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Abstract

Deep belief nets have been successful in mod-

eling handwritten characters, but it has proved

more difficult to apply them to real images. The

problem lies in the restricted Boltzmann machine

(RBM) which is used as a module for learn-

ing deep belief nets one layer at a time. The

Gaussian-Binary RBMs that have been used to

model real-valued data are not a good way to

model the covariance structure of natural images.

We propose a factored 3-way RBM that uses the

states of its hidden units to represent abnormal-

ities in the local covariance structure of an im-

age. This provides a probabilistic framework

for the widely used simple/complex cell architec-

ture. Our model learns binary features that work

very well for object recognition on the “tiny im-

ages” data set. Even better features are obtained

by then using standard binary RBM’s to learn a

deeper model.

1 Introduction

Deep belief nets (DBNs) (Hinton et al., 2006a) are gen-

erative models with multiple, densely connected layers of

non-linear latent variables. Unlike mixture models, many

of the variables in a layer can contribute simultaneously

when generating data, so DBN’s have exponentially more

representational power than mixture models. DBN’s are

relatively easy to learn from unlabeled data because it is

possible to learn one layer at a time and learning each layer

is relatively straightforward. After a DBN has been learned

it is very easy to sample fairly accurately from the posterior

over the latent variables.

The efficient learning, fast inference and high representa-
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tional power make DBNs very attractive for modeling per-

ceptual processes such as object recognition. The easiest

way to use a DBN for classification is to first learn multiple

layers of features on unlabeled data and then train a multi-

nomial logistic classifier using the top layer of features as

input. After learning on unlabeled data, it is possible to

back-propagate through the layers of features (Hinton and

Salakhutdinov, 2006), though this can cause overfitting, es-

pecially when there is not much labeled data. In this paper

we do not use back-propagation to fine tune the features

found by unsupervised learning.

DBNs were first developed for binary data using a Re-

stricted Boltzmann Machine (RBM) as the basic module

for learning each layer (Hinton et al., 2006a). A standard

RBM is an undirected graphical model with one layer of

binary visible units for representing a data-point and one

layer of binary hidden units that learn to extract stochas-

tic binary features which capture correlations in the data.

The hidden and visible biases and the matrix of weights

connecting the visible and hidden units are easy to train

using contrastive divergence learning which is a crude

but efficient approximation to maximum likelihood learn-

ing (Carreira-Perpignan and Hinton, 2005). A simple in-

troduction to RBMs can be found at Hinton (2007).

For real-valued data, such as natural image patches, binary

units or their mean-field approximations are inadequate but

it is possible to make the visible units of an RBM be Gaus-

sian variables (Lee et al., 2009), a model dubbed Gaussian

RBM. This is much slower to train (Krizhevsky, 2009) and

it is not a good model of the covariance structure of an im-

age because it does not capture the fact that the intensity of

a pixel is almost always almost exactly the average of its

neighbors. Also, it lacks a type of structure that has proved

very effective in vision applications: The outputs of lin-

ear filters are passed through a rectifying non-linearity and

then similar filters have their outputs pooled by a “com-

plex” cell which exhibits some local invariance due to the

pooling (Fukushima and Miyake, 1982, LeCun et al., 1998,

Serre et al., 2005). In this paper, we show that RBM’s with

real-valued visible units and binary hidden units can be

modified to incorporate 3-way interactions that allow the
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Figure 1: A graphical representation of the factored 3-way

RBM. The triangular symbol represents a factor. Two iden-

tical copies of the visible units are shown in order to em-

phasize the relationship to a previous model (Memisevic

and Hinton, 2010) that learns to extract motion from a se-

quential pair of images. Our model is equivalent to con-

straining the images in the sequence to be identical.

hidden units to control the covariances of the visible units,

not just the biases as was done in Osindero and Hinton

(2008). To keep the number of parameters under control,

it is necessary to factor the 3-way interactions, and the fac-

tors turn out to look remarkably like simple cells: They act

as linear filters that send their squared outputs to the hidden

units, and they learn to be local, oriented edge detectors.

In section 2 we explain factored 3-way interactions assum-

ing that all of the units are binary. In section 3 we de-

scribe how the reconstruction phase of the contrastive di-

vergence learning procedure can be modified to deal with

real-valued visible units that are not independent given the

hidden states. In section 6 we show the filters that are

learned on gray-level patches of natural images and also on

smaller patches of low-resolution color images harvested

from the web. We also show that the binary hidden units

learned by our model are good for object recognition and

that even better features can be obtained by stacking a num-

ber of standard RBM’s on top of these binary features to

produce a DBN.

2 A more powerful module for deep

learning

Restricted Boltzmann machines can be modified to allow

the states of the hidden units to modulate pairwise inter-

actions between the visible units. The energy function is

redefined in terms of 3-way multiplicative interactions (Se-

jnowski, 1986) between two visible binary units, vi, vj , and

one hidden binary unit hk:

E(v,h) = −
∑

i,j,k

vivjhkWijk (1)

This way of allowing hidden units to modulate interactions

between visible units has far too many parameters. For

real images we expect the required lateral interactions to

have a lot of regular structure. A hidden unit that rep-

resents a vertical occluding edge, for example, needs to

modulate the lateral interactions so as to eliminate hori-

zontal interpolation of intensities in the region of the edge.

This regular structure can be approximated by modeling the

three-way weights as a sum of “factors”, f , each of which

is a three-way outer product Wijk =
∑

f BifCjfPkf ,

where matrices B and C have as many rows as number of

pixels and as many columns as number of factors, and P

has as many rows as number of hidden units and as many

columns as number of factors. Since the factors are con-

nected twice to the same image through matrices B and

C, it is natural to tie their weights further reducing the

number of parameters, yielding the final parameterization

Wijk =
∑

f CifCjfPkf . Thus Eq. 1 becomes:

−E(v,h) =
∑

f

(

∑

i

viCif

)





∑

j

vjCjf





(

∑

k

hkPkf

)

=
∑

f

(

∑

i

viCif

)2(

∑

k

hkPkf

)

(2)

The parameters of the model can be learned by maximizing

the log likelihood, whose gradient is given by:

∂L

∂w
= <

∂E

∂w
>model − <

∂E

∂w
>data (3)

where w represents a generic parameter in the model and

the angle brackets represent expectations under the dis-

tribution specified by the subscript. Fortunately, the in-

tractable integral over the model distribution can be ap-

proximated by drawing samples from the distribution. We

can draw biased samples by running a Markov chain Monte

Carlo algorithm for a very short time starting at the data, as

proposed by Hinton (2002). This is called “contrastive di-

vergence” learning.

Given the states of the hidden units, the visible units

form a Markov Random Field in which the effec-

tive pairwise interaction weight between vi and vj is
∑

k

∑

f hkCifCjfPkf . The hidden units remain condi-

tionally independent given the states of the visible units and

their binary states can be sampled using:

p(hk = 1 | v) = σ





∑

f

Pkf (
∑

i

viCif )2 + bk



 (4)

where σ is a logistic function and bk is the bias of the k-th

hidden unit. Given the hidden states, however, the visible

units are no longer independent so it is much more difficult

to compute the reconstruction of the data from the hidden

states that is required for contrastive divergence learning.

However, in the binary case a mean field approximation can

be used yielding to a message passing algorithm (Hinton,

2010) on the graph of fig. 1.
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3 Producing reconstructions using hybrid

Monte Carlo

In conditional 3-way factored models (Taylor and Hinton,

2009, Memisevic and Hinton, 2010), one of the two sets

of visible variables is held constant during reconstruction.

As a result, the visible variables in the other visible set are

all conditionally independent given the hidden variables,

so they can all be sampled independently from their exact

conditional distributions. In our joint 3-way model, both

copies of the visible variables need to be identically recon-

structed, and since the pixels interact it is harder to sample

from the exact distribution. It would be possible to invert

the inverse covariance matrix specified by the current states

of the hidden units and to sample from the true distribution,

but this is an expensive operation for the inner loop of a

learning algorithm.

Fortunately, the reconstruction does not need to be an ex-

act sample. For contrastive divergence learning to work all

that is required is that the reconstruction be closer than the

data to the joint distribution of the visibles given the cur-

rent state of the hiddens. This could be achieved by one or

more rounds of sequential Gibbs sampling of the visibles,

but it is more efficient to integrate out the hidden units and

use the hybrid Monte Carlo algorithm (HMC) (Neal, 1996)

on the free energy:

F (v) = −
∑

k

log(1 + exp(
∑

f

Pkf (
∑

i

Cifvi)
2 + bk))

(5)

HMC draws a sample by simulating a particle moving on

this free energy surface. The particle starts at the data-point

and is given an initial random momentum sampled from a

spherical Gaussian with unit variance. It then moves over

the surface using the gradient of the free energy to deter-

mine its acceleration. If the simulation is accurate, the sum

of the potential and kinetic energies will not change and the

results of the simulation can be accepted. If the total en-

ergy rises during the simulation, the result is accepted with

a probability equal to the negative exponential of the total

energy increase. Numerical errors can be reduced by using

“leapfrog” steps (Neal, 1996). After simulating the trajec-

tory for a number of leapfrog steps, the current momentum

is discarded and a new momentum is sampled from a spher-

ical Gaussian. This Markov chain will eventually sample

from the correct distribution, but we only need to run it for

a small fraction of the time this would take.

4 Learning

We learn the factored 3-way model by maximizing the like-

lihood using stochastic gradient ascent on mini-batches and

contrastive divergence to approximate the derivative of the

log partition function. Samples are drawn by using HMC

as described in the previous section. The algorithm pro-
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Figure 2: Free energy of a factored 3-way RBM with only

one factor and one hidden unit as a function of the factor

input, using a positive (dashed line) or negative (continuous

line) factor-to-hidden matrix.

ceeds as follows:

1) compute the derivative of the free energy in Eq. 5 w.r.t. to

the parameters (visible-to-factor, factor-to-hidden weights

and hidden biases) at the training samples,

2) draw (approximate) samples from the distribution by us-

ing contrastive divergence with HMC,

3) compute the derivatives of the free energy w.r.t. the pa-

rameters at the samples given by HMC,

4) update the parameters by taking the difference of these

derivatives as shown in Eq. 3.

5 The sign of the factor-to-hidden weights

Consider a system with one factor, and one hidden unit.

If the factor-to-hidden weight is positive, there is no lower

bound to the energy that can be achieved by using extreme

values for the visible units (see Eq. 5 and the dashed curve

in fig. 2). Extreme values can be contained by using a

quadratic energy penalty on each visible value, as is done

in a Gaussian-binary RBM, but this makes it very hard

to model occasional extreme values if the representation

is overcomplete. If the factor-to-hidden weights are con-

strained to be negative, this problem disappears because

a hidden unit simply turns off when it receives extremely

negative total input (see Eq. 4). To allow a hidden unit

to model a constraint that is normally satisfied but occa-

sionally strongly violated, it is necessary to use negative

weights and a positive bias. The hidden unit then creates

negative energy when the constraint is satisfied and zero

energy when it is strongly violated as shown by the con-

tinuous line in fig. 2. The similarity of the shape of this

energy with that of a heavy-tailed distribution is further in-

vestigated in sec. 7.

Our learning algorithm includes the negativity constraint

by simply setting positive factor-to-hidden weights to zero

after each weight update.
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Figure 3: 256 filters of size 16x16 pixels (columns

of visible-to-factor matrix) learned on whitened image

patches sampled from the Berkeley data set.

6 Experiments

The factored 3-way model is specifically designed for

heavy-tailed distributions of the type that arise in low-

level vision (Simoncelli and Olshausen, 2001, Olshausen

and Field, 1997). We therefore applied our algorithm to a

data set of natural image patches to see whether the factors

learned filters that exhibited a heavy-tailed output distribu-

tion.

One way to evaluate the features learned by the 3-way

model is to use them for object recognition. We used the

features to classify images in the CIFAR-10 data set (Tor-

ralba et al., 2008a, Krizhevsky, 2009) and we achieved

significantly higher accuracy than the carefully engineered

and widely used GIST descriptors (Oliva and Torralba,

2001). We also achieved slightly higher accuracy than the

features learned by a Gaussian-Binary RBM (Krizhevsky,

2009) which has the best published performance for this

data set.

6.1 Modelling Natural Image Patches

We randomly sampled 100,000 image patches of size

16x16 pixels from the images of the Berkeley segmenta-

tion data set 1. After gray-scale conversion, the patches

were ZCA whitened. Whitening is not necessary but speeds

up the convergence of the algorithm. We constrained the

factor-to-hidden matrix to be non-positive and with length-

1http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

Figure 4: Location and size of filters learned on the Berke-

ley data set.

Figure 5: Grouping induced by the factor-to-hidden matrix:

visualization of a random subset of the rows of the matrix.

The red bar corresponds to the filter with largest weight to

a hidden unit, the blue bars are other filters with smaller

weight. Each hidden unit pools features placed at nearby

locations with similar orientations.

normalized columns by projecting after every parameter

update. Training is performed by approximating the max-

imum likelihood gradient with Contrastive Divergence, as

described in sec. 2, using the hybrid Monte Carlo method

described in section 3 to generate the required reconstruc-

tions. The hybrid Monte Carlo started at a data-point, chose

a random initial momentum and then ran for 20 leapfrog

steps to produce a reconstruction. The step size was dy-

namically adjusted to keep the rejection rate around 10%.

During the first part of the training we learn only the

visible-to-factor matrix keeping the factor-to-hidden matrix

fixed at the negative identity. After the filters converged,
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Figure 6: Example of images in the CIFAR-10 data set;

each column shows examples belonging to the same class.

we then trained both the visible-to-factor matrix and the

factor-to-hidden matrix simultaneously, similarly to Osin-

dero et al. (2006), Koster and Hyvarinen (2007).

After training, each factor can be visualized with the corre-

sponding filter as shown in fig. 3. As expected these filters

look like band-pass oriented and localized edge detectors,

reminiscent of simple cell receptive fields in area V1 of the

visual cortex. These features are strikingly similar to those

learned by ICA models (Hyvarinen et al., 2001) and other

sparse coding algorithms (Olshausen and Field, 1997, Teh

et al., 2003). These features are well described by Gabor

wavelets and fig. 4 uses this fit to show that they tile the

space nicely.

One way to look at the factor-to-hidden matrix is through

the non-zero weights in its rows. Each such weight cor-

responds to a factor and can be represented by its Gabor

fit. Fig. 5 shows that each hidden unit pools features that

have similar orientation and position, achieving de facto

a more invariant representation. This result confirms what

was found also by other authors (Osindero et al., 2006, Hin-

ton et al., 2006b, Karklin and Lewicki, 2009, Koster and

Hyvarinen, 2007, Kavukcuoglu et al., 2009) using related

models.

6.2 Recognition on CIFAR-10

The CIFAR-10 data set (Krizhevsky, 2009) is a hand-

labeled subset of a much larger data set of 80 million tiny

images (Torralba et al., 2008a), see fig. 6. These images

were downloaded from the web and down-sampled to a

very low resolution, just 32x32 pixels. The CIFAR-10 sub-

set has ten object categories, namely airplane, car, bird, cat,

deer, dog, frog, horse, ship, and truck. The training set

has 5000 samples per class, the test set has 1000 samples

Figure 7: 400 filters in the visible-to-factor matrix learned

on 2 million tiny images. The factor-to-hidden matrix was

initialized to learn a one-dimensional topography enforc-

ing similarity between nearby filters (scan the figure from

bottom to top, and from left to right). This figure is best

viewed in color.

per class. The low resolution and extreme variability make

recognition very difficult and a traditional method based

on features extracted at interest-points is unlikely to work

well. Moreover, extracting features from such images using

carefully engineered descriptors like SIFT (Lowe, 2004) or

GIST (Oliva and Torralba, 2001) is also likely to be sub-

optimal since these descriptors were designed to work well

on higher resolution images. Previous work on this data

set has used GIST (Torralba et al., 2008b) and Gaussian

RBM’s (Krizhevsky, 2009).

We follow a very simple protocol. We train the 3-way fac-

tor model on small 8x8 color image patches, and then we

apply the algorithm to extract features convolutionally over

the whole 32x32 image. After extracting the features, we

use a multinomial logistic regression classifier to recognize

the object category in the image. Training the 3-way factor

model does not require labeled data, so we train the model

using a set of two million images from the TINY data set

that does not overlap with the labeled, CIFAR-10 subset.

This procedure prevents over-fitting of models with lots of

parameters and improves generalization in data sets with

paucity of reliable labeled data (Hinton et al., 2006a, Ran-

zato et al., 2007, Raina et al., 2007).

In particular, we trained on ZCA whitened images as pro-

cessed by Krizhevsky (2009). We used the same set up

for HMC as described earlier, as well as the same con-
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Figure 8: Confusion matrix produced by the third stage

4096 dimensional features on the CIFAR-10 data set.

straints on the factor-to-hidden matrix. In addition to that,

we found it beneficial to normalize the length of the input

patch as well as the lengths of the filters in the visible-to-

factor matrix. The first rescaling is analogous to a local

contrast normalization of the input (Pinto et al., 2008) and

avoids excessive saturation of hidden units for patches with

high contrast. The normalization of the filters also prevents

saturation of units and, in addition, it avoids the tendency

for some of them to become very small (Osindero et al.,

2006, Olshausen and Field, 1997). We trained 400 factors

with color filters of size 8x8, and we initialized the factor-

to-hidden matrix to form a one-dimensional topography.

Initially each hidden unit is connected to 9 factors through

a Gaussian weighting. If we imagine laying out the 400

factors on a line, these Gaussian windows are stepped by

2 producing 200 hidden units. We first train the visible-to-

factor matrix and subsequently we let the factor-to-hidden

matrix adapt as done in the previous section. Fig. 7 shows

the learned filters in the visible-to-factor matrix. Although

the factor-to-hidden matrix is adapted, much of the 1 di-

mensional topography is left since nearby filters (by scan-

ning along the columns) tend to be similar. Notice how the

model learns a nice mix of high-frequency, gray-scale edge

detectors and lower frequency color derivative filters in dif-

ferent orientations and scales. All of the gray-scale detec-

tors were colored earlier in the learning, so they learned to

be exactly balanced in the RGB channels.

Our model encodes 8x8 color patches into a 200 dimen-

sional feature vector. In order to represent the whole 32x32

image, we apply the feature extractor on a 7x7 grid by step-

ping every 4 pixels in the horizontal and vertical direction.

This produces a 9,800 (200x7x7) dimensional feature vec-

tor for each image. By using this representation to train a

logistic regression classifier on the CIFAR-10 training set,

Table 1: Recognition accuracy on the CIFAR-10 test and

training (in parenthesis) data sets varying depth and feature

dimensionality. The second stage is trained on the 9,800

hidden probabilities produced by the first stage. Each sub-

sequent stage is trained on the 4096 hidden probabilities

from the previous stage.

Dimen. 1st stage 2nd stage 3rd stage 4th stage

9,800 62.8 (71.2)

4,096 64.7 (71.3) 65.3 (69.1) 63.2 (66.8)

1,024 61.2 (65.5) 62.8 (66.7) 61.9 (64.9)

384 56.8 (58.3) 58.7 (61.3) 58.2 (59.9)

Table 2: Test recognition accuracy on the CIFAR-10 data

set produced by different methods. Features are fed to

a multinomial logistic regression classifier for recogni-

tion. Results marked by (*) are obtained from Krizhevsky

(2009).

Method Accuracy %

384 dimens. GIST 54.7

10,000 lin. random proj. 36.0

10K GRBM(*), 1 layer, ZCA’d images 59.6
10K GRBM(*), 1 layer 63.8
10K GRBM(*), 1 layer with fine-tuning 64.8
10K GRBM(*), 2 layers 56.6

9,800 3-Way, 1 layer, ZCA’d images 62.8
4,096 3-Way, 3 layer, ZCA’d images 65.3
384 3 -Way, 3 layer, ZCA’d images 58.7

19,600 3-Way, 1 layer, ZCA’d images, no pool 62.3

we achieve a recognition rate equal to 62.3%. This result

should be compared to 59.6% achieved by a Gaussian RBM

trained on the same whitened data and 63.8% achieved by

a Gaussian RBM on unprocessed data (Krizhevsky, 2009).

Since the representation produced by the 3-way factor

model is binary, it is very easy to build a deep model (Hin-

ton et al., 2006a) by training standard binary RBM’s. We

have trained up to 4 stages as reported in table 1. The per-

formance on the test set and the generalization improve up

to the third stage. The third stage representation achieves

the best reported accuracy on this data set while using a

lower dimensional representation than Krizhevsky (2009),

65.3% with a 4096-dimensional feature vector. The cor-

responding confusion matrix is shown in fig. 8. The most

common misclassification is between dog and cat, and ani-

mal categories tend not to be confused with man-made ob-

ject categories (except for the category bird and airplane).

Compared to Gaussian RBM’s, our model not only

achieves better performance but also improves generaliza-

tion when used as first stage in a deep hierarchical model.

This improved generalization is achieved thanks to the in-

variance that is gained by pooling and rectifying the in-
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Figure 9: Factored 3-way RBM approximating a heavy-tailed distribution (empirical distribution of a Gabor response to

natural images, dashed line) by using hidden units that have different scaling of the factor-hidden matrix and different

biases (continuous line). The target distribution is approximated with a product of simpler distributions (a two component

mixture whose energy is given in Eq. 5). Left: least square fit to the empirical distribution of a model with replicated

weights (three terms as in Eq. 5, each with a different bias and scaling); the fit is not weighted by the number of data

points in each bin. Center: learning the empirical distribution with a single 3-way factor. Right: learning the empirical

distribution with a replicated 3-way factor having three biases and 3 scalings. The poor fit on the tails is due to data scarcity.

put. The importance of pooling can be assessed by set-

ting the factor-to-hidden matrix to negative identity (which

eliminates the pooling operated by the factor-to-hidden ma-

trix); as reported in the last row of table 2 the accuracy gets

slightly worse even if the feature dimensionality is twice as

big. Table 2 shows also that our model consistently outper-

forms GIST at each layer by quite a large margin.

7 Relation to Previous Work and Extensions

The seminal work of Geman and Geman (1984) and fol-

lowing related methods (Black and Rangarajan, 1996, Hin-

ton and Teh, 2001) inspired this work in the way images

are interpreted. Images are assumed to be almost always

smooth, but rare violations of this constraint are allowed

as well. Like the Gaussian Scale Mixture model (Wain-

wright and Simoncelli, 2000), our model uses hidden vari-

ables that control the modeled covariance between pixels,

but our hidden variables are binary and the inference pro-

cess is simpler. Our model is very similar to the PoT (Prod-

uct of t-distributions) model (Osindero et al., 2006) but has

some important differences. The main advantage of our

model is that it uses binary hidden units which are ideal

for subsequent stacking of RBM’s to form a DBN. The

main advantage of the PoT model is that the negative log

of the heavy-tailed student t-distribution does not flatten out

nearly as quickly as the free energy contributed by one of

our hidden units (see central panel in fig.9). As a result,

the PoT model can cope better with a wide range of val-

ues of the filter output. In fact, for large filter outputs, the

derivative of the PoT energy function with respect to a fil-

ter weight is invariant to scaling of all the intensities in the

image.

It is possible to approximate the energy function of the PoT

model by using several hidden units that differ only in their

biases and the scale of the weights connecting them to the

factors. The scale determines the slope of the energy func-

tion when the hidden unit is firmly on and the bias deter-

mines the vertical scale of the energy function. Figure 9

shows that hidden units differing only in scale and bias can

approximate a heavy-tailed distribution quite well.

8 Conclusion

We proposed a new model, a factored 3-way RBM, for the

joint statistics of pairs of input variables. This model maps

real-valued images into factor outputs that represent local

breakdowns in the normal covariance structure of an im-

age. The model learns how to pool these factor outputs to

produce a more invariant representation. Learning requires

sampling in order to approximate the derivative of the log

partition function, but this is relatively efficient since we

can exactly integrate out the hidden variables and use HMC

sampling on the free energy. Results demonstrate that the

model learns the typical features of simple-complex cell

models of early vision, and that the complex features are

very suitable for use in DBNs. The learned feature hier-

archy achieves state-of-the-art accuracy on the challenging

CIFAR-10 data set beating Gaussian RBMs and GIST de-

scriptors.

Future avenues of work include extending this model to

capture structure in the mean of the data by adding direct

visible to hidden connections; scaling to full resolution im-

ages by pooling not only over different factors for the same

patch but also over factors for nearby patches; and using 3-

way factored binary RBMs for the higher levels of a DBN.
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