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This paper deals with the factor modeling for high-dimensional time se-
ries based on a dimension-reduction viewpoint. Under stationary settings, the
inference is simple in the sense that both the number of factors and the factor
loadings are estimated in terms of an eigenanalysis for a nonnegative definite
matrix, and is therefore applicable when the dimension of time series is on
the order of a few thousands. Asymptotic properties of the proposed method
are investigated under two settings: (i) the sample size goes to infinity while
the dimension of time series is fixed; and (ii) both the sample size and the
dimension of time series go to infinity together. In particular, our estimators
for zero-eigenvalues enjoy faster convergence (or slower divergence) rates,
hence making the estimation for the number of factors easier. In particular,
when the sample size and the dimension of time series go to infinity together,
the estimators for the eigenvalues are no longer consistent. However, our es-
timator for the number of the factors, which is based on the ratios of the
estimated eigenvalues, still works fine. Furthermore, this estimation shows
the so-called “blessing of dimensionality” property in the sense that the per-
formance of the estimation may improve when the dimension of time series
increases. A two-step procedure is investigated when the factors are of differ-
ent degrees of strength. Numerical illustration with both simulated and real
data is also reported.

1. Introduction. The analysis of multivariate time series data is of increased
interest and importance in the modern information age. Although the methods and
the associate theory for univariate time series analysis are well developed and un-
derstood, the picture for the multivariate cases is less complete. In spite of the fact
that the conventional univariate time series models (such as ARMA) and the asso-
ciated time-domain and frequency-domain methods have been formally extended
to multivariate cases, their usefulness is often limited. One may face serious issues
such as the lack of model identification or flat likelihood functions. In fact vec-
tor ARMA models are seldom used directly in practice. Dimension-reduction via,
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for example, reduced-rank structure, structural indices, scalar component models
and canonical correlation analysis is more pertinent in modeling multivariate time
series data. See [10, 14, 20, 22].

In this paper we deal with the factor modeling for multivariate time series from
a dimension-reduction viewpoint. Differently from the factor analysis for indepen-
dent observations, we search for the factors which drive the serial dependence of
the original time series. Early attempts in this direction include [1, 5, 16, 18, 21,
23, 25]. More recent efforts focus on the inference when the dimension of time
series is as large as or even greater than the sample size; see, for example, [13]
and the references within. High-dimensional time series data are often encoun-
tered nowadays in many fields including finance, economics, environmental and
medical studies. For example, understanding the dynamics of the returns of large
numbers of assets is the key for asset pricing, portfolio allocation, and risk man-
agement. Panel time series are commonplace in studying economic and business
phenomena. Environmental time series are often of a high dimension due to a large
number of indices monitored across many different locations.

Our approach is from a dimension-reduction point of view. The model adopted
can be traced back at least to that of [18]. We decompose a high-dimensional time
series into two parts: a dynamic part driven by, hopefully, a lower-dimensional
factor time series, and a static part which is a vector white noise. Since the white
noise exhibits no serial correlations, the decomposition is unique in the sense that
both the number of factors (i.e., the dimension of the factor process) and the factor
loading space in our model are identifiable. Such a conceptually simple decom-
position also makes the statistical inference easy. Although the setting allows the
factor process to be nonstationary (see [16]; also Section 2.1 below), we focus on
stationary models only in this paper: under the stationary condition, the estima-
tion for both the number of factors and the factor loadings is carried out in an
eigenanalysis for a nonnegative definite matrix, and is therefore applicable when
the dimension of time series is on the order of a few thousands. Furthermore, the
asymptotic properties of the proposed method are investigated under two settings:
(i) the sample size goes to infinity while the dimension of time series is fixed; and
(ii) both the sample size and the dimension of time series go to infinity together.
In particular, our estimators for zero-eigenvalues enjoy the faster convergence (or
slower divergence) rates, from which the proposed ratio-based estimator for the
number of factors benefits. In fact when all the factors are strong, the performance
of our estimation for the number of factors improves when the dimension of time
series increases. This phenomenon is coined as “blessing of dimensionality.”

The new contributions of this paper include: (i) the ratio-based estimator for
the number of factors and the associated asymptotic theory which underpins the
“blessing of dimensionality” phenomenon observed in numerical experiments, and
(ii) a two-step estimation procedure when the factors are of different degrees of
strength. We focus on the results related to the estimation for the number of factors
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in this paper. The results on the estimation of the factor loading space under the
assumption that the number of factors is known are reported in [13].

There exists a large body of literature in econometrics and finance on factor
models for high-dimensional time series. However, most of them are based on a
different viewpoint, as those models attempt to identify the common factors that
affect the dynamics of most original component series. In analyzing economic
and financial phenomena, it is often appealing to separate these common factors
from the so-called idiosyncratic components: each idiosyncratic component may at
most affect the dynamics of a few original time series. An idiosyncratic series may
exhibit serial correlations and, therefore, may be a time series itself. This poses
technical difficulties in both model identification and inference. In fact the rigorous
definition of the common factors and the idiosyncratic components can only be
established asymptotically when the dimension of time series tends to infinity; see
[6, 8]. Hence those factor models are only asymptotically identifiable. According
to the definition adopted in this paper, both “the common factors” and those serially
correlated idiosyncratic components will be identified as factors. This is not ideal
for the applications with the purpose to identify those common factors. However,
this makes the tasks of model identification and inference much simpler.

The rest of the paper is organized as follows. The model and the estimation
methods are introduced in Section 2. The sampling properties of the estimation
methods are investigated in Section 3. Simulation results are inserted whenever
appropriate to illustrate the various asymptotic properties of the methods. Section 4
deals with the cases when different factors are of different strength, for which a
two-step estimation procedure is preferred. The analysis of two real data sets is
reported in Section 5. All mathematical proofs are relegated to the Appendix.

2. Models and estimation.

2.1. Models. If we are interested in the linear dynamic structure of yt only,
conceptually we may think that yt consists of two parts: a static part (i.e., a white
noise), and a dynamic component driven by, hopefully, a low-dimensional process.
This leads to the decomposition:

yt = Axt + εt ,(2.1)

where xt is an r × 1 latent process with (unknown) r ≤ p, A is a p × r unknown
constant matrix, and εt ∼ WN(με,�ε) is a vector white-noise process. When r

is much smaller than p, we achieve an effective dimension-reduction, as then the
serial dependence of yt is driven by that of a much lower-dimensional process xt .
We call xt a factor process. The setting (2.1) may be traced back at least to [18];
see also its further development in dealing with cointegrated factors in [19].

Since none of the elements on the RHS of (2.1) are observable, we have to
characterize them further to make them identifiable. First we assume that no lin-
ear combinations of xt are white noise, as any such components can be absorbed
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into εt [see condition (C1) below]. We also assume that the rank of A is r . Other-
wise (2.1) may be expressed equivalently in terms of a lower-dimensional factor.
Furthermore, since (2.1) is unchanged if we replace (A,xt ) by (AH,H−1xt ) for
any invertible r ×r matrix H, we may assume that the columns of A = (a1, . . . ,ar )

are orthonormal, that is, A′A = Ir , where Ir denotes the r × r identity matrix. Note
that even with this constraint, A and xt are not uniquely determined in (2.1), as the
aforementioned replacement is still applicable for any orthogonal H. However,
the factor loading space, that is, the r-dimensional linear space spanned by the
columns of A, denoted by M(A), is uniquely defined.

We summarize into condition (C1) all the assumptions introduced so far:

(C1) In model (2.1), εt ∼ WN(με,�ε). If c′Xt is white noise for a con-
stant c ∈ Rp , then c′ Cov(Xt+k,εt ) = 0 for any nonzero integers k. Furthermore
A′A = Ir .

The key for the inference for model (2.1) is to determine the number of factors
r and to estimate the p × r factor loading matrix A, or more precisely the fac-
tor loading space M(A). Once we have obtained an estimator, say, Â, a natural
estimator for the factor process is

x̂t = Â′yt ,(2.2)

and the resulting residuals are

ε̂t = (Id − ÂÂ′)yt .(2.3)

The dynamic modeling for yt is achieved via such a modeling for x̂t and the re-
lationship ŷt = Âx̂t . A parsimonious fitting for x̂t may be obtained by rotating x̂t

appropriately [27]. Such a rotation is equivalent to replacing Â by ÂH for an ap-
propriate r ×r orthogonal matrix H. Note that M(Â) = M(ÂH), and the residuals
(2.3) are unchanged with such a replacement.

2.2. Estimation for A and r . An innovation expansion algorithm is proposed
in [16] for estimating A based on solving a sequence of nonlinear optimization
problems with at most p variables. Although the algorithm is feasible for small or
moderate p only, it can handle the situations when the factor process xt is non-
stationary. We outline the key idea below, as our computationally more efficient
estimation method for stationary cases is based on the same principle.

Our goal is to estimate M(A), or, equivalently, its orthogonal complement
M(B), where B = (b1, . . . ,bp−r ) is a p × (p − r) matrix for which (A,B) forms
a p × p orthogonal matrix, that is, B′A = 0 and B′B = Ip−r [see also (C1)]. It
follows from (2.1) that

B′yt = B′εt ,(2.4)

implying that for any 1 ≤ j ≤ p−r , {b′
j yt , t = 0,±1, . . .} is a white-noise process.

Hence, we may search for mutually orthogonal directions b1,b2, . . . one by one
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such that the projection of yt on each of those directions is a white noise. We stop
the search when such a direction is no longer available, and take p − k as the
estimated value of r , where k is the number of directions obtained in the search.
This is essentially how [16] accomplish the estimation. It is irrelevant in the above
derivation if xt is stationary or not.

However, a much simpler method is available when xt , therefore also yt , is
stationary:

(C2) xt is weakly stationary, and Cov(xt ,εt+k) = 0 for any k ≥ 0.

In most factor modeling literature, xt and εs are assumed to be uncorrelated for any
t and s. Condition (C2) requires only that the future white-noise components are
uncorrelated with the factors up to the present. This enlarges the model capacity
substantially. Put

�y(k) = Cov(yt+k,yt ), �x(k) = Cov(xt+k,xt ),

�xε(k) = Cov(xt+k,εt ).

It follows from (2.1) and (C2) that

�y(k) = A�x(k)A′ + A�xε(k), k ≥ 1.(2.5)

For a prescribed integer k0 ≥ 1, define

M =
k0∑

k=1

�y(k)�y(k)′.(2.6)

Then M is a p × p nonnegative matrix. It follows from (2.5) that MB = 0, that
is, the columns of B are the eigenvectors of M corresponding to zero-eigenvalues.
Hence conditions (C1) and (C2) imply:

The factor loading space M(A) is spanned by the eigenvectors of
M corresponding to its nonzero eigenvalues, and the number of the
nonzero eigenvalues is r .

We take the sum in the definition of M to accumulate the information from differ-
ent time lags. This is useful especially when the sample size n is small. We use the
nonnegative definite matrix �y(k)�y(k)′ [instead of �y(k)] to avoid the cancella-
tion of the information from different lags. This is guaranteed by the fact that for
any matrix C, MC = 0 if and only if �y(k)′C = 0 for all 1 ≤ k ≤ k0. We tend to
use small k0, as the autocorrelation is often at its strongest at the small time lags.
On the other hand, adding more terms will not alter the value of r , although the
estimation for �y(k) with large k is less accurate. The simulation results reported
in [13] also confirm that the estimation for A and r , defined below, is not sensitive
to the choice of k0.
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To estimate M(A), we only need to perform an eigenanalysis on

M̂ =
k0∑

k=1

�̂y(k)�̂y(k)′,(2.7)

where �̂y(k) denotes the sample covariance matrix of yt at lag k. Then the esti-
mator r̂ for the number of factors is defined in (2.8) below. The columns of the
estimated factor loading matrix Â are the r̂ orthonormal eigenvectors of M̂ corre-
sponding to its r̂ largest eigenvalues. Note that the estimator Â is essentially the
same as that defined in Section 2.4 of [13], although a canonical form of the model
is used there in order to define the factor loading matrix uniquely.

Due to the random fluctuation in a finite sample, the estimates for the zero-
eigenvalues of M are unlikely to be 0 exactly. A common practice is to plot all
the estimated eigenvalues in a descending order, and look for a cut-off value r̂

such that the (̂r + 1)th largest eigenvalue is substantially smaller than the r̂ largest
eigenvalues. This is effectively an eyeball-test. The ratio-based estimator defined
below may be viewed as an enhanced eyeball-test, based on the same idea as [28].
In fact this ratio-based estimator benefits from the faster convergence rates of the
estimators for the zero-eigenvalues; see Proposition 1 in Section 3.1 below, and
also Theorems 1 and 2 in Section 3.2 below. The other available methods for de-
termining r include the information criteria approaches of [2, 3] and [9], and the
bootstrap approach of [4], though the settings considered in those papers are dif-
ferent.

A ratio-based estimator for r . We define an estimator for the number of factors
r as follows:

r̂ = arg min
1≤i≤R

λ̂i+1/̂λi,(2.8)

where λ̂1 ≥ · · · ≥ λ̂p are the eigenvalues of M̂, and r < R < p is a constant.
In practice we may use, for example, R = p/2. We cannot extend the search

up to p, as the minimum eigenvalue of M̂ is likely to be practically 0, especially
when n is small and p is large. It is worthy noting that when p and n are on the
same order, the estimators for eigenvalues are no longer consistent. However, the
ratio-based estimator (2.8) still works well. See Theorem 2(iii) below.

The above estimation methods for A and r can be extended to those nonstation-
ary time series for which a generalized lag-k autocovariance matrix is well defined
(see, e.g., [19]). In fact, the methods are still applicable when the weak limit of the
generalized lag-k autocovariance matrix

Ŝy(k) = n−α
n−1∑
t=1

(yt+k − ȳ)(yt − ȳ)′

exists for 1 ≤ k ≤ k0, where α > 1 is a constant. Further developments on those
lines will be reported elsewhere. For the factor modeling for high-dimensional
volatility processes based on a similar idea, we refer to [15, 26].
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3. Estimation properties. Conventional asymptotic properties are estab-
lished under the setting that the sample size n tends to ∞ and everything else
remains fixed. Modern time series analysis encounters the situation when the num-
ber of time series p is as large as, or even larger than, the sample size n. Then the
asymptotic properties established under the setting when both n and p tend to ∞
are more relevant. We deal with these two settings in Section 3.1 and Sections
3.2–3.4 separately.

3.1. Asymptotics when n → ∞ and p fixed. We first consider the asymptotic
properties under the assumption that n → ∞ and p is fixed. These properties re-
flect the behavior of our estimation method in the cases when n is large and p is
small. We introduce some regularity conditions first. Let λ1, . . . , λp be the eigen-
values of the matrix M:

(C3) yt is strictly stationary and ψ-mixing with the mixing coefficients ψ(·)
satisfying the condition that

∑
t≥1 tψ(t)1/2 < ∞. Furthermore, E{|yt |4} < ∞

element-wisely.
(C4) λ1 > · · · > λr > 0 = λr+1 = · · · = λp .

Section 2.6 of [7] gives a compact survey on the mixing properties of time
series. The use of the ψ-mixing condition in (C3) is for technical convenience.
Note that M is a nonnegative definite matrix. All its eigenvalues are nonnegative.
Condition (C4) assumes that its r nonzero eigenvalues are distinct from each other.
While this condition is not essential, it substantially simplifies the presentation of
the convergence properties in Proposition 1 below. Let γ j be a unit eigenvector of
M corresponding to the eigenvalue λj . We denote by (̂λ1, γ̂ 1), . . . , (̂λp, γ̂ p) the p

pairs of eigenvalue and eigenvector of matrix M̂: the eigenvalues λ̂j are arranged
in descending order, and the eigenvectors γ̂ j are orthonormal. Furthermore, it may
go without explicit statement that γ̂ j may be replaced by −γ̂ j in order to match
the direction of γ j for 1 ≤ j ≤ r .

PROPOSITION 1. Let conditions (C1)–(C4) hold. Then as n → ∞ (but p

fixed), it holds that:

(i) |̂λj −λj | = OP (n−1/2) and ‖γ̂ j −γ j‖ = OP (n−1/2) for j = 1, . . . , r , and
(ii) λ̂j = OP (n−1) for j = r + 1, . . . , p.

The proof of the above proposition is in principle the same as that of Theorem 1
in [4], and is therefore omitted.

3.2. Asymptotics when n → ∞,p → ∞ and r fixed. To highlight the radically
different behavior when p diverges together with n, we first conduct some simu-
lations: we set in model (2.1) r = 1, A′ = (1, . . . ,1), εt are independent N(0, Ip),
and xt = xt is an AR(1) process defined by xt+1 = 0.7xt + et . We set the sample
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size n = 50,100,200,400, 800,1600 and 3200, and the dimension fixed at half the
sample size, that is, p = n/2. Let M be defined as in (2.6) with k0 = 1. For each
setting, we draw 200 samples. The boxplots of the errors λ̂i − λi , i = 1, . . . ,6, are
depicted in Figure 1. Note that λi = 0 for i ≥ 2, since r = 1. The figure shows
that those estimation errors do not converge to 0. In fact those errors seem to in-
crease when n (and also p = n/2) increases. Therefore the classical asymptotic
theory (i.e., n → ∞ and p fixed) such as Proposition 1 above is irrelevant when
p increases together with n. In spite of the lack of consistency in estimating the
eigenvalues, the ratio-based estimator for the number of factors r (=1) defined in
(2.8) works perfectly fine for this example, as shown in Figure 2. In fact it is al-
ways the case that r̂ ≡ 1 in all our experiments even when the sample size is as
small as n = 50; see Figure 2.

To develop the relevant asymptotic theory, we introduce some notation first. For
any matrix G, let ‖G‖ be the square root of the maximum eigenvalue of GG′, and
‖G‖min be the square root of the smallest nonzero eigenvalue of GG′. We write
a � b if a = O(b) and b = O(a). Recall �x(k) = Cov(xt+k,xt ) and �xε(k) =
Cov(xt+k,εt ). Some regularity conditions are now in order:

(C5) For a constant δ ∈ [0,1], it holds that ‖�x(k)‖ � p1−δ � ‖�x(k)‖min.
(C6) For k = 0,1, . . . , k0, ‖�xε(k)‖ = o(p1−δ).

REMARK 1. (i) Condition (C5) looks unnatural. It is derived from more nat-
ural conditions (3.1) and (3.2) below coupled with the standardization A′A = Ir .
Since A = (a1, . . . ,ar ) is p × r and p → ∞ now, it is natural to let the norm of
each column of A, before standardizing to A′A = Ir , tend to ∞ as well. To this
end, we assume that

‖aj‖2 � p1−δj , j = 1, . . . , r,(3.1)

where δj ∈ [0,1] are constants. We take δj as a measure of the strength of the
factor xtj . We call xtj a strong factor when δj = 0, and a weak factor when δj > 0.
Since r is fixed, it is also reasonable to assume that for k = 0,1, . . . , k0,

|�x(k)| �= 0.(3.2)

Then condition (C5) is entailed by the standardization A′A = Ir under conditions
(3.2) and (3.1) with δj = δ for all j .

(ii) The condition assumed on �xε(k) in (C6) requires that the correlation be-
tween xt+k (k ≥ 0) and εt is not too strong. In fact under a natural condition
that �xε(k) = O(1) element-wisely, it is implied by (3.1) and the standardiza-
tion A′A = Ir [hence now xj,t = OP (p(1−δ)/2) as a result of such standardization]
that ‖�xε(k)‖ = O(p1−δ/2).

Now we deal with the convergence rates of the estimated eigenvalues, and es-
tablish the results in the same spirit as Proposition 1. Of course the convergence
(or divergence) rate for each estimator λ̂i is slower, as the number of estimated
parameters goes to infinity now.
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FIG. 1. Boxplots for the errors in estimating the first six eigenvalues of M with r = 1 and all the
factor loading coefficients being 1.
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FIG. 2. Boxplots for the ratios λ̂i+1/̂λi , with r = 1 and all the factor loading coefficients being 1.

THEOREM 1. Let conditions (C1)–(C6) hold and hn = pδn−1/2 → 0. Then as
n → ∞ and p → ∞, it holds that:

(i) |̂λi − λi | = OP (p2−δn−1/2) for i = 1, . . . , r , and
(ii) λ̂j = OP (p2n−1) for j = r + 1, . . . , p.

COROLLARY 1. Under the condition of Theorem 1, it holds that

λ̂j+1/̂λj � 1 for j = 1, . . . , r − 1 and λ̂r+1/̂λr = OP (p2δ/n)
P−→ 0.

The proofs of Theorem 1 and Corollary 1 are presented in the Appendix. Obvi-
ously when p is fixed, Theorem 1 formally reduces to Proposition 1. Some remarks
are now in order.

REMARK 2. (i) Corollary 1 implies that the plot of ratios λ̂i+1/̂λi , i =
1,2, . . . , will drop sharply at i = r . This provides a partial theoretical underpin-
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ning for the estimator r̂ defined in (2.8). Especially when all factors are strong
(i.e., δ = 0), λ̂r+1/̂λr = OP (n−1). This convergence rate is independent of p, sug-
gesting that the estimation for r may not suffer as p increases. In fact when all
the factors are strong, the estimation for r may improve as p increases. See Re-
mark 3(iv) in Section 3.4 below.

(ii) Unfortunately, we are unable to derive an explicit asymptotic expression for
the ratios λ̂i+1/̂λi with i > r , although we make the following conjecture:

λ̂j+1/̂λj
P−→ 1, j = (k0 + 1)r + 1, . . . , (k0 + 1)r + K,(3.3)

where k0 is the number of lags used in defining matrix M in (2.6), and K ≥ 1 is any
fixed integer. See also Figure 2. Further simulation results, not reported explicitly,
also conform with (3.3). This conjecture arises from the following observation: for
j > (k0 + 1)r , the j th largest eigenvalue of M̂ is predominately contributed by the
term

∑k0
k=1 �̂ε(k)�̂ε(k)′ which has a cluster of largest eigenvalues on the order of

p2/n2, where �̂ε(k) is the sample lag-k autocovariance matrix for εt . See also
Theorem 2(iii) in Section 3.4 below.

(iii) The errors in estimating eigenvalues are on the order of p2−δn−1/2 or
p2n−1, and both do not necessarily converge to 0. However, since

λ̂j

|̂λi − λi | = OP (pδn−1/2) = OP (hn) = oP (1)

for any 1 ≤ i ≤ r and r < j ≤ p,

the estimation errors for the zero-eigenvalues is asymptotically of an order of mag-
nitude smaller than those for the nonzero-eigenvalues.

3.3. Simulation. To illustrate the asymptotic properties in Section 3.2 above,
we report some simulation results. We set in model (2.1) r = 3, n = 50,100,200,
400,800,1600 and 3200, and p = 0.2n,0.5n, 0.8n and 1.2n. All the p × r el-
ements of A are generated independently from the uniform distribution on the
interval [−1,1] first, and we then divide each of them by pδ/2 to make all three
factors of the strength δ; see (3.1). We generate factor xt from a 3×1 vector-AR(1)
process with independent N(0,1) innovations and the diagonal autoregressive co-
efficient matrix with 0.6, −0.5 and 0.3 as the main diagonal elements. We let εt

in (2.1) consist of independent N(0,1) components and they are also indepen-
dent across t . We set k0 = 1 in (2.6) and (2.7). For each setting, we replicate the
simulation 200 times.

Table 1 reports the relative frequency estimates for the probability P (̂r = r) =
P (̂r = 3) with δ = 0 and 0.5. The estimation performs better when the factors are
stronger. Even when the factors are weak (i.e., δ = 0.5), the estimation for r is very
accurate for n ≥ 800. When the factors are strong (i.e., δ = 0), we observe a phe-
nomenon coined as “blessing of dimensionality” in the sense that the estimation
for r improves as the dimension p increases. For example, when the sample size
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TABLE 1
Relative frequency estimates for P (̂r = r) in the simulation with 200 replications

n 50 100 200 400 800 1600 3200

δ = 0 p = 0.2n 0.165 0.680 0.940 0.995 1 1 1
p = 0.5n 0.410 0.800 0.980 1 1 1 1
p = 0.8n 0.560 0.815 0.990 1 1 1 1
p = 1.2n 0.590 0.820 0.990 1 1 1 1

δ = 0.5 p = 0.2n 0.075 0.155 0.270 0.570 0.980 1 1
p = 0.5n 0.090 0.285 0.285 0.820 0.960 1 1
p = 0.8n 0.060 0.180 0.490 0.745 0.970 1 1
p = 1.2n 0.090 0.180 0.310 0.760 0.915 1 1

n = 100, the relative frequencies for r̂ = r are, respectively, 0.68, 0.8, 0.815 and
0.82 for p = 20,50, 80 and 120. The improvement is due to the increased informa-
tion on r from the added components of yt when p increases. When δ = 0.5, the
columns of A are p-vectors with the norm p0.25 [see (3.1)]. Hence we may think
that many elements of A are now effectively 0. The increase of the information
on the factors is coupled with the increase of “noise” when p increases. Indeed,
Table 1 shows that when factors are weak as δ = 0.5, the estimation for r does not
necessarily improve as p increases.

We also experiment with a setting with two strong factors (with δ = 0) and one
weak factor (with δ = 0.5). Then the ratio-based estimator r̂ tends to take two
values, picking up the two strong factors only. However Figure 3 indicates that the
information on the third weak factor is not lost. In fact, λ̂i+1/̂λi tends to take the
second smallest value at i = 3. In this case a two-step estimation procedure should
be employed in order to identify the number of factors correctly; see Section 4
below.

3.4. Improved rates for the estimated eigenvalues. The rates in Theorem 1 can
be further improved, if we are prepared to entertain some additional conditions on
εt in model (2.1). Such an improvement is relevant as the condition that hn =
pδn−1/2 → 0, required in Theorem 1, is sometimes unnecessary. For example, in
Table 1, the ratio-based estimator r̂ works perfectly well when δ = 0.5 and n is
sufficiently large (e.g., n ≥ 800), even though hn = (p/n)1/2 �→ 0. Furthermore,
in relation to the phenomenon of “blessing of dimensionality” exhibited in Table 1,
Theorem 1 fails to reflect the possible improvement on the estimation for r when
p increases; see also Remark 2(i). We first introduce some additional conditions
on εt :

(C7) Let εjt denote the j th component of εt . Then εjt are independent for
different t and j , and have mean 0 and common variance σ 2 < ∞.
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FIG. 3. Boxplots for the ratios λ̂i+1/̂λi with two strong factors (δ = 0) and one weak factor
(δ = 0.5) and r = 3, p = n/2.

(C8) The distribution of each εjt is symmetric. Furthermore, E(ε2k+1
j t ) = 0,

and E(ε2k
j t ) ≤ (τk)k for all 1 ≤ j ≤ p and t, k ≥ 1, where τ > 0 is a constant

independent of j, t, k.
(C9) All the eigenvalues of �ε are uniformly bounded as p → ∞.

The moment condition E(ε2k
j t ) ≤ (τk)k in (C8) implies that εjt are sub-Gaussian.

Condition (C9) imposes some constraint on the correlations among the compo-
nents of εt . When all components of {εt } are independent N(0, σ 2), (C7)–(C9)
hold. See also conditions (i′)–(iv′) of [17].

THEOREM 2. Let conditions (C1)–(C8) hold, 
n ≡ pδ/2n−1/2 → 0 and n =
O(p). Then as p,n → ∞, the following assertions hold:

(i) |̂λj − λj | = OP (p2−3δ/2n−1/2) for j = 1, . . . , r ,
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(ii) λ̂j = OP (p2−δn−1) for j = r + 1, . . . , (k0 + 1)r ,
(iii) λ̂j = OP (p2n−2) for j = (k0 + 1)r + 1, . . . , p.
If in addition (C9) holds, the rate in (ii) above can be further improved to

λ̂j = OP (p3/2−δn−1/2), j = r + 1, . . . , (k0 + 1)r.(3.4)

COROLLARY 2. Under the conditions of Theorem 2, it holds that

λ̂j+1/̂λj � 1, j = 1, . . . , r − 1, and λ̂r+1/̂λr = OP (pδn−1).

If in addition (C9) also holds, λ̂r+1/̂λr = OP (pδ−1/2n−1/2).

The proofs of Theorem 2 and Corollary 1 are given in the Appendix.

REMARK 3. (i) By comparing with Theorem 1, the error rate for nonzero λj

in Theorem 2 is improved by a factor p−δ/2, the error rate for zero-eigenvalues is
by a factor p−δ at least. However, those estimators themselves may still diverge,
as illustrated in Figure 1.

(ii) Theorem 2(iii) is an interesting consequence of the random matrix theory.
The key message here is as follows: for the eigenvalues corresponding purely to
the matrix

∑k0
k=1 �̂ε(k)�̂ε(k)′, their magnitudes adjusted for p2−2δ converge at a

super-fast rate. The matrix
∑k0

k=1 �̂ε(k)�̂ε(k)′ is a part of M̂ in (2.7), where �̂ε(k)

is the sample lag-k autocovariance matrix for {εt }. In particular, when all the fac-
tors are strong (i.e., δ = 0), the convergence rate is n−2. Such a super convergence
rate never occurs when p is fixed.

(iii) Condition 
n → 0 is mild, and is weaker than condition hn → 0 required in
Theorem 1. For example, when p � n, this condition is implied by the condition
δ ∈ [0,1).

(iv) With additional condition (C9), λ̂r+1/̂λr = OP (p−1/2n−1/n) when all fac-
tors are strong. This shows that the speed at which λ̂r+1/̂λr converges to 0 in-
creases when p increases. This property gives a theoretical explanation why the
identification for r becomes easier for larger p when all factors are strong (i.e.,
δ = 0). See Table 1.

4. Two-step estimation. In this section, we outline a two-step estimation pro-
cedure. We will show that it is superior than the one-step procedure presented in
Section 2.2 for the determination of the number of factors as well as for the esti-
mation of the factor loading matrices in the presence of the factors with different
degrees of strength. A similar procedure is described in [19] to improve the esti-
mation for factor loading matrices in the presence of small eigenvalues, although
they gave no theoretical underpinning on why and when such a procedure is ad-
vantageous.
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Consider model (2.1) with r1 strong factors with strength δ1 = 0 and r2 weak
factors with strength δ2 > 0, where r1 + r2 = r . Now (2.1) may be written as

yt = Axt + εt = A1x1t + A2x2t + εt ,(4.1)

where xt = (x′
1t x′

2t )
′, A = (A1 A2) with A′A = Ir , x1t consists of r1 strong

factors, and x2t consists of r2 weak factors. Like model (2.1) in Section 2.1,
A = (A1,A2) and xt = (x1t ,x2t ) are not uniquely defined, but only M(A) is.
Hereafter A = (A1,A2) corresponds to a suitably rotated version of the original
A in model (4.1), where now A contains all the eigenvectors of M corresponding
to its nonzero eigenvalues. Refer to (2.6) for the definition of M.

To present the two-step estimation procedure clearly, let us assume that we
know r1 and r2 first. Using the method in Section 2.2, we first obtain the estimator
Â ≡ (Â1, Â2) for the factor loading matrix A = (A1,A2), where the columns of Â1
are the r1 orthonormal eigenvectors of M̂ corresponding to its r1 largest eigenval-
ues. In practice we may identify r1 using, for example, the ratio-based estimation
method (2.8); see Figure 3. We carry out the second-step estimation as follows.
Let

y∗
t = yt − Â1Â′

1yt(4.2)

for all t . We perform the same estimation for data {y∗
t } now, and obtain the p × r2

estimated factor loading matrix Ã2 for the r2 weak factors. Combining the two
estimators together, we obtain the final estimator for A as

Ã = (Â1, Ã2).(4.3)

Theorem 3 below presents the convergence rates for both the one-step esti-
mator Â = (Â1, Â2) and the two-step estimator Ã = (Â1, Ã2). It shows that Ã
converges to A at a faster rate than Â. The results are established with known
r1 and r2. In practice we estimate r1 and r2 using the ratio-based estimators.
See also Theorem 4 below. We introduce some regularity conditions first. Let
�12(k) = Cov(x1,t+k,x2t ), �21(k) = Cov(x2,t+k,x1t ), �i (k) = Cov(xi,t+k,xit )

and �iε(k) = Cov(xi,t+k,εt ) for i = 1,2:

(C5)′ For i = 1,2, 1 ≤ k ≤ k0, ‖�i (k)‖ � p1−δi � ‖�i (k)‖min, ‖�21(k)‖ �
‖�21(k)‖min and ‖�12(k)‖ = O(p1−δ2/2).

(C6)′ Cov(xt , εs) = 0 for any t, s.

The condition on �i (k) in (C5)′ is an analogue to condition (C5). See Remark 1(i)
in Section 3.2 for the background of those conditions. The order of ‖�21(k)‖min
will be specified in the theorems below. The order of ‖�12(k)‖ is not restrictive,
since p1−δ2/2 is the largest possible order when δ1 = 0. See also the discussion in
Remark 1(ii). Condition (C6)′ replaces condition (C6). Here we impose a strong
condition �iε(k) = 0 to highlight the benefits of the two-step estimation proce-
dure. See Remark 4(iii) below. Put

Wi = (�i (1), . . . ,�i (k0)), W21 = (�21(1), . . . ,�21(k0)).
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THEOREM 3. Let conditions (C1)–(C4), (C5)′, (C6)′, (C7) and (C8) hold. Let
n = O(p) and κn ≡ pδ2/2n−1/2 → 0, as n → ∞. Then it holds that

‖Â1 − A1‖ = OP (n−1/2), ‖Ã2 − A2‖ = OP (κn) = ‖Ã − A‖.
Furthermore,

‖Â2 − A2‖ = OP (νn) = ‖Â − A‖,
if, in addition, νn → 0 and pcδ2n−1/2 → 0, where νn and c are defined as follows:

νn =
⎧⎪⎨⎪⎩

pδ2κn, if ‖W21‖min = o(p1−δ2) (c = 1);
p(2c−1)δ2κn, if ‖W21‖min � p1−cδ2 for 1/2 ≤ c < 1, and

‖W1W′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1.

Note that κn/νn → 0. Theorem 3 indicates that between A1 and A2, the latter is
more difficult to estimate, and the convergence rate of an estimator for A is deter-
mined by the rate for A2. This is intuitively understandable as the coefficient vec-
tors for weak factors effectively contain many zero-components; see (3.1). There-
fore a nontrivial proportion of the components of yt may contain little information
on weak factors. When ‖W21‖min � p1−cδ2 , ‖W2‖ is dominated by ‖W21‖min.
The condition ‖W1W′

21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤ q < 1 is imposed to control
the behavior of the (r1 + 1)th to the r th largest eigenvalues of M under this situ-
ation. If this is not valid, those eigenvalues can become very small and give a bad
estimator for A2, and thus A. Under this condition, the structure of the autocovari-
ance for the strong factors, and the structure of the cross-autocovariance between
the strong and weak factors, are not similar.

Recall that λj and λ̂j are the j th largest eigenvalue of, respectively, M defined
in (2.6) and M̂ defined in (2.7). We define matrices M∗ and M̂∗ in the same manner
as M and M̂ but with {yt } replaced by {y∗

t } defined in (4.2), and denote by λ∗
j and

λ̂∗
j the j th largest eigenvalue of, respectively, M∗ and M̂∗. The following theorem

shows the different behavior of the ratio of eigenvalues under the one-step and two-
step estimation. Readers who are interested in the explicit rates for the eigenvalues
are referred to Lemma 1 in the Appendix.

THEOREM 4. Under the same conditions of Theorem 3, the following asser-
tions hold:

(i) For 1 ≤ i < r1 or r1 < i < r , λ̂i+1/̂λi � 1. For 1 ≤ 1 < r2, λ̂∗
j+1/̂λ

∗
j � 1.

(ii) λ̂r+1/̂λr
P−→ 0 and λ̂r1+1/̂λr1 = op(̂λr+1/̂λr) provided

δ2 > 1/(8c − 1), p(1−δ2)/2n−1/2 → 0, p(6c−1/2)δ2−1/2n−1/2 → ∞.

(iii) λ̂r+1/̂λr
P−→ 0 and λ̂∗

r2+1/̂λ
∗
r2

= op(̂λr+1/̂λr) provided p(4c−3/2)δ2−1/2 ×
n1/2 → ∞.
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REMARK 4. (i) Theorem 4(i) and (ii) imply that the one-step estimation is
likely to lead to r̂ = r1. For instance, when p � n, then Theorem 4(ii) says that
λ̂r1+1/̂λr1 has a faster rate of convergence than λ̂r+1/̂λr as long as δ2 > 2/5. Fig-
ure 3 shows exactly this situation.

(ii) Theorem 4(iii) implies that the two-step estimation is more capable to iden-
tify the additional r2 factors than the one-step estimation. In particular, if p � n,
λ̂∗

r2+1/̂λ
∗
r2

always has a faster rate of convergence than λ̂r+1/̂λr . Unfortunately
we are unable to establish the asymptotic properties for λ̂i+1/̂λi for i > r , and
λ̂∗

j+1/̂λ
∗
j for j > r2, though we believe that conjectures similar to (3.3) continue to

hold.
(iii) When δ1 > 0 and/or the cross-autocovariances between different factors

and the noise are stronger, the similar and more complex results can be established
via more involved algebra in the proofs.

5. Real data examples. We illustrate our method using two real data sets.

EXAMPLE 1. We first analyze the daily returns of 123 stocks in the period
2 January 2002–11 July 2008. Those stocks were selected among those included
in the S&P500 and were traded every day during the period. The returns were
calculated in percentages based on the daily close prices. We have in total n = 1642
observations with p = 123. We apply the eigenanalysis to the matrix M̂ defined
in (2.7) with k0 = 5. The obtained eigenvalues (in descending order) and their
ratios are plotted in Figure 4. It is clear that the ratio-based estimator (2.8) leads
to r̂ = 2, indicating two factors. Varying the value of k0 between 1 and 100 in the

(a)

(b)

FIG. 4. Plots of the estimated eigenvalues (a) and the ratios of estimated eigenvalues of M̂ (b) for
Example 1.
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FIG. 5. The time series plots of the two estimated factors and the return series of the S&P500 index
in the same time period.

definition of M̂ leads to little change in the ratios λ̂i+1/̂λi , and the estimate r̂ = 2
remains unchanged. Figure 4(a) shows that λ̂i is close to 0 for all i ≥ 5. Figure 4(b)
indicates that the ratio λ̂i+1/̂λi is close to 1 for all large i, which is in line with
conjecture (3.3).

The first two panels of Figure 5 display the time series plots of the two
component series of the estimated factors x̂t defined as in (2.2). Their cross-
autocorrelations are presented in Figure 6. Although each of the two estimated
factors shows little significant autocorrelation, there are some significant cross-
correlations between the two series. The cross-autocorrelations of the three resid-
ual series γ̂ ′

j yt for j = 3,4,5 are not significantly different from 0, where γ̂ j is
the unit eigenvector of M̂ corresponding to its j th largest eigenvalue. If there were
any serial correlations left in the data after extracting the two estimated factors,
those correlations are most likely to show up in those three residual series.

Figure 4 may suggest the existence of a third and weaker factor, though there
are hardly any significant autocorrelations in the series γ̂ ′

3yt . In fact λ̂3 = 6.231
and λ̂4/̂λ3 = 0.357. Note that now λ̂j is not necessarily a consistent estimator

for λj although λ̂r+1/̂λr
P−→ 0; see Theorem 1(ii) and Corollary 1. To investi-

gate this further, we apply the two-step estimation procedure presented in Sec-
tion 4. By subtracting the two estimated factors from the above, we obtain the
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FIG. 6. The cross-autocorrelations of the two estimated factors for Example 1.

new data y∗
t [see (4.3)]. We then calculate the eigenvalues and their ratios of the

matrix M̂∗. The minimum value of the ratios is λ̂∗
2/̂λ

∗
1 = 0.667, which is closely

followed by λ̂∗
3/̂λ

∗
2 = 0.679 and λ̂∗

4/̂λ
∗
3 = 0.744. There is no evidence to suggest

that λ̂∗
2/̂λ

∗
1 → 0; see Theorem 4. This reinforces our choice r̂ = 2.

With p as large as 123, it is difficult to gain insightful interpretation on the
estimated factors by looking through the coefficients in Â [see (2.2)]. To link our
fitted factor model with some classical asset pricing theory in finance, we wonder
if the market index (i.e., the S&P500 index) is a factor in our fitted model, or
more precisely, if it can be written as a linear combination of the two estimated
factors. When this is true, Pu = 0, where u is the 1642 × 1 vector consisting of
the returns of the S&P500 index over the same time period, and P denotes the
projection matrix onto the orthogonal complement of the linear space spanned
by the two component series x̂t , which is a 1640-dimensional subspace in R1642.
This S&P500 return series is plotted together with the two component series x̂t in
Figure 5. It turns out that ‖Pu‖2 is not exactly 0 but ‖Pu‖2/‖u‖2 = 0.023, that is,
the 97.7% of the S&P500 returns can be expressed as a linear combination of the
two estimated factors. Thus our analysis suggests the following model for yt—the
daily returns of the 123 stocks:

yt = a1ut + a2vt + εt ,

where ut denotes the return of the S&P500 on the day t , vt is another factor, and
εt is a 123 × 1 vector white-noise process.

Figure 5 shows that there is an early period with big sparks in the two estimated
factor processes. Those sparks occurred around 24 September 2002 when the mar-
kets were highly volatile and the Dow Jones Industrial Average had lost 27% of
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the value it held on 1 January 2001. However, those sparks are significantly less
extreme in the returns of the S&P500 index; see the third panel in Figure 5. In fact
the projected S&P500 return Pu is the linear combination of those two estimated
factors with the coefficients (−0.0548,0.0808). Two observations may be drawn
from the opposite signs of those two coefficients: (i) there is an indication that
those two factors draw the energy from the markets with opposite directions, and
(ii) the portfolio S&P500 index hedges the risks across different markets.

EXAMPLE 2. We analyze a set of monthly average sea surface air pressure
records (in Pascal) from January 1958 to December 2001 (i.e., 528 months in total)
over a 10×44 grid in a range of 22.5◦–110◦ longitude in the North Atlantic Ocean.
Let Pt(u, v) denote the air pressure in the t th month at the location (u, v), where
u = 1, . . . ,10, v = 1, . . . ,44 and t = 1, . . . ,528. We first subtract each data point
by the monthly mean over the 44 years at its location: 1

44
∑44

i=1 P12(i−1)+j (u, v),
where j = 1, . . . ,12, representing the 12 different months over a year. We then
line up the new data over 10 × 44 = 440 grid points as a vector yt , so that yt is a
p-variate time series with p = 440. We have n = 528 observations.

To fit the factor model (2.1) to yt , we calculate the eigenvalues and the eigen-
vectors of the matrix M̂ defined in (2.7) with k0 = 5. Let λ̂1 > λ̂2 > · · · denote
the eigenvalues of M̂. The ratios λ̂i+1/̂λi are plotted against i in the top panel of
Figure 7 which indicates the ratio-based estimate for the number of factor is r̂ = 1;
see (2.8). However, the second smallest ratio is λ̂4/̂λ3. This suggests that there
may exist two weaker factors in addition; see Theorem 4(ii) and also Figure 3.
We adopt the two-step estimation procedure presented in Section 4 to identify the
factors of different strength. By removing the factor corresponding to the largest
eigenvalue of M̂, the resulting “residuals” are denoted as y∗

t ; see (4.2). Now we
repeat the factor modeling for data y∗

t , and plot the ratios of eigenvalues of ma-
trix M̂∗ in the second panel of Figure 7. It shows clearly the minimum value at 2,
indicating further two (weaker) factors. Combining the above two steps together,
we set r̂ = 3 in the fitted model. We repeated the above calculation with k0 = 1

FIG. 7. Plots of λ̂i+1/̂λi—the ratio of the eigenvalues of M̂ (the top panel) and M̂∗ (the bottom
panel), against i, for Example 2.
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FIG. 8. Time series plot of the three estimated factors for Example 2.

in (2.7). We still find three factors with the two-step procedure, and the estimated
factors series are very similar to the case when k0 = 5. This is consistent with the
simulation results in [13], where they showed empirically that the estimated factor
models are not sensitive to the choice of k0.

We present the time series plots for the three estimated factors x̂t = Ã′yt in Fig-
ure 8, where Ã is a 440 × 3 matrix with the first column being the unit eigenvector
of M̂ corresponding to its largest eigenvalue, and the other two columns being the
orthonormal eigenvectors of M̂∗ corresponding to its two largest eigenvalues; see
(4.3) and also (2.2). They collectively account for 85.3% of the total variation in
yt which has 440 components. In fact each of the three factors accounts for, re-
spectively, 57.5%, 18.2% and 9.7% of the total variation of yt . Figure 9 depicts the

FIG. 9. Factor loading surface of the first, second and third factors (from left to right) for Exam-
ple 2.
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FIG. 10. Example 2: sample cross-correlation functions for the three estimated factors.

factor loading surfaces of the three factors. Some interesting regional patterns are
observed from those plots. For example, the first factor is the main driving force
for the dynamics in the north and especially the northeast. The second factor in-
fluences the dynamics in the east and the west in the opposite directions, and has
little impact in the narrow void between them. The third factor impacts mainly the
dynamics of the southeast region. We also notice that none of those factors can be
seen as idiosyncratic components as each of them affects quite a large number of
locations.

Figure 10 presents the sample cross-correlations for the three estimated factors.
It shows significant, though small, autocorrelations or cross-correlations at some
nonzero lags. Figure 11 is the sample cross-correlations for three residuals series
selected from three locations for which one is far apart from the other two spatially,
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FIG. 11. Example 2: sample cross-correlation functions for three residual series. 50 represents
grid position (10, 5), 100 for (10, 10) and 400 for (10, 40).

showing little autocorrelations at nonzero lags. This indicates that our approach is
capable to identify the factors based on serial correlations.

Finally we note that the BIC method of [2] yields the estimate r̂ = n = 528 for
this particular data set. We suspect that this may be due to the fact that [2] requires
all the eigenvalues of �ε be uniformly bounded when p → ∞. This may not be
the case for this particular data set, as the nearby locations are strongly spatially
correlated, which may lead to very large and also very small eigenvalues for �ε .
Indeed, for this data set, the three largest eigenvalues of �̂ε are on the order of 106,
and the three smallest eigenvalues are practically 0. Since the typical magnitude of
ε̂t is 102 from our analysis, we have done simulations (not shown here) showing
that the typical largest eigenvalues for �̂ε , if {εt } is weakly correlated white noise,
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should be around 104 to 105, and the smallest around 102 to 103 when p = 440
and n = 528. Such a huge difference in the magnitude of the eigenvalues suggests
strongly that the components of the white-noise vector εt are strongly correlated.
Our method does not require the uniform boundedness of the eigenvalues of �ε .

APPENDIX

PROOF OF THEOREM 1. We present some notational definitions first. We de-
note by λ̂j , γ̂ j the j th largest eigenvalue of M̂ and the corresponding orthonormal
eigenvector, respectively. The corresponding population values are denoted by λj

and aj for the matrix M. Hence Â = (γ̂ 1, . . . , γ̂ r ) and A = (a1, . . . ,ar ). We also
have

λj = a′
j Maj , λ̂j = γ̂ ′

j M̂γ̂ j , j = 1, . . . , p.

We show some intermediate results now. With conditions (C3) and (C5) and the
fact that {εt } is white noise, we have

‖�̂x(k) − �x(k)‖ = OP (p1−δn−1/2),
(A.1)

‖�̂xε(k) − �xε(k)‖, ‖�̂εx(k)‖ = OP (p1−δ/2n−1/2),

where k = 0,1, . . . , k0. Then following the proof of Theorem 1 of [13], we have
the following for k = 1, . . . , k0:

‖M̂ − M‖ = OP

(‖�y(k)‖ · ‖�̂y(k) − �y(k)‖)
where ‖�y(k)‖ = O(p1−δ),

(A.2)
‖�̂y(k) − �y(k)‖ = OP

(
p1−δn−1/2 + p1−δ/2n−1/2 + ‖�̂ε(k)‖)

= OP

(
p1−δ/2n−1/2 + ‖�̂ε(k)‖)

.

Now ‖�̂ε(k)‖ ≤ ‖�̂ε(k)‖F = OP (pn−1/2), where ‖M‖F = trace(MM′) denotes
the Frobenius norm of M. Hence from (A.2),

‖�̂y(k) − �y(k)‖ = OP (pn−1/2) and
(A.3)

‖M̂ − M‖ = OP (p1−δ · pn−1/2) = OP (p2−δn−1/2).

For the main proof, consider for j = 1, . . . , r , the decomposition

λ̂j − λj = γ̂ ′
j M̂γ̂ j − a′

j Maj = I1 + I2 + I3 + I4 + I5

where I1 = (γ̂ j − aj )
′(M̂ − M)γ̂ j , I2 = (γ̂ j − aj )

′M(γ̂ j − aj ),
(A.4)

I3 = (γ̂ j − aj )
′Maj , I4 = a′

j (M̂ − M)γ̂ j ,

I5 = a′
j M(γ̂ j − aj ).
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For j = 1, . . . , r , since ‖γ̂ j −aj‖ ≤ ‖Â−A‖ = OP (hn) where hn = pδn−1/2, and

‖M‖ ≤ ∑k0
k=1 ‖�y(k)‖2 = OP (p2−2δ) by (A.2), together with (A.3) we have that

‖I1‖,‖I2‖ = OP (p2−2δh2
n), ‖I3‖,‖I4‖,‖I5‖ = OP (p2−2δhn),

so that |̂λj − λj | = OP (p2−2δhn) = OP (p2−δn−1/2), which proves Theorem 1(i).
Now consider j = r + 1, . . . , p. Define

M̃ =
k0∑

k=1

�̂y(k)�y(k)′, B̂ = (γ̂ r+1, . . . , γ̂ p), B = (ar+1, . . . ,ap).

Following the same proof of Theorem 1 of [13], we can actually show that ‖B̂ −
B‖ = OP (hn), so that ‖γ̂ j − aj‖ ≤ ‖B̂ − B‖ = OP (hn).

Noting λj = 0 for j = r + 1, . . . , p, consider the decomposition

λ̂j = γ̂ ′
j M̂γ̂ j = K1 + K2 + K3

where K1 = γ̂ ′
j (M̂ − M̃ − M̃′ + M)γ̂ j ,

(A.5)
K2 = 2γ̂ ′

j (M̃ − M)(γ̂ j − aj ),

K3 = (γ̂ j − aj )
′M(γ̂ j − aj ).

Using (A.3),

K1 =
k0∑

k=1

∥∥(
�̂y(k) − �y(k)

)′
γ̂ j

∥∥2 ≤
k0∑

k=1

‖�̂y(k) − �y(k)‖2 = OP (p2n−1).

Similarly, using (A.2) and (A.3), and ‖B̂ − B‖ = OP (hn), we can show that

|K2| = OP (‖M̃ − M‖ · ‖γ̂ j − aj‖) = OP (‖M̂ − M‖ · ‖B̂ − B‖) = OP (p2n−1),

|K3| = OP (‖B̂ − B‖2 · ‖M‖) = OP (p2−2δh2
n) = OP (p2n−1).

Hence λ̂j = OP (p2n−1), and the proof of the theorem is completed. �

PROOF OF COROLLARY 1. The proof of Theorem 1 of [13] has shown that
(in the notation of this paper)

p2−2δ = O(λr).

But we also have

λr ≤ λ1 = ‖M‖ ≤
k0∑

k=1

‖�y(k)‖2 = O(p2−2δ),

where the last equality sign follows from ‖�y(k)‖ = O(p1−δ) in (A.2). Hence we
have λi � p2−2δ for i = 1, . . . , r .
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Letting ei = |̂λi − λi | for i = 1, . . . , r , we then have ei = OP (p2−δn−1/2)

from Theorem 1(i). But since hn = pδn−1/2 = o(1) implying that p2−δn−1/2 =
p2−2δhn = o(p2−2δ), we have ei = oP (λi). Hence we must have λ̂i � λi � p2−2δ

for i = 1, . . . , r . This implies that λ̂j+1/̂λj � 1 for j = 1, . . . , r − 1, and together
with Theorem 1(ii),

λ̂r+1/̂λr = OP (p2n−1/p2−2δ) = OP (p2δn−1) = OP (h2
n).

This completes the proof of the corollary. �

In the following, we use σj (M) to denote the j th largest singular value of a ma-
trix M, so that σ1(M) = ‖M‖. We use λj (M) to denote the j th largest eigenvalue
of M.

PROOF OF THEOREM 2. The first part of the theorem is actually Theorem 2
of [13]. We prove the other parts of the theorem. From equation (22) of [13], the
sample lag-k autocovariance matrix for εt satisfies

‖�̂ε(k)‖ = OP (pn−1).(A.6)

Note that (A.2) together with (A.6) implies

‖M̂ − M‖ = OP

(
p1−δ(p1−δ/2n−1/2 + pn−1)

)
= OP

(
p2−2δ(pδ/2n−1/2 + pδn−1)

) = OP (p2−2δ
n),

since 
n = pδ/2n−1/2 = o(1). We also have ‖B̂ − B‖ = OP (
n), similar to the
proof of Theorem 1.

With these, for j = 1, . . . , r , using decomposition (A.4), we have

|̂λj − λj | = OP (‖M̂ − M‖) = OP (p2−2δ
n) = OP (p2−3δ/2n−1/2),

which is Theorem 2(i). For j = r + 1, . . . , (k0 + 1)r , using decomposition (A.5),
we have

K1 = OP

(
(p1−δ/2n−1/2 + pn−1)2) = OP (p2−δn−1 + p2n−2) = OP (p2−δn−1),

|K2| = OP (‖M̂ − M‖ · ‖B̂ − B‖) = OP (p2−2δ
2
n) = OP (p2−δn−1),

|K3| = OP (‖B̂ − B‖2 · ‖M‖) = OP (p2−2δ
2
n) = OP (p2−δn−1).

Hence λ̂j = OP (p2−2δ
2
n) = OP (p2−δn−1), which is Theorem 2(ii).

For part (iii), we define

Wy(k0) = (�y(1), . . . ,�y(k0)), Ŵy(k0) = (�̂y(1), . . . , �̂y(k0)),

so that M = Wy(k0)Wy(k0)
′ and M̂ = Ŵy(k0)Ŵy(k0)

′. We define similarly
Ŵx(k0),Ŵxε(k0), Ŵεx(k0) and Ŵε(k0). Then we can write

Ŵy(k0) = M1 + M2 + Ŵε(k0),



720 C. LAM AND Q. YAO

where M1 = A(Ŵx(k0)(Ik0 ⊗ A′)+ Ŵxε(k0)), M2 = Ŵεx(k0)(Ik0 ⊗ A′). It is easy
to see that

rank(M1) ≤ r, rank(M2) ≤ k0r,

so that rank(M1 + M2) ≤ (k0 + 1)r . This implies that

σj (M1 + M2) = 0 for j = (k0 + 1)r + 1, . . . , p.

Then by Theorem 3.3.16(a) of [11], for j = (k0 + 1)r + 1, . . . , p,

λ̂j = λj (M̂) = σ 2
j (Ŵy(k0)) ≤ (

σj (M1 + M2) + σ1(Ŵε(k0))
)2

= σ 2
1 (Ŵε(k0)) ≤

k0∑
k=1

‖�̂ε(k)‖2 = OP (p2n−2),

where the last equality sign follows from (A.6). This proves Theorem 2(iii).
We prove Theorem 2(ii)′ now. Using Lemma 3 of [13], with the same technique

as in the proof of Theorem 1 in their paper, we can write

B̂ = (B + AP)(I + P′P)−1/2 with ‖P‖ = OP (
n).(A.7)

With the definition of B̂ as in the proof of Theorem 1, we can write λ̂r+1, the
(r + 1)th largest eigenvalue of M̂, as the (1,1) element of the diagonal matrix D̂ =
B̂′M̂B̂, where M̂B̂ = B̂D̂. But from (A.7), we also have B′B̂ = B′(B + AP)(I +
P′P)−1/2 = (I + P′P)−1/2, hence

(I + P′P)1/2B′M̂B̂ = (I + P′P)1/2B′B̂D̂ = (I + P′P)1/2(I + P′P)−1/2D̂ = D̂.

Further, by using Neumann series expansions of (I+P′P)1/2 and (I+P′P)−1/2, we
see that the largest order term of (I + P′P)1/2B′M̂B̂ is contributed from B′M̂(B +
AP), since from (A.7) we have ‖P‖ = OP (
n) = oP (1). Hence the rate of λ̂r+1

can be analyzed using the (1,1) element of B′M̂(B + AP).
Some notation first. Define 1k the column vector of k ones, and

Er,s = (εr , . . . ,εs), Xr,s = (xr , . . . ,xs) for r ≤ s.

Since k is finite and {εt } and {xt } are stationary, for convenience in this proof
we take the sample lag-k autocovariance matrix for {εt }, {xt } and the cross lag-k
autocovariance matrix between {εt } and {xt } to be respectively, for k > 0,

�̂ε(k) = n−1(
Ek+1,n − (n − k)−1Ek+1,n1n−k1′

n−k

)
× (

E1,n−k − (n − k)−1E1,n−k1n−k1′
n−k

)′
= n−1Ek+1,nTn−kE′

1,n−k,

�̂x(k) = n−1Xk+1,nTn−kX′
1,n−k
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and

�̂xε(k) = n−1Xk+1,nTn−kE′
1,n−k,

where Tj = Ij − j−11j 1′
j . Then

B′M̂(B + AP) =
k0∑

k=1

B′�̂y(k)�̂y(k)′(B + AP) =
k0∑

k=1

Fk(F′
k + Gk),

where

Fk = n−1B′Ek+1,nTn−kX′
1,n−kA′ + n−1B′Ek+1,nTn−kE′

1,n−k,

Gk = n−1AX1,n−kTn−kX′
k+1,nP′ + n−1E1,n−kTn−kX′

k+1,nP′

+ n−1AX1,n−kTn−kE′
k+1,nAP′ + n−1E1,n−kTn−kE′

k+1,nAP′.
Some tedious algebra (omitted here) shows that the dominating term of the above
product is

∑k0
k=1 n−2B′Ek+1,nTn−kX′

1,n−kX1,n−kTn−kX′
k+1,nP′. Defining c′

1,k =
(a′

r+1εk+1, . . . ,a′
r+1εn) and p1 the first column of P′, the (1,1) element of the

said term is then
k0∑

k=1

n−2c′
1,kTn−kX′

1,n−kX1,n−kTn−kX′
k+1,np1

≤
k0∑

k=1

n−2‖c′
1,k‖‖p1‖‖Tn−k‖2‖X1,n−k‖2‖Xk+1,n‖

≤ 4
k0∑

k=1

‖n−1/2c1,k‖‖P‖‖n−1/2X1,n−k‖2‖n−1/2Xk+1,n‖

= OP

(‖n−1/2c1,1‖ · 
n · p(3−3δ)/2)
.

In the last line we used ‖n−1/2X1,n−k‖ = OP (p(1−δ)/2), by noting that

‖n−1/2X1,n−k‖2 = ‖n−1X1,n−kX′
1,n−k‖ � ‖n−1X1,n−kTn−kX′

1,n−k‖
= ‖�̂x(0)‖ ≤ ‖�̂x(0) − �x(0)‖ + ‖�x(0)‖
= OP (p1−δn−1/2) + OP (p1−δ) = O(p1−δ),

where ‖�̂x(0) − �x(0)‖ = OP (p1−δn−1/2) is from (A.1) and ‖�x(0)‖ =
O(p1−δ) is assumed in condition (C5). With condition (C9), we can show that
‖n−1/2c1,1‖ = OP (1), since

P(‖n−1/2c1,1‖ > x) = P

(
n−1

n∑
j=k+1

a′
r+1εjε

′
j ar+1 > x2

)

≤ (n − k)a′
r+1�εar+1/(nx2) ≤ σ 2

max/x
2,
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where we used the Markov inequality with σ 2
max the maximum eigenvalue of �ε ,

and the fact that a′
r+1ar+1 = 1. Hence the (1,1) element of B′M̂(B + AP) has rate

OP (p(3−3δ)/2
n) = OP (p3/2−δn−1/2), which is also the rate of λ̂j for j ≥ r + 1.
This completes the proof of the theorem. �

We outline the proofs of Theorems 3 and 4 below. Detailed proofs can be found
in the supplemental article (Lam and Yao [12]).

OUTLINE PROOF OF THEOREM 3. First, under model (4.1) and M defined in
(2.6), with conditions (C1)–(C4), (C5)′, (C6)′, we can show that the rates of the
eigenvalues of M are given by

λj �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2, for j = 1, . . . , r1;
p2−2δ2, if ‖W21‖min = o(p1−δ2) (c = 1)

for j = r1 + 1, . . . , r;
p2−2cδ2, if ‖W21‖min � p1−cδ2 , 1/2 ≤ c < 1, and

‖W1W′
21‖ ≤ q‖W1‖min‖W21‖,0 ≤ q < 1,

for j = r1 + 1, . . . , r .

(A.8)

For model (4.1), and M∗ defined in Section 4 by y∗
t in (4.2), we have

λ∗
j � p2−2δ2 for j = 1, . . . , r2.(A.9)

We cannot use Lemma 3 of [13] to prove this theorem for the one-step esti-
mation, since the condition ‖E‖ ≤ sep(D1,D2)/5 gives a restrictive condition on
the growth rate of p, and also restricts the range of δ2 allowed. Instead, we use
Theorem 4.1 of [24].

Write M = Xij Dij X′
ij for i �= j = 1,2, where Xij = (AiAj B), B is the orthog-

onal complement of A = (A1A2), and Dij is diagonal with Dij = diag(Di ,Dj ,0)

where D1 contains λj for j = 1, . . . , r1 and D2 contains λj for j = r1 + 1, . . . , r .
With E = M̂ − M, define

X′EX = (Eij ) for 1 ≤ i, j ≤ 3,

where Eij = A′
iEAj if we denote B = A3.

Define sep(M1,M2) = minλ∈λ(M1),μ∈λ(M2)|λ − μ|. If we can show that

‖(Eij ,Ei3)‖ = oP (γij )
(A.10)

with γij = sep
(

Di + Eii ,

(
Dj + Ejj Ej3

E3j E33

))
,

then condition (4.2) in [24] is satisfied asymptotically, so that we can use their
Theorem 4.1 to conclude that for i �= j = 1,2,

‖Âi − Ai‖ = OP

(‖(Eij ,Ei3)‖/γij

)
.(A.11)
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Since we can show that ‖E12‖ = OP (‖E13‖) = OP (p2n−1/2), we have ‖(E12,
E13)‖ = OP (p2n−1/2). We can also show that γ12 � p2 using (A.8). Hence (A.10)
is satisfied, and (A.11) implies that

‖Â1 − A1‖ = OP (p2n−1/2/p2) = OP (n−1/2).

Also, we can show that ‖E23‖ = OP (E21) = OP (p2−δ2/2n−1/2), implying that
‖(E21,E23)‖ = OP (p2−δ2/2n−1/2). We can also show that γ21 � p2−2cδ2 us-
ing (A.8), provided pcδ2n−1/2 → 0. Hence (A.10) is satisfied since we assumed
νn → 0, and so (A.11) implies that

‖Â2 − A2‖ = OP (p2−δ2/2n−1/2/p2−2cδ2) = OP

(
p(2c−1/2)δ2n−1/2) = OP (νn),

which completes the proof for the one-step estimation.
For the two-step estimation, write M∗ = (A2B∗)D∗(A2B∗)′, where B∗ is the

orthogonal complement of A2, and D∗ is diagonal with D∗ = diag(D∗
2,0). The

matrix D∗
2 contains λ∗

j for j = 1, . . . , r2, so that (A.9) implies sep(D∗
2,0) � p2−2δ2 .

We can show that ‖E∗‖ = ‖M̂∗ − M∗‖ = OP (p2−2δ2κn), hence ‖E∗‖ =
oP (sep(D∗

2,0)), as κn → 0. Hence we can use Lemma 3 of [13] to conclude that

‖Ã2 − A2‖ = OP

(‖E∗
21‖/ sep(D∗

2,0)
)
.

Since we can show that ‖E∗
21‖ = OP (p2−3δ2/2n−1/2), we then have

‖Ã2 − A2‖ = OP (p2−3δ2/2n−1/2/p2−2δ2) = OP (pδ2/2n−1/2),

which completes the proof of the theorem. �

To prove Theorem 4, we need two lemmas first.

LEMMA 1. Under the same conditions and notations of Theorem 3, the fol-
lowing assertions hold:

(i) For j = 1, . . . , r1, |̂λj − λj | = OP (p2n−1/2).
(ii) For j = r1 + 1, . . . , r , |̂λj −λj | = OP (p2(n−1/2 + ν2

n)) provided νn → 0,
pcδ2n−1/2 → 0.

(iii) For j = r + 1, . . . , p, λ̂j = OP (p2ν2
n), provided νn → 0, pcδ2n−1/2 → 0.

(iv) For j = 1, . . . , r2, |̂λ∗
j − λ∗

j | = OP (p2−2δ2κn).

(v) For j = r2 + 1, . . . , p, λ̂∗
j = OP (p2−2δ2κ2

n).

(vi) For j = (k0 + 1)r + 1, . . . , p, λ̂j , λ̂
∗
j = OP (p2n−2) = OP (p2−2δ2κ4

n).
(iii)′ If in addition condition (C9) holds, then for j = r + 1, . . . , p, λ̂j =

OP (p3/2νn), provided νn → 0, pcδ2n−1/2 → 0.

The proof of this lemma is left in the supplementary materials for this paper.
Together with (A.8) and (A.9), we have the following lemma.
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LEMMA 2. Let conditions (C1)–(C4), (C5)′, (C6)′, (C7) and (C8) hold. Then
as n,p → ∞ with n = O(p), and with νn, κn → 0 the same as in Theorem 3 and
pcδ2n−1/2 → 0, we have

λ̂j+1/̂λj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� 1, j = 1, . . . , r1 − 1;
= OP (n−1/2 + ν2

n + p−2δ2), j = r1, if ‖W21‖min = o(p1−δ2)

(c = 1);
= OP (n−1/2 + ν2

n + p−2cδ2), j = r1, if ‖W21‖min � p1−cδ2

for 1/2 ≤ c < 1, and
‖W1W′

21‖ ≤ q‖W1‖min‖W21‖
for 0 ≤ q < 1.

Furthermore, if ‖W21‖min = o(p1−δ2) and p5δ2/2n−1/2 → 0, we have

λ̂j+1/̂λj

⎧⎪⎨⎪⎩
� 1, j = r1 + 1, . . . , r − 1;
= OP (p2δ2ν2

n), j = r;
= OP (p2δ2−1/2νn), j = r , and condition (C9) holds.

If ‖W21‖min � p1−cδ2 for 1/2 ≤ c < 1, ‖W1W′
21‖ ≤ q‖W1‖min‖W21‖ for 0 ≤

q < 1, and p(3c−1/2)δ2n−1/2 → 0, we have

λ̂j+1/̂λj

⎧⎨⎩
� 1, j = r1 + 1, . . . , r − 1;
= OP (p2cδ2ν2

n), j = r;
= OP (p2cδ2−1/2νn), j = r , and condition (C9) holds.

For the two-step procedure, let conditions (C1)–(C4), (C5)′, (C6)′, (C7) and
(C8) hold and n = O(p). Then we have

λ̂∗
j+1/̂λ

∗
j

{� 1, j = 1, . . . , r2 − 1;
= OP (κ2

n), j = r2.

PROOF. We only need to find the asymptotic rate for each λ̂j and λ̂∗
j . The rate

of each ratio can then be obtained from the results of Lemma 1.
For j = 1, . . . , r1, from Lemma 1, ‖̂λj − λj‖ = OP (p2n−1/2) = oP (λj ), and

hence λ̂j � λj � p2 from (A.8).
Consider the case ‖W21‖min � p1−cδ2 . For j = r1 + 1, . . . , r , since |̂λj − λj | =

OP (p2(n−1/2 + ν2
n)), we have λ̂j ≤ λj + OP (p2(n−1/2 + ν2

n)) = OP (p2−2cδ2 +
p2ν2

n + p2n−1/2), and hence

λ̂r1+1/̂λr1 = OP

(
(p2−2cδ2 + p2ν2

n + p2n−1/2)/p2) = OP (n−1/2 + ν2
n + p−2cδ2).

The other case is proved similarly.
For j = r1 + 1, . . . , r , to make sure λ̂j will not be zero or close to zero, we need

|̂λj − λj | = OP

(
p2(n−1/2 + ν2

n)
) = oP (λj ),



FACTOR MODELING FOR HIGH-DIMENSIONAL TIME SERIES 725

where λj � p2−2cδ2 as in (A.8). Hence we need p2(n−1/2 + ν2
n) = o(p2−2cδ2),

which is equivalent to the condition p(3c−1/2)δ2n−1/2 → 0. With this condition
satisfied, then λ̂j � λj � p2−2cδ2 for j = r1 + 1, . . . , r . Since λ̂j = OP (p2ν2

n) for
j = r + 1, . . . , p, we then have

λ̂r+1/̂λr = OP (p2ν2
n/p2−2cδ2) = OP (p2cδ2ν2

n).

All other rates can be proved similarly, and thus are omitted. �

PROOF OF THEOREM 4. With Lemma 2, Theorem 4(i) is obvious. For Theo-
rem 4(ii), note that the range of δ2 and the rates given in the theorem ensure that
n−1/2 + ν2

n + p−2cδ2 = o(p2cδ2−1/2νn) = o(p2cδ2ν2
n). Hence Lemma 2 implies a

better rate of convergence for λ̂r1+1/̂λr1 no matter whether condition (C9) holds or
not. We can use a similar argument to prove part (iii), and details are thus omitted.

�
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SUPPLEMENTARY MATERIAL

Detailed proofs of Theorems 3 and 4 (DOI: 10.1214/12-AOS970SUPP; .pdf).
The document contains detailed proofs of Theorem 3 and 4 in the paper.
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