (2005), D�Agostino and Giannone (2006), and again Boivin and Ng

(2005) for di¤erent datasets. In a dataset for the German economy with balanced recursive

samples, dynamic PCA does not generally work better, and the di¤erences between the methods

are small, see Schumacher (2007).

Against the background of this discussion, we will address this issue also in the present context.

In our applications above, DPCAwas employed to estimate the factors in combination with vertical

realignment of the data. To compare the sensitivity of the results, we compare the existing results

using VA-DPCA with static PCA and vertical realignment of the data, denoted as VA-PCA below.

Table 5 shows relative MSEs to GDP variance for the di¤erent factor estimates and di¤erent

projection techniques. The results show that the information content of the now- and forecasts

does hardly change if the factors are estimated by PCA instead of DPCA. MSEs relative to GDP

variance are in most of the cases above or below one for both factor estimators. The bottom part

of the table shows another relative MSE de�ned as the MSE obtained from using DPCA factors

divided by the MSE obtained from using static PCA factors for forecasting. The results show no

systematic advantages over the horizons between the two methods. Thus, the way the factors are

estimated seems to be of limited importance in this application.

3.6 Empirical results: Integrated state-space model approach versus
two-step nowcasting

The results obtained so far are entirely based on a two-step procedure: The factors are estimated

�rstly, and then forecasting is carried out using the MIDAS approaches. However, among the
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Table 5: Static PCA versus dynamic PCA nowcasts for r = 1, MSE relative to GDP variance in
part 1. to 5., part 6 DPCA MSE divided by PCA MSE

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1. MIDAS-basic VA-DPCA 0.71 1.01 1.06 0.94 1.18 1.05 1.16 1.24 1.30
VA-PCA 0.69 1.05 1.02 0.99 1.17 1.04 1.07 1.24 1.35

2. MIDAS-U VA-DPCA 0.90 1.05 1.02 1.04 1.15 1.11 1.19 1.13 1.17
VA-PCA 0.76 1.14 1.00 1.00 1.12 1.08 1.15 1.12 1.18

3. MIDAS-smooth VA-DPCA 0.69 0.92 0.87 0.95 1.10 1.20 1.18 1.12 1.19
VA-PCA 0.70 0.98 0.88 0.93 1.07 1.12 1.14 1.07 1.17

4. MIDAS-U0 VA-DPCA 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12
VA-PCA 0.69 0.93 0.93 0.85 1.08 0.91 1.04 1.07 1.13

6. Relative MSE: MIDAS-basic 1.04 0.96 1.04 0.96 1.01 1.01 1.08 1.01 0.96
DPCA/PCA MIDAS-U 1.19 0.92 1.02 1.04 1.02 1.03 1.03 1.01 0.99

MIDAS-smooth 0.99 0.93 0.98 1.02 1.02 1.08 1.04 1.05 1.02
MIDAS-U0 1.03 0.93 0.96 1.06 0.96 1.08 1.00 1.02 0.99

Note: Parts one to �ve show relative MSEs to variance of GDP. Part six shows another relative MSE
de�ned as the MSE of the VA-DPCA factor model divided by the MSE of the model using static factors,
denoted as VA-PCA. For model and projection abbreviations, see table 1.
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models, the state-space approach allows in general for joint estimation of the factors and nowcast-

ing GDP, see Giannone et al. (2005). For the Euro area, Banbura and Rünstler (2007) propose to

augment the state-space model by a simple static relationship between monthly GDP and the fac-

tors. This follows the seminal work by Mariano and Murasawa (2003), where combining monthly

and quarterly data in a small factor state-space model has been introduced.

In particular, Banbura and Rünstler (2007) augment the state-space system above, see equa-

tions (5) and (6), with further relationships that interpolate GDP and relate monthly GDP to the

monthly factors. All in all, they add three equations, see Banbura and Rünstler (2007), p. 5: Equa-

tion 1) ytq = eytq+"tq , with "tq as a measurement error, which is normally distributed with mean zero
and variance �"; 2) an equation for time aggregation eytq = eytm = (13+ 2

3
Lm+L

2
m+

2
3
L3m+

1
3
L4m)y

m
tm for

tm = 3; 6; : : : ; Tm, and 3) the static factor representation at the monthly frequency ymtm = �yFtm.

Equations 2) and 3) add to the vector state equation, whereas 1) adds to the vector observa-

tion equation of the state space model. In line with the estimation procedure for the factor-only

state-space model (5) and (6) above, Banbura and Rünstler (2007) estimate the coe¢ cients �y,

�" outside the state-space model by estimating a reduced form of 1) to 3), which is a regression

model for quarterly GDP dependent on time-aggregated quarterly factors. They plug the result-

ing estimates of �y and �" in the state-space model for Kalman �ltering and smoothing, which

now also provides the now- and forecasts for GDP, as ytq is part of the observation vector in this

integrated approach.

The key di¤erence between the two-step factor-estimation MIDAS approach chosen in the

applications above and the ones followed by Banbura and Rünstler (2007) and Mariano and

Murasawa (2003) is that MIDAS directly relates time series of di¤erent frequencies, whereas

the state-space approaches allow for specifying relationships consistently at the higher frequency.

Furthermore, MIDAS is a direct forecast device, whereas the Kalman smoother is based on a VAR

model that yields iterative forecasts in the terminology of Marcellino et al. (2006). This approach

is fully integrated as it interpolates missing values of the indicators, estimates factors and yields

nowcasts of GDP in one coherent framework. To check whether this strategy can improve over the

two-step approach followed here so far in terms of now- and forecasting, we also provide nowcast

results for the model proposed by Banbura and Rünstler (2007). Table 6 shows relative MSEs to

GDP variance and rankings for the di¤erent state-space model now- and forecasts. In the table,

�KFS-PCA full�denotes the fully-integrated approach, whereas all the other forecasts are based

on the two-step procedure, where the Kalman smoother is used to estimate the monthly factors

only. Note that the coe¢ cients of the state-space model are reestimated for each recursion in the

exercise. Therefore, factors estimates can change due to parameter changes as well as the addition

of new information at the end of the sample. The results show that the integrated approach

also does well in now- and forecasting. It performs better than the two-step MIDAS-basic and

MIDAS-U projection, and very similar to the simple MIDAS-U0 projection. For horizons two,
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Table 6: Two-step KFS-PCA vs fully integrated now- and forecast results from the state-space
model for r = 1, MSE relative to GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. Relative MSE KFS-PCA full 0.70 0.81 0.84 0.88 1.00 0.95 1.10 1.12 1.09
MIDAS-basic 0.79 0.91 0.87 1.16 1.17 1.06 1.23 1.13 1.20
MIDAS-U 0.89 0.90 0.81 0.97 1.03 1.02 1.31 1.49 1.36

MIDAS-smooth 0.76 0.85 0.89 0.98 1.06 1.08 1.10 1.16 1.19
MIDAS-U0 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06

1.b. Ranking KFS-PCA full 2 1 3 1 1 2 3 2 2
MIDAS-basic 4 5 4 5 5 4 4 3 4
MIDAS-U 5 4 2 3 3 3 5 5 5

MIDAS-smooth 3 3 5 4 4 5 2 4 3
MIDAS-U0 1 2 1 2 2 1 1 1 1

Note: For model abbreviations, see table 1.

four and �ve, it performs best among all the di¤erent approaches. For horizons, one and three,

the MIDAS-U0 performs best.

The similar performance of the fully integrated state-space model to the very simple MIDAS

projections con�rms the previous �ndings that simple and very parsimonious projection models

seem to work better than more complicated models. Note that the equation ymtm = �yFtm in the

state-space model above, that relates monthly GDP and the factors, is very parsimonious and does

not contain lags of the factors as is the case of the MIDAS-U0 forecast. Whether the approach

is integrated within one coherent state-space model or split into two steps is, however, of second

order importance according to our �ndings. Therefore, we do not seem to loose much if we rely

on the two-step procedure, which allows us to compare the di¤erent factor estimation methods.

4 Conclusions

The nowcasting perspective followed in this paper takes into account the publication lags of sta-

tistical data that decision makers face in their everyday business of assessing the current state of

the economy. Due to the publication delay of GDP, the necessity of nowcasting as a projection

of current quarter GDP directly emerges, and speci�c solutions are needed that can employ in-

formation from many business cycle indicators, that are also subject to publication lags and thus

lead to the so-called �ragged-edge�of the data.

The factor models and projection methods discussed here can tackle these nowcasting issues.
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Based on the two-step procedure often followed in the recent factor-forecasting literature, we

di¤erentiate between the factor-estimation step and the factor-forecasting step. When estimating

the factors, we place special emphasis on missing values at the end of the sample due to statistical

publication lags. Regarding the factor-forecasting step, we introduce the Factor-MIDAS approach

as a simple tool for direct now- and forecasting in a mixed-frequency context.

The di¤erent nowcast approaches are applied to a German post-uni�cation dataset, and com-

pared with respect to their nowcasting performance of German GDP growth. The results indicate

that all the nowcast models can improve over quarterly factor forecasts based on time-aggregated

data. Thus, taking into account the ragged-edge of the data and exploiting most recent observa-

tions pays o¤ to some extent for nowcasting.

Concerning the di¤erences between the MIDAS projection methods, the results indicate that

MIDAS with exponential distributed lag functions performs similarly to MIDAS with unrestricted

lag polynomials. The best performing projection is in many cases a very simple MIDAS without

a distributed lag structure and only up to one lag of the factors. Autoregressive dynamics also

play only a minor role in the projections.

The choice of the factor estimation techniques that can tackle missing values has no substantial

impact on the nowcast performance. The EM algorithm together with static PCA as in Stock and

Watson (2002), vertical realignment together with dynamic PCA as in Altissimo et al. (2002),

as well as factors estimated using a large state-space model with QML as in Doz et al. (2006)

all provide informative nowcasts and to a lesser extent informative forecasts one quarter ahead.

Compared with respect to their performance over time, we observe that the forecasts based on the

three factor estimation methods are highly correlated. There are also no systematic di¤erences

between static and dynamic PCA for nowcasting. Interestingly, factor-forecast applications with

single-frequency data, see e.g. D�Agostino and Giannone (2006) and Schumacher (2007), have

recently obtained similar �ndings. A �nal results from the application here is that choosing an

integrated state-space model rather than the two-step procedure followed here cannot improve the

nowcast performance.

Although there are clear now- and forecast gains from the application of the factor models

discussed here at short horizons, the same does not hold for the longer forecast horizons of up to

two quarters. At these horizons, the forecasts of all the factor models are hardly uninformative.

Therefore, the methods employed here can only be regarded as short-term forecasting devices,

and there is room for improvements of the methods for longer horizons. Note, however, that this

is a problem that can often be observed in the recent literature. Related to the debate on the

�Great Moderation�, there is evidence of a decline in forecastability of real and nominal variables

for many sophisticated forecast procedures, see D�Agostino et al. (2006) and Campbell (2007),

for example.
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A Monthly dataset

This appendix describes the time series for the German economy used in the forecasting exercise.

The whole data set for Germany contains 111 monthly time series over the sample period from

1992M1 until 2006M11. The time series cover broadly the following groups of data: prices, labour

market data, �nancial data (interest rates, stock market indices), industry statistics, construction

statistics, surveys and miscellaneous indicators.

The source of the time series is the Bundesbank database. The download date of the dataset

is 6th December 2006. In this dataset, there are di¤ering missing values at the end of the sample.

For example, whereas �nancial time series are available up to 2006M11, industrial time series

like production, orders and so on are only available up to 2006M09. This leads to a ragged-edge

structure at the end of the sample, which serves as a template to replicate the ragged edges in

past pseudo real-time periods as described in the main text.

Natural logarithms were taken for all time series except interest rates. Stationarity was ob-

tained by appropriately di¤erencing the time series. Most of the time series taken from the above

source are already seasonally adjusted. Remaining time series with seasonal �uctuations were

adjusted using Census-X12 prior to the forecast simulations. Extreme outlier correction was done

using a modi�cation of the procedure proposed by Watson (2003). Large outliers are de�ned as

observations that di¤er from the sample median by more than six times the sample interquartile

range (Watson, 2003, p. 93). The identi�ed observation is set equal to the respective outside

boundary of the interquartile.

A.1 Prices

producer price index

producer price index without energy

consumer price index

consumer price index without energy

export prices

import prices

oil price Brent GB

A.2 Labour market

unemployed

unemployment rate

employees and self-employed

employees, short-term
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productivity, per employee

productivity, per hour

wages and salaries per employee

wages and salaries per hour

vacancies

A.3 Interest rates, stock market indices

money market rate, overnight deposits

money market rate, 1 month deposits

money market rate, 3 months deposits

bond yields on public and non-public long term bonds with average maturity from 1 to 2 years

bond yields on public and non-public long term bonds with average maturity from 5 to 6 years

bond yields on public and non-public long term bonds with average maturity from 9 to 10 years

yield spread: bond yields with maturity from 1 to 2 years minus 3 months money market rate

yield spread: bond yields with maturity from 5 to 6 years minus 3 months money market rate

yield spread: bond yields with maturity from 9 to 10 years minus 3 months money market rate

CDAX share price index

DAX German share index

REX German bond index

exchange rate US dollar/Deutsche Mark

indicator of the German economy�s price competitiveness against 19 industrial countries based on con-

sumer prices

monetary aggregate M1

monetary aggregate M2

monetary aggregate M3

A.4 Manufacturing turnover, production and received orders

production: intermediate goods industry

production: capital goods industry

production: durable and non-durable consumer goods industry

production: mechanical engineering

production: electrical engineering

production: vehicle engineering

export turnover: intermediate goods industry

domestic turnover: intermediate goods industry

export turnover: capital goods industry
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domestic turnover: capital goods industry

export turnover: durable and non-durable consumer goods industry

domestic turnover: durable and non-durable consumer goods industry

export turnover: mechanical engineering

domestic turnover: mechanical engineering

export turnover: electrical engineering industry

domestic turnover: electrical engineering industry

export turnover: vehicle engineering industry

domestic turnover: vehicle engineering industry

orders received by the intermediate goods industry from the domestic market

orders received by the intermediate goods industry from abroad

orders received by the capital goods industry from the domestic market

orders received by the capital goods industry from abroad

orders received by the consumer goods industry from the domestic market

orders received by the consumer goods industry from abroad

orders received by the mechanical engineering industry from the domestic market

orders received by the mechanical engineering industry from abroad

orders received by the electrical engineering industry from the domestic market

orders received by the electrical engineering industry from abroad

orders received by the vehicle engineering industry from the domestic market

orders received by the vehicle engineering industry from abroad

industrial production

A.5 Construction

orders received by the construction sector: building construction

orders received by the construction sector: civil engineering

orders received by the construction sector: residential building

orders received by the construction sector: non-residential building construction

man-hours worked in building construction

man-hours worked in civil engineering

man-hours worked in residential building

man-hours worked in industrial building

man-hours worked in public building

turnover: building construction

turnover: civil engineering

turnover: residential building
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turnover: industrial building

turnover: public building

production in the construction sector

A.6 Surveys

ifo surveys: business situation: capital goods producers

ifo surveys: business situation: producers durable consumer goods

ifo surveys: business situation: producers non-durable consumer goods

ifo surveys: business situation: retail trade

ifo surveys: business situation: wholesale trade

ifo surveys: business expectations for the next six months: producers capital goods

ifo surveys: business expectations for next six months: producers durable consumer goods

ifo surveys: business expectations for next six months: producers non-durable consumer goods

ifo surveys: business expectations for next six months: retail trade

ifo surveys: business expectations for next six months: wholesale trade

ifo surveys: stocks of �nished goods: producers of capital goods

ifo surveys: stocks of �nished goods: producers of durable consumer goods

ifo surveys: stocks of �nished goods: producers of non-durable consumer goods

GfK consumer surveys: income expectations

GfK consumer surveys: business cycle expectations

GfK consumer surveys: propensity to consume: consumer climate

GfK consumer surveys: price expectations

ZEW �nancial market survey: business cycle expectations

A.7 Miscellaneous indicators

current account: exports

current account: imports

current account: services import

current account: services export

current account: transfers from abroad

current account: transfers to foreign countries

HWWA raw material price index

HWWA raw material price index without energy

HWWA raw material price index: industrial raw materials

HWWA raw material price index: energy industrial raw materials

new car registrations
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new car registrations by private owners

retail sales turnover

B Nowcast results for di¤erent speci�cations of the factor

models

This section presents nowcast and forecast results for di¤erent speci�cations of the factor models

in terms of di¤erent numbers of static factors r and dynamic shocks q. Of course, estimation of the

factors based on vertically realigned data and dynamic PCA (VA-DPCA) requires speci�cation of

both q and r, whereas the number of static factors r is the only auxiliary parameter for the factors

that are estimated with the EM algorithm together with static PCA (EM-PCA). The factors

estimated in the state-space model approach with the Kalman smoother (KFS-PCA) require

specifying q and r. To check the sensitivity of the results with respect to the number of factors

and shocks, we follow two speci�cation schemes: Firstly, we compare �xed speci�cations, and,

secondly, we employ information criteria for model speci�cation.

Regarding the MIDAS projection, we report only results based on MIDAS-U0, which performs

well compared with the other projections. Results are not shown for the other projections, as they

lead to very similar conclusions.

B.1 Fixed speci�cations and information criteria

Concerning �xed speci�cations, we consider many combinations of the auxiliary parameters, as

they can heavily in�uence the model�s forecast performance, see Boivin an Ng (2005) for a discus-

sion. In our application, we consider a maximum number of static factors of r = 6 and dynamic

factors q � 3, and compute results for all possible combinations of the parameters. We consid-

ered also results for 3 < q � r, but this didn�t lead, in general, to improvements in nowcast

performance, and we do not provide the results here.

Regarding the sensitivity analysis based on information criteria, we apply the ones proposed

by Bai and Ng (2002, 2007). In particular, for the number of static factors, we adopt the ICp2
criterion of Bai and Ng (2002)

ICp2(r) = ln(V (r;F)) + r

�
N + Tm
NTm

�
ln(minfN; Tmg): (19)

The information criterion re�ects the trade-o¤ between goodness-of-�t and over�tting. The �rst
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term on the right-hand side shows the goodness-of-�t, which is given by the residual sum of squares

V (r;F) =
1

NTm

NX
i=1

TmX
tm=1

(xi;tm ��iFtm)
2 ; (20)

and depends on the estimates of the static factors and the number of factors. The residuals are

given by xi;tm��iFtm, where �i is a (1� r) dimensional row vector of the parameter matrix � of
the static model, see (1) in the main text. If the number of factors r is increased, the variance of the

factors increases, too, and the sum of squared residuals decreases. Hence, the information criteria

have to be minimised in order to determine the number of factors. The penalty for over�tting,

which is the second term on the right-hand side behind r in (19), is an increasing function of the

cross-section sizeN and time series length Tm. In empirical applications, one has to �x a maximum

number of factors, say rmax, and estimate the model for all number of factors r = 1; : : : ; rmax. The

optimal number of factors minimises ICp2. In the forecast comparison, we set rmax = 6. Note that

Tm in ICp2 above is the time series sample size of the recursive subsample.

The number of dynamic shocks q for dynamic PCA estimation of the factors and the state-

space model is determined by the information criterion proposed by Bai and Ng (2007). This

criterion takes the estimated static factors as given, and estimates a VAR of lag order p on these

factors, where p is determined by the Bayesian information criterion (BIC). Then, a spectral

decomposition of the (r� r) residual covariance matrix b�u is computed, and bcj is the j-th ordered
eigenvalue, where bc1 > bc2 � : : : � bcr � 0. Compute

bDk =

 bck+1Pr
j=1 bcj

!1=2
(21)

for k = 1; : : : ; r�1. Each bDk is a measure of the marginal contribution of the respective eigenvalue,

and under the assumption rank (b�u) = q, ck = 0 for k > q. Bai and Ng (2007) show that bDk

converges to zero for k � q. In applications, the set of admissible numbers of dynamic factors

is chosen by a boundary according to K = fk : bDk < m=min[N2=5; T 2=5]g. We use m = 1:0,

following the Monte Carlo results in Bai and Ng (2007). Finally, the number of dynamic factors

is given by bqBN = minfk 2 Kg.
In the tables below, the information criteria for r and q are applied recursively. Thus, the

speci�cations can change over time in contrast to the speci�cation with �xed numbers of factors

and dynamic shocks.
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B.2 Empirical results for the di¤erent factor models

Table 7 shows the nowcast results for di¤erent numbers of factors for the factors based on vertically

realigned data and dynamic PCA (VA-DPCA) and MIDAS-U0 projection. In general, now- and

forecasts with fewer factors r and a smaller number of shocks q are doing better than higher-

dimensional model nowcasts for all the three MIDAS projections. For r � 3, most of the now- and
forecasts are uninformative. Considering models whose performance is relatively stable across the

horizons, models with r = 1, q = 1 and r = 2, q = 1; 2 do best in terms of ranking. Information

criteria also do well in selecting models with high-ranking nowcast accuracy.

Table 8 shows the nowcast results for di¤erent numbers of static factors for the factors based

on the EM algorithm and static PCA (EM-PCA). The results show, that in almost all of the cases,

r = 1 is the best-performing speci�cation. With a few exceptions, where r = 2 performs better,

r = 1 has the most stable now- and forecast performance across horizons hm. Information criteria

tend to perform badly.

Table 9 shows the nowcast results for di¤erent numbers of factors for the state-space model

approach with the Kalman smoother to estimate factors (KFS-PCA). The speci�cation r = 1 and

q = 1 is doing well for the nowcast. With r = 2 and q = 1 or q = 2, KFS-PCA also performs

well, in some cases better than r = 1. Models speci�ed using information criteria perform in most

of the cases worse than models with only a few factors. Furthermore, the relative MSE to GDP

variance is in almost all the cases larger than one, indicating uninformative now- and forecasts.

B.3 Summary of the comparison of speci�cations

The results of the sensitivity analysis lead to a clear-cut conclusion: If the number of factors is

�xed larger than two, the now- and forecasts have in most of the cases no information content.

Moreover, the information criteria select models, that have in most of the cases a poor performance,

with the exception of the VA-DPCA factors. All the di¤erent factor models perform best with

r = 1 or r = 2. As the results do not di¤er substantially across these speci�cations, in the main

text we concentrate on the case r = 1 and q = 1.
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Table 7: Nowcast and forecast results for VA-DPCA factors and MIDAS-U0 for di¤erent numbers
of static and dynamic factors r and q as well as information criteria selection, MSE relative to
GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. MIDAS-U0 r = 1, q = 1 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12
r = 2, q = 1 0.75 0.82 0.87 0.78 1.01 0.94 1.28 1.13 1.15
r = 2, q = 2 0.76 0.83 0.88 0.80 1.02 0.96 1.30 1.14 1.15
r = 3, q = 1 0.75 0.89 0.96 0.87 1.13 0.88 1.54 1.17 1.11
r = 3, q = 2 0.72 0.87 0.89 0.82 1.02 0.87 1.46 1.11 1.00
r = 3, q = 3 0.75 0.86 0.89 0.84 1.06 0.95 1.64 1.16 1.08
r = 4, q = 1 0.85 0.93 1.08 1.08 1.16 1.22 1.50 1.25 1.17
r = 4, q = 2 0.74 0.87 1.13 0.83 1.08 1.02 1.48 1.37 1.38
r = 4, q = 3 0.82 1.03 1.20 0.92 1.17 1.31 1.59 1.34 1.37
r = 5, q = 1 0.86 1.11 1.20 1.09 1.13 1.19 1.52 1.25 1.06
r = 5, q = 2 0.83 1.23 1.10 1.05 1.13 1.24 1.51 1.55 1.17
r = 5, q = 3 0.83 0.97 1.29 1.20 1.17 1.22 1.69 1.34 1.14
r = 6, q = 1 0.92 1.15 1.22 1.12 1.10 1.03 1.59 1.02 1.20
r = 6, q = 2 0.91 1.31 1.34 1.28 1.29 1.26 1.82 1.59 1.90
r = 6, q = 3 0.91 1.34 1.15 1.11 1.11 1.63 1.96 1.59 1.37

IC 0.70 0.89 0.89 0.82 1.03 0.93 1.56 1.15 1.05

1.b. Ranking r = 1, q = 1 2 4 4 8 5 7 1 2 6
r = 2, q = 1 6 1 1 1 1 4 2 4 9
r = 2, q = 2 8 2 2 2 3 6 3 5 8
r = 3, q = 1 5 7 7 7 11 2 9 8 5
r = 3, q = 2 3 6 3 3 2 1 4 3 1
r = 3, q = 3 7 3 6 6 6 5 13 7 4
r = 4, q = 1 12 9 8 11 13 12 6 9 11
r = 4, q = 2 4 5 10 5 7 8 5 13 15
r = 4, q = 3 9 11 12 9 15 15 12 12 14
r = 5, q = 1 13 12 13 12 12 10 8 10 3
r = 5, q = 2 10 14 9 10 10 13 7 14 10
r = 5, q = 3 11 10 15 15 14 11 14 11 7
r = 6, q = 1 16 13 14 14 8 9 11 1 12
r = 6, q = 2 15 15 16 16 16 14 15 15 16
r = 6, q = 3 14 16 11 13 9 16 16 16 13

IC 1 8 5 4 4 3 10 6 2

Note: See table 1 in the main text.
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Table 8: Nowcast and forecast results for EM-PCA factors and MIDAS-U0 for di¤erent numbers
of static factors r as well as information criteria selection, MSE relative to GDP variance and
ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. MIDAS-U0 r = 1 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05
r = 2 0.66 1.07 0.85 0.98 0.96 0.73 1.26 1.00 2.30
r = 3 0.65 1.19 0.80 0.88 0.95 0.86 1.31 1.15 2.27
r = 4 1.08 1.48 0.88 1.21 1.33 0.86 2.42 1.35 2.41
r = 5 1.64 1.17 1.18 1.49 1.56 1.71 2.47 1.00 3.89
r = 6 1.23 1.18 1.74 2.15 1.41 2.16 2.25 0.95 3.76
IC 1.63 1.43 1.10 1.51 1.66 1.41 2.48 1.10 3.56

1.b. Ranking r = 1 1 1 1 2 1 2 1 4 1
r = 2 3 2 3 3 3 1 2 3 3
r = 3 2 5 2 1 2 3 3 6 2
r = 4 4 7 4 4 4 4 5 7 4
r = 5 7 3 6 5 6 6 6 2 7
r = 6 5 4 7 7 5 7 4 1 6
IC 6 6 5 6 7 5 7 5 5

Note: See table 1 in the main text.
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Table 9: Nowcast and forecast results for KFS-PCA factors and MIDAS-U0 for di¤erent numbers
of static and dynamic factors r and q as well as information criteria selection, MSE relative to
GDP variance and ranking

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon hm 1 2 3 4 5 6 7 8 9

1.a. MIDAS-U0 r = 1, q = 1 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06
r = 2, q = 1 0.71 1.06 0.87 0.94 0.96 0.69 1.17 1.11 1.52
r = 2, q = 2 0.66 0.99 0.83 0.94 0.97 0.69 1.19 1.09 1.52
r = 3, q = 1 1.42 1.01 1.07 0.97 0.66 0.83 1.16 1.39 2.36
r = 3, q = 2 0.83 1.02 1.04 0.99 0.98 0.68 1.19 1.16 1.53
r = 3, q = 3 0.78 1.00 0.96 0.92 0.93 0.70 1.21 1.21 1.64
r = 4, q = 1 1.74 1.31 1.12 0.78 1.09 1.02 1.54 2.07 1.99
r = 4, q = 2 1.60 1.19 1.18 1.09 1.14 0.87 1.01 2.17 1.70
r = 4, q = 3 1.28 1.17 1.04 1.33 1.14 0.78 1.72 1.45 1.54
r = 5, q = 1 2.00 1.61 0.99 0.95 1.25 1.22 1.78 2.71 1.88
r = 5, q = 2 1.79 1.32 1.32 1.21 1.20 0.88 1.17 2.39 1.76
r = 5, q = 3 1.27 1.02 1.25 1.56 0.98 1.05 1.83 1.45 1.75
r = 6, q = 1 1.90 1.61 1.01 1.18 1.34 1.80 1.94 2.90 2.70
r = 6, q = 2 1.76 1.47 1.52 1.47 1.33 1.31 1.91 2.45 3.25
r = 6, q = 3 0.96 1.41 1.55 1.72 1.10 1.42 1.99 1.38 2.20

IC 1.51 1.12 1.01 1.27 1.04 0.80 1.61 1.31 1.69

1.b. Ranking r = 1, q = 1 2 1 1 6 7 10 2 1 1
r = 2, q = 1 3 7 3 4 3 2 4 3 3
r = 2, q = 2 1 2 2 3 4 3 7 2 2
r = 3, q = 1 9 4 10 7 1 7 3 8 14
r = 3, q = 2 5 6 8 8 5 1 6 4 4
r = 3, q = 3 4 3 4 2 2 4 8 5 6
r = 4, q = 1 12 11 11 1 9 11 9 11 12
r = 4, q = 2 11 10 12 9 11 8 1 12 8
r = 4, q = 3 8 9 9 13 12 5 11 9 5
r = 5, q = 1 16 16 5 5 14 13 12 15 11
r = 5, q = 2 14 12 14 11 13 9 5 13 10
r = 5, q = 3 7 5 13 15 6 12 13 10 9
r = 6, q = 1 15 15 6 10 16 16 15 16 15
r = 6, q = 2 13 14 15 14 15 14 14 14 16
r = 6, q = 3 6 13 16 16 10 15 16 7 13

IC 10 8 7 12 8 6 10 6 7

Note: See table 1 in the main text.
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