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Abstract

Factor screening searches for the really important inputs (factors)
among the many inputs that are changed in a realistic simulation ex-
periment. Sequential bifurcation (or SB) is a sequential method that
changes groups of inputs simultaneously. SB is the most effi cient and ef-
fective method if the following assumptions are satisfied: (i) second-order
polynomials are adequate approximations of the input/output (I/O) func-
tions implied by the simulation model; (ii) the signs of all first-order (or
main) effects are known; (iii) if two inputs have no important first-order
effects, then they have no important second-order effects either (heredity
property). This paper examines SB for random simulation with multiple
responses (outputs), called multi-response SB (MSB). This MSB selects
"batches" of inputs such that within a batch all inputs have the same
sign for a specific type of output, so no cancellation of main effects oc-
curs. MSB also applies Wald’s sequential probability ratio test (SPRT)
to obtain enough replicates for correctly classifying a group effect or an
individual effect as important or unimportant. MSB enables effi cient selec-
tion of the initial number of replicates in SPRT. The paper also proposes
a procedure to validate the three assumptions of MSB. The performance
of MSB is examined through extensive Monte Carlo experiments that sat-
isfy all MSB assumptions, and through a case study representing a logistic
system in China; MSB performance is very promising.

Keywords: design of experiments; curse of dimensionality; sparse
effects

JEL: C0, C1, C9, C15, C44
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1 Introduction

Whereas real-world experiments typically have only a small number of factors
(less than ten?), simulation experiments may involve numerous factors or (sim-
ulation) inputs; e.g., the ecological case study by Bettonvil and Kleijnen (1997)
has 281 inputs. Screening is defined as searching for the really important inputs
among the many inputs that are changed in a simulation experiment (so-called
Pareto or sparsity-of-effects principle; also see the general review of design and
analysis of simulation experiments by Kleijnen et al. 2005). This search should
also cure "the curse of dimensionality", so that after the screening phase the
analysts can apply classic metamodels such as low-order polynomial regression
and Kriging models .
There are several screening methods, including classic two-level designs, fre-

quency domain experimentation, supersaturated designs, and group-screening
designs; details are given by Kleijnen (2008) and Kleijnen (2009). In this paper,
however, we focus on the screening method called sequential bifurcation (SB),
because it seems the most effi cient and effective method– if its assumptions are
satisfied. The most important assumptions are: (i) a second-order polynomial
is an adequate approximation of the input/output (I/O) function implied by
the simulation model; (ii) the signs of all first-order (or main) effects in this
polynomial are known; (iii) if two inputs have no important first-order effects,
then they have no important second-order effects either (so-called "heredity
property"; see Wu and Hamada 2009). Several case studies illustrate that these
assumptions may be realistic; see again Bettonvil and Kleijnen (1997) and also
Kleijnen, Bettonvil, and Persson (2006), Wan, Ankenman, and Nelson (2010),
and the case study in Section 4.
SB is a sequential group-screening method. By definition, sequential designs

select the input combinations (also called design or inputs points) as the ex-
perimental results become available: sequential methods learn from preceding
experimental results. Group screening means that individual inputs are treated
as a group; i.e., if the group changes from one value to another value, then all
its individual inputs do so. SB’s first (or initial) step aggregates all inputs of the
simulation model into a single group. In each step, SB tests whether the current
group has a significant main effect. SB discards non-significant subgroups. SB
splits a group with a significant effect into two (smaller) subgroups; i.e., it uses
bifurcation. In the next step SB tests whether these subgroups have significant
main effects; SB splits significant subgroups into smaller subgroups– until the
main effects of all significant individual inputs are estimated.
The first paper on SB is Bettonvil and Kleijnen (1997), assuming determin-

istic simulation. Next, SB is extended to random (stochastic) discrete-event
simulation by Cheng (1997). SB for random simulation is also discussed by
Kleijnen et al. (2006), illustrating SB through a supply-chain case study with
92 inputs. Wan, Ankenman, and Nelson (2006) combine Bettonvil and Kleijnen
(1997)‘s SB with two hypothesis-testing procedures, to control the type-I and
type-II error probabilities; next, Wan et al. (2010) generalize their procedure to
improve its effi ciency and effi cacy. Shen and Wan (2009) develop a controlled
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sequential factorial design (CSFD) that combines a traditional factorial design
with sequential hypothesis testing; Shen, Wan, and Sanchez (2010) further im-
prove the effi ciency by combining CSFD and the design in Wan et al. (2010).
Based on this literature survey, we conclude that SB is a relatively new

method that has attracted the attention of several researchers. However, no
researchers examine SB (or other screening methods) for simulation with multi-
ple responses (outputs, performance measures). In practice, a simulation model
does provide multiple responses; e.g., supply chain management (SCM) simula-
tion gives multiple performance measures; see the surveys by Kleijnen (2003),
Kleijnen (2008), and Kleijnen and Smits (2003). Examples of SCM case studies
with multiple simulation outputs are (in historical order) Shang and Tadika-
malla (1998), Chan and Spedding (2001), Dabbas et al. (2001), Shang and
Tadikamalla (2004), Kumar and Nottestad (2006), Yalcnkaya and Mirac Bay-
han (2009), and Ekren et al. (2010). Note that these case studies do not use
screening; i.e., they assume a very limited number of inputs, all of which are
important. (The famous psychological study Miller (1956) reports that hu-
man’s capacity for processing information is limited to seven plus or minus two
responses.)
Naive SB for simulation with multiple outputs applies SB to each type of

output successively. We, however, propose multi-response SB (MSB). Our main
conclusion will be that MSB is more effi cient (fewer simulated input combina-
tions and replicates, so less computer time) and more effective (higher proba-
bility of finding important inputs). Note that effi ciency is crucial for computa-
tionally expensive simulation.
This paper is organized as follows. Section 2 extends SB to multiple outputs,

and uses similar assumptions as SB does. Because an individual input may in-
crease some type of output and decrease another type of output, MSB selects
"batches" of inputs such that within a batch all inputs have the same sign for
a specific type of output. We detail MSB for only two output types. To deter-
mine the number of replicates, MSB applies the sequential probability ratio test
(SPRT). This section also gives a procedure to validate the three assumptions
of MSB. Section 3 compares the performance of MSB and SB through Monte
Carlo experiments that satisfy all (M)SB assumptions; this section also includes
a more effi cient rule for selecting the initial number of replicates per stage. Sec-
tion 4 evaluates the robustness of MSB through a case study representing a
logistic system in China; MSB turns out to require fewer replicates than SB.
Section 5 presents the main conclusions.

2 Multi-response Sequential Bifurcation (MSB)

The basic idea of our MSB is inherited from SB. So, MSB contains a sequence
of steps in which the main effects of input groups are estimated and tested.
Specifically, if a group is declared to be non-significant, then all inputs in the
group are classified as unimportant and discarded in the next steps. However,
if a group is declared significant, then this group is split into two subgroups
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for further evaluation. A basic MSB rule is to declare a group of inputs to be
important if at least one of the (multiple) outputs shows significant changes.
Moreover, the unique feature of MSB is its attempt to estimate the main effects
of groups for all outputs, while minimizing the experimental effort compared
with SB for a single output. Details are given in the next subsections.

2.1 MSB Symbols and Definitions

Table 1 gives the major symbols and their definitions in MSB. These symbols
slightly differ from those in Bettonvil and Kleijnen (1997). Their definitions will
become clear in the next subsections.

2.2 MSB Assumptions

We use the following three basic assumptions for MSB, which Bettonvil and
Kleijnen (1997) also use for SB.
Assumption 1: An adequate metamodel (of the I/O function implied by

the underlying simulation model) for output l is a second-order polynomial.
This metamodel is denoted by

yl = β(l);0 +
∑K

j=1
β(l);jxj +

∑K

j=1

∑K

j′=j
β(l);j;j′xjxj′ + εl (1)

where the K inputs are standardized (coded, normalized) such that −1 ≤ xj ≤
1 (j = 1, . . . ,K); for output l the intercept is β(l);0, the K main effects are β(l);j ,
the K(K − 1)/2 two-factor interactions are β(l);j;j′ with j < j′, the K purely
quadratic effects are β(l);j;j ; εl is the metamodel residual for output l with zero
mean (because the metamodel is assumed to be "adequate"). Note that this
standardization (−1 ≤ xj ≤ 1) makes the input effects scale-free so they are
comparable when determining the important inputs. (Bettonvil and Kleijnen
(1997) assume a metamodel without purely quadratic effects so β(l);j;j = 0). To
estimate the main effects in (1), it is effi cient to select only two values per input.
In practice, the users of the underlying simulation model should provide these
values and ensure that these values are realistic extreme values, given the goal
of the simulation model.
Assumption 2: The signs of all main effects are known; i.e., it is known

that either β(l);j ≥ 0 or β(l);j ≤ 0 (j = 1, . . .K) for any given j and l.
Assumption 2 is a basic assumption of all group-screening methods, because

this assumption avoids cancellation of individual main effects within the group
effect.
In practice, Assumption 2 may indeed hold, as the case study in Section 4 will

illustrate. This case study concerns a Chinese automobile-parts supply-chain in
which some inputs are logistic resources (e.g., the number of trucks in trunk-
line transportation, the number of trucks in branch-line transportation, and the
number of receiving doors in the cross-docking distribution center). Obviously,
the more logistic resources are available, the lower is the waiting time of auto
parts in each logistic node so the lower is the cycle time (CT); CT is one of
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Table 1: Major MSB symbols and their definitions
Symbol Definition
α Type I error probability
β(l);j Main (first-order) effect of input j for output l
β(l);j′−j Sum of main effects of inputs j′ through j for output l
γ Power (complement of type II error probability)
∆0 Threshold such that βj ≤ ∆0 is "unimportant"
∆1 Threshold such that βj ≥ ∆1 is "important"
εl Residual in metamodel for output l with zero mean
σ2(l)(x) Variance of εl for input combination x
H(l):i Value of input i that gives highest value for output l
K Total number of inputs in simulation experiment
kp Number of inputs in batch p
L(l):i Value of input i that gives lowest value for output l
mj′−j Final number of replicates when estimating β(l);j′−j through SPRT
M(l);j′−j Maximum number of replicates when estimating β(l);j′−j through SPRT
n Number of simulation output types
N0;j′−j Initial sample size when estimating β(l);j′−j
p Identity number of batch (p = 1, ..., q)
q Number of batches
r Current number of replicates in a given stage
w(l);(j) Simulation output l when inputs 1 through j are at H(l)

and inputs (j + 1) through K are at L(l)
w(l);−(j);r Simulation output l when inputs 1 through j are at L(l)

and inputs (j + 1) through K are at H(l)

w(l→l′);(j) Simulation output l′ when inputs 1 through j are at H(l)

and inputs (j + 1) through K are at L(l)
w(l→l′);−(j) Simulation output l′ when inputs 1 through j are at L(l)

and inputs (j + 1) through K are at H(l)

xj Standardized value of input j
yl Metamodel output for simulation output l (l = 1, ...n)
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Table 2: Input values for two output types
(a) Input values for w1 (b) Input values for w2

Input Low level
for w1

High level
for w1

w1 w2 Low level
for w2

High level
for w2

w1 w2

1 L(1);1 H(1);1 + + L(2);1 H(2);1 + +
2 L(1);2 H(1);2 + + L(2);2 H(2);2 + +
...

...
...

...
...

...
...

...
...

k1 L(1);k1 H(1);k1 + + L(2);k1 H(2);k1 + +
k1 + 1 L(1);k1+1 H(1);k1+1 + — L(2);k1+1 H(2);k1+1 — +
...

...
...

...
...

...
...

...
...

K L(1);K H(1);K + — L(2);K H(2);K — +

the outputs of interest. Another output is number of throughput (NT) of parts;
obviously, the number of resources have positive effects on this other output
(NT). This case study illustrates that the means of the simulation output types
may either decrease or increase monotonically as a specific simulation input
increases.
Assumption 3: If two inputs have no important first-order effects, then

they have no important second-order effects either.

2.3 MSB Mathematical Details

Definition 1 Let β(l);j′−j be the sum of the main effects of inputs j′ through j
for output l:

β(l);j′−j =

j∑
i=j′

β(l);i. (2)

Definition 2 Changing the level of input i from L(l);i to H(l);i makes output l
increase.

Note that this change may make another output l′ decrease, so L(l);i equals
either L(l′);i or H(l′);i where l 6= l′; e.g., L(l);i = H(l′);i if input i has opposite
effects on the outputs l and l′. Table 2 gives an example withK inputs and n = 2
outputs; columns 4 and 5 show that the inputs 1 through k1 have the same signs
for both outputs, while inputs k1 + 1 through K have opposite signs; changing
from L(l);i to H(l);i with l = 1, 2 and 1 ≤ i ≤ k1 increases both outputs, whereas
changing from L(l);i to H(l);i with l = 1 and k1 + 1 ≤ i ≤ K increases output
w1 but decreases output w2. If we wish to increase w2 for all K inputs, then
we should use part (b) of this table; i.e., 1 ≤ i ≤ k1 implies L(1);i = L(2);i and
H(1);i = H(2);i, but k1 + 1 ≤ i ≤ K implies L(1);i = H(2);i and H(1);i = L(2);i.
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Definition 3 Let w(l);(j) denote output l when inputs 1 through j are at H(l)

and the remaining inputs (j + 1 through K) are at L(l). Let w(l);−(j) denote
output l when inputs 1 through j are at L(j) and the remaining inputs are at
H(l).

The example of Table 2 implies that w(1);(K) is the output of w1 when all K
inputs have the values H(1); w(1);−(K) is the output when all K inputs have the
values L(1). Following Bettonvil and Kleijnen (1997), we call w(l);−(j)the mirror
observation of w(l);(j). The definition applies the so-called foldover principle,
which was originally developed for real-life experiments with a few factors such
that two-factor interactions do not bias the estimators of the main effects (see
Montgomery 2007); in SB and MSB the foldover principle ensures that second-
order effects (two-factor interactions and purely quadratic effects) do not bias
the first-order (main effect) estimators– as we shall prove in the next paragraph.
The metamodel assumed in (1) implies

E(w(l);(j)) = β(l);0 + β(l);1 + · · ·+ β(l);j − β(l);j+1 − · · · − β(l);K + (3)

β(l);1;2 + · · · − β(l);1;K + β(l);1;1 + · · ·+ β(l);K;K

and

E(w(l);−(j)) = β(l);0 − β(l);1 − · · · − β(l);j + β(l);j+1 + · · ·+ β(l);K + (4)

β(l);1;2 + · · · − β(l);1;K + β(l);1;1 + · · ·+ β(l);K;K .

Hence, w(l);(j) and w(l);−(j) enable the following estimator of the aggregated
main effect β(l);j′−j (defined in (2)) that is not biased by second-order effects
(also see Bettonvil and Kleijnen 1997):

̂β(l);j′−j =
[w(l);(j) − w(l);−(j)]− [w(l);(j′−1) − w(l);−(j′−1)]

4
. (5)

Consequently, the estimator of the individual main effect β(l);j that is not biased
by second-order effects, is

β̂(l);j =
[w(l);(j) − w(l);−(j)]− [w(l);(j−1) − w(l);−(j−1)]

4
. (6)

Note that this bias elimination in (5) and (6) doubles the number of simulation
observations, because it implies mirror observations.
Let the symbol "l → l′" in a subscript mean that the output l′ is observed

"for free" when we are interested in output l; i.e., running the simulation model
to observe output l also gives an observation on the other output l′. For example,
w(1→2);(K) denotes the output w2 when all K inputs are at H(1); w(1→2);−(K)
denotes the output of w2 when all K inputs are at L(1). Therefore, w(1→2);(K)
and w(1);(K) are observed for the same input combination H(1);1−K . This gives
the following definition.
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Definition 4 Let w(l→l′);(j) denote output l′ when inputs 1 through j are at
H(l) and the remaining inputs are at L(l); likewise, the mirror output w(l→l′);−(j)
denotes output l′ when inputs 1 through j are at L(l) and the remaining inputs
are at H(l).

Next we give the following definition of a batch of inputs such that there
is no cancellation of individual effects within the batch; e.g., Table 2 gave an
example of two batches with batch 1 containing inputs 1 through k1 so both
outputs increase and batch 2 containing inputs k1 + 1 through K so output 1
increases and output 2 decreases.

Definition 5 A batch is a group (of inputs) in which each of the n outputs
either increases or decreases when changing all the individual inputs in this
group from -1 to 1.

The following theorems and their corollaries represent the main contribution
of this paper; their proofs are given in the appendixes, and examples are given
in the next subsections.

Theorem 6 If inputs j′ through j are in the same batch and they have the same
signs for outputs l and l′, then the unbiased estimators of the group main effects
for outputs l and l′ are

̂β(l);j′−j =
[w(l);(j) − w(l);−(j)]− [w(l);(j′−1) − w(l);−(j′−1)]

4
(7)

and

̂β(l′);j′−j =
[w(l→l′);(j) − w(l→l′);−(j)]− [w(l→l′);(j′−1) − w(l→l′);−(j′−1)]

4
(8)

where j′ ≤ j and corresponding terms in (7) and (8) are observed for the same
input combination.

Note that (7) is identical to (5). An example of corresponding terms in (7)
and (8) is w(l);(j) and w(l→l′);(j). The proof of this theorem is given in Appendix
1.

Corollary 7 If wl and wl′ either increase or decrease for the individual input
j, then the unbiased main effect estimators are

β̂(l);j =
[w(l);(j) − w(l);−(j)]− [w(l);(j−1) − w(l);−(j−1)]

4
(9)

β̂(l′);j =
[w(l→l′);(j) − w(l→l′);−(j)]− [w(l→l′);(j−1) − w(l→l′);−(j−1)]

4
(10)

Proof. Equations (9) and (10) follow from (7) and (8) when j′ equals j.
Now we give a theorem if the batch of inputs has opposite signs for the

outputs l and l′ (instead of the same signs as in the preceding theorem).
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Theorem 8 If inputs j′ through j are in the same batch, and they have opposite
signs for outputs l and l′, then the unbiased estimators of the group main effects
for output l and l′ are

̂β(l);j′−j =
[w(l);(j) − w(l);−(j)]− [w(l);(j′−1) − w(l);−(j′−1)]

4
(11)

and

̂β(l′);j′−j = −
[w(l→l′);(j) − w(l→l′);−(j)]− [w(l→l′);(j′−1) − w(l→l′);−(j′−1)]

4
(12)

where j′ ≤ j.

Note the minus sign in (12) immediately after the equality sign. The proof
of this theorem is given in Appendix 2.

Corollary 9 For an individual input that makes one output increase and the
other output decrease, the unbiased main-effect estimator is

β̂(l);j =
[w(l);(j) − w(l);−(j)]− [w(l);(j−1) − w(l);−(j−1)]

4
(13)

β̂(l′);j = −
[w(l→l′);(j) − w(l→l′);−(j)]− [w(l→l′);(j′) − w(l→l′);−(j′)]

4
(14)

Proof. Equations (13) and (14) follow from (11) and (12) when j′ equals j.

2.4 MSB for Two Output Types

In this subsection, we concentrate on MSB in the simple case of only two types
of outputs (so n = 2). Actually, most cases with multiple outputs have only
two output types; see again Chan and Spedding (2001), Kumar and Nottestad
(2006), Shang et al. (2004), and Yalcnkaya and Mirac Bayhan (2009).
Table 2 has already illustrated a situation in which the individual inputs

1 through k1 in batch 1 increase both outputs; the inputs k1 + 1 through K
in batch 2 increase output 1 and decrease output 2. Table 3 details the MSB
procedure for this situation; we shall detail the SPRT in Section 2.5.

In Appendix 3 we detail two special cases, each with a single batch of inputs
so k1 = K; namely, (i) each input makes both outputs increase, and (ii) each
input makes one output increase and the other output decrease. In Appendix 4
we sketch MSB for the general case of n > 2 outputs

2.5 MSB: Replicates and SPRT

To test the importance of the estimated main effects (of groups of inputs or
individual inputs), we follow Wan et al. (2010). They give a testing procedure

9



Table 3: MSB for Case 3
(1) Define the values of all K inputs such that changing each individual input

from L(1) to H(1) makes w1 increase; the (1− k1) inputs in batch 1
make w2 increase, and the (k1 + 1−K) inputs in batch 2 make w2 decrease.

(2) Use SPRT with initial sample size N0;1−k1 to find the number of replicates m1−k1 where k1 is
not necessarily a power of two:(

w(1);(k1);r w(1);−(k1);r w(2);(k1);r w(2);−(k1)r
w(1→2);(k1);r w(1→2);−(k1);r w(2→1);(k1);r w(2→1);−(k1);r

)
.

Estimate ( ̂β(1);1−k1 , ̂β(2);1−k1)
′ and ( ̂β(1);k1+1−K ,

̂β(2);k1+1−K)′.
For batch 1:

(a) If SPRT declares ( ̂β(1);1−k1 , ̂β(2);1−k1)
′ unimportant, then discard batch 1;

(b) else split batch 1 into two batches.
For batch 2:

(a) If SPRT declares ( ̂β(1);k1+1−K ,
̂β(2);k1+1−K)′ unimportant, then discard batch 2;

(b) else split batch 2 into two batches.
...
Final: Use SPRT to identify the important individual inputs, and estimate their main effects.

that is meant to control the type-I (or α) and type-II (or β) error probabil-
ities. However, we think that their procedure does not guarantee control of
these probabilities over the whole procedure with its sequence of steps (also see
De and Baron (2012) for an interesting discussion of so-called familywise error
probabilities, in the context of clinical testing). We therefore consider Wan
et al.’s SB and our MSB as heuristics (which are better than apriori assuming
that the majority of potentially important individual inputs are unimportant,
and experimenting with a small group of inputs that are subjectively assumed
to be important).
Like Wan et al. we assume that the simulation outputs w(l)(x) for input

combination x have a Gaussian marginal distribution with heterogeneous vari-
ances σ2(l)(x); moreover, the four input combinations in Theorems 1 and 2 may
use common random numbers (CRN).
Note that CRN are meant to reduce the variances of the estimated effects;

see Law (2007)’s textbook on discrete-event simulation. To implement CRN,
we make replicate (say) r use pseudo-random number (PRN) seed or initial
value (say) vr where r = 1, ..., mj′−j with mj′−j denoting the number of repli-
cates when estimating β(l);j′−j ; we use a vector of seeds vr if the simulation
needs more than one seed (e.g., the simulation may select different seeds for
different processes such as different service stations). These seeds should be
selected such that they ensure that the PRN streams do not overlap; i.e., the
seeds should generate replicates that give independent and identically distrib-
uted (IID) simulation outputs. Software such as Arena can easily satisfy these
seed requirements; see Kelton, Sadowski, and Sturrock (2007). The required
number of replicates tends to increase, as the group size decreases (see Figure
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2 below). So as we proceed from stage to stage, we may use the same CRN
for the first replicates that the new stage has in common with its immediately
preceding stage, and use new PRN seeds for the additional replicates in the new
stage. Consequently, replicate 1 uses the same seed v1 in all stages, etc. If we
do not use CRN as much as possible, we still get correct results; actually, we do
not use CRN in our Monte Carlo experiments, as explained in Section 3.
Instead of applying the classic Student t statistic, Wan et al. derive a test

based on Wald (1947)’s SPRT (the latter test is also discussed by Kleijnen
1987, pp. 54-55 in a simulation context, and recently by De and Baron 2012).
In general, SPRTs add one replicate at a time, and terminate as soon as a
conclusion can be reached. Wan et al. apply their SPRT each time when
they test a group effect (in the early stages) or an individual effect (in the final
stage). Their SPRT adds one replicate at a time to the four groups being tested,
and may use CRN (also see our Theorems 1 and 2). Let r denote the current
number of replicates when estimating βj′−j (sum of main effects of inputs j′
through j; we focus on a single output for the time being). The initial number
of replicates– initial sample size– is N0. Wan et al. select a value for N0 that
remains constant over all the stages of their SB; e.g., N0 = 25 in their Monte
Carlo study and their semiconductor case-study. We, however, conjecture that
N0 may be smaller in the early stages because those stages estimate the sum of
the (positive) main effects of bigger groups (from four observations, except for
the very first stage– called stage 0– which uses only two different observations)
so the signal-noise ratio is larger (we shall detail our rule for selecting the initial
sample size, in Section 3).
SPRT uses the estimated variance of the estimator of β(l);j′−j based on the

initial sample N0;j′−j :

S2(l);j′−j =

N0;j′−j∑
r=1

( ̂β(l);j′−j;r − ̂β(l);j′−j)2

N0;j′−j − 1
with ̂β(l);j′−j =

N0;j′−j∑
r=1

̂β(l);j′−j;r

N0;j′−j
.

An illustration of the SPRT procedure for two outputs is Figure 1, in which
the two triangles (formed by the solid lines and the dotted lines) are the con-
tinuation regions for the n = 2 output types. The symbols • and N repre-
sent the observed value of the test statistics for the two outputs as a function
of the number of replicates (this plot shows decreasing values for output 1,
and increasing values for output 2). The SPRT checks whether the statistic∑mj′−j
r=1 [ ̂β(l);j′−j;r−r(l);0;j′−j ] with drift parameter r(l);0;j′−j (see below) crosses

one of their termination boundaries (TB). TB1 denotes the boundary of the re-
gion in which the effect is declared to be unimportant; TB2 denotes the bound-
ary of the region in which the effect is declared to be important. If for one of
the outputs its TB2 is crossed, the group is declared to be important; only if
both outputs cross TB1, the group is declared unimportant. Compared with
SB for a single output, MSB has a higher probability of declaring a group to be
important. The maximum number of observations for estimating β(l);j′−j is one
more than M(l);j′−j ; in general, M(l);j′−j 6= M(l′);j′−j where l 6= l′. The final
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number of replicates when estimating β(l);j′−j is mj′−j . The triangular region
is defined by

• the intercepts ±a(l);j′−j = ±a(l);0;j′−jS2j′−j , and

• the slopes of the sides of the triangular region ±λ(l) = ±(∆(l);1−∆(l);0)/4.

The constants a(l);0;j′−j and r(l);0;j′−j are the solutions of rather complicated
equations given by Wan et al.; see their equations 5 and 6 and the Matlab code
in Appendix C in their Online Supplement available at
http://joc.pubs.informs.org/ecompanion.html.
However, we correct an error in this code; i.e., we add their SumInt function,

which is missing in their Online Supplement. Wan et al. state that the goal of
their SB is to classify those inputs with βj ≤ ∆0 as "unimportant" and those
inputs with βj > ∆0 as important. For those inputs with βj ≤ ∆0, they want to
control the Type-I error probability of declaring them important not to exceed
α; for βj ≥ ∆1, they want the statistical power of the test to be not smaller
than γ. For ∆0 < βj < ∆1, they want "reasonable" power. Notice that the
slopes of the triangle increase as ∆1 increases; i.e., we need fewer replicates
when we estimate bigger effects. The number of observations for the four input
combinations when estimating βj′−j are equal if CRN are used, before beginning
the test (as detailed by Wan et al., near the end of their Section 3.2).
Because our MSB considers n ≥ 2 output types, we use Bonferroni’s in-

equality and replace the type-I error probability α in this SPRT by α/n and the
type-II error probability 1− γ by (1− γ)/n. This change in the SPRT implies a
bigger triangular area in Figure 1 in which we continue sampling before accept-
ing either H0 stating that the group factor is unimportant for all output types
(i.e., the group-factor is not important for any output type) or H1 stating that
the group-factor is important for one or more output types.

Obviously, the mj′−j replicates enable the computation of ̂β(l);j′−j , which is
the average of ̂β(l);j′−j;r (the estimated effect for output l of the group of inputs
j′ through j in replicate r with r = 1, . . . ,mj′−j).

2.6 MSB Validation

By definition, “screening”means that K (number of inputs) is too big to enable
the estimation of all the individual effects of a second-degree polynomial; this
number of effects is (say) q(K)= 1+K+K+K(K−1)/2 (likewise, the estimation
of all the parameters of a Kriging metamodel would be problematic). The case
study in Section 4 is a relatively small screening example with K = 26 so q(26)
= 378. Unlike Wan et al. (2010, pp. 489-491) we do not to use a central
composite design (CCD) based on a resolution-V (R-V) design for all K inputs
(our approach resembles the approach in Bettonvil and Kleijnen 1996, p. 187-
189). The final result of MSB and SB are estimates of only (say) K1 (<< K)
first-order effects of the inputs declared to be “important”. This result is based
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Figure 1: SPRT test for n = 2 output types
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on the three major assumptions specified in Section 2.2; namely, (i) a second-
order polynomial is a valid metamodel; (ii) the signs of all first-order effects in
this polynomial are known; (iii) the heredity property holds. To validate these
assumptions, we first estimate the q(K1) = (1 + K1 + K1 + K1(K1 − 1)/2)
individual effects of the second-degree polynomial with K1 inputs (e.g., q(5) =
21 << q(26) = 378). This estimation is not a screening problem, but a “classic”
design of experiments (DOE) problem. This classic design uses a CCD including
a R-V design (such a design, however, is not saturated at all; i.e., this design
implies a number of input combinations nCCD that is much higher than q(K1);
various alternative designs are discussed in Kleijnen 2008, p. 51). We shall
use such a classic CCD (with nCCD = 43 >> q(5) = 21) for the case study in
Section 4.
When running the simulation with the K1 inputs declared important by

MSB, we also need values for all the (K −K1) unimportant inputs. We decide
to keep the unimportant inputs constant. The unimportant quantitative inputs
we keep at their coded value 0; the unimportant qualitative inputs we keep at
(say) +1. We also need to select the number of replicates for the CCD (say)
mCCD.
Moreover, we should verify whether the (K − K1) inputs declared to be

unimportant by the screening method are indeed unimportant. We decide to
select (say) nval combinations of the K inputs (unimportant or important).
Our selection of nval depends on the computer time required per replicate and
the computer budget. We select these nval combinations such that we obtain
a space-filling design for the quantitative inputs (important or unimportant);
i.e., we use a Latin hypercube sample (LHS); for more details on LHS we refer
to Kleijnen (2008, pp. 126-130). For a qualitative input j we sample without
replacement its -1 and 1 values with equal probabilities of 0.5 (so Pr(xj = −1)
= Pr(xj = 1) = 0.5) such that nval/2 values are -1 (and the other nval/2 values
are 1). We randomly combine the nval combinations of the quantitative inputs
with the nval values of the qualitative inputs.
We then simulate these nval input combinations, using mval replicates; to

selectmval, we should examinemj (the SPRT’s final number of replicates needed
to test the significance of individual inputs; see again Figure 1 in Section 2.5
and also Figure 2 in the next section). We might use CRN in these nval input
combinations.
Next, we test the validity of the estimated second-degree polynomial with

the parameters β̂(l) for the K1 important inputs, which implies that the re-
maining K − K1 unimportant inputs have zero first-order and second-order
effects. We therefore predict output of type l for the nval input combinations,
and compare these regression predictions ŷ(l);i (i = 1, . . . , nval) with the corre-
sponding average simulated output values w(l);i =

∑mval

r=1 w(l);i;r/mval. Because
MSB declares an input j to be important if β(l);j ≥ ∆(l);1, the regression pre-
dictor ŷ uses more important inputs (and a bigger CCD) as ∆1 decreases so
its fit tends to increase. We therefore accept the regression predictor as valid
if
∣∣w(l);i − ŷ(l);i∣∣ ≤ ∆(l);1; this comparison is scale dependent. A Studentized

statistic is scale-independent because it accounts for the noise v̂ar(w(l);i) =
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∑mval

r=1 (w(l);i;r−w(l);i)2/{mval(mval−1)} and v̂ar(ŷ(l);i). Before presenting this
statistic in (16), we need to discuss v̂ar(ŷ(l);i).

Obviously, ŷ(l);i = x′iβ̂(l) where xi denotes the vector of important inputs

determined by the CCD and β̂(l);j =
mCCD∑
r=1

β̂(l);j;r/mCCD (where β̂(l);j;r de-

notes effect j for output l computed from replicate r with l = 1, . . . , n, j =
1, . . . , q(K1), r = 1, . . . ,mCCD). Hence

v̂ar(ŷ(l);i) = x′iĉov(β̂(l))xi. (15)

To compute ĉov(β̂(l)), we do not use the classic formula which assumes that
the simulation outputs of type l have a constant variance σ2(l) and that the
nCCD combinations do not apply CRN; instead we use the mCCD replicates to
estimate the (co)variances between β̂(l);j and β̂:

ĉov(β̂(l);j , β̂(l);j′) =

mCCD∑
r=1

(β̂(l);j;r − β̂(l);j)(β̂(l);j′;r − β̂(l);j′)

mCCD − 1
(j, j′ = 1, . . . , q(K1)).

These estimators give the q(K1)×q(K1)matrix ĉov(β̂(l))= (ĉov(β̂(l);j , β̂(l);j′)/mCCD),
which we use in (15).
To validate the regression (meta)model, we use the following (Studentized)

statistic with ν degrees of freedom (also see Kleijnen 2008, p. 58):

t(l);i;ν =
max(

∣∣w(l);i − ŷ(l);i∣∣−∆(l);1, 0)√
v̂ar(w(l);i) + v̂ar(ŷ(l);i)

(i = 1, . . . , nval). (16)

Because the two variables w and ŷ have different variances, the correct degrees
of freedom ν of this Student t-statistic is not so easy to determine (so-called
Behrens-Fisher problem). We select ν =min(mCCD−1,mval−1). Because there
are nval t-statistics for output l (l = 1, . . . , n), we use Bonferroni’s inequality; i.e.,
we replace the classic α value by α/(nval×n). If none of these t-statistics exceeds
the critical value (say) tm−1(α/(nval×n)) (ormaxl;i t(l);i;ν ≤ tm−1(α/(nval×n)),
then we accept the metamodel. Next, we may use the nval observations wi
(i = 1, . . . nval) to re-estimate the regression parameters β(l); we expect that
the resulting new estimate does not deviate much from the old estimate.
If this polynomial is accepted as valid, we test the remaining two assump-

tions; namely, known signs of all first-order effects in this polynomial, and hered-
ity. If this validation procedure suggests that the MSB assumptions do not hold,
then we need to look for a different screening method; see again Kleijnen (2008)
and Kleijnen (2009). Details follow in Section 4. Note that the second-order
polynomial for the important inputs can be used after the screening phase, to
optimize these inputs through response surface methodology (RSM).
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3 Monte Carlo Experiments

To evaluate the performance of our MSB heuristic, we first use a Monte Carlo
laboratory (we shall use a case-study in Section 4). The reason is that MSB is
based on three specific assumptions given in Section 2.2. We should therefore
start our evaluation with situations that do satisfy these assumptions; a "lab-
oratory" can fully satisfy the assumptions. (Wikipedia states: "A laboratory
(lab) is a facility that provides controlled conditions in which scientific research
experiments, and measurement may be performed".)
Note that case -studies (real-world applications) enable us to study the "ro-

bustness" of the MSB method; i.e., how well does the method perform if not
all its assumptions are completely satisfied? Before we perform such robust-
ness studies, we should examine the performance if all assumptions do hold.
Moreover, realistic applications may be computationally expensive; i.e., a single
simulation run may take hours or days; in the Monte Carlo lab, however, a
"simulation" run (an observation) takes only (micro)seconds (depending on the
computer hardware and software).
MSB is a "black-box" method; i.e., it selects a combination of the K inputs

x = (x1, . . . xK)′, and observes the resulting multi-variate simulation output w
= (w1, . . . , wn)′ (next, MSB uses all available I/O data to estimate the group
effects, etc.). Our Monte Carlo lab, however, is a "white box"; i.e., we select
specific values for the coeffi cients of the second-order polynomial in (1) and the
variances of the replicates (which equal the variances of the residuals); more-
over we make the replicates normally independently and identically distributed
(NIID).

3.1 Wan et al.’s Experiment, and a New Pilot-sample
Rule

Wan et al. (2010) also use a Monte Carlo lab to evaluate their SB, but they
consider a single output type and K = 10, whereas we also consider two output
types and K = 100. Because the selection of parameter values in a Monte Carlo
experiment is virtually unlimited, we follow Wan et al. as closely as we consider
acceptable for our MSB; this leads us to the following Monte Carlo experiments.
Like Wan et al. (p. 488) we call inputs "unimportant" if they have main

effects not exceeding ∆0 = 2 and "important" if they are at least ∆1 = 4; the
residuals εl are normally distributed with mean zero and a standard deviation
equal to 1 + |E(wl)|. Note that these rather big standard deviations require
many replicates (as will be illustrated by Table 4 and Figure 2). Furthermore,
like Wan et al. we select the type I error probability α= 0.05 and power γ = 0.90;
the two-factor interactions are randomly generated from a normal distribution
with mean zero and variance four; we assume that Wan et al. implicitly select all
purely quadratic effects to be zero. In Monte Carlo experiments with additive
noise εl, CRN would generate a linear correlation coeffi cient with value 1;
therefore we do not use CRN in these experiments. Unlike Wan et al. we allow
n = 2 outputs (instead of a single output); we assume that half of the important
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inputs affect both outputs, one quarter of the other important inputs affect only
output 1, and the other quarter affect only output 2. To create more than one
batch of inputs, we assume that the signs of the latter quarter is negative. Like
Wan et al. we select the performance measure to be the estimated probability
of declaring an individual input to be important, P̂r(DI). We also use 1000
macroreplicates (which by definition use non-overlapping PRN streams and give
IID results), and we resample the values for the two-factor interactions.
Wan et al. experiment with K = 10 inputs (which is not a typical value in

screening). They consider three cases, but we examine neither their case with
all main effects exactly zero nor their case with all main effects equal to ∆0

= 2; we do examine their case with five main effects between ∆0 and ∆1 = 4
and five main effects exceeding ∆1 but not exceeding the value 6: their values
are 2, 2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5.08, 5.52, and 6 (also see Table 4). We
illustrate Wan et al.’s SPRT for a Monte Carlo example with a single output
(our SPRT for multiple outputs equals the SPRT for a single output with the
type I and type II error probabilities changed using Bonferroni’s inequality;
moreover, an input is important if it has a significant main effects for at least
one output). Our Table 4 presents results for a fixed initial sample size N0 = 5
or N0 = 25 (N0 = 25 is selected by Wan et al.), and (see the last four columns)
N0 that is either 5 or 25 in the first stage and either 25% or 50% of the final
number of replicates in the immediately preceding stage. The results show that
the selection of N0 does not seriously affect P̂r(DI).(estimated probability of
declaring a main effect important). The last line of this table shows that a fixed
N0 (column 3 or 4) requires more replicates than our variable N0 (the number
of replicates are added over all stages, like Wan et al. do). Some details of this
sample-size selection are shown in Figure 2, discussed next.
Figure 2 details initial sample sizes that are not fixed– – except in the very

first stage where all K = 10 inputs are either -1 or 1 and N0 = 5– but are 25%
of the final number of replicates in the immediately preceding stage. We show
results for macro-replicate 1. The initial number in the first stage is N0;1−10 =
5 and this stage ends with m1−10 = 39. In the next stage, SB splits the total
group of 10 factors into 23 = 8 and the remaining 2 factors (to increases the
effi ciency, SB and MSB select the number of inputs for the first new subgroup
to be a power of two, wand the remaining inputs form the second subgroup).
The initial number of replicates is 25% of 39 so this number is 10 after rounding
to the next integer. This stage ends with 214 replicates. Note that the final
number of replicates tends to increase as the group size decreases (from stage
to stage the signal/noise ratio decreases). The conclusion of this subsection is
that the new pilot-sample rule increases the effi ciency of SB and MSB.
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Table 4: P̂ r(DI) and number of replicates in SB for constant N0 and variable
N0;j′−j

Input no. j Effect βj N0 = 5 N0 = 25 (5, 25%) (5, 50%) (25, 25%) (25, 50%)

1 2.00 0.01 0.00 0.00 0.00 0.00 0.00
2 2.44 0.15 0.10 0.17 0.13 0.14 0.12
3 2.88 0.37 0.34 0.38 0.40 0.36 0.38
4 3.32 0.65 0.62 0.69 0.69 0.68 0.57
5 3.76 0.83 0.84 0.84 0.91 0.80 0.76
6 4.20 0.96 0.95 0.96 0.95 0.97 0.96
7 4.64 0.98 0.98 0.97 0.98 0.98 0.99
8 5.08 1.00 1.00 1.00 1.00 1.00 1.00
9 5.52 1.00 1.00 1.00 1.00 1.00 1.00
10 6.00 1.00 1.00 1.00 1.00 1.00 1.00

No. of replicates 21,798 19,793 15,203 14,875 16,860 15,048
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Figure 2: Initial (N0) and final (m) number of replicates in macro-replicate 1,
when N0 is 5 in the first stage and 25% of m in the preceding stage

3.2 Experiment with K = 100 Inputs and Four Problem
Characteristics

We also study the screening problem with K = 100 inputs, n = 2 outputs, and
q = 2 batches. We compare SB– applied per output– and MSB. We select the
thresholds ∆0 = 2 and ∆1 = 4. As initial number of replicates in the first stage
we select N0;1−100 = 5, and as the initial number of replicates in the next stages
we select 25% of the final number of replicates in the immediately preceding
stage (for K = 10 see again Figure 2). The type-I error rate α is 0.05 and the
power γ is 0.9. Because there are two outputs, we use Bonferroni’s inequality
and replace α by α/2 = 0.025 and the type-II error rate 1 − γ by (1 − γ)/2 =
0.05. We use our lab to evaluate the performance effects of the following four
problem characteristics (also see Table 5; the last two columns are discussed
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below):

1. Sparsity of effects; i.e., we select either 4 or 8 of the 100 main effects to
be “important”.

2. Signal-noise ratio; the higher the noise is, the more replicates should be
obtained. We set the standard deviation of ε(l) to either 5 or 10.

3. Variability of effects; i.e., we make either all important main effects to
have the same value |β(l);j | = 5 or we make them all different; namely,
-5, -2, 2, 5 (so |β(l);j | = 2, 5) when there are four important inputs (see
characteristic 1), and |β(l);j | = 2, 3, 4, 5 when there are eight important
inputs.

4. Clustering of effects; the more clustered the individual important main
effects are, the more effi cient SB and MSB are. When there are four
important inputs and they are clustered, then the important inputs are 1,
2, 99, and 100, and the non-clustered inputs are 1, 10, 91, and 100; when
there are eight important inputs, then the clustered inputs are 1, 2, 3, 4,
97, 98, 99, 100, and the non-clustered inputs are 1, 10, 20, 30, 71, 81, 91,
and 100.

Because we experiment with two levels per characteristic, there are 16 com-
binations. These combinations are shown in Table 5 (first thee columns). In
all 16 combinations there are q = 2 batches: the ± signs in this table mean
that all important main effects are positive for output 1 and some important
main effects are negative for output 2 (e.g., in combination 1 the four important
inputs 1, 2, 99, and 100 have positive main effects for output 1, but the inputs
99 and 100 have negative main effects for output 2).
We use 1,000 macroreplicates, and report the average number of replicates

per stage, which quantifies the effi ciency ; see the last two columns of this table.
Both MSB and SB require increasing number of replicates for higher number
of important inputs, variability of effects, noise of simulation outputs, and clus-
tering of important inputs. For example, combination 14– with σ = 10, eight
important inputs with different values and even spread– requires the maximum
number of replicates (namely, 1,723 for MSB), whereas combination 3 – with
σ = 5, only four important inputs with the same value (namely, 5) and much
clustering– requires the minimum number of replicates (namely, 119 for MSB).
MSB requires only approximately half the number of replicates needed by SB;
i.e., some input combinations applied for one output in MSB are again used
when screening for the other output. Therefore, we conclude that MSB requires
fewer input combinations and number of replicates than SB does.
Besides the effi ciency, we also study the effi cacy quantified through P̂r(DI).

We present P̂r(DI) only for the combinations 2, 7, 9 and 14 (because we obtain
similar results for the remaining 12 combinations); see Figure 3 where the x-
axis gives |β(l);j | and the y-axis gives P̂r(DI) (e.g., |β(l);j | = 0, 2, and 5 in
combination 2, and |β(l);j | = 0, 2, 3, 4, and 5 in combination 9). Because
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Table 5: MSB versus SB in Monte Carlo experiment
Combination Scenario Replicates

σ Other three characteristics MSB SB
1 5 Inputs (1, 2, 99, 100) = (2, 5,±2,±5) 135 242
2 5 Inputs (1, 10, 91, 100) = (2, 5,±2,±5) 313 600
3 5 Inputs (1, 2, 99, 100) = (5, 5,±5,±5) 119 218
4 5 Inputs (1, 10, 91, 100) = (5, 5,±5,±5) 233 463
5 10 Inputs (1, 2, 99, 100) = (2, 5,±2,±5) 350 656
6 10 Inputs (1, 10, 91, 100) = (2, 5,±2,±5) 933 1,607
7 10 Inputs (1, 2, 99, 100) = (5, 5,±5,±5) 250 470
8 10 Inputs (1, 10, 91, 100) = (5, 5,±5,±5) 641 1,112
9 5 Inputs (1, 2, 3, 4, 97, 98, 99, 100) 178 354

=(2, 3, 4, 5,±2,±3,±4,±5)
10 5 Inputs (1, 10, 20, 30, 71, 81, 91, 100) 536 1,058

=(2, 3, 4, 5,±2,±3,±4,±5)
11 5 Inputs (1, 2, 3, 4, 97, 98, 99, 100) 145 290

=(5, 5, 5, 5,±5,±5,±5,±5)
12 5 Inputs (1, 10, 20, 30, 71, 81, 91, 100) 410 818

=(5, 5, 5, 5,±5,±5,±5,±5)
13 10 Inputs (1, 2, 3, 4, 97, 98, 99, 100) 464 922

= (2, 3, 4, 5,±2,±3,±4,±5)
14 10 Inputs (1, 10, 20, 30, 71, 81, 91, 100) 1,713 3,233

= (2, 3, 4, 5,±2,±3,±4,±5)
15 10 Inputs (1, 2, 3, 4, 97, 98, 99, 100) 319 620

= (5, 5, 5, 5,±5,±5,±5,±5)
16 10 Inputs (1, 10, 20, 30, 71, 81, 91, 100) 1,126 2,248

= (5, 5, 5, 5,±5,±5,±5,±5)
Note: "+" means positive effect on output 1, so β(1) > 0

"−" means negative effect on output 2, so β(2) < 0
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Figure 3: P̂r(DI) of MSB and SB in combinations 2, 7, 9, and 14

|β(1);j | = |β(2);j |, we present results only for output 1. This figure shows that
|β(l);j | has an important positive effect on P̂r(DI). In all combinations, P̂r(DI)

lies in the interval [0.025, 0.95] when 2 ≤ |β(l);j | ≤ ∆1 = 4, P̂r(DI) = 0 when

|β(l);j | = 0, and P̂r(DI) = 1 when |β(l);j | = 5. So, both MSB and SB give
the desired screening results with appropriate type-I error rates and power.
However, MSB’s P̂r(DI) exceeds SB’s P̂r(DI) when ∆0 ≤ |β(l);j | ≤ ∆1; e.g., in

combination 9 (south-west corner of the figure), MSB’s P̂r(DI) = 0.7 and SB’s
P̂r(DI) is only 0.38 and 0.43 when |β(l);j | = 3; also see combination 14 (south-
eastern corner). Our explanation is that an input that is unimportant for one
output has a chance to be important for the other output, so the probability of
declaring this input to be important increases. The conclusion of this subsection
is that MSB is more effi cient and effective than SB.
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4 Case Study

In this section we discuss a case study concerning a Chinese third-party logistics
(TPL) company that wants to improve its "Just-In-Time" (JIT) system. This
system uses the "TPL’s milk-run pickup and cross-docking distribution" (TPL-
MRCD); i.e., parts are first collected from routine milk-run suppliers as long
as the TPL receives a pick order, and transferred to a regional cross-docking
distribution center (CDDC), which consolidates parts and loads them onto large
trucks for truck load (TL) delivery. Figure 4 shows a flow chart; IBT and OBT
stand for inbound truck and outbound truck respectively. This figure depicts the
flow of parts, truck scheduling, and door assignment. The TPL-MRCD is a pull
system. Once the inventory level reduces to the reorder point, the assembly
plants place a purchase order with the CDDC, which aggregates orders and
places them with parts suppliers. In general, completed purchase orders from
a given milk-run region will not create an entire truckload, but form a less-
than-truckload (LTL). Therefore, parts collected from a milk-run pickup are
first transferred to the CDDC, where parts are sorted per assembly plant, and
then consolidated and loaded onto trucks for TL transportation. There are
two transport types; namely, less-than-truckload (LTL) transport within the
industrial zones, and TL transport, which often covers distances of more than
1,000 kilometers between CDDC and factory warehouse.
Given China’s rapid economic growth, Feng et al. (2010) estimate that the

Chinese car market will grow 10% to 15% over the next decade. To satisfy this
growing demand, the joint venture served by the TPL expects to open another
assembly plant. When this new plant becomes operational, the current TPL
capacity will not meet the logistic needs. Management wants to maintain the
current logistic performance, measured through the average cycle time (CT) of
a part and the number of throughput (NT) per month (30 days). Long CT
conflicts with the JIT philosophy. NT is the sum of the shipments collected
at the part suppliers and delivered to the assembly plants within a production
cycle of (say) 30 days. Therefore, our goal is to identify and improve critical
logistic factors (identify important inputs), and to make the two performance
measures (output) CT and NT satisfy desired values.
To solve this problem, we use Arena (namely, version 13.0 of Rockwell Au-

tomation); Arena supports the process-modeling paradigm. Because the pro-
duction cycle of the assembly plants is a month, we treat our simulation model
as a terminating simulation which runs for 30 simulated days after a warm-up
period of 5 days.
The TPL-MRCD operates 16 hours per day; namely, from 8 AM until mid-

night. Its simulation model has 26 inputs that may affect the two outputs (CT
and NT). (Actually, we could distinguish more than 26 inputs, but some of
these extra inputs– such as number of suppliers– would require us to change
the structure of the simulation model. Moreover, these extra inputs cannot be
controlled by the TPL. Finally, the 26 inputs suffi ce to illustrate MSB.). The
values of these 26 inputs are coded as -1 and 1; for CT these values are shown
in Table 6, where SPT stands for "shortest processing time", and FIFO for
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Figure 4: TPL-MRCD logic flow chart
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"first-in, first-out" queue discipline. So, all inputs are quantitative, except for
the queue discipline. This table shows that the inputs 1 through 5 have the
same signs for the two outputs (CT and NT), because higher replenishment
frequencies (the smaller value of inputs 1 through 5) lead to more parts in the
TPL-MRCD system so NT increases; at the same time it may make logistic
resources reach higher utilization, which increases queue length and delay so
CT increases. The remaining 21 inputs have opposite signs for CT and NT;
e.g., more receiving dock doors (input 14) decrease the parts waiting time in
the CDDC so CT decreases, and increases the number of parts received by the
assembly plants so NT increases. So in this case study we consider two batches;
namely, batch 1 with inputs 1 though 5 and batch 2 with inputs 6 through 26.
Furthermore, we decide to set ∆(CT );0 = 2.5 and ∆(NT );0 = 2,000 as the

minimum acceptable CT and NT values. We set ∆(CT );1 = 5 and ∆(NT );1 =
3,000 as the performance improvement that we do not want to miss. Inspired
by Figure 2 for our Monte Carlo experiment, we select the initial number of
replicates in the first stage N0;1−26 = 5, and the initial number of replicates
in the next stages as 25% of the final number of replicates in the immediately
preceding stage, but not smaller than 5. Because there are two outputs in this
case study, we replace the type-I error rate α = 0.05 and type-II error rate β
= 0.1 by α/2 = 0.025 and β/2 = 0.05. Figure 5 shows MSB results per stage,
where shaded blocks denote important inputs. Altogether, MSB requires 233
replicates (namely, m1−5 + m6−26 + . . . + m21) to identify the five important
inputs labeled 4, 5, 14, 17, and 20; the inputs 4 and 5 are in batch 1 (see the
first left bifurcation) and inputs 14, 17, and 20 are in batch 2 (see the first right
bifurcation). Figures 6 and 7 show that SB requires 238 and 117 replicates for
CT and NT respectively, so altogether SB requires 355 (whereas MSB requires
only 233) replicates. SB and MSB identify the same inputs as being important;
SB identifies the inputs 4, 5, 14, 17, and 20 for CT and input 17 for NT. Note
that MSB and SB do not use the same input combinations in every stage.
Finally, we validate the MSB assumptions. We use a CCD for these five

important inputs (Wan et al. 2010 also use a CCD but for all 20 in their
semiconductor case-study). This CCD includes a 25 full factorial design plus 10
(= 2× 5) axial points ±

√
5 and one central point (altogether 43 combinations).

This CCD enables the estimation of the 21 (= 1 + 5 + 5 + (5× 4)/2) individual
effects in the second-degree polynomial. We obtain mCCD = 10 replicates for
each combination in the CCD, after considering the numbers in the last stages
of Figure 5. The unimportant quantitative inputs we fix at their coded value 0;
the one unimportant qualitative input we set to +1 (which denotes FIFO, the
default queueing rule of the current TPL). We use CRN (the default in Arena).
Analysis of variance (ANOVA) of these CCD I/O data shows that the second-

order polynomials for CT and NT have R2CT = 0.9608, R2CT (adj) = 0.9519,
R2NT = 0.9641, R2NT (adj) = 0.9588, whereas the polynomials with main effects
only have R2CT = 0.7022, R2CT (adj) = 0.6683, R2NT = 0.6988, and R2NT (adj) =
0.6733. So, the two second-order polynomials are significantly better, and we
can use them to predict the outputs (i.e., Assumption 1 holds for the important
inputs; also see equation 1).
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Given that the two second-order polynomials for the five important inputs
are valid, we now present their individual estimated coeffi cients:

ŷCT = 31− 6.60x4 − 11.23x5 − 1.97x14 − 10.87x17 − 4.36x20

−0.036x4x5 − 0.63x4x14 − 0.039x4x17 − 0.022x4x20 + 0.65x5x14

−0.21x5x17 + 1.15x5x20 − 1.28x14x17 + 1.49x14x20 + 2.01x17x20

+1.39x24 + 3.66x25 + 5.92x214 + 9.05x217 + 0.29x220 (17)

and

ŷNT = 50040.33− 985.71x4 − 818.47x5 + 1289.66x14 + 4493.64x17 + 1474.49x20

−258.31x4x5 − 294.13x4x14 − 606.87x4x17 − 29.87x4x20 − 716.75x5x14

+974.13x5x17 − 371.37x5x20 + 1004.94x14x17 − 711.31x14x20 − 693.81x17x20

+1167.85x24 + 756.16x25 − 2766.67x214 − 3849.62x217 − 27.17x220. (18)

These two equations show that the signs of the estimated main effects of the
important inputs– displayed in (17) and (18)– confirm the signs assumed in
Table 6; namely, inputs 4 and 5 have minus signs for both CT and NT, whereas
inputs 14, 17, and 20 have opposite signs for these outputs. So we conclude that
Assumption 2 (known signs of all main effects) holds for the important inputs.
This assumption and assumption 3 (heredity) are now further examined.
To test that all first-order and second-order effects of all unimportant inputs

are zero, we select nval = 10 combinations through LHS in which we uniformly
sample values between -1 and 1 for all 25 quantitative inputs, and we sample the
two values -1 and 1 for the qualitative input 23 (details are given in Table 14 in
the appendix). We decide to obtain mval = 20 replicates for each combination
(we also show results for only 10 replicates per combination in Appendix 5,
Table 15). These 10 combinations with their 20 replicates give the simulated w
and the predicted ŷ, and their estimated variances v̂ar(w) and v̂ar(ŷ); see Table
7. To test these prediction errors, we select α = 0.20 (such a relatively high
value is typical when applying Bonferroni’s inequality) so t10−1(0.20/(10 × 2))
= t9(0.01) = 2.821 where degree of freedom v = min(10− 1, 20− 1) = 9. This
table shows that maxl;i t(l);i = t(CT );6 = 2.48 (for mval = 10 we find maxl;i t(l);i
= t(NT );10 = 2.10), so we accept the two metamodels. We conclude that all
three MSB assumptions hold, for this case study.

5 Conclusion

We present a novel method for factor screening in (random) discrete-event sim-
ulation with multiple response types; we call this method "multiple sequential
bifurcation" (MSB). Our MSB assumes (i) a second-order polynomial is a valid
metamodel of the I/O function of the simulation model; (ii) the first-order effects
have known signs; (iii) the “heredity”property applies. Our case-study shows
that realistic simulation models may indeed satisfy these three assumptions.
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Table 6: Inputs of the TPL-MRCD system
ID Description L(CT ) H(CT ) CT NT
1 Pick-up orders time from the 1th milk-run (hours) 2.2 1.1 + +
2 Pick-up orders time from the 2th milk-run (hours) 1.8 1 + +
3 Pick-up orders time from the 3th milk-run (hours) 1.5 1 + +
4 Pick-up orders time from the 4th milk-run (hours) 2.5 1.2 + +
5 Pick-up orders time from the 5th milk-run (hours) 1.6 0.8 + +
6 Setup time in a part supplier (minutes) 10 15 + —
7 Loading time of unit parts in part supplier (minutes) 2 3 + —
8 Unloading time of unit parts in CDDC (minutes) 2 4 + —
9 Scanning time of unit parts in CDDC (seconds) 20 30 + —
10 Loading time of unit parts in CDDC (minutes) 2 4 + —
11 Unloading time of unit part in factory warehouse (minutes) 1.5 2.5 + —
12 Ratio between pick-up suppliers and in milk-run i 40% 60% + —
13 Passing rate of scanning 1% 2% + —
14 Number of receiving doors 30 10 + —
15 Number of shipping doors 30 10 + —
16 Number of forklifts 20 10 + —
17 Number of LTL trucks 40 20 + —
18 Number of TL trucks 60 50 + —
19 Velocity of forklifts 30 20 + —
20 Velocity of LTL transportation 100 75 + —
21 Velocity of TL transportation 100 75 + —
22 Threshold time at temporary storage area 20 24 + —
23 Queue discipline of LTL trucks SPT FIFO + —
24 Velocity of trailers 10 5 + —
25 Number of trailers 20 10 + —
26 Velocity of conveyors in CDDC 24 12 + —
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Figure 5: MSB for TPL-MRCD with∆(CT );0 = 2.5,∆(NT );0 = 2, 000,∆(CT );0 =
5, ∆(NT );1 = 3, 000
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Figure 6: SB for CT with ∆(CT );0 = 2.5,∆(CT );0 = 5
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Figure 7: SB for NT with ∆(NT );0 = 2, 000, ∆(NT );1 = 3, 000
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Table 7: Validation of MSB with 20 replicates
i 1 2 3 4 5 6 7 8 9 10

wCT ;i 28.09 31.28 25.06 45.22 42.02 67.57 24.30 38.63 27.25 58.65
v̂ar(wCT ;i) 1.38 0.004 0.38 0.80 0.02 1.70 0.26 1.92 1.04 1.30
ŷCT ;i 34.03 30.01 26.53 49.40 40.78 61.26 26.26 34.37 24.96 54.58

v̂ar(ŷCT ;i) 0.07 0.10 0.05 0.04 0.05 0.08 0.04 0.08 0.05 0.06
tCT ;i 2.43 0 0 1.29 0 2.48 0 0.89 0 0.86

wNT ;i 49,387 53,664 53,122 45,513 51,563 38,952 51,003 44,424 48,402 51,562
var(wNT :i) 64,407 209,913 36,151 9,250 52,819 23,850 97,016 30,896 21,505 3,876
ŷNT :i 46,738 52,531 51,475 43,665 50,991 40,323 51,397 45,007 51,669 48,317

v̂ar(ŷNT ;i) 9,530 14,028 6,613 5,427 6,131 10,392 5,008 11,161 6,963 7,554
tNT ;i 0 0 0 0 0 0 0 0 1.59 2.30

MSB extends sequential bifurcation (SB), originally published by Bettonvil
and Kleijnen (1997). Later on, Wan et al. (2010) extended this SB to random
simulation, using the SPRT to determine the number of replicates in each stage
such that the type-I and type-II error rates are controlled. We now derive a
more effi cient rule for determining the initial number of replicates needed to
start the SPRT. Moreover, we extend this SPRT to simulation with multiple
responses.
More specifically, MSB uses batches of inputs such there is no cancellation of

main effects for any response type. Moreover, MSB includes a novel procedure
to validate the three assumptions of SB and MSB. Finally, MSB takes advantage
of the fact that running a simulation model gives observations on all response
types; i.e., when screening for one response, all the other response types are "for
free".
Our Monte Carlo experiments ensure that all three assumptions of SB or

MSB are satisfied. The first experiments show that MSB requires fewer repli-
cates than Wan et al.’s SB; i.e., MSB is more effi cient. Our next experiment
considers two outputs, a hundred inputs in two batches, and four problem char-
acteristics; namely, the effects’sparsity, signal-noise, variability, and clustering.
This experiment shows that compared with SB our MSB is more effi cient (fewer
replicates), and more effective (better control of the two error rates).
Our Chinese third-party logistics case-study has two outputs and 26 inputs

in two batches. MSB finds the same important inputs as SB, but requires fewer
replicates. The validation procedure accepts all three assumptions used in MSB
and SB. So MSB is a robust factor screening method.
Future research may focus on the SPRT following De and Baron (2012),

who give many recent references– albeit not in a simulation context. In this
paper we focus on two outputs; future research should examine more than two
outputs. Additional case studies should confirm the robustness of MSB.
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Appendix 1: Proof of Theorem 1
We give a proof for the situation that both output l and output l′ increase

when changing inputs j′ through j from L(l) to H(l). For output l, (7) can be
proven using (3) directly (also see Bettonvil and Kleijnen 1997). For output l′

we assume a(l′);i is the coded values of input i for wl′ where a(l′);i = −1 or a(l′);i
= 1 when changing the two levels of the individual input i from L(l) to H(l).
Thus, the signs of the effects of the inputs j′ through j for both wl and wl′ are
+. We can then derive the following equations for the other output, l′:

E(w(l→l′);(j)) = β(l′);0 + a1β(l′);1 + · · ·+ aj′−1β(l′);j′−1 + (β(l′);j′ + · · ·+ β(l′);j) (19)

−aj+1β(l′);j+1 − · · · − aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

E(w(l→l′);−(j)) = β(l′);0 − a1β(l′);1 − · · · − aj′−1β(l′);j′−1 − (β(l′);j′ + · · ·+ β(l′);j) (20)

+aj+1β(l′);j+1 + · · ·+ aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K
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E(w(l→l′);(j′−1)) = β(l′);0 + a1β(l′);1 + · · ·+ aj′−1β(l′);j′−1 − (β(l′);j′ + · · ·+ β(l′);j) (21)

−aj+1β(l′);j+1 − · · · − aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

E(w(l→l′);−(j′−1)) = β(l′);0 − a1β(l′);1 − · · · − aj′−1β(l′);j′−1 + (β(l′);j′ + · · ·+ β(l′);j) (22)

+aj+1β(l′);j+1 + · · ·+ aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

The unbiased group estimator ̂β(l′);j′−j defined in (8) follows from (19) through
(22).

Appendix 2: Proof of Theorem 2
We give a proof for the situation that changing inputs j′ through j from L(l)

to H(l) makes wl increase and wl′ decrease. For wl, our proof is the same as in
(7). For wl′ we still use the same a(l′);i defined in the Proof of Theorem 1. We
can then derive the following equations:

E(w(l→l′);(j)) = β(l′);0 + a1β(l′);1 + · · ·+ aj′−1β(l′);j′−1 − (β(l′);j′ + · · ·+ β(l′);j) (23)

−aj+1β(l′);j+1 − · · · − aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

E(w(l→l′);−(j)) = β(l′);0 − a1β(l′);1 − · · · − aj′−1β(l′);j′−1 − (β(l′);j′ + · · ·+ β(l′);j) (24)

+aj+1β(l′);j+1 + · · ·+ aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

E(w(l→l′);(j′−1)) = β(l′);0 + a1β(l′);1 + · · ·+ aj′−1β(l′);j′−1 + (β(l′);j′ + · · ·+ β(l′);j) (25)

−aj+1β(l′);j+1 − · · · − aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

E(w(l→l′);−(j′−1)) = β(l′);0 − a1β(l′);1 − · · · − aj′−1β(l′);j′−1 − (β(l′);j′ + · · ·+ β(l′);j) (26)

+aj+1β(l′);j+1 + · · ·+ aKβ(l′);K + a1a2β(l′);1;2 + · · · − a1aKβ(l′);1;K
+ · · ·+ aK−1aKβ(l′);(K−1);K + a21β(l′);1;1 + · · ·+ a2Kβ(l′);K;K

The unbiased group estimator ̂β(l′);j′−j defined in (12) follows from (23) through
(26) where all quadratic effects cancel out.

Appendix 3: Two outputs and one batch of inputs
Case (i): Each input makes both outputs increase
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Table 8: Case 1 of MSB with two outputs
Input Low level for w1 High level for w1 w1 w2

1 L(1);1 H(1);1 + +
2 L(1);2 H(1);2 + +
...

...
...

...
...

K L(1);K H(1);K + +

Table 8 shows that there is only one batch and L(1) = L(2) and H(1) = H(2).
Consequently, in this case MSB closely resembles SB (for a single output type).
However, MSB classifies a (sub)group of inputs as important whenever that
group has an important effect on at least one of the outputs; i.e., a group
is declared unimportant only if its estimated effects for both w1 and w2 are
unimportant.
Table 9 shows the complete MSB procedure for this case; Applying Theorem

1, we can compute the (sub)group effects for both outputs simultaneously.
Note that Step (2) estimates two big group effects β(1);1−K and β(2);1−K ,

whereas in the main text we estimate batch effects directly from four input
combinations instead of two combinations; i.e., β(1);1−k1 , β(2);1−k1 , β(1);k1+1−K
and β(2);k1+1−K .
Case (ii): Each input makes one output increase and the other output de-

crease
Like in Case (i), there is only one batch but now L(1) = H(2) andH(1) = L(2);

see Table 10.
MSB for this case proceeds analogously to MSB for Case (i); see Table 11.

Appendix 4: Multi-response MSB
Table 12 illustrates the formation of batches of inputs in the case of n > 2

outputs. Obviously, this formation becomes complicated if the outputs display
completely different signs. As a simple rule, we propose to split inputs into as
few batches as possible: the fewer batches there are, the fewer combinations are
required to estimate (sub)group effects.
Table 13 illustrates the detailed procedure for this case.
.

Appendix 5: Validation of MSB Assumptions

Table 14 shows the ten inputs combinations selected by LHS for the valida-
tion of the MSB assumptions. Table 15 shows the validation results in case of
only ten replicates.
.
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Table 9: MSB for case 1
(1) Define the values of all K inputs such that changing each individual input from L(1)

to H(1) makes both outputs increase.
(2) Use SPRT with initial sample size N0;1−K to find the number of replicates m1−K :(

w(1);(K);r w(1);−(K);r
w(1→2);(K);r w(1→2);−(K);r

)
(r = 1, . . . ,m1−K),and estimate ( ̂β(1);1−K , ̂β(2);1−K)′

through (7) and (8).Note: w(1);−(K);r = w(1);(0);r

(a) If SPRT declares ( ̂β(1);1−K , ̂β(2);1−K)′ unimportant, then stop MSB;
(b) else split the group into two subgroups (1− k1, k1 + 1−K) with k1 a power of two.

(3) Use SPRT with initial sample size N0;1−k1 to find the number of replicates m1−k1 :(
w(1);(k1);r w(1);−(k1);r
w(1→2);(k1);r w(1→2);−(k1);r

)
, and estimate ( ̂β(1);1−k1 , ̂β(2);1−k1)

′ and

( ̂β(1);k1+1−K ,
̂β(2);k1+1−K)′ through (7) and (8).

For the first subgroup:

(a) If SPRT declares ( ̂β(1);1−k1 , ̂β(2);1−k1)
′ unimportant, then discard the first subgroup;

(b) else split the first subgroup into two subgroups, similar to Step (2) (b).
For the second subgroup:

(a) If SPRT declares ( ̂β(1);k1+1−K ,
̂β(2);k1+1−K)′ unimportant, then discard the second subgroup;

(b) else split the second subgroup into two subgroups, similar to (2) (b).
...
Final: Use SPRT with initial sample size N0;j to identify the important individual inputs j,
and estimate their main effects.

Table 10: Case 2 of MSB with two outputs
Input Low level for w1 High level for w1 w1 w2

1 L(1);1 H(1);1 + —
2 L(1);2 H(1);2 + —
...

...
...

...
...

K L(1);K H(1);K + —
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Table 11: MSB for Case 2
(1) Define the values of all K inputs such that changing each individual input

from H(1) to L(1) makes w1 increase and w2 decrease.

(2) Use SPRT to select the number of replicates m1−K :
(

w(1);(K);r w(1);−(K);r
w(1→2);(K);r w(1→2);−(K);r

)
(r = 1, . . . ,m1−K), and estimate ( ̂β(1);1−K , ̂β(2);1−K)′ through (11) and (12).

(a) If SPRT declares ( ̂β(1);1−K , ̂β(2);1−K)′ unimportant, then stop MSB;
(b) else split the group into two subgroups (1− k1, k1 + 1−K) with k1 a power of two.

(3) Use SPRT to select the number of replicates m1−k1 :
(

w(1);(k1);r w(1);−(k1);r
w(1→2);(k1);r w(1→2);−(k1);r

)
;

estimate ̂β(1);1−k1 , ̂β(2);1−k1)
′ and ( ̂β(1);k1+1−K ,

̂β(2);k1+1−K)′ through (11) and (12).
For the first subgroup:

(a) If SPRT declares ( ̂β(1);1−k1 , ̂β(2);1−k1)
′ unimportant, then discard the first subgroup;

(b) else split the first subgroup into two subgroups, similar to Step (2) (b).
For the second subgroup:

(a) If SPRT declares ( ̂β(1);k1+1−K ,
̂β(2);k1+1−K)′ unimportant, then discard the second subgroup;

(b) else split the second subgroup into two subgroups, similar to (2) (b).
...
Final: Use SPRT to identify the important individual inputs, and estimate their main effects.

Table 12: Batches for multiple outputs
Batch Input Low level for w1 High level for w1 w1 w2 · · · wn

1 L(1);1 H(1);1 + + + —

1
...

...
...

...
...

...
...

k1 L(1);k1 H(1);k1 + + + —
k1 + 1 L(1);k1+1 H(1);k1+1 + + — —

2
...

...
...

...
...

...
...

k2 L(1);k2 H(1);k2 + + — —
...

...
...

...
...

...
...

...

kp−1 + 1 L(1);kp−1+1 H(1);kp−1+1 +
...

...
...

p
...

...
...

...
...

...
...

kp L(1);kp H(1);kp +
...

...
...

...
...

...
...

...
...

...
...

kq−1 + 1 L(1);kq−1+1 H(1);kq−1+1 + —
... +

q
...

...
...

...
...

...
...

K L(1);kq H(1);kq + — . . . +
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Table 13: MSB procedure with multiple outputs
(1) Define the values of all K inputs for output l such that changing the individual input i

from L(l);i to H(l);i makes wl increase, with i = 1, · · · ,K, l = 1, · · · , n.
(2) Use SPRT to select the number of replicates: (w(1);(K);r, w(1);−(K);r, w(2);(K);r, w(2);−(K);r,

· · · , w(n);(K);r, w(n);−(K);r)′; estimate
(
̂β(1);1−K , ̂β(2);1−K , · · · , ̂β(n);1−K

)′
.

(a) If SPRT declares
(
̂β(1);1−K , ̂β(2);1−K , · · · , ̂β(n);1−K

)′
unimportant, then stop MSB;

(b) else split the group into q batches (1− k1, k1 + 1− k2, · · · , kq−1 + 1−K),
such that each individual output within a batch has the same sign.

(3) Use SPRT to select the number of replicates:
(

w(1);(kp);r w(1);−(kp);r
w(1→l′);(kp);r w(1→l′);−(kp)r

)′
;

estimate
(
̂β(l);1−k1 , · · · , ̂β(l);kp−1+1−K

)
l = 1, 2, · · · , n, l′ = 2, 3, · · · , n, p = 1, 2, · · · , q.

(a) If SPRT declares
(

̂β(1);kp+1−kp , · · · , ̂β(n);kp−1−kp

)′
of batch (kp−1 + 1− kp) unimportant,

then discard this batch (p = 1, · · · , q);
(b) else split the batch into two smaller batches (kp−1 + 1− kp′ , kp′ + 1− kp)

with kp′ − kp−1 a power of two if possible.
...
Final: Use SPRT to identify the important individual inputs, and estimate their main effects.
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Table 14: LHS for Validation of MSB asumptions
Validation combination

Input 1 2 3 4 5 6 7 8 9 10
1 1.68 1.4 1.2 1.89 2.12 1.76 1.98 1.59 1.22 1.49
2 1.49 1.48 1.79 1.58 1.37 1.13 1.19 1.72 1.29 1.08
3 1.47 1.27 1.10 1.03 1.43 1.17 1.24 1.35 1.38 1.11
4 1.77 1.21 1.56 1.69 2.21 1.87 2.02 2.26 2.41 1.37
5 1.4 1.55 1.44 1.2 0.85 1.03 1.17 1.32 1.12 0.89
6 14.05 10.75 14.9 13.14 11.15 12.27 13.91 11.6 10.06 12.93
7 2.21 2.6 2.86 2.4 2.78 2.63 2.03 2.47 2.17 2.99
8 2.79 3.05 2.34 3.7 2.01 3.27 2.51 3.87 2.87 3.55
9 23.2 24.5 27.57 28.29 21.44 20.74 25.92 26.41 29.33 22.41
10 3.49 3.91 2.94 2.31 3.05 2.0 3.75 2.44 2.77 3.39
11 2.15 1.74 2.08 2.49 2.23 1.83 1.95 1.53 2.34 1.65
12 2.15 1.74 2.08 2.49 2.23 1.86 1.95 1.53 2.34 1.65
13 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01
14 11 15 23 26 16 27 20 30 21 12
15 21 25 27 24 29 11 16 19 13 15
16 11 16 14 19 14 13 17 11 15 19
17 27 30 38 23 33 21 37 25 35 30
18 53 59 53 56 57 54 59 51 51 57
19 20.21 26.46 28.26 21.26 25.56 24.15 27.51 23.05 29.2 22.87
20 94.41 99.68 81.16 79.86 86.33 75.04 90.79 95.32 88.76 84.28
21 87.04 97.6 95.61 87.62 90.82 94.53 84.28 77.35 79.89 81.8
22 23.13 23.73 20.04 22.66 21.16 21.68 23.41 22.13 21.33 20.63
23 SPT SPT FIFO SPT FIFO FIFO FIFO SPT SPT FIFO
24 30 9.33 7.31 6.99 9.68 8.72 6.32 5.29 5.77 7.84
25 20 16 14 17 11 14 13 17 11 19
26 12.42 22.92 17.88 13.69 14.9 19.77 22.25 18.04 21.38 16.13

Table 15: Validation of MSB with 10 replicates
i 1 2 3 4 5 6 7 8 9 10

wCT ;i 30.00 31.18 25.34 46.87 41.87 66.43 24.15 37.95 27.11 60.33
v̂ar(wCT ;i) 0.29 0.005 1.21 0.52 0.01 1.98 0.24 4.86 2.25 2.65
ŷCT ;i 34.03 30.01 26.53 49.40 40.78 61.26 26.26 34.37 24.96 54.58

v̂ar(ŷCT ;i) 0.07 0.10 0.05 0.04 0.05 0.08 0.04 0.08 0.05 0.06
tCT ;i 0.39 0 0 0 0 1.51 0 0.26 0 1.67

wNT ;i 46,462 52,947 53,218 45,495 51,368 38,628 50,926 44,189 48,486 51,577
var(wNT :i) 203,217 412,539 106,129 18,524 82,418 43,443 116,051 65,129 47,579 7,631
ŷNT :i 46,738 52,531 51,475 43,665 50,991 40,323 51,397 45,007 51,669 48,317

v̂ar(ŷNT ;i) 9,530 14,028 6,613 5,427 6,131 10,392 5,008 11,161 6,963 7,554
tNT ;i 0 0 0 0 0 0 0 0 0.78 2.10
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