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Abstract: Standard practice in response surface methodology performs factor screen-

ing and response surface exploration sequentially, using different designs. A novel

approach is proposed to achieve the two objectives on the same experiment, based

on one design. Running a uni-stage experiment has the advantages of saving ex-

perimentation time and run size. The approach is based on a two-stage anal-

ysis that employs factor screening, projection and response surface exploration.

Projection-efficiency criteria are defined to evaluate the performance of the pro-

jected designs. The projection-efficiency properties of the 3n−k designs and three

nonregular designs are studied, and comparisons with central composite designs

are made. Nonregular designs appear to enjoy better projection properties. The

strategy is illustrated with the analysis of a PVC insulation experiment.
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1. Introduction and Review

Statistical design and analysis of experiments is an effective and commonly
used tool in scientific and engineering investigation. Experimentation is used to
understand and/or improve a system (i.e., a product or process). A system can
have a large number of factors but usually only a handful of them are important
or significant. A screening experiment employs a design of economic run size to
identify the important factors. Once the important factors are identified, the
next stage of the investigation focuses on the elucidation and optimization of the
relationship between the response and the factors. For continuous factors, this
relationship is referred to as a response surface. Response surface methodology
(RSM), as pioneered by George Box, is often employed for factor screening and
response surface exploration.

The standard RSM can typically be described as consisting of two parts.
First, it conducts an experiment to screen out unimportant factors. Typically
it is based on a first-order design such as the 2n−k fractional factorial designs
or Plackett-Burman designs. Second, it conducts a more intensive study of the
response surface, typically with fewer factors and over a smaller region. It is
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based on a second-order design such as the central composite designs. If the two
experiments are over very different regions, the move from one region to the other
can be achieved by using steepest ascent search or other search methods. If the
two experiments are over the same region (or one is expanded over the other),
star points are added to the first-order design to form a second-order design.
This is called sequential assembly. Details on RSM can be found in books like
Box and Draper (1987), Myers and Montgomery (1995), and Khuri and Cornell
(1996).

RSM has been a very effective tool and has seen many successful applica-
tions. Its sequential nature can, however, be a disadvantage, especially when
the experimental preparation is time-consuming or its duration is long. To illus-
trate the former, running experiments on a production line may require change
of the work schedule, training of operators, and trial runs. For the latter, con-
sider an important step in the fermentation process for biological products called
medium optimization. Several ingredients are fed to the bacteria to “grow” the
right metabolites as new drugs, which can take 7 to 28 days. Instead of conduct-
ing experiments sequentially, it would be better to perform factor screening and
response surface exploration on the same experiment. In this paper we propose
a novel approach that can achieve the twin objectives of screening and surface
exploration by using a single design. A key step is the projection of a larger
factor space onto a smaller factor space, which serves as a link between screen-
ing and response surface exploration. As this differs from the standard RSM,
new concepts, theory and analysis strategy are called for. Here we assume that
screening and surface exploration are performed in the same region. This holds,
for example, if the region chosen for factor screening is not far from the curved
part of the response surface.

We now give a brief review of existing work. The 2n−k designs are most
commonly used for screening. When there are additional degrees of freedom for
entertaining the estimation of interactions, the minimum aberration criterion is
used for selecting an optimal 2n−k fraction. Maximizing the number of clear
main effects and clear two-factor interactions can be used as a supplementary
criterion. The 2n−k and 3n−k series of designs are called regular. A design is
called regular if it can be constructed through the defining contrast subgroup
among its factors. Otherwise it is a nonregular design. Two-level nonregular
designs like the Plackett-Burman designs can also be used for factor screening.
Details on these concepts can be found in Wu and Hamada (2000). When it
is adequate to use the quadratic approximation to the response surface, it is
common to adopt the following second-order model to describe the relationship
between the response y and n predictors x1, . . . , xn:

y = µ +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

n∑
1=i<j

βijxixj + ε, (1)
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where ε is the error term, βi are the linear effects, βii the quadratic effects, and
βij the linear-by-linear interactions. A design is called a second-order design if all
(n+1)(n+2)/2 parameters in (1) are estimable in the design. The most popular
second-order designs are the central composite designs (CCDs) (Box and Wilson
(1951); Box and Hunter (1957)). For consistency in design comparisons, we
assume the design region to be cuboidal. For the CCDs, this amounts to assuming
a face center cube, where the star points are placed in the center of the faces of
the cube. We choose CCDs with one center point in the efficiency comparisons
in later sections. The run sizes, cube points, and efficiency values of the chosen
CCDs are listed in Table 1. Apart from the CCDs, various second-order designs
are available in the literature. Details can be found in the aforementioned books
on RSM.

Table 1. CCDs for efficiency comparison (n = # of factors, q = # of param-
eters, N = run size).

n q N cube points∗ Deff Geff
2 6 9 22 .974 .828
3 10 15 23 .942 .836
4 15 25 24 .911 .780
5 21 27 25−1

V .841 .749
6 28 45 26−1

V I .852 .625
7 36 79 27−1

V II .845 .442
∗ with resolution at least V

The paper is organized as follows. The proposed approach is described in
Section 2. Its implementation is worked out for 3n−k designs in Sections 3 and
4. With the new perspective provided by the proposed approach, a reassessment
is made in Section 4.3 of a key rationale in Box and Wilson’s (1951) work. The
implementation continues in Sections 5 and 6 for two nonregular designs, the
OA(18, 37) and the OA(36, 312), and for a 27-run nonregular design. Nonregular
designs appear to enjoy better projection properties than regular designs and an
explanation is given. In Section 7 the proposed strategy is illustrated with an
experiment (Taguchi (1987)) on PVC insulation. Conclusions and remarks are
made in Section 8.

2. A Novel Approach to Factor Screening and Response Surface Ex-
ploration

An approach is proposed in this section that can achieve the twin objectives
of factor screening and response surface exploration in one design. It is based on
the following two-stage analysis:

Stage 1. Perform factor screening and identify important factors.



556 SHAO-WEI CHENG AND C. F. J. WU

Stage 2. Fit a second-order model for the factors identified in Stage 1.

Although it is a two-stage analysis, it consists of three parts: screening
analysis in Stage 1, projection that links Stages 1 and 2, and response surface
exploration in Stage 2.

The first stage is a generic step for screening factors. Various screening
analyses can be utilized. The conventional method is based on main effects
estimation or ANOVA. A factor is identified as important if its main effects
(which have s − 1 degrees of freedom for s levels) are significant. A straight
main-effect analysis may not be appropriate if the interactions are large enough
to bias the main effect estimates. In this case, a more elaborate analysis like the
Bayesian method due to Box and Meyer (1993) should be employed. In their
approach, each subset of factors is associated with a linear model that contains
main effects and two-factor interactions for these factors. By comparing the
posterior probabilities of these models, the important factors can be identified.

A key step in the new approach is the projection of a larger factor space
onto a smaller factor space, which serves as a link between screening a larger
number of factors and the more intensive study of the response surface over a
smaller number of factors. The concept of projection has been used in the design
literature. It is well known (Box, Hunter and Hunter (1978)) that, for a regular
fractional factorial design of resolution R, its projection onto any R − 1 factors
is a full factorial. This projection property was extended to nonregular designs
by Lin and Draper (1992) and Wang and Wu (1995). Chen (1998) considered
projection properties of 2n−k

R designs when projected onto dimensions higher than
R.

2.1. Projection-efficiency criteria

Each of the three steps has its own objective and should be evaluated by a
different criterion. For each objective, the corresponding design property is given
as follows:

Analysis Step Design Property
factor screening ↔ orthogonality

maximum number of factors
projection ↔ eligible projection

response surface exploration ↔ estimation efficiency

For factor screening, a good design should be able to accommodate a large num-
ber of factors with relatively few runs and still possess orthogonality. For projec-
tion, we propose a design property called eligible projection. A projected design
obtained after Stage 1 is said to be eligible if it is a second-order design. Oth-
erwise, it is said to be ineligible. A design can be projected onto many different
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combinations of factors. For example, for a design with 13 factors, there are
286 projected designs onto three factors and 715 projected designs onto four fac-
tors. Because it is not known which of the factors will turn out to be important
from factor screening, a larger number of eligible projected designs should be
preferred. Based on the factor sparsity principle (i.e., the number of relatively
important factors is small), an eligible projection for lower dimension is more
important than that for higher dimension. Furthermore, by Theorem 2 to be
given in Section 4.1, an ineligible lower-dimensional projected design causes any
higher-dimensional projected designs that contain it to be ineligible. If a design
has fewer ineligible projected designs on lower dimensions, it should have a better
chance of getting fewer ineligible projected designs on higher dimensions. Typi-
cally dimensions 3 to 6 should be considered. For response surface exploration,
we adopt the D- and G-criteria to assess estimation efficiencies of projected de-
signs and other second-order designs. The D- and G-efficiencies (see Myers and
Montgomery (1995), Section 8.2.1 for definitions), denoted by Deff and Geff re-
spectively, compare the performance of a design with the corresponding optimal
designs. These efficiency values are adjusted for sample size and scale so that
they can be used to compare designs with different run sizes and experimental
regions. For the comparison of two designs in terms of the D- or G-criterion, the
relative efficiency, which is the ratio of their D- or G-efficiencies, is adopted.

Because orthogonal designs (i.e., whose factor main effects can be estimated
orthogonally) are ideal for factor screening, we consider only orthogonal designs
for the proposed approach. Based on the previous discussion, orthogonal designs
can be compared by the following criteria.
(i) The number of eligible projected designs should be large, and lower-dimension

projection is more important than higher-dimension projection.
(ii) Among the eligible projected designs the estimation efficiency as measured

by criteria like D and G should be high.
Collectively these criteria are referred to as the projection-efficiency criteria.

In order to estimate second order effects, factors of the chosen designs must have
at least three levels. In the next four sections, we study the projection-efficiency
properties of some important regular and nonregular three-level designs. The
study can be extended for factors with more than three levels and higher order
polynomials (or even spline functions).

3. Classification of Projected Designs of 3n−k Designs: Combinatorial
Isomorphism and Model Isomorphism

Classification of projected designs is the first step in the study of projection.
For a 3n−k design, its projected designs are still three-level fractional factorial de-
signs. The following theorem gives the relationship between the defining contrast
subgroups of the original design and its projected designs.
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Theorem 1. Let D be a 3n−k design of factors x1, . . . , xn with the defining
contrast subgroup G. Let Dp be the projected design of D onto p factors. Then,
Dp is either a fractional factorial design or a 3p design with 3n−k/3p replicates.
If Dp is a fractional factorial design, the defining contrast subgroup Gp of Dp is
the set of words in G that are formed only by letters representing the projected
factors. If G does not include any of the words mentioned above, then Dp is a
(3(n−k)−p)-replicate of a 3p design.

The proof is straightforward.

An example is given to illustrate the theorem.

Example 1. Let D be the 36−3 design with the defining generators D =
AB, E = AB2C, F = AB2C2. Its defining contrast subgroup G is {I, ABD2,
CEF2, AB2CE2, AB2C2F2, AB2EF, AC2DE, ACDF, ADE2F2, BCDE2, BC2DF2,
BDEF, ABCD2EF2, ABC2D2E2F}. Let Dp1 be the projected design of D onto
the factors B, C, D, E, and F. The words in G that contain only letters from {B,
C, D, E, F} are {CEF2, BCDE2, BC2DF2, BDEF}. Therefore, Dp1 is a 35−2

design with the defining relation I = CEF2 = BCDE2 = BC2DF2 = BDEF. For
another instance, let Dp2 be the projected design of D onto any three factors
except for the combinations {A, B, D} and {C, E, F}. Because there are no
words in G that are formed by three letters except for ABD2 and CEF2, Dp2 is
a 33 design.

A distinction is made between the design matrix and the model matrix. For
a design with n factors and r runs, its design matrix is an r × n matrix with r

rows for the experimental runs and n columns for the factors. The model matrix
is a coded matrix for the design and has columns for each of the factorial effects.
Suppose an r × n design matrix is used to fit a model with q parameters. Its
model matrix is an r×q matrix whose columns represent the effects in the model.

Two designs are said to be combinatorially isomorphic if the design matrix
of one design can be obtained from that of the other by permutations of rows,
columns, and levels in the columns. For example, the two 34−1 designs with the
defining relation I = AB2CD and I = AB2CD2 are combinatorially isomorphic
because the latter can be obtained from the former by interchanging the levels
“0”, “1” and “2” in column D of the design matrix with “0”, “2” and “1” (i.e.,
changing D to D2). Another criterion is model isomorphism. Two designs are
said to be equivalent in terms of model isomorphism if the model matrix of one
design can be obtained from that of the other by permutations of rows, columns
and changes of signs in the columns. (The distinction between combinatorial
isomorphism and model isomorphism is fundamental to the proposed approach.)
For 2n−k designs, combinatorial isomorphism is equivalent to model isomorphism.
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For designs with more than two levels this equivalence does not hold, as can be
seen in the following example.

Example 2. All 34−1
IV designs are combinatorially isomorphic, i.e., there is only

one type of design with the defining relation I = ABCD. However, in terms of
model isomorphism, there are two types of designs, labeled as 27-4.1 and 27-4.2.
Design 27-4.1 is any 34−1 design with its defining word taken from any word in
the set

K1 = {ABCD, AB2CD, ABC2D, ABCD2, AB2C2D2}.
Design 27-4.2 is any 34−1 design with its defining word taken from any word in
the set

K2 = {AB2C2D, AB2CD2, ABC2D2}.
This is an interesting finding as it is a marked departure from traditional thinking
which, by taking a combinatorial perspective, treats the designs in K1 and K2

as the same. From a geometric viewpoint, the two types of designs are different.
For example, the collection of design points in K1 cannot be mapped to that
in K2 by rotation and reflection through the origin of the design region. The
model non-isomorphism between K1 and K2 can also be verified through the
correlation matrices of the interactions for designs in K1 and K2 (see Table 2,
where xA, . . . , xD are coded as (−1, 0, 1) for levels (0, 1, 2) respectively). The
latter has a more serious collinearity among its linear-by-linear interactions than
the former.

Table 2. Correlation matrix of interactions for designs in K1 and K2

K1 K2

xAxB xAxC xAxD xBxC xBxD xCxD xAxB xAxC xAxD xBxC xBxD xCxD

xAxB 1 0 0 0 0 0.25 xAxB 1 0 0 0 0 0.5

xAxC 0 1 0 0 0.25 0 xAxC 0 1 0 0 0.5 0

xAxD 0 0 1 0.25 0 0 xAxD 0 0 1 0.5 0 0

xBxC 0 0 0.25 1 0 0 xBxC 0 0 0.5 1 0 0

xBxD 0 0.25 0 0 1 0 xBxD 0 0.5 0 0 1 0

xCxD 0.25 0 0 0 0 1 xCxD 0.5 0 0 0 0 1

In Example 2 (and throughout the paper), for consistency, we use the coding
scheme (0, 1, 2) → (−1, 0, 1) for linear effects. A different coding scheme would
affect the numerical results and classification of designs.

4. Projection-Efficiency Properties for 3n−k Designs with 27 Runs

In this section, we study the performance of 27-run 3n−k designs under the
projection-efficiency criteria. Because n − k = 3 for 27 runs, we use 3n−(n−3) to
denote these designs. Only designs with resolution III or higher are considered.
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4.1. Eligible projections and estimation efficiencies

Suppose the projection of a 3n−k design onto three factors is a 33−1 design
with the defining relation I=ABC. This projection results in an ineligible design
because there are only nine distinctive runs in the projected design while there
are ten parameters in a second-order model with three factors. With the help
of the following theorem, it can be further concluded that any 3n−k design with
resolution III is ineligible because it contains one nine-run three-factor projected
design.

Theorem 2. If a p-factor projected design of a design with n factors is ineligible,
then the n-factor design is also ineligible.

Proof. Let Xp and X be the model matrix of the p-factor projected design and
the original n-factor design, respectively. Then Xp is a submatrix of X with
the same number of rows. Because the p-factor design is ineligible, Xp

′Xp is
singular, which implies that X′X is singular. Therefore, the original n-factor
design is ineligible.

Noting that a three-letter word in the defining contrast subgroup causes the
design to be ineligible, we refer to this as the curse of three-letter words.

Let p denote the number of factors identified in factor screening. For p=1,
2, and 3, there is only one type of eligible projected design. For p = 1, it is a
nine-replicate of the 31 design, labeled as 27-1; for p = 2, it is a three-replicate of
the 32 design, labeled as 27-2; and for p = 3, it is the 33 design, labeled as 27-3.
For p = 4, in terms of combinatorial isomorphism, there is only one design, i.e.,
the 34−1 design with I = ABCD. In terms of model isomorphism, there are two
types of eligible projected designs, 27-4.1 and 27-4.2 noted in Example 2. For p

≥ 5, any projected design has resolution III and therefore is ineligible.

Consider next the number of eligible projections. There are

(
n

p

)
projections

of a 3n−(n−3) design D onto p factors. All projections are eligible when p = 1
or 2. For p = 3, by Theorem 1, each three-letter defining word corresponds
to a set of three factors onto which the projection is ineligible. Therefore, the
number of three-letter words in the defining contrast subgroup equals the number
of ineligible three-factor projected designs. For p = 4, any projected design must
be a 34−1 design. For this design to be eligible, its defining word cannot be
a three-letter word. It cannot have five letters as there are only four factors.
Therefore, the defining word for an eligible projected design must have four
letters and belong to either K1 or K2 . This proves that the number of eligible
projected designs for p = 4 equals the number of four-letter words in the defining
contrast subgroup. The results are summarized in the following theorem.
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Theorem 3. For p = 3, the total number of eligible projected designs equals(
n

3

)
− A3(D), where A3(D) is the number of three-letter words in the defining

contrast subgroup G for the original 3n−(n−3) design. For p = 4, the total number
of eligible projected designs is A4(D), which is the number of four-letter words
in G. Furthermore, the total numbers of projected designs with types 27-4.1 and
27-4.2 are the numbers of words in G that belong to sets K1 and K2 , respectively.

Finally, we consider the efficiencies of eligible projected designs for second-
order model fitting. Their D-, G-efficiencies and relative D-, G-efficiencies to
the CCD are given in Table 3. Overall, they are quite efficient for second-order
model fitting: at least 92.2% as efficient as the CCD in D-efficiency, and at least
71.3% as efficient as the CCD (except for the design 27-4.2) in G-efficiency.

Table 3. Efficiencies of eligible projected designs of 3n−(n−3) designs.

Design Deff Geff rel. Deff rel. Geff
27-1 1 1
27-2 .974 .828 1 1
27-3 .932 .727 .989 .713
27-4.1 .878 .556 .964 .713
27-4.2 .840 .417 .922 .535

4.2. Optimal 3n−(n−3) designs

With the help of Theorem 3, we can find the 3n−(n−3) designs with the best
projection properties. In order to increase the number of eligible three-factor
projected designs, choose a design with the smallest A3(D). If several designs
have the same smallest value, then choose one with the largest A4(D) to maximize
the total number of eligible four-factor projected designs. (Note that the first
step is the same as the minimum aberration criterion while the second step is
the reverse of the same criterion.) From Table 6 of Chen, Sun and Wu (1993),
it can be verified that the minimum aberration 3n−(n−3) designs happen to have
the smallest A3(D) and the largest A4(D), but this is not generally true. Hence,
for p = 3 and 4, the minimum aberration 3n−(n−3) designs perform the best in
terms of the eligible projection criterion.

For the minimum aberration 3n−(n−3) designs, the total numbers of the cor-

responding types of projected designs and the frequencies (= total/

(
n

p

)
) are

given in Table 4. The frequency can be interpreted as the chance of obtaining
the corresponding type of projected designs when factors are randomly assigned
to the columns of the design matrix. Sometimes, prior information or experience
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may suggest that some factors are more important than others. It is then desir-
able to assign factors to columns in such a way that the projection onto the more
important factors is eligible. For example, suppose three factors are regarded
as more important. By Theorem 1, in order to make the projection onto the
three factors eligible, they should be assigned to columns that do not form any
three-letter defining words in the original design. For the design in Example 1,
there are two three-letter defining words: ABD2 and CEF2. Therefore, the three
factors cannot be assigned to columns {A, B, D} or {C, E, F}. For four factors,
suppose we want the projected designs to be of the type 27-4.1 (which has better
D- and G-efficiencies than 27-4.2). By Theorem 1, the four factors should be
assigned to columns that form a four-letter word of the type K1 . There are six
such four-letter words: AB2C2F2, AB2EF, AC2DE, ACDF, BCDE2, and BDEF.
Therefore, the four factors can be assigned to columns {A, B, C, F}, {A, B, E,
F}, {A, C, D, E}, {A, C, D, F}, {B, C, D, E}, or {B, D, E, F} so that the
projected designs are eligible and have high efficiency.

Table 4. Total numbers and frequencies of projected designs of minimum
aberration 3n−(n−3) designs.

number of factors, n
4 5 6 7 8

Total Freq. Total Freq. Total Freq. Total Freq. Total Freq.

27-3 4 1.00 9 .90 18 .90 30 .86 48 .86
ineligible 0 .00 1 .10 2 .10 5 .14 8 .14
27-4.1 1 1.00 2 .40 6 .40 10 .29 19 .27
27-4.2 0 .00 1 .20 3 .20 5 .14 11 .16

ineligible 0 .00 2 .40 6 .40 20 .57 40 .57

number of factors, n
9 10 11 12 13

Total Freq. Total Freq. Total Freq. Total Freq. Total Freq.

27-3 72 .86 99 .83 135 .82 180 .82 234 .82
ineligible 12 .14 21 .18 30 .18 40 .18 52 .18
27-4.1 33 .26 36 .17 60 .18 90 .18 126 .18
27-4.2 21 .17 36 .17 48 .15 72 .15 108 .15

ineligible 72 .57 138 .66 222 .67 333 .67 481 .67

4.3. A historical note

In their seminal paper, Box and Wilson (1951) gave two reasons for not using
3n−k designs as second-order designs:
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“For example, for the 3n designs1 , no useful fractional factorial exists
when n = 3, so that it would be necessary to carry out all the 27
experiments of the complete factorial design in order to determine the
10 effects of second-order or less. Similarly when n = 4, 81 experiments
are needed to determine 15 effects. When n = 5 a one-third replicate
may be used to determine the 21 effects of order 2 and less; but even
this involves the carrying out of 81 experiments,...”

Their argument is correct only for n = 3 and n = 5. For n = 3, a 33 design
(27 runs) is necessary for fitting a second-order model with 10 parameters. For
n = 5, a 35−1 design (81 runs) is needed for fitting a second-order model with
21 parameters. On the other hand, a CCD only needs 15 runs for n = 3 and 27
runs (using I = ABCDE for cube points) for n = 5. Therefore, for n = 3 and
n = 5, the run size of 3n−k designs is too large for fitting a second-order model.
Hence, 3n−k designs become unattractive because too many degrees of freedom
are allocated for the estimation of higher-order interactions, or alternately for
error variance estimation. For n = 4, they stated that a 34 design (81 runs) is
necessary for fitting a second-order model with 15 parameters. This is not true as
any 27-run 34−1 design with resolution IV, such as 27-4.1 and 27-4.2, can be used
for this purpose. A CCD needs 25 runs, which is close to 27. Their statement
was apparently based on the traditional approach that classified 3n−k designs
in terms of combinatorial isomorphism and insisted that designs need to have
resolution at least V.2 However, this approach only holds for 2n−k designs. For
3n−k designs, although a defining word like ABC2D2 causes the component AB
(of the A×B interaction) to be aliased with the component CD (each component
having two degrees of freedom), the two linear-by-linear interactions xAxB and
xCxD (each having one degree of freedom) are not aliased. Further discussion
along these lines can be found in Wu and Hamada (2000, Section 5.6).

The main credible reason for not using 3n−k designs in the Box and Wilson
argument is their inefficient run size. However, this argument is only relevant
when 3n−k designs are used for fitting quadratic response surfaces. With the two-
stage analysis strategy, it no longer applied. In the screening step, the degrees
of freedom of 3n−k designs can be efficiently utilized to screen a large number of
factors. For example with 27 runs, up to 13 factors can be studied. Furthermore,
when the number of important factors is not too large, we can fit a quadratic
model for these factors with good efficiency.

1Box and Wilson (1951) use k to denote the number of factors. For consistency with the symbols
in the paper, we replace k by n.

2Designs in recent work (e.g., Draper and Lin (1990)) do not require resolution V by using Plackett-
Burman designs for the cube points.
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5. Projection-Efficiency Properties for Nonregular Orthogonal De-
signs

Many nonregular designs (see Chapter 7 of Wu and Hamada (2000)) have
economic run size and are more flexible in accommodating factors with different
levels. In this section, two popular nonregular designs, OA(18, 37) (Table 7C.2,
Wu and Hamada (2000)) and OA(36, 312) (Table 7C.6, Wu and Hamada (2000))
are studied, where OA stands for orthogonal array. For these two orthogonal
arrays, the classification of projected designs is quite complicated. Compared
with 3n−k designs, there is no theoretical tool like the defining contrast subgroup
to describe the structure of designs. Therefore, no theoretical results are available
for the classification of projected designs. Computer search is used instead.

5.1. The OA(18, 37) design

With 27 runs, the 3n−(n−3) designs can screen at most 13 factors. For fewer
factors, a smaller orthogonal design like the OA(18, 37) in Table 11 can be used
to study up to seven factors.

By computer search, different p-factor projected designs are classified in
terms of combinatorial and model isomorphisms. For p = 1 and 2, there is
only one type of projected design. For p = 3 and 4 there are three and four
types, respectively, in terms of combinatorial isomorphism, and six and seven
types, respectively, in terms of model isomorphism. A detailed description of
these projected designs is given in Appendix 1. (The labels for the projected de-
signs in Tables 5 and 6 are taken from Appendices 1 and 2.) Among the projected
designs, only one three-factor and one four-factor projected design are ineligible.
For five or more factors, a second-order model has at least 21 parameters, which
is larger than 18. Therefore, all projected designs of five or more factors in the
OA(18, 37) are ineligible.

From Table 5, the frequency of eligible projections is 100%, 100%, 97%,
and 89% for p= 1, 2, 3, and 4, respectively. In terms of eligible projection, the
OA(18, 37) is much better than the 3n−(n−3) designs, even though the latter has
nine more runs. Suppose seven factors are under study. For the 37−(7−3) designs,
86% of the three-factor projected designs and 43% of the four-factor projected
designs are eligible, while for the OA(18, 37), the corresponding frequencies are
97% and 89%. For n factors, n ≤ 6, an n-column submatrix of the OA(18, 37) can
be chosen for use and have 100% eligible three- and four-factor projected designs,
while for 3n−(n−3) designs with n= 5 and 6, only 90% are eligible for p = 3 and
60% for p = 4. The reason that a nonregular design like the OA(18, 37) with
a smaller size can outperform regular designs in terms of the eligible projection
property will be explained in the next section.



FACTOR SCREENING AND RESPONSE SURFACE EXPLORATION 565

The D- and G-efficiencies of eligible projected designs are given in Table 5.
The one- and two-factor projected designs have the same D- and G-efficiencies as
the 27-1 design and the 27-2 design, respectively, because the 18-1 (18-2) design
has the same support and weights as the 27-1 (27-2) design. For p = 3 and 4, the
estimation efficiencies of eligible projected designs of the OA(18, 37) are not as
good as those of the 3n−(n−3) designs. For p=3, when compared with the CCD,
the eligible projected designs are 82.59% – 97.03% as efficient in D-efficiency and
22.85% – 72.49% as efficient in G-efficiency. For p = 4, the projected designs
are 68.17% – 82.77% as efficient as the CCD in D-efficiency and only 9.10% –
28.97% as efficient in G-efficiency.

Table 5. Total numbers, frequencies, and efficiencies of projected designs of
the OA(18, 37).

Design total freq. Deff Geff rel. Deff rel. Geff
18-1 7 1.00 1 1
18-2 21 1.00 .974 .828 1 1
18-3.1.1 24 .69 .890 .476 .945 .569
18-3.1.2 4 .11 .865 .318 .918 .380
18-3.2.1 2 .06 .914 .606 .970 .725
18-3.2.3 2 .06 .788 .191 .837 .228
18-3.2.4 2 .06 .778 .215 .826 .257
18-3.3 1 .03 ineligible
18-4.1 15 .43 .736 .226 .808 .290
18-4.2.1 4 .11 .754 .154 .828 .197
18-4.2.2 4 .11 .664 .100 .729 .128
18-4.2.3 2 .06 .663 .092 .728 .118
18-4.2.4 2 .06 .655 .128 .719 .164
18-4.3 4 .11 ineligible
18-4.4 4 .11 .621 .071 .682 .091

Although the OA(18, 37) does not perform well in terms of the D- and G-
criteria, it has other virtues. First, and a noteworthy one, is its run size economy.
With 18 runs, it can screen seven factors and, after projection, perform as a
second-order design for four factors. It has only three more runs than the three-
factor CCD and seven fewer runs than the four-factor CCD. For four factors,
its run size is close to being saturated (because the second-order model has 15
parameters).

5.2. The OA(36, 312) design

Suppose that five or more factors are expected to be important in factor
screening. Neither the 27-run 3n−k designs nor the OA(18, 37) are suitable be-



566 SHAO-WEI CHENG AND C. F. J. WU

cause they do not contain any eligible projected designs of five or more factors.
In this situation, the OA(36, 312) in Table 12 is a viable option.

Table 6. Total numbers, frequencies and efficiencies of projected designs of
the OA(36, 312)

Design total freq Deff Geff rel. Deff rel. Geff

36-1 12 1.00 1 1

36-2 66 1.00 .974 .828 1 1

36-3.1.1 96 .44 .922 .559 .979 .669
36-3.1.2 96 .44 .919 .663 .976 .793
36-3.2 12 .05 .890 .476 .945 .569
36-3.3.1 4 .01 .864 .362 .917 .433
36-3.3.2 12 .05 .829 .403 .880 .482

36-4.1 72 .15 .855 .417 .939 .535
36-4.2 72 .15 .850 .444 .933 .569
36-4.3 24 .05 .848 .365 .931 .468
36-4.4 48 .10 .837 .411 .919 .527
36-4.5 6 .01 .834 .452 .915 .579
36-4.6 72 .15 .830 .289 .911 .371
36-4.7 48 .10 .829 .342 .910 .438
36-4.8 36 .07 .803 .229 .881 .294
36-4.9 24 .05 .798 .362 .876 .464
36-4.10 12 .02 .796 .375 .873 .481
36-4.11 6 .01 .791 .273 .868 .350
36-4.12 72 .15 .786 .270 .863 .346
36-4.13 3 .01 .736 .226 .808 .290

36-5 eligible 792 1.00 .631∼.770 .102∼.365 .750∼.916 .136∼.487

36-6 eligible 895 .97 .488∼.627 .060∼.125 .573∼.736 .016∼.234
36-6 ineligible 29 .03

36-7 eligible 348 .44 .327∼.416 .001∼.011 .387∼.492 .000∼.025
36-7 ineligible 444 .56

The classification of p-factor projected designs is done by computer search.
For p = 1 and 2, there is only one type of projected design. For p = 3, in terms
of combinatorial and model isomorphisms, there are three and five types, respec-
tively. For p ≥ 4, there is a greater number of designs. By an exhaustive search,
different types of eligible projected designs (in terms of model isomorphism) are
presented. For p= 4, 5, 6, and 7, there are 13, 36, 45, and 15 types, respectively.
A detailed description of the projected design with p ≤ 4 is given in Appendix
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2. For p ≥ 8, because of insufficient degrees of freedom, all projected designs
are ineligible. The frequencies of having an eligible projected design are given in
Table 6. For p ≤ 5, all projected designs are eligible. For p= 6 and 7, the frequen-
cies are 97% and 44%, respectively. Compared with the 3n−(n−3) design and the
OA(18, 37), the OA(36, 312) can offer eligible projections of higher dimensions
(up to seven). This would be useful if the system under study is complicated and
has a larger number of important factors.

The estimation efficiency of eligible projected designs in the OA(36, 312) is
compared with the CCD (see Table 6). For p = 1 and 2, the projected designs
have the same supports and weights as the design 27-1 and the design 27-2,
respectively. Therefore, the comparisons for p = 1 and p = 2 can be found in
Section 4. For p = 3, 4, and 5, the eligible projected designs are nearly as efficient
as the CCDs in D-efficiency. However, for p = 6 and 7, the eligible projected
designs are less efficient than the CCDs (38.7% – 73.6%). In G-efficiency, the
eligible projected designs are far less efficient than the CCDs, especially for p = 5,
6, and 7. It can be seen that, as p increases, the performance of eligible projected
designs becomes worse. This is not surprising in view of the run sizes of the
designs. As p increases, the run size of CCD also increases, while the run size of
the projected designs is fixed at 36 for any p.

It is surprising to find that the 3n−(n−3) designs perform better than the
OA(36, 312) in terms of D- and G-efficiencies of their eligible projected designs.
For example, the design 27-3 (resp. 27-4.1) has higher D- and G-efficiencies than
any three-factor (resp. four-factor) projected design of the OA(36, 312). This
indicates that the nine additional runs in the OA(36, 312) are not well allocated
in the experimental region to allow the extraction of maximum information and
to attain highest efficiencies.

6. A New Nonregular 27-Run Design and Its Projection-Efficiency
Properties

As pointed out in Section 5, with nine more runs, the 3n−(n−3) designs do
not perform significantly better than the OA(18, 37). In terms of the frequencies
of eligible projections, their performance is even worse. What causes this poor
performance? The explanation lies in the curse of three-letter words. All ineligible
projected designs of the 3n−(n−3) designs contain three-letter defining words that
entail insufficient degrees of freedom for fitting a second-order model. It happens
that, in the OA(18, 37), the ineligible three- and four-factor projected designs also
suffer from the curse. This observation leads us to consider alternative nonregular
designs that are free from the curse and hence have a better eligible projection
property. An example is given as follows.
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Consider the minimum aberration 38−(8−3) design. Its defining generators are
D = AB, E = ABC, F = AB2C, G = AC2, and H = BC2. Because the design has
27 runs and independent factors A, B, and C, its design matrix can be given an
alternative description. First, fix the 32 design given by A and B. Then form the
27-run design by considering the product between this design and C = I, C = u,
and C = u2, where I = (0, 0, . . ., 0)T , u = (1, 1, . . . , 1)T , and u2 = (2, 2, . . . , 2)T ,
respectively. Among the remaining generators, D = AB is unaffected by the
choice among C = I, u, or u2; E = ABC equals AB, ABu, or ABu2, and G =
AC2 equals A, Au2, or Au, depending on C = I, u, or u2. A similar construction is
applied to the other factors. Then the particular 38−(8−3)

III design can be regarded
as a parallel-flat design (Srivastava, Anderson and Mardekian (1984)) which is
a combination of three 38−6

I designs. Based on this observation, we propose to
construct a nonregular 38−(8−3) design by combining three different 38−6 designs
in such a way that the design has no defining words of length three and still
retains the orthogonality property.

A design that satisfies these properties is given in Table 7 and is denoted
by 38−5

NR , where NR stands for “nonregular”. A key idea in the construction is
to break the aliasing caused by a three-letter word by exchanging or modifying
cells. (Each cell in this case is a 9×1 vector, such as AB, A2B2u2, . . . in Table 7.)
For example, suppose all the u letters in the columns G and H are dropped,
and denote the resulting columns by G′ and H′, respectively. Then G′ is aliased
with AB2 and H′ aliased with A2B. These aliasing relations result in three-letter
words. However, by replacing the second cell of G′ by AB2u and the third cell of
H′ by A2Bu2, as in Table 7, the aliasing relations G′ = AB2 and H′ = A2B are
broken while orthogonality is retained in columns G and H. Another example is
the columns E and F. If the two middle cells A2B2u2 and AB are interchanged
and the resulting columns are denoted by E′ and F′ respectively, E′ is then aliased
with AB. The aliasing relation brings the curse of three-letter word, which can be
broken by exchanging the two middle cells in the columns E′ and F′. A general
construction of these nonregular designs can be found in Cheng (1999).

Table 7. An example of 27-run nonregular design.

A B C D E F G H
32 A B AB A2B2 AB2 A2B
32 Au Bu2 A2B2u2 AB AB2u A2B
32 Au2 Bu AB A2B2u AB2 A2Bu2

For the 38−5
NR design in Table 7, all the linear and quadratic main effects

are orthogonal. Surprisingly, all its three- and four-factor projected designs are
eligible. When projected onto five factors, only one out of 56 projected designs is
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ineligible. By contrast, for the minimum aberration 38−(8−3) design, only 86% of
the three-factor projected designs and 43% of the four-factor projected designs
are eligible (see Table 4), and all five-factor projected designs are ineligible. It
is clear that the eligible projection property is improved significantly in the 38−5

NR

design. For p = 6, the degrees of freedom (27) is insufficient to fit a second-order
model (which has 28 parameters). Therefore, no eligible projected design exists.
However, by adding one more run to the 38−5

NR design, some six-factor projected
designs become eligible.

A brief summary of efficiency values for the eligible projected designs in
the 38−5

NR is given in Table 8. It includes the ranges of D- and G-efficiencies of
eligible projected designs and the ranges of their relative efficiencies to the CCDs.
The corresponding values for the 3n−(n−3) designs are also given in Table 8 for
comparison. For p=3 and 4, the ineligible projected designs of the 3n−(n−3)

designs are also included in the table and indicated by 0 efficiency value. In
D-efficiency, the projected designs of the 38−5

NR design are nearly as efficient as
the CCDs for p = 3 and 4, and less efficient for p = 5. Their performance in
G-efficiency is less satisfactory. Compared with the 3n−(n−3) designs, the D- and
G-efficiencies of the projected designs of the 38−5

NR design is significantly better.
This is because the 3n−(n−3) designs have many ineligible projected designs that
hurt performance. Only one particular 27-run nonregular design is studied in
this section. There are many other nonregular designs with similar properties.
They will be reported elsewhere.

Table 8. Summary of efficiency values for the 38−5
NR design.

Deff Geff rel. Deff rel. Geff

p 38−5
NR 3n−(n−3) 38−5

NR 3n−(n−3) 38−5
NR 3n−(n−3) 38−5

NR 3n−(n−3)

3 .762-.932 .000-.932 .145-.727 .000-.727 81%-99% 00%-99% 17%-87% 00%-87%
4 .592-.878 .000-.878 .065-.556 .000-.556 65%-96% 00%-96% 8% -71% 00%-71%
5 .506-.684 none .015-.149 none 60%-81% none 2% -20% none

7. An Illustrative Example

The proposed design and analysis strategy is illustrated with a 27-run ex-
periment (Taguchi (1987, p.423)) to study the PVC insulation for electric wire.
The objective of the experiment is to understand the compounding method of
plasticizer, stabilizer, and filler for avoiding embrittlement of PVC insulation,
and to find the most suitable process conditions. All nine factors are continuous
and their levels are chosen to be equally spaced. Among the factors, two are
about plasticizer: DOA (denoted by A) and n-DOP (B); two about stabilizer:
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Tribase (C) and Dyphos (D); three about filler: Clay (E), Titanium white (F ),
and Carbon (G); the remaining two about process condition: number of revolu-
tions of screw (H) and cylinder temperature (J). The measured response is the
embrittlement temperature. The design matrix and data are given in Table 9.

Table 9. Design matrix and response data, PVC insulation data.

run A B C D E F G H J response
1 0 0 0 0 0 0 0 0 0 5
2 0 0 0 0 1 1 1 1 1 2
3 0 0 0 0 2 2 2 2 2 8
4 0 1 1 1 0 0 0 2 2 −15
5 0 1 1 1 1 1 1 0 0 −6
6 0 1 1 1 2 2 2 1 1 −10
7 0 2 2 2 0 0 0 1 1 −28
8 0 2 2 2 1 1 1 2 2 −19
9 0 2 2 2 2 2 2 0 0 −23

10 1 0 1 2 0 1 2 0 1 −13
11 1 0 1 2 1 2 0 1 2 −17
12 1 0 1 2 2 0 1 2 0 −7
13 1 1 2 0 0 1 2 2 0 −23
14 1 1 2 0 1 2 0 0 1 −31
15 1 1 2 0 2 0 1 1 2 −23
16 1 2 0 1 0 1 2 1 2 −34
17 1 2 0 1 1 2 0 2 0 −37
18 1 2 0 1 2 0 1 0 1 −29
19 2 0 2 1 0 2 1 0 2 −27
20 2 0 2 1 1 0 2 1 0 −27
21 2 0 2 1 2 1 0 2 1 −30
22 2 1 0 2 0 2 1 2 1 −35
23 2 1 0 2 1 0 2 0 2 −35
24 2 1 0 2 2 1 0 1 0 −38
25 2 2 1 0 0 2 1 1 0 −39
26 2 2 1 0 1 0 2 2 1 −40
27 2 2 1 0 2 1 0 0 2 −41

This design is a regular 39−6 design with C = AB, D = A2B, F = AE,
G = A2E, H = B2E, and J = AB2E (with A, B, and E as generators).
There are 15 three-letter words and 42 four-letter words in its defining contrast

subgroup. By Theorem 3, 69 (=

(
9
3

)
− 15) three-factor projected designs and

42 four-factor projected designs are eligible. Based on the projection-efficiency
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criteria, this design is not optimal. A better choice would be to use the minimum
aberration 39−6 design (see Table 5A.2 of Wu and Hamada (2000)), in which 72
three-factor and 54 four-factor projected designs are eligible.

In Taguchi’s analysis, only the factor main effects were of concern; in other
words, the analysis was performed for factor screening. In the ANOVA analysis,
factors A, B, C, D, and G are identified as significant, with respective p-values
0.00000, 0.00000, 0.00178, 0.00638, and 0.00113. Among them, A and B are
more significant than C, D, and G.

In the two-stage analysis, a second-order response surface is fitted after factor
screening. Based on the discussion in Section 4, there is no eligible projected
design of five factors in the 39−6 design. Therefore, it is impossible to fit a
second-order model for A, B, C, D, and G. Factors A and B are the first two
factors that should be considered because they are most significant. After A and
B are chosen, neither C nor D can be included because the defining relations
C = AB and D = A2B make the projected designs on {A, B, C} or {A, B,
D} ineligible. Because there is no three-letter defining word formed by A, B,
and G, the projected design on A, B, and G can be used to fit a second-order
model, yielding the results in Table 10 with R2 = 0.9811. (In the analysis, the
three levels 0, 1, and 2 in Table 9 are converted into −1, 0, and 1, respectively.)
The significance of xA, xB, xG, and x2

G is consistent with the finding from factor
screening. An interesting discovery is that the linear-by-linear interaction xAxB

between A and B is significant. Because C = AB and D = A2B, xAxB is
partially aliased (i.e., correlation not equal 0 or ±1) with the linear and quadratic
main effects of C and D, and thus can be expressed as a linear combination of
these four effects. The conclusion in factor screening on C and D may be due to
the significance of xAxB. This is confirmed by further analysis, in which neither
C or D is significant once xAxB is included in the model. This finding is further
supported by Taguchi’s comment (1987, p.428). After identifying the five factors
as important, Taguchi commented that: “It is only natural that A and B are
significant since both were originally compounded as plasticizers by which to
improve the embrittlement temperature, ... It was not expected that stabilizers
C and D would influence the embrittlement temperature ... That filler G would
influence the embrittlement temperature had been anticipated...” It seems more
reasonable to conclude, either based on statistical analysis or specialist’s opinion,
that xAxB is significant and the significance of C and D is a faulty conclusion
caused by the omission of interactions in model fitting. A second-order fitted
model can be obtained by using the estimates in Table 10. Based on this model,
further studies of the response surface (e.g., canonical analysis, identification of
stationary point, or contour plots) can be performed.
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Table 10. Least squares estimates, t Statistics and p-values, PVC insulation
data.

Effect Estimate Standard Error t p-value
intercept −22.78 1.22 −18.62 0.0000

xA −12.56 0.57 −22.17 0.0000
x2

A 1.67 0.98 1.70 0.1076
xB −10.22 0.57 −18.05 0.0000
x2

B 2.00 0.98 2.04 0.0573
xG 1.94 0.57 3.43 0.0032
x2

G −3.50 0.98 −3.57 0.0024
xAxB 4.08 0.69 5.89 0.0000
xAxG −0.50 0.69 −0.72 0.4808
xBxG −0.08 0.69 −0.12 0.9058

Comparing the results of Taguchi’s analysis and the two-stage analysis, the
latter goes further to explore the interactions and reveals some important in-
formation. Suppose that the experimenter used the conclusion of the former
analysis and performed a central composite design to study the response surface
of the five identified factors. It would require 27 runs and the experimenter might
find that no effects of C and D are significant. Without adding more runs, the
two-stage analysis identifies an important interaction xAxB , explains why the
significance of C and D may be caused by their partial aliasing with xAxB , and
provides a response surface equation for A, B, and G. It is interesting to note
that, even though the projected design on A, B, C, D, and G is not eligible, the
projection onto A, B, and G still provides valuable information. It shows that an
eligible projection on some of the important factors may suffice for building an
appropriate model, especially when the main effects and interactions are partially
aliased.

8. Conclusions and Remarks

By reducing the experimentation from two stages to a single stage, the pro-
posed strategy has the advantage of saving time and possibly run size. The D-
efficiencies of the projected designs are generally quite good and the G-efficiencies
are worse. Since the proposed use of designs is multi-objective, one cannot ex-
pect its efficiency for fitting second-order models to be as good as the central
composite designs. The CCDs cannot be used for factor screening, though.

Traditionally the research for factor screening and for response surface ex-
ploration proceed on separate lines and rarely interact. The former involves
concepts like resolution, minimum aberration, and the number of clear effects,
and the latter involves concepts like rotatability, D-optimality, and prediction
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variance. Considering these two lines of work in a unified framework has led to
the development of new concepts like eligible projection, model isomorphism and
projection-efficiency criteria, and may inspire further advances in design theory
and experimentation strategy. In the paper the projection-efficiency properties
are studied only for designs with 27 runs (one regular and one nonregular), 18
runs and 36 runs. The same study can be extended to other designs with larger
runs and/or more levels. The superiority of the 27-run nonregular design in
terms of eligible projections is encouraging. It suggests a new direction for re-
search, namely, to find nonregular three-level designs with 18, 27, 36, 45 or 54
runs. Recently the minimum aberration criterion has been extended to nonregu-
lar designs (Deng and Tang (1999); Tang and Deng (1999); Xu and Wu (2001)).
The proposed projection-efficiency criteria provide a new performance measure
for nonregular designs. While the extensions of minimum aberration are single-
valued criteria, the projection-efficiency criteria are multi-valued.

An alternative to the proposed two-stage analysis is Bayesian model search
and inference. Box and Meyer (1993), Chipman (1996), and Chipman, Hamada
and Wu (1997) have proposed Bayesian approaches for related problems. By
exploiting the power in Bayesian computation, the Bayesian alternative can con-
ceivably provide a more comprehensive search of the model space. On the other
hand, it is much less user-friendly and may not be widely used by experimenters
(who, alas, are not statisticians with Bayesian expertise.) These Bayesian meth-
ods do not focus on the inference for the parameters in the second-order models.
Another difference is that they do not treat screening and surface exploration
in separate steps. This may be an advantage for computation. It is, however,
conceptually easier to treat these two as separate steps. The proposed approach
also provides some new criteria for evaluating the performance of designs, which
may stimulate corresponding work from the Bayesian perspective. It would be
interesting to see further development of Bayesian analysis and design for the
present problem.
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Appendix 1

The columns of the OA(18, 37) in Table 11 are denoted by 1, 2, 3, 4, 5,
6, 7. The classification of its projected designs was also studied in Wang and
Wu (1995), which is mainly based on combinatorial isomorphism. When the
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OA(18, 37) is projected onto three factors, any projected design consists of two
33−1 designs. This is used to classify the projected designs into three types.

Table 11. 18-Run orthogonal array, OA(18, 37).

run 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 0 0 1 1 2 2
5 1 1 1 2 2 0 0
6 1 2 2 0 0 1 1
7 2 0 1 0 2 1 2
8 2 1 2 1 0 2 0
9 2 2 0 2 1 0 1

10 0 0 2 2 1 1 0
11 0 1 0 0 2 2 1
12 0 2 1 1 0 0 2
13 1 0 1 2 0 2 1
14 1 1 2 0 1 0 2
15 1 2 0 1 2 1 0
16 2 0 2 1 2 0 1
17 2 1 0 2 0 1 2
18 2 2 1 0 1 2 0

Design 18-3.1. It has two 33−1 designs with no point in common, with 18 de-
grees of freedom (df).

Design 18-3.2. It has two 33−1 designs with three points in common, with 15
df.

Design 18-3.3. It has two identical copies of a 33−1 design, with 9 df and is
hence ineligible. Only the set {1, 3, 4} is of this type.

There are more types of projected designs in terms of model isomorphism. In
the following, instead of studying only the types of three-factor projected designs
in the OA(18, 37), we explore all types of non-isomorphic combinations of two
33−1 designs. Because any three-factor projected design in the OA(18, 37) consists
of two 33−1 designs, the resulting conclusion is more general and is potentially
useful for other three-level orthogonal arrays. When a design consists of two 33−1

designs, they can be defined by choosing two defining relations from the set:
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{ABC = I, ABC = u, ABC = u2, ABC2 = I, ABC2 = u, ABC2 = u2,
AB2C = I, AB2C = u, AB2C = u2, AB2C2 = I, AB2C2 = u, AB2C2 = u2},

where u = (1, 1, ..., 1)T and u2 = (2, 2, ..., 2)T . We call each element in the set
a defining relation, and the left expression of a defining relation a defining word.
For example, the three defining relations ABC = I, ABC = u and ABC = u2 have
the same defining word ABC. Note that the defining relations involving u and
u2 are not the regular defining relations in fractional factorial designs. First, we
separate these 12 defining relations into the three sets: S1 = {ABC = u, ABC2

= I, AB2C = I, AB2C2 = I}, S2 = {ABC = I, ABC2 = u, AB2C = u, AB2C2

= u2}, S3 = {ABC = u2, ABC2 = u2, AB2C = u2, AB2C2 = u}. In terms of
model isomorphism, there are two types for design 18-3.1, labeled as 18-3.1.1 and
18-3.1.2, and four types for design 18-3.2, labeled as 18-3.2.1, 18-3.2.2, 18-3.2.3
and 18-3.2.4. These designs are arranged in descending order of D-efficiency.

Design 18-3.1.1. It is formed by choosing one defining relation from S2 and
one from S1 with the same defining word (e.g., ABC = I and ABC = u), or
by choosing one defining relation from S2 and one from S3 with the same
defining word (e.g., ABC = I and ABC = u2).

Design 18-3.1.2. It is formed by choosing one defining relation from S1 and
one from S3 with the same defining word (e.g., ABC = u and ABC = u2).

Design 18-3.2.1. It is formed by choosing one defining relation from S1 and
one from S3 with different defining words (e.g., ABC = u and ABC2 = u2).

Design 18-3.2.2. It is formed by choosing two defining relations from S2.

Design 18-3.2.3. It is formed by choosing one defining relation from S2 and
one from S1 with different defining words (e.g., ABC = I and ABC2 = I)
or by choosing one defining relation from S2 and one from S3 with different
defining words (e.g., ABC = I and ABC2 = u2).

Design 18-3.2.4. It is formed by choosing two defining relations from S1 or
from S3.

Except for 18-3.2.2, all other types of designs appear among the three-factor
projected designs of the OA(18, 37). The columns {1, 2, 3}, {1, 3, 7}, {1, 4,
5}, {1, 4, 6}, and any three columns not containing 1 are of type 18-3.1.1. The
columns {1, 2, 4}, {1, 3, 5}, {1, 3, 6}, and {1, 4, 7} are of type 18-3.1.2, {1, 2,
6} and {1, 5, 7} of type 18-3.2.1, {1, 2, 5} and {1, 6, 7} of type 18-3.2.3, and
{1, 2, 7} and {1, 5, 6} of type 18-3.2.4.
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Each four-factor projected design is classified in terms of its four sets of three
columns. For example, the projected design {1, 2, 4, 5} contains the four sets
of columns {1, 2, 4}, {1, 4, 5}, {2, 4, 5}, and {1, 2, 5}. The first three are
of type 18-3.1 and the last of type 18-3.2. Hence {1, 2, 4, 5} is classified as a
design of type 18-4.2 (to be defined below). Based on the different combinations
of designs 18-3.1, 18-3.2, and 18-3.3, four types of projected designs are obtained,
each having 18 df.

Design 18-4.1. Any set of its three columns is of type 18-3.1. Any four columns
not containing 1 is of this type.

Design 18-4.2. Three sets of its three columns are of type 18-3.1 and the other
set of type 18-3.2.

Design 18-4.3. Three sets of its three columns are of type 18-3.1 and the other
set of type 18-3.3. Since a type 18-3.3 design is ineligible, by Theorem 2,
18-4.3 designs are ineligible. Exclusive list of the type: {1, 2, 3, 4}, {1, 3,
4, 5}, {1, 3, 4, 6}, and {1, 3, 4, 7}.

Design 18-4.4. One set of its three columns are of type 18-3.1 and the other
sets of type 18-3.2. Exclusive list of the type: {1, 2, 5, 6}, {1, 2, 5, 7}, {1,
2, 6, 7}, and {1, 5, 6, 7}.

Consider the further classification in terms of model isomorphism. The 18-4.2
designs can be classified into four types, labeled as 18-4.2.1, 18-4.2.2, 18-4.2.3
and 18-4.2.4. They are arranged in descending order of D-efficiency.

Design 18-4.2.1. Two sets of its three columns are of type 18-3.1.1 and the
other two contain one 18-3.2.1 design and one 18-3.1.2 design. Exclusive
list of the type: {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 7}, and {1, 4, 5, 7}.

Design 18-4.2.2. Two sets of its three columns are of type 18-3.1.1 and the
other two contain one 18-3.1.2 design and one 18-3.2.3 design. Exclusive
list of the type: {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 6, 7}, and {1, 4, 6, 7}.

Design 18-4.2.3. Three sets of its three columns are of type 18-3.1.1 and the
other set of type 18-3.2.4. Exclusive list of the type: {1, 2, 3, 7} and {1,
4, 5, 6}.

Design 18-4.2.4. Two sets of its three columns are of type 18-3.1.2 and the
other two contain one 18-3.1.1 design and one 18-3.2.4 design. Exclusive
list of the type: {1, 2, 4, 7} and {1, 3, 5, 6}.
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Appendix 2

When the OA(36, 312) in Table 12 is projected onto three factors, there are
three types of projected designs in terms of combinatorial isomorphism.

Table 12. 36-Run orthogonal array, OA(36, 312)

run 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2 2 2 2 2

4 0 0 0 0 1 1 1 1 2 2 2 2

5 1 1 1 1 2 2 2 2 0 0 0 0

6 2 2 2 2 0 0 0 0 1 1 1 1

7 0 0 1 2 0 1 2 2 0 1 1 2

8 1 1 2 0 1 2 0 0 1 2 2 0

9 2 2 0 1 2 0 1 1 2 0 0 1

10 0 0 2 1 0 2 1 2 1 0 2 1

11 1 1 0 2 1 0 2 0 2 1 0 2

12 2 2 1 0 2 1 0 1 0 2 1 0

13 0 1 2 0 2 1 0 2 2 1 0 1

14 1 2 0 1 0 2 1 0 0 2 1 2

15 2 0 1 2 1 0 2 1 1 0 2 0

16 0 1 2 1 0 0 2 1 2 2 1 0

17 1 2 0 2 1 1 0 2 0 0 2 1

18 2 0 1 0 2 2 1 0 1 1 0 2

19 0 1 0 2 2 2 0 1 1 0 1 2

20 1 2 1 0 0 0 1 2 2 1 2 0

21 2 0 2 1 1 1 2 0 0 2 0 1

22 0 1 1 2 2 0 1 0 0 2 2 1

23 1 2 2 0 0 1 2 1 1 0 0 2

24 2 0 0 1 1 2 0 2 2 1 1 0

25 0 2 1 0 1 2 2 0 2 0 1 1

26 1 0 2 1 2 0 0 1 0 1 2 2

27 2 1 0 2 0 1 1 2 1 2 0 0

28 0 2 1 1 1 0 0 2 1 2 0 2

29 1 0 2 2 2 1 1 0 2 0 1 0

30 2 1 0 0 0 2 2 1 0 1 2 1

31 0 2 2 2 1 2 1 1 0 1 0 0

32 1 0 0 0 2 0 2 2 1 2 1 1

33 2 1 1 1 0 1 0 0 2 0 2 2

34 0 2 0 1 2 1 2 0 1 1 2 0

35 1 0 1 2 0 2 0 1 2 2 0 1

36 2 1 2 0 1 0 1 2 0 0 1 2

Design 36-3.1. It contains a complete 33 design and a 33−1 design, with 27 df.

Design 36-3.2. It is a two-replicate of a 18-3.1.1 design, with 18 df. Example:
{1, 3, 8}

Design 36-3.3. It contains a three-replicate of a 33−1 design and a single repli-
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cate of another 33−1 design, with 18 df.

In terms of model isomorphism, type 36-3.1 can be classified into two types,
labeled as 36-3.1.1 and 36-3.1.2, and type 36-3.3 can be classified into two types,
labeled as 36-3.3.1 and 36-3.3.2. These designs are arranged in descending order
of D-efficiency.

Design 36-3.1.1. It consists of a complete 33 design and a 33−1 design from S1

or S3. Example: {1, 2, 6}.
Design 36-3.1.2. It consists of a complete 33 design and a 33−1 design from S2.

Example: {1, 2, 3}.
Design 36-3.3.1. It consists of a three-replicate of a 33−1 design from S1 or S3,

and a single replicate of a 33−1 design from S1 with the same defining word
as the one chosen from S1 or S3. Example: {1, 4, 9}.

Design 36-3.3.2. It consists of a three-replicate of a 33−1 design from S2, and a
single replicate of a 33−1 design from S1 or S3 with the same defining word
as the one chosen from S2. Example: {1, 2, 5}.

For projection onto four factors, by an exhaustive search, we found 13 types
of projected designs in terms of model isomorphism. They are labeled as 36-4.1
to 36-4.13 and arranged in descending order of D-efficiency.

Design 36-4.1 Three sets of its three columns are of type 36-3.1.2 and the other
one of type 36-3.1.1, with 36 df. Example: {1, 2, 3, 7}.

Design 36-4.2 Two sets of its three columns are of type 36-3.1.1 and the other
two of type 36-3.1.2, with 36 df. Example: {1, 2, 3, 6}.

Design 36-4.3 Two sets of its three columns are of type 36-3.1.1 and the other
two of type 36-3.1.2, with 33 df. Example: {1, 2, 6, 12}.

Design 36-4.4 One set of its three columns is of type 36-3.1.1, two of type 36-
3.1.2, and the remaining one of type 36-3.2, with 36 df. Example: {1, 2, 3,
12}.

Design 36-4.5 Any set of its three columns is of type 36-3.1.2, with 33 df.
Example: {1, 4, 8, 10}.

Design 36-4.6 Three sets of its three columns are of type 36-3.1.1 and the other
one of type 36-3.1.2, with 36 df. Example: {1, 2, 3, 11}.

Design 36-4.7 Two sets of its three columns are of type 36-3.1.1, one of type
36-3.1.2, and the remaining one of type 36-3.2, with 36 df. Example: {1, 2,
3, 8}.
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Design 36-4.8 One set of its three columns is of type 36-3.1.1, two of type 36-
3.1.2, and the remaining one of type 36-3.3.1, with 33 df. Example: {1, 2,
4, 9}.

Design 36-4.9 Three sets of its three columns are of type 36-3.1.2 and the other
of type 36-3.3.2, with 33 df. Example: {2, 8, 9, 11}.

Design 36-4.10 Three sets of its three columns are of type 36-3.1.1 and the
other of type 36-3.3.2, with 33 df. Example: {1, 2, 5, 8}.

Design 36-4.11 All four sets of its three columns are of type 36-3.1.1, with 33
df. Example: {1, 2, 7, 8}.

Design 36-4.12 Two sets of its three columns are of type 36-3.1.1, one of type
36-3.1.2, and the remaining one of type 36-3.3.2, with 33 df. Example: {1,
2, 3, 5}.

Design 36-4.13 One set of its three columns is of type 36-3.1.1 and the other
three of type 36-3.2, with 18 df. Example: {1, 3, 8, 12}.
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COMMENTS

Derek Bingham

University of Michigan

The authors must be congratulated on taking an innovative look at design
and analysis procedures for response surface methodology. Indeed they have
challenged us to re-visit some of the “well-known” facts regarding the use of 3-
level designs and the way sequential assembly problems are addressed. One is
left to wonder how many common assumptions regarding other designs should
be reconsidered.
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There are two related concepts I would like to emphasize for possible im-
provement. Firstly, the analysis procedure performs factor screening and then
recycles the data to fit a second order model on a projected design space. While
this approach makes the analysis quite simple, it has important implications on
the models being considered. Secondly, the proposed designs might fail to esti-
mate some quite reasonable models. These issues will be discussed in the next
section.

In addition to making a valuable contribution to this response surface appli-
cation, it is worth noting that the authors make the important observation that
combinatorially isomorphic designs do not necessarily estimate the same set of
models (model isomorphism). This highlights the crucial connection between the
design and analysis of an experiment. When some effects are assumed negligible,
seemingly isomorphic designs are non-isomorphic. Interactions with quadratic
terms are assumed negligible in the second-order model and thus the combi-
natorially isomorphic designs in Example 2 are not model isomorphic. If one
considered interactions with the quadratic terms, there would be no distinction
between the two designs. Because this assumption is made in many applications
of 3-level designs, it would seem that a deeper look into what constitutes the
best design in other applications should be undertaken.

1. Design and Analysis Approach

My main concern with the approach taken by the authors is that the model
space that is explored is unrealistically small. As a consequence, the proposed
optimality criterion may not be suitable. I discuss both these issues below.

The analysis approach takes place in two-stages: (i) factor screening, and
(ii) fitting a second order model to the significant factors from stage 1. This
methodology implies some unstated, but important assumptions with respect to
the underlying structure of the model. Because the first step considers main
effects only, an underlying assumption is that every factor affecting the response
has a significant main effect. Interactions are entertained only on the projected
design space, thus one is assuming that all factors in significant interaction effects
also have significant main effects. The assumption that a two-factor interaction
(2fi) can only be active if both main effects are active is called strong heredity
(Chipman (1996)). This is a very restrictive assumption and may cause interac-
tions to be missed and also cause the misspecification of the response surface.

The strong heredity assumption can be relaxed if the analysis considers some
interactions in the first stage. This is important later for fitting a response surface
where efficient estimation of the regression effects is the goal. To achieve this, one
instead might use Bayesian variable selection for designs with complex aliasing
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(Chipman, Hamada and Wu (1997)). A distinguishing feature of this approach
is that hierarchical priors are used to specify the prior probability of an effect
being included in the model. In this setting a model is denoted by a vector, δ, of
ones and zeros, indicating whether an effect is active or inactive. The probability
that an interaction is active, and thus in the model, is dependent on whether the
corresponding main effects are active. For instance, for the AB-interaction,

p(δAB |δA, δB) =




.00 if (δA, δB) = (0, 0)

.10 if (δA, δB) = (1, 0)

.10 if (δA, δB) = (0, 1)

.25 if (δA, δB) = (1, 1).

This specification of the prior (weak heredity) implies that interactions where
both parents are active are more likely to be significant than interactions with
only one active parent. Similarly, interactions where both parents are inactive
are assumed to be negligible. While it is convenient to perform the first stage of
the analysis ignoring interactions, it seems unrealistic to expect that the strong
heredity assumption will apply in most applications. The Bayesian variable se-
lection procedure will consider a richer and more realistic class of models than
the one proposed by the authors.

The analysis procedure impacts the authors’ choice of designs. The strong
heredity assumption leads the authors to consider optimal projections as a cri-
terion. Indeed, it is the projection approach that forces only strong heredity
models to be entertained. Again, it is my feeling that this is too restrictive be-
cause interactions with at least one inactive parent will be missed. An alternate
approach is to design the experiment so that parsimonious models may be identi-
fied. Questions facing the experimenter are (i) what are the likely models, and (ii)
how many effects are likely to be significant? A criterion which attempts to ad-
dress these questions is estimation capacity (Cheng, Steinberg and Sun (1999)).
Roughly stated for 2-level designs, estimation capacity is the proportion of mod-
els containing all main effects and a pre-specified number (g) of 2fi’s that a design
is capable of estimating. To compare designs, the estimation capacity sequence
(Cheng, Steinberg and Sun (1999)) has been proposed where the proportion of
estimable models with g = 1, 2, . . ., etc. 2fi’s is computed.

Because one is interested in identifying more parsimonious models, Bingham
and Li (2001) adjusted the estimation capacity criterion to measure the propor-
tion of weak heredity models with g1 main effects and g2 2fi’s (weak heredity
maximum estimation capacity).
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A criterion for this application, more in line with the possible model space, is
to adjust the weak heredity maximum estimation capacity criterion to entertain
the second order models of interest. For example, one could first specify the
number of significant linear and quadratic main effects and interactions with at
least one active parent that are likely to be present. The design criterion would
then compute the proportion of such models that are estimable. For designs that
are tied based on this criterion, the best design would have the best average D-
efficiency. By specifying the likely number of significant effects, the experimenter
is forced to consider explicitly what they might expect from the experiment,
thereby running experiments that are neither too big nor too small. In any case,
this procedure is meant as a suggestion to improve the potential deficiencies
associated with designing and analyzing the experiment for the restrictive strong
heredity models.

Department of Statistics, University of Michigan, Ann Arbor, MI, 48109-1027, U.S.A.

E-mail: dbingham@umich.edu

COMMENTS

Ching-Shui Cheng

University of California, Berkeley

The interesting discovery of good projection properties of nonregular designs
was made by Lin and Draper (1992, 1993), Box and Bisgaard (1993) and Wang
and Wu (1995). An important implication is that designs with complex aliasing,
which have traditionally been used for screening main effects only, can be used
to entertain and estimate certain interactions when these designs are projected
onto a small subset of factors. Indeed, Hamada and Wu (1992) proposed a data
analysis strategy for entertaining and estimating interactions from experiments
with complex aliasing. The success of their strategy was attributed to the hidden
projection properties of such designs.

Except for an 18-run design studied in Wang and Wu (1995), investigations
of projection properties of factorial designs have been restricted to the two-level
case. Now Cheng and Wu have carried out a detailed study of some three-level
designs of small sizes and, more importantly, have proposed the idea of perform-
ing factor screening and response surface exploration on the same experiment,
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taking advantage of the hidden projection properties of three-level designs. The
authors are to be congratulated for proposing this innovative alternative to cen-
tral composite designs.

For three-level designs, the presence of a three-letter defining word causes
the projection onto the three factors that appear in the defining word to be ineli-
gible for estimating the second-order model. The presence of such defining words
prevents the projected design from having enough degrees of freedom for esti-
mating all parameters in the model, and is termed “curse of three-letter words”
by the authors. In general, the absence of certain defining words is necessary for
the projected design to be eligible, but there is no guarantee that it is sufficient.
For a two-level regular design, a trivial necessary and sufficient condition for all
its projections to be eligible for estimating all the main effects and two-factor
interactions is that there is no defining word of length three or four; in other
words, the design is of resolution at least five. But results for other designs are
limited. Cheng (1995) showed that the absence of defining words of length three
or four is also necessary and sufficient for all four-factor projections of a nonreg-
ular two-level orthogonal array with strength two to be eligible for estimating
all the main effects and two-factor interactions. For a two-level orthogonal ar-
ray with strength three, a necessary and sufficient condition for all its five-factor
projections to be eligible is that there is no defining word of length four (Cheng
(1998)). For three-level regular designs, Cheng and Wu showed that the absence
of three-letter words is enough for the projection onto any three or four factors to
be eligible for the second-order model (The eligibility is not affected by defining
words of length four since the second-order model contains only the linear by lin-
ear components of two-factor interactions.) It is not clear whether similar results
can be established for projections of nonregular designs or projections of regular
designs onto more than four factors. An additional complication for three-level
designs is that the usual defining words do not provide direct information on the
aliasing of factorial effects defined by orthogonal polynomials (such as the linear
by linear effect in a second-order model).

Nevertheless, designs with few defining words of short lengths are expected
to have good projection properties. Cheng and Wu successfully used this idea to
construct a 27-run design with 8 factors such that all its projections onto four
factors are eligible for the second-order model, while among projections onto five
factors only one projection is ineligible. It is an interesting problem to investigate
the general construction of three-level designs with good projection properties.
For example, a 27-run design with 8 factors such that all its projections onto
five factors are eligible for the second-order model can be found. If one does
not insist on using an orthogonal array, then an even smaller design with the
aforementioned projection property can be constructed. These and other designs
will be reported in Bulutoglu and Cheng (2001).
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As the authors noted, the projection-efficiency criteria proposed in this ar-
ticle are multi-valued. Even though the generalized minimum aberration crite-
rion defined by Deng and Tang (1999), an extension of minimum aberration to
nonregular designs, is a single-valued criterion, it does serve well the dual goal
of model robustness and efficiency: entertaining many models containing lower
order factorial effects and estimating these effects efficiently (see Cheng, Deng
and Tang (2000)). I wonder if the generalized minimum aberration criterion or
a suitable modification could be a satisfactory single-valued surrogate for the
projection-efficiency criteria.

Department of Statistics, University of California, Berkeley, CA 94270-3860, U.S.A.

E-mail: cheng@stat.berkeley.edu

COMMENTS

Mong-Na Lo Huang

National Sun Yat-sen University

The paper by Cheng and Wu brings interesting perspective to the issues
of designing efficient experiments which combine the tasks of factor screening
and response surface exploration in one design. In order to achieve the two
objectives in one design, an approach based on a two-stage analysis is proposed
where factor screening is performed in the first stage and, after the important
factors are identified, a second-order model is fitted to the identified factors.

Two-stage statistical analyses are quite common in practice. The procedure
of stepwise regression can be thought of as a multi-stage model building pro-
cedure, for example, although the steps of selecting parameters and models are
different. The interesting part of this paper is that it discusses the problem from
the design of experiments point of view. The proposed approach is quite natural
and cleverly combines considerations of factor screening, projection and response
surface exploration with orthogonality, projection eligibility and estimation effi-
ciency. Projection-efficiency criteria are proposed where, for projection eligibility,
designs with larger number of eligible projected designs are favor so; giving more
weight to lower-dimension than higher-dimension projection is preferred; for es-
timation efficiency, designs with high D- and G-efficiency are preferred. After
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setting up the is objectives, these criteria arise quite naturally. Although the
criteria are not new, the way the authors combine them is very nice.

At the factor screening stage, each factor should have at least three levels
since one intends to fit a second-order model at the second stage. Projection-
efficiency properties of 3n−(n−3) regular orthogonal designs with 27 runs are stud-
ied for their projection eligibility and estimation efficiencies. The distinction be-
tween design isomorphism and model isomorphism is interesting, perhaps some
studies along this line for other types of regular orthogonal designs would also be
of interest. Although based on the criteria of projection-efficiency the 3n−(n−3)

designs seem to be doing well only for cases when the number of important factors
is not too large, less than five factors can be fitted with a second-order model,
and the frequency of eligible projections is not as good as the nonregular design
OA(18, 37). As for the three nonregular designs OA(18, 37), OA(36, 312), and
38−5

NR , the advantages lie in economic run size, the estimation efficiencies seem to
be low in many cases, especially for the G-criterion.

Apparently, when we try to achieve two objectives in one design, we cannot
help losing some of the good properties that optimal designs have for each objec-
tive separately. This paper has made a nice contribution in finding good designs
to achieve both objectives when the important factors are not too large. This
can be very useful in growth curve models, when more than one observation is
obtained under each factor combination in different times or periods, or in other
models where a density function or regression curve under each factor combina-
tion needs to be compared to see the effects of the factors. Economic run size
for factor combination as well as high estimation efficiency in the second-order
model proposed here are certainly very helpful in reducing the total number of
experimental runs.

But if the important factors are large, the advantanges of trying to achieve
two objectives in one design diminish very quickly. Also as the number of impor-
tant factors increases, the run size also increases very quickly. Then it becomes
harder to attain good performances in both objectives with only one design, not
to mention that when the run size becomes large, we might encounter the prob-
lem of blocking the experiments. In cases like that, do we still want to stay with
a one-stage design and worry whether it can lead to efficient estimation on the
important factors? Or should we simply adopt a two-stage design strategy to
achieve our goals? Of course to know whether there are many important factors
or not, we need to have some prior information to determine what would be a
better approach.

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan.

E-mail: lomn@math.nsysu.edu.tw



FACTOR SCREENING AND RESPONSE SURFACE EXPLORATION 587

COMMENTS

André I. Khuri

University of Florida

The article by Cheng and Wu offers a novel approach in response surface
methodology (RSM) that combines factor screening and response surface ex-
ploration using a single design. The primary motivation for proposing such an
approach is to develop an experimental strategy that can be carried out when it is
either time consuming or too costly to perform new experiments. This represents
an interesting departure from one of the most fundamental tenets of RSM.

Most applications of RSM are sequential in nature whereby information ac-
quired from one set of experiments is effectively used to plan the strategy for
a follow-up set of experiments. This sequential pattern of experimentation was
suggested by Box and Youle (1955). Important factors, or variables, are identified
at an early stage of experimentation. Subsequent stages of the experiment serve
to consolidate information concerning the important variables and to weed out
factors deemed unimportant. Further experimentation will then be confined to
a region of the factor space where the actual exploration of the response surface
will be carried out. The time interval between successive sets of experimental
runs is usually short (often a matter of hours), as in many experiments in the
chemical, physical, and engineering sciences. However, in some experiments, as
in agricultural field experiments and clinical trials, much longer periods of time
may be needed before a new set of experiments can be performed. This will
obviously hinder the implementation of the sequential approach. The proposed
experimental strategy by Cheng and Wu represents a step in the right direction
in trying to resolve this problem.

There are certain issues an experimenter may be concerned about when
presented with a single design, a summary of which follows.
1. If the entire experiment were to be designed at the outset, some prior informa-

tion should be available concerning the importance of some of the variables
and the presence or absence of some key interactions. For example, if one
factor is expected to produce a large effect, appreciable interactions are prac-
tically certain to arise between it and the other factors. In this respect, it
would be very helpful to include in the design process input from a technical
assistant who is involved in the running of the experiment and is therefore
quite familiar with its operational development.

2. The sequential approach has always been stressed in RSM. It has been sug-
gested, with some irony, “that the best time to design an experiment is after
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the experiment has been completed because one then has more knowledge
of the process under study–what variables are important, over what ranges,
in what metrics, and so on. By designing experiments sequentially, we can,
in a sense, approximate this happy situation by peeking at the answer and
modifying the design accordingly.” (see Steinberg and Hunter (1984, p.88)).
The converse of this is “that the worst time is at the beginning, when least is
known.” (see Box, Hunter, and Hunter (1978, p.303)). Thus a retraining of
an RSM experimenter may be necessary in order to become acclimated to a
nonsequential environment.

3. In the sequential approach, variables included in one stage may be dropped
in later stages, and new variables may be introduced. In addition, some
of the factors may be varied over new ranges and the factor space being
explored can change. This produces lively mobility and an active exchange of
variables, which appear to be lacking in a single-design experiment. How can
an experimenter compensate for the loss of such information?

4. As is pointed out in the article, the main-effect ANOVA analysis may not be
appropriate to identify important variables if the interactions are large enough
to bias the main effect estimates. Some variables may erroneously be admitted
in Stage 1 of the two-stage analysis. Fortunately, Stage 2 can provide some
safeguards for weeding out variables admitted in Stage 1 if their linear and
quadratic effects are aliased with a significant interaction, as was shown in
the example. An inexperienced research worker, however, may not be able to
discover this since the construction of three-level fractional factorial designs
and their interpretation is more complicated than in two-level fractional fac-
torials. Another issue of some concern is that estimates of the main effects
may not be given with sufficient precision in Stage 1.

5. Some mechanism is needed for testing lack of fit once a model is chosen. The
proposed single design does not provide such a mechanism. The success of
any response surface exploration in Stage 2 depends to a large extent on the
form of the model and whether or not it provides a satisfactory representation
of the true mean response. In the sequential approach, testing for lack of fit
is carried out in every stage.

6. The proposed design assumes that the error variance is constant. This as-
sumption may not be valid. It would be desirable to have a design that
provides a check on the constancy of variance assumption. This is one of the
design criteria listed in Box and Draper (1975).

7. The paper considers only orthogonal designs because they are suited for factor
screening. Tukey once suggested the use of designs that are not orthogonal,
but in which the correlations among the model’s parameter estimates are quite
small. “By sacrificing some orthogonality, it may be possible to gain much
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in terms of the number of factors that can be studied.” (see Steinberg and
Hunter (1984, p.87)).

8. In an unrelated paper, Sitter and Wu (1999) proposed a two-stage design for
binary response data, which takes advantage of the information from the initial
stage of an experiment to design a follow-up study and still not unduly prolong
the experiment’s duration. Can a similar approach work here? It should be
remembered that the central composite design introduced in Box and Wilson
(1951) is really a two-stage design with a factorial portion chosen in the first
stage followed by an axial portion in the second stage for the purpose of fitting
a second-degree model. Replications at the design center provide additional
design properties, such as orthogonality and uniform precision, and can be
used to test for lack of fit.
In summary, Cheng and Wu are to be commended for proposing this novel

approach in the design and analysis of response surface experiments. As they
pointed out, further development of this approach would be interesting and, I
may add, welcome.

Department of Statistics, University of Florida, Gainesville, FL 32611-8545, U.S.A.

E-mail: ufakhuri@stat.ufl.edu

COMMENTS

S. M. Lewis

University of Southampton

This interesting paper addresses the important problem of how to experiment
economically in product and process development. I have two comments on where
some caution may be needed in applying the approach.

The first concerns the number of factors investigated, and applies generally
when screening is an aim of experimentation. At the outset of an investigation
the list of factors that might possibly influence a response is often long perhaps
consisting of twenty or more factors. Designs to screen a modest number of
factors (as in the paper) are appropriate when this list can be reliably reduced
by subject specialists through scientific understanding. or evidence from previous
experiments. When such well-informed decisions are not possible, the exclusion
of important factors at the early planning stage in order to achieve short-term
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economy can lead to the need for further experiments at a much later stage, and
unscheduled delays in achieving the objectives for the product or process.

Larger numbers of factors could be included in the authors’ one-experiment
approach by using suitable fractions of 2m×3n designs. Here the two-level factors
could be those whose likely importance was difficult for the subject specialists to
assess. For any such factor found to be important in the first-stage analysis, how-
ever, the model used in the second-stage analysis could not include a quadratic
main effect term.

My second concern is that, in screening only main effects in the first-stage
analysis, one or more substantive interactions could be overlooked when one of
the factors involved in the interaction does not have a significant main effect;
see the figure for an illustration with factors at two levels. This is of especial
concern when one factor is a control or design factor (A) and the other (B) is
a noise factor. The detection and manipulation of control×noise interactions is
then an important method of reducing variation in a response, see Shoemaker,
Tsui and Wu (1991) for example. Some design strategies that enable screening
for interaction among large numbers of factors have been investigated by Lewis
and Dean (2001) . These strategies use two stages of experiments with the factors
investigated in groups at the first stage.
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Figure 1. Positive interaction between factors A and B with zero A main effect.

When an interaction may be present without both main effects being sig-
nificant, a conflict appears to arise in the authors’ approach between the need
for a design to have a large number of eligible projected designs of low dimen-
sion, and the ability of a design to offer some indication of such interactions in
the second-stage analysis. As the authors point out, the inclusion of 3-letter
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words in the defining contrasts subgroup for a design is indeed a “curse” when
many low-dimension projections is a design objective. However, it is through the
inclusion of such 3-letter words in the defining contrasts of a design that infor-
mation can be retrieved on interactions, through exploiting the partial aliasing
of linear×linear interaction terms with linear and quadratic main effects, as the
authors demonstrate in their illustrative example.

Department of Mathematics, University of Southampton, Southampton, SO17 1BJ, U.K.

E-mail: S.M.Lewis@maths.soton.ac.uk

COMMENTS

Douglas C. Montgomery and Connie M. Borror

Arizona State University

We thank Professors Cheng and Wu for an interesting and thought-provoking
paper. There are some very original ideas in this work, and the authors have
provided us with a novel and potentially quite useful way to employ the three-
level fractional factorial design in response surface methodology (RSM). We will
discuss the types of experimental problems where these designs can be useful and
then focus on the prediction variance properties of the designs.

We traditionally think of RSM as consisting of three stages (see Myers and
Montgomery (1995), Montgomery (2001)): (1) factor screening, (2) locating the
region of the optimum, and (3) determining the optimum operating conditions.
Myers and Montgomery refer to these as stages 0, 1, and 2, respectively, em-
phasizing the importance of factor screening before starting the “classical” RSM
procedure. The reason for this is that many industrial processes have a relatively
large region of operability and there is often little comfort in the assumption that
the initial region of experimentation (even for a screening experiment) is large
enough to contain the final optimum conditions. That is, the current operat-
ing conditions are very far from the optimum. This happens frequently in the
chemical and process industries where the initial operating conditions are often
determined through analysis of a pilot plant level process, and scale-up affects
the results when they are translated to full-scale manufacturing. Furthermore,
there may be variables in the full-scale process that were not present (or not ad-
justable) at the pilot plant level. Consequently, following factor screening it may
be necessary to move to a new region of experimentation (via some technique



592 SHAO-WEI CHENG AND C. F. J. WU

such as steepest ascent) that is remote from the original one. Sometimes steepest
ascent will be applied two or three times to reach this final region of experimen-
tation (Myers and Montgomery (1995) refer to these as mid-course corrections).
Consequently, the final region of interest will be far from the initial region of
experimentation.

Now one possibility is to expand the initial region of experimentation so that
it covers a much larger portion of the region of operability, thereby giving the
experimenter a better chance that the original screening design actually covers
the final optimum point(s). However, the risk here is that the region will be
so large that the second-order model will be a poor fit to the true response
surface. The true response surface is likely to be very nonlinear, and if the
region of experimentation is very large this can lead to a situation where the
Taylor-series argument that allows us to approximate the response surface with
a low-order polynomial breaks down. The authors’ designs would seem to be
most useful in cases where (1) the region of operability is sufficiently small so
that the experimenters can explore most of it with the original experiment, or (2)
the process is sufficiently well-understood or mature so that the experimenters
can be reasonably certain that the original region of experimentation includes
the desired final operating conditions.

The authors give a very thorough discussion of the D- and G- efficiency prop-
erties of their designs. Myers and Montgomery (1995) observe that these single-
number alphabetic optimality criteria often give a very incomplete summary of
the prediction variance properties of a design. This is an important issue, since
response surface designs are used primarily to fit models used for prediction. We
focus on the scaled prediction variance

NVar [ŷ(x)]
σ2

= Nx′(X ′X)−1x,

where x is the point of interest in the design space and N is the number of
runs in the design. Giovannitti-Jensen and Myers (1989) recommend the use
of variance dispersion graphs (VDGs) to display the scaled prediction variance
over the design region. A VDG plots the minimum, maximum, and average
scaled prediction variance for all points that are the same “distance” from the
design center as a function of “distance”. For designs on cubes, this “distance”
is measured from the design center to the center of each cube face. VDGs have
been used extensively to study the performance of response surface designs. For
example, see Myers, Vining, Giovannitti-Jensen, and Myers (1992).

We chose to evaluate the proposed designs using scaled prediction variance by
way of variance dispersion graphs. To illustrate, the design given in Table 11 for
seven factors was projected into an 18-run design for factors x1, x2, and x7. The



FACTOR SCREENING AND RESPONSE SURFACE EXPLORATION 593

projected design was compared to a face-centered cube (FCC) for the same set of
factors (a design with n = 17 experimental runs). A full quadratic model in the
three factors x1, x2, and x7 is assumed. The VDGs for both designs are displayed
in Figure 1. A horizontal line at 10 for the scaled prediction variance (since there
are p = 10 terms in the full quadratic model) has been included as a frame of
reference for G-optimality. Based on the VDG in Figure 1, the face-centered
cube is a better design in terms of maximum scaled prediction variance. This is
not surprising since the authors have pointed out that their designs generally do
not enjoy high G-efficiencies. However, examining the average scaled prediction
variance reveals that the proposed design is highly competitive with a standard
FCC. It may be possible to improve the relatively low G-efficiency by selectively
adding a few experimental runs to the proposed designs.
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Figure 1. Variance Dispersion Graph for (A) Face-Centered Cube with 17
runs and (B) Cheng and Wu Design in three variables from Table 11.

As a second example, the only three-factor combination from Table 11 that
will not project into a design that will support a full quadratic model in three
factors is the combination of x1, x3, and x4. This combination of factors yields a
33−1 design in two replicates. This design can be augmented with additional runs
to allow estimation of the full quadratic model by using a variety of augmentation
criteria. We augmented the design with 2 experimental runs using the D-criteria
for selecting the additional runs, with the resulting design shown in Table 1. The
additional experimental runs are given in bold. The VDG for the augmented
design is given in Figure 2. Note that the augmented design has reasonable
scaled prediction variance properties.
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Table 1. Augmented Cheng and Wu Design in three variables.

Run x1 x3 x4

1 −1 −1 −1
2 −1 0 0
3 −1 1 1
4 0 −1 0
5 0 0 1
6 0 1 −1
7 1 0 −1
8 1 1 0
9 1 −1 1

10 −1 −1 −1
11 −1 0 0
12 −1 1 1
13 0 −1 0
14 0 0 1
15 0 1 −1
16 1 0 −1
17 1 1 0
18 1 −1 1
19 1 0 1
20 1 1 −1
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Figure 2. Cheng and Wu 33−1 with two replicates in variables, x1, x3, x4

augmented with 2 runs (n = 20).

In summary, we think that the designs proposed by Cheng and Wu are
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likely to be most useful when the experimenter is reasonably certain that the
second-order model will be adequate over the region of experimentation, or when
the region of operability is reasonably small. The authors have evaluated their
designs in terms of D- and G-efficiencies and concluded that the designs have
relatively low G-efficiencies. In our opinion, a single number criteria does not
adequately describe the variance properties of the proposed designs and we sug-
gest that the scaled prediction variance over the region of operability for these
designs contributes valuable additional information. In particular, the average
prediction variance based on our limited evaluation appears competitive with
other designs. Furthermore, augmentation of these designs with a few additional
runs could potentially improve G-efficiency in some situations.
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COMMENTS

Rahul Mukerjee

Indian Institute of Management

I begin by congratulating the authors on this very scholarly and thought-
provoking piece of work. In particular, the idea that non-regular fractions can
have an edge over the regular ones in the present context is very promising and
can open up whole new areas. I am sure that many other researchers will follow
up this paper. For possible consideration in the future by the authors or others,
I will indicate two issues that seem to emerge from the present work.

1. Non-regular fractions, including three-level ones, are often generated from
difference matrices, and systematic constructions are known to exist for the lat-
ter - vide Wang and Wu (1991), Dey and Mukerjee (1999), and the references
therein. Admittedly, these constructions can be much more complicated than
the corresponding ones for regular fractions. Nevertheless, can there be any way
of exploiting the systematic element in such constructions for analytical study
of the performance of the resulting non-regular fractions, under at least some of
the present criteria?

2. A salient feature of the two-stage analysis, discussed in Section 7, is that
the active fac are identified in the first stage via a model that involves only
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the main effects (MEs). As the authors note later in Section 7, the presence of
interactions, say, two-factor interactions (2fis) can vitiate the identification of the
active factors. Specifically, the trouble can arise in two ways:
(a) an inactive factor is declared active at the first stage;
(b) an active factor remains undetected at the first stage.

For example, in a regular fraction, if an insignificant ME is aliased with a
significant 2fi then situation (a) can arise. Similarly, in such a fraction, if a
significant ME is aliased with a 2fi which is also significant, with approximately
the same magnitude but in the opposite direction, then situation (b) can arise.

As seen in Section 7, it may be possible to have some kind of protection
against the situation in (a) under the present two-stage analysis. Is there any
such protection against (b) within the frequentist paradigm? Is it possible to
develop a systematic procedure for this purpose? Or does the Bayesian method
of Box and Meyer (1993), hinted at in Section 2, represent the only way out?

Indian Institue of Management, Joka, Diamond Harbour Road, Post Box No. 16757, Alipore
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COMMENTS

David M. Steinberg and Dizza Bursztyn

Tel Aviv University

Cheng and Wu present an interesting and useful framework for designing
experiments that can accomplish the joint goals of factor screening and response
modeling. It is essential to consider the scientific context of response modeling
experiments to fully appreciate the ideas in their article and we begin our dis-
cussion with some brief comments on this topic. Then we describe an alternative
class of designs that we have found efficient for joint screening and modeling. Our
class is based on rotations of standard two-level factorials. Finally, we describe
a design criterion that we have found useful in these settings and compare our
rotation designs to the three-level fractions advocated by Cheng and Wu.

Scientists engaged in experimentation and empirical modeling are often faced
with the problem of identifying the important factors and then modeling the
response variables using those factors. Response surface methodology (RSM)
evolved as a strategy for tackling such problems when rapid feedback is possi-
ble and a sequential approach can be taken. The spirit of the RSM strategy is
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captured with clarity in the very insightful articles by Box (1999a, 1999b) and
Box and Liu (1999). One of the main points of those articles is that sequential
investigation is an essential element of response surface methodology. At the very
heart of the strategy is the flexibility to proceed in small, well-designed stages.
The results at each stage lead to decisions in planning and analyzing the next
stage, including possible changes in the experimental factors, their ranges, or the
number of levels included, and in the equations used in modeling the response
variables. Many RSM studies begin with factor screening experiments and even-
tually proceed to modeling experiments. However, the cursory characterization
by Cheng and Wu that “RSM can typically be described as consisting of two
parts” (screening and modeling) strikes us as stopping well short of the much
broader strategic scope of RSM.

The fundamental motivation for this article by Cheng and Wu is that ex-
perimenters sometimes need to exploit data from a single experiment both to
identify the important factors and to fit models that have more than linear main
effects. We have also had experiences with experimenters who did not enjoy the
flexibility required by the fully sequential nature of RSM. In one extreme case,
we consulted with an engineer who had rented 6 hours of access time to an ex-
pensive facility. In that time, he had to make all the runs necessary to achieve
both factor screening and modeling. Off-line data processing was necessary to
summarize the output to each run, so bringing along a statistician to do “real
time” data analysis was not feasible. We have consulted on other experiments in
which the total time schedule was dominated by the need to specify and procure
parts that matched the levels needed in the experiment. Each new order resulted
in further delays in the project. Thus the sequential strategy of RSM simply was
not practical.

One of the very interesting ideas in Cheng and Wu’s article is their extension
of the notion of projectivity. The original articles that examined projectivity were
concerned with the ability of two-level fractional factorial designs to provide extra
information on interactions when projected onto a subset of the factors. Cheng
and Wu add the valuable step of looking at projectivity for fitting full second-
order models and not just interactions.

Cheng and Wu propose the use of three-level fractional factorials for joint
screening and modeling, pointing out the important difference between combina-
torial and model isomorphism. This distinction was also made by D. Street with
respect to 33−1 designs in a presentation at the R. C. Bose Memorial Conference
in 1995. Cheng and Wu consider the more interesting case of 34−1 designs and
show that there are two classes of model isomorphic designs, which they denote
by K1 and K2 . A simple geometric property distinguishes between these two
classes of designs. The designs in K2 are precisely those which include the center
point (0, 0, 0, 0). The remaining 26 points in these designs form 13 foldover pairs.
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There does not appear to be any useful 13 run design consisting of one mem-
ber of each pair. So the foldover property does not offer any evident statistical
benefits to the designs in K2 . The design classes are specified by their defining
word (as in the article) only if one chooses the fraction that sums to 0 modulo
3. If, instead, the sum is 1 or 2, different defining words are in each class. The
geometric description is valid regardless of the sum.

One of the possible drawbacks to the three-level fractions proposed by Cheng
and Wu is the relatively strong aliasing of main effects with two-factor interac-
tions. These effects are only partially aliased, so many models with combinations
of main effects and two-factor interactions can be fit. However, the aliasing might
also lead to misidentification of the active factors. This problem is highlighted
by the example in Section 7 of the article. The initial main effects analysis found
significant effects for factors C and D, but the more detailed analysis that fol-
lowed suggested that the real active effect might be the AB interaction, with the
presumed effects for C and D a result of their aliasing with this interaction.

We have been exploring an alternative class of designs based on rotations
of two-level factorials. These rotation designs are also useful for joint screening
and modeling. They are orthogonal plans for first-order models and do not suffer
from the aliasing of main effects with interactions noted above for the three-level
fractional factorials. To construct a rotation design, let D denote an n×k design
matrix for a two-level fractional factorial and let R be any k × k orthogonal
matrix. Then the design DRot = (1/c)DR is a rotation design. The constant
c serves only to rescale the design to the unit cube. We have found that one
useful class of rotation designs can be formed when k = 2t by taking orthogonal
matrics of the form R = HSH ′, where H is the standard Hadamard matrix
for estimating all the effects in a 2t factorial design (Bursztyn and Steinberg, in
press). The matrix S is block diagonal, with each 2 × 2 block a simple planar
rotation. Taking the initial design D to be the standard resolution IV design with
2k runs generates a rotated design with the same set of levels for each factor.
The angles used in the planar rotations can be chosen to improve the statistical
properties of the design. If the number of factors is not a power of two, one can
use the above technique by adding “dummy” factors, doing the rotation, and
then dropping the extra factors.

The rotation designs, like the three-level fractional factorials, are able to fit
many extended models. Bursztyn and Steinberg (in press) present an example
of an 8-factor, 16-run rotation design that can fit a full second-order model in
every three-factor projection and can fit models with all linear effects and all
pure quadratic main effects in 58 out of 70 four-factor projections.

We have found that a useful criterion for combined screening and modeling
designs is to compute the sum of the squared elements of the alias matrix that
results from fitting a first-order model in the presence of higher order (say up to



FACTOR SCREENING AND RESPONSE SURFACE EXPLORATION 599

third-order) terms (Bursztyn and Steinberg, in press). Small entries in the alias
matrix imply that there is limited aliasing of main effects so that the misidenti-
fication problem pointed out earlier is minimized. Further, small entries in the
alias matrix correlate well with second-order projectivity because they tend to
indicate the ability to fit larger models that include some of the terms considered
as “extra” regressors relative to the initial model. We make all of the polyno-
mial terms in the alias matrix orthonormal with respect to uniform measure on
the unit cube to ensure that our comparisons use polynomials that are defined
independently of the designs.

We computed the alias matrix measure for several rotation designs and for
some of the designs proposed by Cheng and Wu. The results for some 8-factor
designs are described in Table 1. The rotation designs are much more efficient
than the three-level fractions with respect to the alias matrix criterion. The
rounded rotation design in Table 1 was derived from rotation design 2 by rounding
each level to the nearest value from among ±1, ±0.5 and 0. This design overcomes
the practical objection that rotation designs may include many levels for each
factor and so may be difficult to implement. Some of the properties of the rotation
design are lost by rounding, but the design here is still close to orthogonal and is
quite efficient with respect to our alias matrix criterion. We note that the angles
in our rotation designs were chosen via some very limited trial and error. No
attempt was made to find optimal angles.

Cheng and Wu have opened an interesting new area for research in experi-
mental designs for response modeling. They have also contributed some useful
new designs. Our own research on rotation designs shares many common themes.
We encourage further work in this area.

Table 1. The alias matrix criterion for several designs. The regular and
special three-level fractional factorials are the designs in sections 4.2 and 6,
respectively, of Cheng and Wu.

Design Runs Factors Alias Criterion
Rotation 1 16 8 0.26
Rotation 2 32 8 2.50

Rounded Rotation 32 8 5.42
38−5 Regular 27 8 25.75
38−5 Special 27 8 27.25
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REJOINDER

Shao-Wei Cheng and C. F. J. Wu

The eight discussants have made insightful comments and asked penetrating
questions on a variety of issues that our work has helped generate. We are
thankful to them for their efforts in reading through a long paper, and their
generosity in sharing ideas and unpublished results with the readers and us. Our
reply is grouped into five categories.

1. Uni-stage vs. Sequential Experiments

The pros and cons of these two modes of experimentation are well docu-
mented in textbooks, our paper and the discussions. Because of its ability for
adaptive learning, the sequential approach has been the mainstay in response
surface literature. As the trend in technology favors a shorter product devel-
opment cycle and a quicker reaction to market opportunities, shorter-duration
non-sequential experiments will become more popular in engineering, and the
physical and life sciences, as well as in agriculture and clinical trials.

Huang and Lewis raise concerns on the appropriateness of our approach
to deal with many factors. Indeed, if the number of factors is too large, say
more than 12 factors at three levels, it will become ineffective to perform screening
and surface exploration with the same design. A preliminary stage of study
/experimentation to screen and reduce the number of factors will be required,
that is, a sequential strategy will be unavoidable. In the Myers-Montgomery
terminology (per the Montgomery-Borror discussion), this is referred to as stage
0 in the RSM.

2. Analysis Methods for Factor Screening

Several discussants (Bingham, Khuri, Lewis, Mukerjee) correctly point out
the limitations of using main effect analysis for factor screening. If a factor’s
significance is manifested through one or several of its interactions with other
factors, but not through its main effect, it will be missed by the main effect
analysis. Because of these limitations we discussed other analysis methods, such
as the Bayesian approach of Box and Meyer (1993), and the more elaborate
Bayesian approach of Chipman, Hamada and Wu (1997) that performs an intel-
ligent search over the model space by using Gibbs sampling. A frequentist model
search (see Section 8.4 of Wu and Hamada (2000) for three versions of this) that
shares many features with the Bayesian approach of Chipman, Hamada and Wu
is equally effective in many situations, and is easier to program. The first method
(by Box and Meyer) is factor-based, while the last two are effect-based. (This
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terminology and distinction is due to Chipman and Hamada (1996)). Because
these more elaborate methods can identify factors whose significance only appears
through interactions, the models explored in the two-stage analysis strategy do
not have to follow strong effect heredity (hinted at in Bingham’s discussion.). In
general, factor-based methods are more suitable for designs of small size, because
such designs do not have enough degrees of freedom for model fitting. On the
other hand, effect-based methods require more degrees of freedom and thus work
better for larger designs. Therefore, an effect-based method (as suggested by
Bingham) may not work for designs of medium size. By contrast, the two-stage
analysis strategy can handle such situations as the model space is reduced after
projection.

Because of its simplicity the main effect analysis method should be consid-
ered, especially when the investigators do not have access to software for more
elaborate methods. In the majority of situations, main effect analysis coupled
with second-stage analysis should perform well. This is especially true if a more
lenient criterion is used in selecting factors.

If the aliasing between effects is too strong, no method can be effective in de-
aliasing them. In this case the misidentification of important factors, as pointed
out by Mukerjee and Khuri, is unavoidable. An illustrative example can be found
in Section 8.4.1 of Wu and Hamada (2000). The only recourse then is to find
a better design or to sequentially add design points to ameliorate the strong
aliasing. The related issue of choosing alternative designs is deferred to Point 4.

Lewis mentions the interesting alternative of using a two-stage group-
screening to screen two-factor interactions (in addition to main effects). This
approach requires sequential experimentation. She also expresses concern about
“a conflict — between the need — to have a large number of eligible projected
designs of low dimensions, and the ability — to offer some indication of such
interactions in the second-stage analysis”. We cannot see how this conflict will
arise based on the theory and on our limited experience in data analysis. As
shown in Section 6, the eligible projection is significantly improved (i.e., more
second-order models can be fitted in the second-stage analysis) after the curse of
three-letter words is removed. In addition, three-letter words should be avoided
in the defining contrasts, a point echoed in Cheng’s discussion.

3. Alternative Criteria

Montgomery and Borror correctly point out that G-efficiency is a pessimistic
criterion for measuring the utility of designs. The VDG plot gives a more com-
prehensive picture of the utility of designs. Its usefulness is hampered by the fact
that many plots need to be made, and a succinct summary from so many plots
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may pose a problem. For example, when the OA(18, 37) is projected onto three
factors, 35 VDG plots are needed.

Cheng raises the possibility of using the generalized minimum aberration
criterion, or its modification, as a surrogate for the projection-efficiency criteria
in the paper. This is an interesting idea. In our work with H. Xu (Cheng, Wu,
and Xu (2001)), it is shown that eligible projection and estimation efficiency
can be combined in one criterion through the frequencies of moment aberration
of projected designs. The moment aberration criterion was introduced by Xu
(2001). This result suggests that a criterion appropriate to Cheng’s discussion
can be obtained. Cheng and Mukerjee raise a related question of developing a
theory to describe the projection properties found by computer search, which by
itself is a challenging problem.

Two other criteria are mentioned: the sum of the squared elements of the
alias matrix (Steinberg and Bursztyn) and the weak heredity maximum esti-
mation capacity criterion (Bingham). We speculate that the latter is related
to eligible projection, the former to the severity of complex aliasing. Both are
interesting and deserve further study.

4. Alternative Designs and Other Design Strategies

Steinberg and Bursztyn suggest a novel class of rotation designs. The idea
is ingenious and the designs look very promising. Cheng and Mukerjee raise the
possibility of finding nonregular designs that are more efficient for the dual pur-
pose of projection and efficiency. Mukerjee’s suggestion of using difference matrix
and systematic construction was independently conceived in our work with Xu
(Cheng, Wu and Xu (2001)). By exploiting such ideas and using an intelligent
algorithmic search driven by the minimum moment aberration criterion proposed
by Xu (2001), we have constructed many 3-level and other combinatorial designs
that are better than the ones in the paper. An example of such designs is a 27-
run design with 8 factors such that all projections onto five factors are eligible.
This was also found by Bulutoglu and Cheng. It will be interesting to compare
the two approaches to construction.

Montgomery and Borror mention the limitations of assuming second-order
models. For simplicity, this paper only considers second-order models and second-
order designs but the proposed approach also covers more general designs and
models. As mentioned by Huang, an interesting and challenging extension is to
develop a comprehensive design theory and analysis strategy for more general
models, spline regression models for example.

Khuri raises the possibility of using non-orthogonal designs for factor screen-
ing. In general this is not recommended. Non-orthogonal designs will be used
only if they can accommodate more factors than orthogonal designs. In such
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situations the number of factors is too numerous for the dual task of screening
and surface exploration to be effective, as discussed in a related comment under
Point 1.

Khuri also expresses concern about the checking of model assumptions. Ad-
mittedly, sequential designs in the RSM literature are ideal for this purpose. But
if a uni-stage experiment is mandated, one can still use a more comprehensive
design than second-order design to accommodate a more flexible model.

5. Combinatorial Isomorphism vs. Model Isomorphism

We are glad that this distinction and its novelty were appreciated and rec-
ognized by several discussants. This distinction was extensively used in Chapter
5 of Wu and Hamada (2000) to motivate and justify a new data analysis strat-
egy. Bingham speculates that “If one considered interactions with the quadratic
terms, there would be no distinction between the two designs”. What causes
model non-isomorphism is the difference in the geometric structures of the de-
signs. For example, Steinberg and Bursztyn observe that designs in K1 include a
center point while designs in K2 do not. (More information about the geometric
structure of the two designs can be found in Cheng (1999)). For quantitative
factors, the issue of model isomorphism arises because different assignments of
factor levels to 0, 1, 2 lead to different geometric structures of design points in the
space. Therefore the geometric structure of design provides a more fundamental
explanation for model non-isomorphism.

In conclusion, we are grateful and pleased that the ideas in our paper have
helped generate further ideas, questions and results. These include a deeper un-
derstanding of data analysis methods, construction of new designs, and proposal
of new design criteria and experimentation strategies. Judging by the enthusiasm
and insights of the discussants, we can be hopeful that the modest start made in
this paper will open up a new and fruitful direction of research in the design and
analysis of experiments, and will eventually make some impact on its practice.
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