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FACTORABLE SURFACES IN 3-MINKOWSKI SPACE

HurtHur MENG AND HulLi Liv*

ABSTRACT. In this paper, we mainly discuss factorable surfaces in 3-
dimensional Minkowski space and give classification of such surfaces whose
mean curvature and Gauss curvature satisfy certain conditions.

1. Introduction

r1 T2
Yy Y2

Let E} be 3-dimensional Minkowski space equipped with the inner product
(1.1) 9(m,y) = (z,y) = 2192 + 2211 + T3Y3
and the vector product
xxy:(xs T T2 T3 )7
Ys Y2 U3
where z = (21, 22,23), y = (y1,92,¥3) € Ef
Let M be a connected, oriented 2-dimensional manifold and r : M — E3 be
a surface in EY with parameters (u,v). We denote the surface S : r(u,v) by
r(u,v) = (z(u, v}, y(u, v), 2(u,v)).
A surface S in E? is called a factorable surface if S can be written as
r(u,v) = (z,y, f(@)g(y)) or r(u,v) = (z, f(z)g(z),2) or
T(“? U) = (f(y)g(z)v Y, Z)'
According to the spacelike direction, timelike direction and lightlike direc-
tion, the factorable surfaces in E$ can be considered as the following six types
type 1: along spacelike direction and spacelike direction;
type 2: along spacelike direction and timelike direction;
type 3: along lightlike direction and lightlike direction;
type 4: along lightlike direction and spacelike direction;
type 5: along timelike direction and lightlike direction;
type 6: along timelike direction and timelike direction.
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In [9], the authors studied the factorable surfaces along two spacelike direc-
tions and spacelike-timelike directions, and gave some classification theorems.
In this paper, we will consider the factorable surface along two lightlike direc-
tions and spacelike-lightlike directions in E3, and also give some classification
results.

2. Factorable surfaces in E3

Theorem 1. Let S be a factorable surface of type 3 in E3.
(1) If Gauss curvature K of surface S vanishes identity, S is one of the
following surfaces or an open part of them:
(a) 2(z,y) = c19(y),
(b) Z(.’L’, y) = clf(x)a
(©) 2(2,9) = explers + ey +es),
(@) 2(e,y) = (13 + ¢2) = (egy + ea) 1.
(2) If S is minimal, it is one of the following surfaces or an open part of
them:
(a) z(z,y) =c19(y),
(b) 2(z,y) = a1 f (=),
where ¢1,Co, C3, ¢4, k1, ke are constants and ki # 1.
Proof. In 3-dimensional Minkowski space E} with metric ds? = 2dzdy + dz2,
the factorable surface of type 3 can be written as r(z,y) = (z,y,2(x,y)) =
(z,9, f(2)g(2)). Then Gauss curvature K and mean curvature H of S are given
by
k = 1@ @w)g" W) - (f'(2)g' )
1 +2f(@)f' (@) W)?
H,

21+ 2f(2) f(@)g(y)g' ®)]5
F@F @) (9®)%9" ) + (F@)2F" (@)9() (o' )

=2f(@)(f'(2))’9(y) (g’ ¥))* — 2f'(x)g' (v)-
(1) When K = 0, we have

H =

H,

(2.1) F@)f"(@)9()g" (v) — (f'(@)g' ) = 0.
Let p(z) = %E and q(y) = %%. Then by (2.1), we get
(2.2 F@p(a@) Frowat) 3 - Gl2)aw)? =0.

(a) If p(z) = 0, we have f(z) = ¢1. Thus we get z(z,y) = c19(y)-
(b) Analogously, if q(y) = 0, we have z(z,y) = c1.f(x).
(c) If p(x) # 0 and ¢(y) # 0, from (2.2), we get

f@ w3 = p)aw).
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Then by p(2)q(y) # 0 we know that g(y)%g— # 0. So we get

d
(2.3) f@a7 ) =k,

p(z) g(y)g—g -

where k; is a constant.
(i) If k1 = 1, from (2.3) we have
{f(:z:) = exp(c1Z + ¢2)
9(y) = exp(csy + ca).
Then we get the result (c¢) of Theorem 1(1).
(ii) If k1 # 1, from (2.3) we have
{f(w) = (@12 + ) ™A
9(y) = (csy +ca) 1.
Then we get the result (d) of Theorem 1(1).
(2) Let p(z) = —i and ¢(y) = %5. When H = 0, we have

dzx

@24 @) <g<y>>2q<y>§g- + <f<x>>2p<w>dd—§g<y><q<y>>2

—2f(@)(p(2))*9(y)(a(¥))* — 2p(x)a(y) = 0.
(a) If p(z) = 0, we get f(z) = 1. Then S can be written as z(z,y) =

c19(y)-
(b) If ¢(y) = 0, we have z(z,y) = c1 f(x).
(c) For p(x) # 0 and q¢(y) #0, (2. ) can be written as
25) (@pE)o0) 6w T~ o) + (W) @)(F )55 ~pla) = 2.
Differentiating (2.5) with respect to x and y respectively, we get
(26) (F@p()) 90) (o) 52 ~ ) + (W) F@)(F () L —p@)] =0,

dg df

(2.7) (F(@)p(z)lg(y)(9(v) 3—9—Q( N+ (9(w)aly ))’f(w)(f(ﬂi)j—? —p(z)) = 0.

If (f(z)p(x))’ = 0, from (2.6), by a calculation we can get p(z) = 0. This

contradicts to p(x)q(y) # 0. So (f(z)p(z))’ # 0 and analogously, (9(v)q(y))’ #
0. Thus (2.6) and (2.7) can be written as

d : dg _
28) [F@)(f (@) FF — p()] - 9) g, —9) h
(f(z)p(x)) q(y)

F@OFH -2 lswew 3L - aw)
p(

SR ) A
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here k1, ko are nonzero constants. From (2.8) and (2.9) we have k; = ky = k.
With (2.5) we obtain

kf(z)p(z)g(y)q(y) = 1.

We get f(x)p(x) = constant and g(y)q(y) = constant. It is also a contradictory.
This completes the proof of Theorem 1. d

Theorem 2. Let S be a factorable surface of type 4 in E3.
(1) If Gauss curvature K of S vanishes identity, S is one of the following
surfaces or an open part of them:
(a) z(y, 2) = a1 f(y),
(b) z(y, 2) = c19(2),
(c) z(y, 2) = exp(c1y + c22 + ¢3), i
(d) 2(y,2) = (c1y + c2) T (c3z + C4)Tll.
(2) If S is minimal, it is one of the following surfaces or an open part of
them:
(a) z(y, 2) = a1g(2),
(b) x(y’ Z) = (Cly + 02) exp(c;:,z + 04)7
(c) f(y),9(2) satisfy

flyy = cltan(%yﬂzz),
9(z) = ]Z—zsinhz(%/c—_?’z))

where ¢y, ¢, ¢3,c4,k1, ko are constants and ki # 1,k #0,e = +1.

Proof. In 3-dimensional Minkowski space E with the metric ds? = 2dzdy +
dz?, the factorable surface of type 4 can be written as r(y, z) = (x(y, 2),y,2) =

(fW)g(2),y,2)-

Gauss curvature K and mean curvature H of S are given by
_ _TWf"we(2)g" (2) — (f'(y)g'(2))*
[(F)g'(2))? =2/ (y)g()]2  ~
g - W) Y)e(2)9"(2) + ' (W)e(z) — 2/ ')
2((f(v)g'(2))? — 2 (v)9(2)]2
(1) When K = 0, we have
FW) " )g(2)g" (2) — (f'(y)g'(2))* = 0.
Then we get the results of Theorem 2(1).
(2) When H = 0, we have
(2.10) 2f(W)f' W)9(2)g" (2) + " (W)9(2) — 2f () ' (v)(¢'(2))* = 0.
Let p(y) = %5 and ¢g(z) = %g. Then (2.10) can be written as

(2.11) 2f (y)p(y)g(Z)Q(Z)g—g + p(y)j—z;g(Z) - 2f(W)p(y)(q(2))* =0.
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(a) If p(y) = 0, we have z(y, 2) = c19(z).
(b) If p(y) # 0, (2.11) can be written as

21 (1)g(2)a(z >j—j 4 j—? (2) - 2/ (W) (a(=))? = 0.
that is
d 2 dg
ai;% :2«1(2) ~g(2)q(z X .
) o) ’

where k> is a constant.
(i) If k2 = 0, solving this equation we have

{f(y) =ay+c
9(z) = exp(csz + c4).

This is the result (b) of Theorem 2(2).
(1) If ko # 0, we get

{(tz(Z))2 - 9(2)q(2)

Solving this equations, we get the result (c) of Theorem 2(2). Then we complete
the proof of Theorem 2. O

Theorem 3. In 3-dimensional Minkowski space E3, there is nmo factorable

surface of type 3 with nonzero constant Gauss curvature or nonzero constant
mean curvature.

Proof. (1) If Gauss curvature K of a factorable surface S of type 3 is a nonzero
constant C, we have

_ @ f"(@)ey)g" ) — (F'(2)g' W)*
G K S i @ewe P 7"
K # 0 yields that f'(z)g’(y) # 0.
Put a1 = g(y)g"(y), a2 = (¢'(y))* and a3 = g(y)g'(y), where azaz # 0. Then

__af@)f" (@) - oo(f(@)? _
(2.13) T smt@r@r - C

Differentiating (2.13) with respect to y, we have

f@)f"(@)[e) + f(2)f (z) (20103 — 4o 03)]

= (f'(2))’[03 — f(2)f'(z)(4aza; - 2a503)].
(a) o) + f(z)f'(z) (20} a3 — 4a1af) = 0, we have

(2.15) ah — fz)f(z)(danal — 20bas) = 0.

(2.14)
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By (2.15) a4 = 0 yields ¢’(y) = 0. Combining o # 0 and (2.15), we have
4o — 20503 1

% T@f @
Then we get f(z)f'(z) =constant. Together with (2.12), we obtain

1)9" (W) + (¢ ®)?
[1+ c19(y)g' (W)

That means f(z) = constant. Thus o + f(z)f'(z)(2a)as — daaj) # 0.
(b) When

(2.17) o + f(@) f'(x) (20 a3 — 4onafy) # 0,

formula (2.14) can be written as

(2.16)

= constant.

(f(2))~%Z

a5 — f(@)f' (=)
o + f@)f ()8’
here 01 = 4danaf — 2aba3, B2 = 204as — 4ap04. Differentiating (2.18) with

respect to y we have
(2.19)

(f(@)f'(2))* (8182 — B1B3) + f(2)f' ()04 B1 — o B — 2382 + 0 B) + ooy — @0 = 0.
Thus we get

(2.18) f@)f" (@) = (f'(=))*

B1B2— BBy = 0O,
(2.20) oy B — o1 —ahfa+ayf, = 0,
afay —ajay = 0,

here aa51 # 0, otherwise ¢'(y) = 0.

(i) If &} = 0, from (2.17) we have 8> # 0. Applying this to (2.20) with
o) =0 we get ¢'(y) =0.

(ii) If & # 0, B2 = 0, from (2.20) we get g'(y) =constant. With F; = 0 we
obtain ¢'(y) = 0 which contradicts to K # 0.

(iii) When of B2 # 0, we get oy = 0 which contradicts to K # 0 by solving
(2.20).
Therefore, there is no factorable surface r(x,y) = (z,y, f(x)g(y)) with nonzero
constant Gauss curvature.

(2) If mean curvature H of a factorable surface S is a nonzero constant C,
we have

(221) H = - 4 =
' 21+ 2f(z)f (z)g(w)g' W2
A = f@)(f(2)*(9W)%9" ) + (f@) " (z)9(w)(d' ¥))®

-2f(z)(f'(2))*9(y) (g’ W))* — 2f'(x)g' (v).
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Put oy = f(z)f'(z), a2 = (f(x))?f"(z) and as = f'(z). H # 0 yields that

ajag # 0. Differentiating (2.12) with respect to z, we have

(2.22) Bila))’s' W)g" () + Ba(9))* (g’ W)* + Bsg(w) (9 ))*
+B1(9())*9" (y) — 20539 (y) = 0,

here 81 = 2040} — a1dhas, B2 = 2a10) — 3ahaz — 4atal + 2an0has, B =
ah +4afaz — 6anad, Ba = afas +arah. Let p(y) = ¢'(y). Then (2.22) can be
written as

(2.23) <g<y>>2j—§<mg<y>p<y> 1 B1) = 20 — Balg(@)p®))? — BaeW)p(w).

(a) If B1g(y)p(y) + Ba = 0, we get

(2.24) 9{y)p(y) = constant,
or
(2.25) Br=02=03=%=a5=0.

Combining (2.24) with (2.21), we get ¢’(y) = 0; solving (2.25), we have f'(x) =
0. These contradict to H # 0.
(b) When 819(y)p(y) + B # 0, from (2.23) we get

2dp 204 — Ba(g(y)p(y)? — Bag(y)p(y)
(2.26) W) g, = Bro(w)p(y) + fs '

Differentiating (2.26) with respect to z, we have

(8182 = B1135) 9 (w)p(W))* + (8185 — 8185 + B384 — B28,)la(w)p(y)]”
+ (858 — BaBy — 206581 + 204381)g(y)p(y) + 2(c3 8 — eB4) = 0.
Then we get

(2.27)

BifBa— BBy =

(2.28) P18 — B1Bs + BaPs — BBy =
BsBs — B3fy — 20551 + 2038 =

ayfy —o5hy =

Solving (2.28), we have f’(z) = 0, that means H = 0. Therefore, there is
no factorable surface r(x,y) = (z,y, f(z)g(z)) with nonzero constant mean
curvature. This completes the proof of Theorem 3. O

Theorem 4. Let S be a factorable surface of type 4 in E.
(1) If Gauss curvature K of S is a nonzero constant C, S is following surface
or an open part of it: f(y), g(2) satisfy

fW) = (ay+ec)™! .

_ [ (desa) .
z_/<0%_1003g(2) 2clg(y)> dg(z),

NI

where ¢1,ca,c3 are constants.
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(2) If mean curvature H of S is a nonzero constant C, S is following surface
or an open part of it: f(x),g(z) satisfy

{f(y)= (ery+e2)™ )

_ 2cic3g(2) 2
z—/[(m) ~2c19(z)|  dg(z),

[

where c1, ¢, c3 are constants.
Proof. (1) We assume that Gauss curvature of S : r(y,z) = (f(y)9(2),y, 2) is
_fW " We(x)g" (2) - (f'(w)g'(2))* _

FWe@? 27 @R 7

K # 0 yields that f'(y)g'(z) # 0. Put a; = f(y)f"(y), @2 = f'(y) and
a3 = (f(y))?, where azas # 0. Differentiating (2.29) with respect to y, we
have

(2.30) B1(9(2))°g" () = Bag(2)(g'(2))*9" (2) — Ba(g'(2)* = 0,

here 81 = 2aja2 — 4a1ad, B2 = ohaz — 20105, Bs = 2as0h03 — 2030, As
9"(2) #0, from (2.29) we obtain g(z) # 0. Then (2.30) can be written as

(9'(2))? ((gl(z))2>2 1
231 - — =0.
(231) h=b 9(z) P 9(2) g"(2)
If 33 = 0, we get the result of Theorem 4(1). If 85 # 0, from (2.31) we have

(2.29) K=

(9'(2))?
252 Gy 1 N o
’ 9(z) J ¢"(2) Bs '
Differentiating above equation with respect to y, we get
/ / (gl('z))2 ! /

(2.33) (8285 — B233) ) (8185 — B1B3) = 0.
From (2.33) we obtain

Bafs — G205 = O,
(234 oy
or

/ 2 / /

(2.35) (¢'()" _ 515 = Brbs = constant,

9(z)  BalfBs — B2fs
where 8503 — B235 # 0. Combining (2.34) with (2.29) we have f'(y) = 0;
combining (2.35) with (2.29) we get g'(z) = 0; these yield K = 0. So when
Bs # 0 there is no factorable surface r(y,2) = (f(y)g9(2),y, z) with nonzero
constant Gauss curvature.
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(2) We assume that the mean curvature H of § is
(2.36)

= HOI W)@+ 1 Wel) — AW W @S _
2[(f(n)g'(2))? — 2f"(w)g(2)]2

H # 0 yields that f'(y)g'(z) # 0. Put cu = f(y)f'(y), c2 = f"(y), oz = f'(y)
and as = (f(y))?, bere oyosaq # 0. Differentiating (2.36) with respect to y
we get

(8ajas — 12a105)(9(2))*9" (2) — (4ajay — 6a1a))g(2)(g'(2)) 9" (2)
(2.37)  + (4ahas — 6aa})(g(2))* — (20has — 3a2d
+80h a5 — 12010)9(2)(9'(2))° + (4f ay — By (g (2))* = 0

Let 01 = 80/1&3 - 120610(%, By = 40’1064 - 60&101’4, By = 4&’203 - 6020&%, By =
20404 — 300 + 8a s — 12010. Then (2.37) can be written as

(2.38 Bi(9(2))%g" (2) — Ba2g(2)(9'(2))*d" (2) + B3(9(2))”
' — Bag(2)(g'(2))* + Ba2(g' (2))* =0,
that is
(2.39) g"(z )(5 — B2 (g f((Z})) ) = =0 [%%—} +ﬁ4%% ~ s,

here ¢"(z) #0. If g"{ ) 0, from (2.36) we have ¢'(z) = 0.

(a) If B — Gp el (Z} “O,WGObtainﬂl=ﬁ2=53=ﬂ4=00r33;—({%)1=

constant. But from (gg(é)))Q = constant we have ¢'(z) = 0. Thus we get the
result of Theorem 4 ( ).

(b) If g"(2)(B1 — (ggé)} ) # 0, (2.39) can be written as

2
(2.40) g"(z) = { ] £

rBl ,82 (g (Z })

Differentiating (2.40) with respect to y, we get

7 292
(2.41) (68182 — P18y + P81 — B28y) [( g() }

9(z)
—(8,81 — B 3] - N (Z))Q__ ‘o N
181 — B8y + 8583 — B2f3) 9G) (8183 — B1B3) = 0.
Then we get
(102 — 105+ B58a — BBy = O,
(2.42) BBy — B1By + BB — B2 = 0O,
BBz — BBy = 0,
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here 8132 # 0 because 3; = 0 yields G2 = 0, this means f; — ﬁz%)m = 0.

From above equations, we obtain (%)' = 0. Assume (31 = c9f2, where ¢ is
a constant. From (2.42) we obtain also §; = 2 = 0. Therefore, there is no

factorable surface satisfying ¢”(z)(f1 — B2 %%Lz) # 0. This completes the

proof of Theorem 4. O

Theorem 5. There is no factorable surface of type 3 satisfying the equation
H? =K #0 in E3.

Proof. When H? = K # 0, we have
(2.43)
[F@)(F (@)% (9W))%d" () + (fF (@) f" (@) g(w) (¢’ (v))*
—2f(@)(f'(=))29()(g' ®))* — 2f'(@)g' W) + 41 + 2/ (2) f' (z)9(y)g' ()]
[F@)f"(@)g(m)g" (v) — (F'(@)g' ¥))*] = 0.
Put p(z) = f'(z), a1 = f(x)p(z), a2 = p(z), az = f(a:)g—’;. From (2.43) we
have
(2.44) [n02(g(¥))29" (v) + 1 (as — 202)g(y) (g (v))* — 2029’ ()}
+4[1 + 2019(y) (9’ W) [a2039()g" () — 23(d’ (¥))*] = 0,

here ayaaag # 0. Denoting t(y) = ¢'(y), then (2.44) can be written as

Brlg)) ) (o) + Balo@) W) + Bolo0)) () 3
(2.45) 9 g

+ ﬂ4(g(y))2(t(y))2g—; — Bsg(y)(t(y))* + ﬂeg(y)t(y)% =0,

here 81 = aZa3, B2 = of(as — 2a2), B3 = 20d02(03 — 202), Pa = 8ar02a3 —
40103, Bs = daranos, Bs = 4azas. Using h = g(y)t(y) (2.45) can be written
as

(2.46) [(g(y))2§—;]2(ﬂ1h) + [(g(y))zj—;](ﬁshz + Bah + B6) + B2h® — Bsh* = 0.

Put Ay = B1h, Az = ,83’7/2 + Bsh + B¢, Az = ﬂzhg - ﬂ5h2. From (246) we have

—A2 +e A2 - 4A1A3
(@) g = T

24, ’

here ¢ = +1. Differentiating above equation with respect to f, we get

(2.47) (A1 AL — AL Ag)(ALAs — AgAL) + (A1 AL — AjA3)? =0,
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here A = ‘%", (:=1,2,3). That is

(2.48)

[(B185 — B183)R® + (B1By — B1Ba)R* + (BB — B1 56 [(B2055
— B3Ba)h® + (Bafs — B30s + BBy — BaBa)h® + (B2 — 8256 + BalBs — Bifs)h
— (B85 — B5Bs)] + (81585 — BiB2)h> + (8155 — B1BE)R’] =0,

where g8 = —fl (t=1,...,6). If h # constant, observing (2.48), we have

(6186 — B186) (8586 — B505) = 0.

As (18586 # 0, we have 5135 — 31085 = 0 or B85 — 850 = 0.

(a) If 5185 — 8186 = 0, we have f'(z) = 0 from (2.43).

(b) If BifB6 — Bs86 = 0, we have f'(x) = 0. Thus h = constant, that is
g9(y)t(y) = constant. Analogously, we have f(z)f'(z) =constant. From (2.43)
we have f'(z)g'(y) = 0 which is a contradictory. Finally we obtain that there
is no factorable surface r(z,y) = (z,y, f(x)g(y)) satisfying H? = K # 0 in E3.
This completes the proof of Theorem 5. O

Theorem 6. Let S : r(y,z) = (z(y, 2),y,2) = (f(y)g9(2),y, z) be a factorable
surface of type 4 in E?. If Gauss curvature K and mean curvature H satisfy
H? = K # 0, it is following surface or an open part of it:

&y, ) = ci(y + ez) "M (es = F(E —ca)?),

where ¢y, 2, €3, C4 are constants.

Proof. If Gauss curvature K and mean curvature H of surface S satisfy H? =
K # 0, we have
(2.49)

2F W) (1)9(z)g" (2) + ' W)g(z) — 2f W) f (W) (9’ (2))°)?
+A[F )" (W)9(2)g" (2) — (F' ()9 (2)*)1(f @)g (2))* — 2f (w)g(=)] = 0.

Put a1 = g(2)g"(2) and a2 = (g'(2))?. Then (2.49) can be written as
8 (t(y)j—;f - ﬁzf(y)(t(y))Qg—;
+ Bs(F ()2t (w))? + W@»St(y)gg + Bs(tw))? =

here t(y) = f'(y), B1 = (9(2))2, B2 = 4(a1 + a2)g(z), Bs = 403 —8mae, 1=
da o, POs = 8¢(z)ae. From above equation we obtain

2\ o (¥)
(250) (f( )) (ﬂl(f(y)) )+< <y>>( ﬁz(f(y))2+’64)

W) o, 5 ) \_
(ﬂ"((f( TR ) 0.
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(a) Put h = ﬁyﬂ))% If h # constant, we get

[(8182 — B182) + (8181 — B1B)| (82085 — B205)h*
(2.51) + (8205 — B3B3 + B4Bs — Bafs)h + (B384 — B3P4))
+[(8185 ~ B18s)h® + (8185 — B1a)h]* = 0.
Observing (2.51), we have (318, — 3185 = 0. With (2.49) we get ¢'(z) = 0, thus
H=K=0.
(b) If h = C # 0, we have % = constant, here C is a constant. Solving
it we obtain f(y) = c1(y + c2)~1. With (2.49) we get

-39 + 82 4 @] + 016" - ) [ + 222 <o

Solving above equation we have g(z) = cs — (& — c4)?, that is

{f(y) =ci(y+c2)?
9(2)=cs = F(& — ca)*.

This completes the proof of Theorem 6. 0

Theorem 7. In E3}, there is no factorable surface S: r(z,y) = (z,y, 2(z,y)) of
type 3 satisfying aH + bK = 0, where HK # 0 and a,b € R — {0}.

Proof. If Gauss curvature K and mean curvature H of S satisfy aH +bK =0,
we have H/K = —b/a = constant, that is

HyHy _ 2
(2:52) OIRO A0 B O A
H = [@)(f(2)2(9®)%" @) + (f@)2f" (@)9(y)(d' )
=2f(2)(f'(2))?9(y)(g' (v))* — 2f' ()9’ (),
Hy = (1+2f(2)f'(x)9(y)d @))%

We assume that p(z) = f'(z), a1 = f(z)p(z), a2 = p(z) and a3 = f(x)gl}.
K # 0 yields ayaza3 # 0. Differentiating (2.52) with respect to f, we get

Bi(a®)2(g" ))? - B2(9(v)d’ @))*9" (W) + Bs(9(®))*d' (¥)(¢" (v))?
(2.53)  +Balg()d ))°9" () + Bsg(w) (g’ W))* — Bs(9(®))* (g’ ¥))°
+ Br9(v)g’' )g" (v) — Bs(d'(v))® =0,
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B =o3(d)os — araj),

B2 = of o — a1a3al — o202 + 40} 3ol + agaglad — 6araial,

Bs = a1 adas — 2a3adal,

Bs = 3oy a0l — 6araddas — 20 0had + 4adadal, — 3analad + 202030,
Bs = —danadal + 20 0das — 2a1030f — o asad + agabad + 20) 03,

B = 3anaddas + 203 adal — 6ol + dadadal, — 4alasabas,

B7 = 20304,

ﬁ8 = 20{%0(’2,

o = %‘}i (i=1,2,3).

Denoting t(y) = ¢'(y), then (2.52) is

[(g(y))2§_;]2(ﬁl + Bsg()t(y)) + [(g(y))Q%][& — Bog(y)t(y) + Ba(g()t(y))?]
+ [~Bs9(W)t(y) + Bs(9(w)t())? — Bs(9(w)t(y))*] = 0.

Using the same method as Theorem 5, we get
(2.54)

(8581 — BaBu)(g(W)t (W) + (8181 — BBy + 8583 — B285)(9()t(y))?

+ (8183 — 8182 + B387 — B387)9(y)t(y) — (5187 — B157)]

x [(B48s — BaBe)(9()t(y))® + (B2 — 8586 + BaBk — B15s)(g(y)t(y))*

+ (8687 — Bs07 + B85 — B85 + B1Bs — BaB)(g(w)t(y))®

+ (8587 — B557 + B — 8288) (9(9)t(y))? — (B85 — B18s)9(y)t(y)]

x (B3 — B8586) (g ()t(y))* + (8485 — BaBh + BuBh — B186) (9()t(w))*

+ (8185 — B1B5 + BsBs — B388) (9(w)t(y))? + (8185 — 818s)9 ()t (y)]* = 0.
From above equations we get
(2.55) (8187 — B187)(B7 5% — B2s) = 0.

At first we have 81 # 0. If 8 = 0, we obtain that the coefficient of (g(y)t(y))?
doesn’t equal to zero in above equation. Then we have 37 # 0 and G # 0. If
Br =0, f'(z) = 0 and from B7 # 0 we can get Bz # 0. As 51878 # 0, we
obtain f'(z) = 0, this means K = 0 from (2.55). This completes the proof of
Theorem 7. 0

Theorem 8. Let S: r(y,z) = (z(y, 2),y,2) = (f(y)g9(z),y,2) be a factorable
surface of type 4 in E}. If Gauss curvature K and mean curvature H of S
satisfy aH + bK = 0 with HK # 0 and a,b € R — {0}, S is following surface
or an open part of it:

fy)=caly+e)™

(S

2 2bC3

z= / [2C§(g(z))2 (—a - M) 9(2) + 2ecsg(z) (cg(g(z))z 3 j_lb(:_glg(z)> %] o

where ¢ = £1, ¢y, ¢, c3 are constants.
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Proof. If Gauss curvature K and mean curvature H of S satisfy aH +bK =0,
we have
(2.56) — 2 _ 2/ ®9()e"(2) + I W)9(2) — 2fW)f W)(g'(2))’

a F@) " ()g(2)g"(2) — (' (v)g'(2))*

x[(F(4)g'(2))* — 2 (¥)9(2))?-

Differentiating (2.56) with respect to g we have

BL(f W) f @) F" (v) — Bof )(f' (w))*
257)  +Bs(fW) F W) W) + Ba(f W) F' ()

+Bsf W) W ®))? = Be(f W) F"(v) — B (FW)*(f"()* =0,

(81 = —202 + 4oy 0bas + 2010 — 4o a3 — 03 + Fozobos,
B2 = darabas + 202 — dofasas — 20n02,
B3 = alal — 3a1a2a’% + 2c2v’1a§,
7 ! '
Ba = o1a0y — 2005 + 50,
ﬂs = 20/101% — 3011(!3,
— ol 2
4 186 = 2a2a3 - 3a2a3, )
' '

,37 = ;003 — 01002 — §a1a2a3,

— "
a1 = g(z)g gz),

—— 2
az = (9'(2))?,

az = %(2)7
1 _ A0y
\ai = -a—gl

Denoting t(y) = f'(y), then we have

dt \ 2
aF ty)
(f(y)) (ﬂsmy)ﬁ #)

dt 2
(2.58) dF [ t(y) X t(y) 3)
+f(y)< ﬂG((f(y))z) P Gwr TP

t(y) t(y)
o ((f(y))z) PGy ="
Put h = (—ff(%%g, we get
[h3(Bs85 — BLBs) + h2(Bs By — BeBr + B1Bs — B1Bs) + h(B1 57 — 5107 + Bals
— B48s) — (B3By — B3 B)] IR (8586 — B2B%) + h3(B182 — B1Bs + BabBs — B4)
+ B2(B285 — B4Bs + P18y — B1Ba) + h(B38y — B5B4)] + [R3(B48s — B28%)
+ h2(BaBs — BiBs + BBy — ByBr) + MBS — Bafir)]” = 0.

If h # constant, we have (838} — 8567)(838s — B301) = 0.
(a) If BaBh — BiBr = 0, we get g(z) = c1(y + c2)®. With (2.56) we have
c1 =0, that is g’'(2) = 0.




FACTORABLE SURFACES IN 3-MINKOWSKI SPACE 169

(b) If 838, — B304 = 0, we get (‘féj))ﬁ = constant. With {2.56) we have
g'(z) =0

Thus we know h = constant, that is ﬁ@% = constant. Solving it we get
-1

fly) =ci(y+c2)~ . Applying f(y) = c1(y + c2)~! and (2.57) we get

2 = / [263(9(2))2 (—2. - %) (Z) -+ 2C3€g(z) (cé(g(z))z _ Z(Ezg(z))E} 4.

a  alel ales|”

o

This cormapletes the proof of Theorem 8. g
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