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SUMMARY

Microarrays are powerful tools for surveying the expression levels of many thousands of genes

simultaneously. They belong to the new genomics technologies which have important applications in

the biological, agricultural and pharmaceutical sciences. There are myriad sources of uncertainty in

microarray experiments, and rigorous experimental design is essential for fully realizing the potential

of these valuable resources. Two questions frequently asked by biologists on the brink of conducting

cDNA or two-colour, spotted microarray experiments are ‘Which mRNA samples should be competitively

hybridized together on the same slide?’ and ‘How many times should each slide be replicated?’ Early

experience has shown that whilst the field of classical experimental design has much to offer this emerging

multi-disciplinary area, new approaches which accommodate features specific to the microarray context

are needed. In this paper, we propose optimal designs for factorial and time course experiments, which

are special designs arising quite frequently in microarray experimentation. Our criterion for optimality

is statistical efficiency based on a new notion of admissible designs; our approach enables efficient

designs to be selected subject to the information available on the effects of most interest to biologists,

the number of arrays available for the experiment, and other resource or practical constraints, including

limitations on the amount of mRNA probe. We show that our designs are superior to both the popular

reference designs, which are highly inefficient, and to designs incorporating all possible direct pairwise

comparisons. Moreover, our proposed designs represent a substantial practical improvement over classical

experimental designs which work in terms of standard interactions and main effects. The latter do not

provide a basis for meaningful inference on the effects of most interest to biologists, nor make the most

efficient use of valuable and limited resources.
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1. INTRODUCTION

Microarrays are powerful tools for surveying the expression levels of many thousands of genes

simultaneously. They belong to the new genomics technologies which are rapidly transforming molecular

biology from its historical paradigm of the identification, cloning and analysis of specific gene products.

There are many different microarray technologies, ranging from the high-density nylon membrane arrays
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popular amongst medical and agricultural scientists, to the short oligonucleotide (Affymetrix) arrays

which are more accurate, but proprietry and expensive. Our experience has been with the class of spotted

complementary DNA (cDNA) microarrays (Brown and Botstein, 1999; Eisen and Brown, 2000) and

recently also with spotted long oligonucleotide arrays; the latter and cDNA arrays are often collectively

referred to as ‘two-colour’ or spotted microarrays.

Microarray experiments are conducted in many different contexts with applications ranging from

analysing cellular responses to biological and environmental stimuli, genetic mapping studies and

diagnosing disease states, to understanding gene regulation and interactions; the key motivation for

research in these and related fields is the expectation of rapid advance in understanding the genetic basis

of disease, and hopefully, of finding cures. The interface of biology, medicine, computer science and

statistics which used to be data-poor is now data-mega-rich, and statistics has a central role to play in

producing and processing that information, and to making it intelligible.

Our paper is concerned with planning microarray experiments, a topic on which there are still

relatively few published papers, despite the fact that rigorous experimental design is essential for

accurately measuring the effects of most interest to biologists. Kerr and Churchill (2001) is dedicated

to a discussion of classical experimental designs for microarray experiments and primarily considers A-

optimality as the efficiency criterion for choosing a design. More recently, Yang and Speed (2002, 2003)

and Churchill (2002) provide suggestions for planning microarray experiments and overview the major

design issues involving cDNA microarrays. Design issues have also been discussed by other researchers,

including Jin et al. (2001), who demonstrate the importance of experimental design and replication in a

study of sex, age and genotype in Drosophila melanogaster, Wolfinger et al. (2001) and Pan et al. (2002).

In this paper, we address issues of experimental design which entail important statistical and practical

considerations specific to the microarray context. We contend, as do Yang and Speed (2002, 2003), that

whatever the primary aim of the experiment, be it to identify a list of candidate genes for differential

expression or to discriminate between different tissue types, the optimal design should estimate the effects

of interest to biologists with maximum precision, subject to resource and any other practical constraints.

The major practical constraint is effectively the number of slides which can be hybridized in any given

experiment which in turn may be due to the limited availability of the requisite mRNA probes, or due to

cost considerations. For readers unfamiliar with microarrays, it is perhaps helpful to emphasize that the

experimental design chosen applies simultaneously to all genes on the array. However, for the purposes

of statistical analysis, the genes are treated more or less separately and for this reason it is necessary only

to consider the question of design for a single gene.

Thus for a given amount of experimental effort and any practical constraints on the problem, we

seek to optimize the information on the key biological effects of interest. A key premise is that it is

possible to define a priori a number of contrasts that are of specific interest. The approach is then to

design experiments that provide maximal information for these contrasts. Obtaining such designs is not

straightforward, and this paper is devoted to describing our approach to the problem. We demonstrate the

utility of our approach by determining optimal designs for factorial experiments with a small number of

factors, as well as for time course experiments with a relatively small number of time points. A more

conventional approach is to select designs on the basis of the usual orthogonal contrasts and standard

optimality criteria such as A-optimality. However, we argue that such designs typically lead to improved

efficiency for certain contrasts that are not relevant at the expense of those that are. We also demonstrate

how to improve upon the widely-used reference designs usually favoured by biologists, and upon the all-

pairwise comparison factorial designs recently proposed by Speed (2001). We place some simple results

established by Yang and Speed (2002, 2003) in a broad conceptual and formal framework for the design of

two-colour spotted microarray experiments. Our primary criterion for optimality is statistical efficiency,

and using a new notion of admissibility, we propose classes of designs which accommodate the special

features of microarray experiments. The efficiency gains over commonly used designs can be substantial.
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Section 2 of the paper provides a brief background to the cDNA microarray process: some basic

knowledge of the process itself is essential for understanding the statistical issues involved. Section 3

motivates what we mean by ‘design’ for microarrays and presents a motivating biological example.

In Section 4, we describe the underlying conceptual and mathematical framework of our approach to

designing microarray experiments, introduce the notion of admissibility, and derive efficient designs for

2×2 factorial experiments. More complete elucidation of efficient designs for 2×2 factorial experiments
is given in the Appendix. Section 5 describes how admissible designs can be extended to search for

optimal designs when there are limitations on the amount of mRNA available. In Section 6, we extend

the applications to higher-order factorial designs. Efficient designs for time course experiments are set out

and discussed in Section 7. Some further issues in the planning of experiments are discussed in Section 8,

where we also briefly summarize our key findings and compare our designs with classical experimental

designs.

2. THE CDNA MICROARRAY TECHNIQUE

In cDNA microarrays, known single-stranded DNA clones are robotically spotted out and fixed onto

a glass slide. At the same time, two mRNA samples from cell populations to be compared are reversed

transcribed into cDNA and separately labelled with dyes, usually red (Cy5) and green (Cy3). The two

labelled probes are then mixed together and applied to the microarray. During hybridization, single strands

in the probe solution competitively combine with their complementary base-pair nucleotide sequences

spotted on the slide. The motivation behind the technique is that the mRNA in the original cell sample

reflects which genes are being used by the cell, and the intensity ratio at a spot is thus a measure of the

relative abundance of the gene in the two samples. We refer readers to Nguyen et al. (2002) and Schena

(2003) who provide detailed accounts of the relevant biological and technical background.

The relative intensities of red and green at a spot are extracted by image processing the scanned

microarray slides. Yang et al. (2002a) give a comprehensive discussion of the statistical issues involved.

The intensity ratios are usually adjusted for background noise, then normalized to remove systematic

sources of variation. These steps are motivated by the fact that a substantial proportion of the observed

variation in cDNA microarray data is due to systematic biases, which are described in detail by Dudoit

et al. (2002) and Yang et al. (2002b). The raw red and green intensities are usually transformed to the

log base 2 scale, being a natural scale of measurement for multiplicative (i.e. fold) changes and inducing

effective additivity of effects. As the starting point, we assume that the requisite processing of the image

has been conducted, and that appropriate data pre-processing steps have been performed to produce data

in the form of a single ratio of a red and green intensity for each gene, and that these values are reasonably

assumed to be relatively free of systematic bias.

3. DESIGN: MOTIVATION AND ILLUSTRATION

3.1 What is meant by ‘design’ for microarrays?

Experimental design for microarrays entails numerous statistical and practical considerations. Some of

the questions most frequently asked by biologists include: which mRNA samples should be competitively

hybridized together on the same slide, and how many times should each slide be replicated? Other

important questions arise in considering the use of pooled samples when several individuals are sampled

from each of the populations under study, including whether pooling improves precision and what would

be the optimal number of pools. Even the definition of replication is not straightforward in microarray

experimentation, and correlations between observations from different slides used in a single experiment

can occur for various reasons. These and related issues have been studied by Speed and Yang (2002), who
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distinguish ‘technical replicates’ from true biological replicates in experiments in which the same purified

mRNA sample is applied to several arrays.

For the purpose of our discussion, we assume replicated hybridizations are statistically independent

in the sense of representing either true biological variability between individuals, or variability between

extractions within an individual. Practice varies, and the nature of the replication involved in a particular

experiment will obviously determine the scope and extent of biological inference that may be drawn from

that experiment, and this should always be made explicit.

To date, there is no formal basis for conducting so-called dye-swapped experiments. The motivation

for repeating hybridizations with the dye-assignment reversed is an empirical one in that it allows a direct

measure of the extent of bias due to the physical and other properties of the dyes in the normalization step.

In many experiments, there are biases arising from sources not related to the dyes and often these will be

substantial. Although the use of dye-swapped replication is not necessary or sufficient for the elimination

of such biases, we take the view that if hybridizations are to be replicated, then they should be performed

as dye-swapped replicates.

In this paper, we address the questions of which samples should be hybridized together and which

hybridizations should be performed when a factorial design with a small number of factors, or a simple

time course design, is appropriate. The goal of a microarray experiment may be to identify candidate

genes for differential expression, or it may be to distinguish between different tissue types, or to classify

tissues. Our premise is that the appropriate way to achieve such goals is to prescribe a design that is best

able to identify differential expression subject to the practical constraints of the problem.

The ability to identify differential expression is expressed most naturally in terms of statistical power

against a suitable alternative hypothesis. This can then be optimized by choosing a statistically efficient

design. We take this approach in Section 4, but first motivate our development with an illustrative case

study.

3.2 Case study: a cDNA experiment in leukaemic mice

We are collaborating with researchers from Adelaide’s Child Health Research Institute and Hanson

Institute on a study to identify genes that play an important role in receptor signalling and leukaemo-

genesis. The experiment described here is part of a broader research programme focusing on signalling

pathways activated by the granulocyte/macrophage colony stimulating factor (GM-CSF) receptor. Several

approaches are being taken to investigate the nature of differential signalling that occurs in activated

mutants of the GM-CSF receptor, and to relate this to the wild-type GM-CSF receptor. Two classes

of activated mutants (extracellular and transmembrane mutants) display contrasting biological effects,

especially in relation to leukaemogenic potential. One cell line under study, V449E, proliferates into

leukaemia, and another cell line, FI!, undergoes differentiation to macrophages and neutrophils. The

hypothesis is that there is a set of genes induced specifically in response to expression of V449E that

results in its leukaemic effects.

A 2 × 2 factorial experiment was conducted to compare the two mutants at times zero hours and 24

hours; it was anticipated that measuring changes over time would distinguish genes involved in promoting

or blocking differentiation, or that suppress or enhance growth, as genes potentially involved in leukaemia.

We are interested in genes differentially expressed between the two samples i.e. in the sample main effect,

but more particularly, in those genes which are differentially expressed in the two samples at time 24

hours but not at time zero hours. This is the interaction of sample and time.

From the perspective of designing a suitable experiment, the key points to observe are the following.

The primary objective is to detect non-zero sample by time interactions and therefore the design should

be efficient with respect to the estimation of that parameter. The time and sample main effects are also

of some interest and should be estimable. In terms of constraints, a total of eight slides printed with the
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Table 1. Expression of a given gene

in the 2× 2 factorial experiment

Experimental Log

condition intensity

00 µ

a0 µ + α

0b µ + β

ab µ + α + β + (αβ)

15 K mouse cDNA library were available, and since adequate mRNA probe was available, there were

no further constraints on the possible hybridizations. Note that in contrast to most statistical work, where

interactions are often thought of as a nuisance, the interaction parameter in a two-factor gene expression

experiment is frequently the parameter of prime importance.

4. ADMISSIBLE DESIGNS

4.1 Notation and parametrization

We now introduce the general notation for 2 × 2 factorial designs and describe the usual types of

experiments conducted to measure the interaction parameter. The discussion will be given in terms of

a single gene and it is intended that the same parametrization be applied separately for every gene on a

slide.

Consider two factors, A and B having levels 0, a and 0, b respectively. For example, in the leukaemic

mice experiment, factor A represents sample with the levels 0 and a indicating the two cell lines, and

factor B represents time with the levels 0 and b indicating the times zero and 24 hours, respectively.

Where applicable, the value ‘0’ will represent the baseline level of a factor. In the present example, it is

natural to take the non-leukaemic line, FI!, as the baseline level for A and time zero hours as the baseline

level for B.

In the 2 × 2 factorial experiment, there are four possible experimental conditions, and in the context

of a single hybridization, the expected log intensities can be described by the parameters µ, α, β, (αβ)

as shown in Table 1. It should be noted that the description of the expected intensities shown in Table 1

is completely general in the sense that the possible values for the intensities are not constrained by the

parametrization. It is also worth noting that this parametrization is not unique and that other formulations

of the main effect and interaction parameters are commonly used. However, all such parametrizations lead

to identical conclusions for any specific contrast. The present choice is motivated by the fact that, in our

application, the parameters correspond directly to the contrasts of interest to biologists.

The parameter µ may be thought of as the baseline intensity under the control condition 00, i.e.

with each factor at its lower level. In the context of cDNA microarrays experiments, µ typically does

not have a useful interpretation. The parameter α is often called a main effect parameter and represents

the difference in intensities between the two experimental conditions a0 and 00. In the context of our

example, the difference α = a0 − 00 is the difference between V449E and FI! observed at time zero.

This parameter can be estimated directly from a single slide on which the two cell lines taken at time

zero have been hybridized. Similarly, the parameter β = 0b − 00 is the main effect for B. In the present

example, it represents the change in intensity that occurs in FI! between zero and 24 hours. As with the

main effect α, it can also be estimated directly from a single slide on which the FI! cell lines at times

zero and 24 hours have been hybridized.

Finally, the parameter (αβ) is called the AB interaction and is typically the parameter of primary
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00

a0

0b

ab

Sample

Time

Fig. 1. The four sample–time combinations and the six possible pairwise hybridizations in a 2× 2 factorial design of
block size two.

interest in a 2× 2 factorial microarray experiment. Again for our example, the purpose of the experiment

is to identify genes that display a different pattern of expression in the two cell lines over time. Now

consider the difference (ab − 0b) − (a0 − 00). Observe that the first term, ab − 0b, is the difference

between V449E and FI! measured at time 24 hours, and the second term, a0 − 00, is the same quantity

measured at zero hours. Hence the difference of the two represents the differential expression between

the two cell lines that exists at time 24 hours beyond what was present at time zero. In terms of the

parametrization in Table 1, we find

(αβ) = (ab − 0b) − (a0− 00)

so that, in this case, (αβ) is the parameter of interest. Unlike the main effects parameters, the interaction

cannot be estimated directly from a single slide but can be obtained in various ways from two or

more slides. For example, experimenters could perform the following two hybridizations: 0b versus ab

and 00 versus a0 or, alternatively, they could measure the interaction effect by performing the pair of

hybridizations 0b versus 00 and ab versus a0. The interaction can also be measured in less direct ways.

For example, from the three hybridizations a0 versus 00, 0b versus 00 and ab versus 00, we obtain

(αβ) = (ab − 00) − (a0− 00) − (0b − 00).

Having established that to estimate an interaction requires an experiment with multiple slides and that

this can be done in several different ways, we now consider the question of which particular hybridizations

should be used. To begin, observe that for the four sample–time combinations there are six possible pairs

of sample–time combinations that can be hybridized on a single slide. The four sample–time combinations

and six possible hybridizations are represented in Figure 1. In fact, there are 12 possible types of slides

since the dye allocation can also be reversed for each pair of sample–time combinations, but these need

not be considered separately. In Figure 1 we adopt the convention that the arrow-head sample is labelled

with the red dye, and the arrow-tail sample with the green dye. Note that in practice, it is desirable to

balance the red and green labellings of a probe as much as possible within a given experiment, but for the

purposes of describing the parametrization in Table 2 and Figure 1, we have used hybridizations which

give a convenient representation of the parameters. The expected log ratio, M = log(R/G), for each pair

of sample–time combinations can be calculated from Table 1 and these are shown in Table 2.

An experimental design is specified by the number of slides of each configuration to be made and, for

a fixed total number of slides, a number of different designs are possible. For example, if a total of six
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Table 2. Expected log ratio

M = log(R/G)

Configuration Expected

Green Red log ratio

1 00 a0 α

2 00 0b β

3 00 ab α + β + (αβ)

4 0b ab α + (αβ)

5 a0 ab β + (αβ)

6 a0 0b β − α

µ

µ + α

µ + β

µ + α + β

2

1
3

Fig. 2. The usual reference design for six slides allocated as three dye-swapped pairs of hybridizations; the

combination with both factors at their lower level is the reference sample, represented by the parameter µ.

slides were available, a reference design comprising two replicates of each of configurations 1, 2 and 3

of Table 2 could be used, as illustrated in Figure 2. The reference design allows for the estimation of all

three parameters of interest and has been used extensively in practice. An alternative design considered by

Speed (2001), is to use a single replicate of each of the six possible configurations as shown in Figure 1.

As with the reference design, the all-pairwise comparison design allows for the estimation of the three

parameters of interest but it can be shown to have superior properties to the reference design. However,

in the analyses that follow, we will demonstrate designs that are superior to both the reference and all-

pairwise comparison designs. In particular, we show that despite its popularity and widespread acceptance,

the reference design is very inefficient. We establish also that designs incorporating all possible direct

pairwise comparisons are rarely optimal by the criterion of statistical efficiency, regardless of whether

interest centres on the main effects and interaction equally, or on the interaction effects alone; any benefit

appears to lie solely in estimation of the main effects.

4.2 Statistical power and standard errors

The question of design can now be stated as: How many replicates of each configuration should be

produced? The standard way to answer this question would be to prescribe a suitable threshold value

for M , say 4, and then require that the experiment have a pre-determined level of power, say 80%, against

any such alternatives. Such an experiment should then have an 80% chance of detecting any gene that is
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log four fold over- or under-expressed. It is well known that such a requirement can be met by choosing a

design such that the standard error for each parameter of interest falls below a certain value. However, in

practice, the situation for microarrays is complicated. In particular, it can be shown that the standard error

of a given parameter estimate is given by σ
√
c, where σ is the standard deviation between slides for a

particular gene and c is a number derived from the design. However, a single experiment typically involves

anything between 10 000 and 20 000 genes in which σ varies greatly from gene to gene, and is usually

unknown. Therefore, the power typically cannot be determined in advance and, in a single experiment,

we should not expect to attain the same level of power for every gene. Nevertheless, the design with the

smallest standard error and thus the highest power will be that which has the smallest value of c and this

does apply equally to every gene.

4.3 Least squares estimates

A major step in the statistical analysis of a factorial microarray experiment is to obtain estimates of the

parameters of interest and their standard errors. Both of these quantities can be obtained from the well-

known theory of least squares estimation; see, for example, Searle (1971). For illustration, consider again

the 2 × 2 factorial case and the reference design with two slides allocated to each of configurations 1, 2

and 3 from Table 2. To calculate the least squares estimates, the design matrix X must be formed to reflect

the expected log intensity ratio for each slide, as specified in Table 2. In this case, the parameter vector is

taken to be γ = (α, β, (αβ))T , so that the product

Xγ =




1 0 0

1 0 0

0 1 0

0 1 0

1 1 1

1 1 1







α

β

(αβ)


 =




α

α

β

β

α + β + (αβ)

α + β + (αβ)




gives the expected log intensity ratios for the design. If the observed log intensity ratios are given by

m = (m1,m2,m3,m4,m5,m6)
T , then the least squares estimates of the parameters are given in vector

form by (XT X)−1XTm, and the standard error of the i th parameter estimate is given by σ
√
ci , where ci

is the i th diagonal element of the matrix (XT X)−1.

4.4 Admissible designs

It is reasonable, all other things being equal, that we should choose a design that makes each of the ci
as small as possible. Unfortunately this criterion is not straightforward. If the total number of slides is

fixed and a certain pair of designs is to be compared, it could be expected that some of the ci will be

smaller for the first design and some will be smaller for the second design. To illustrate, consider two

experiments in the 2 × 2 case, one comprising three replicates of each of the configurations 1, 2, 4 and

5 from Table 2 and the other having four replicates of configurations 1, 2 and two of 4, 5. The design

matrices are, respectively,

X1 =



1 1 1 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1



T

and X2 =



1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1



T

.
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The diagonal elements of (XT1 X1)
−1 are 1/4, 1/4 and 1/3 and the diagonal elements of (XT2 X2)

−1 are
5/24, 5/24 and 3/8. Hence, for the same total number of slides, the first design provides slightly better

estimates for the interaction parameter (αβ) and the second provides slightly better estimates of the main

effects α and β.

On the other hand, it can happen that one design is better than another. For example, consider the

reference design with four replicates of each of the configurations 1, 2, 3, so that the design matrix is

X3 =



1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1



T

and the diagonal elements of (XT3 X3)
−1 are given by 1/4, 1/4 and 3/4. The conclusion is that the design

X3 is inferior to both X1 and X2 in terms of statistical efficiency. That is, for the same number of slides, the

design X3 provides less accurate estimates of all parameters. This is especially the case for the interaction

parameter (αβ) which, as previously discussed, is often the parameter of primary importance. These

considerations motivate the following definition.

DEFINITION 1 A design with a total of n slides and design matrix X is said to be admissible if there

exists no other design with n slides and design matrix X∗ such that

ci ! c∗i

for all i with strict inequality for at least one i , where ci , c
∗
i are respectively the diagonal elements of

(XT X)−1 and (XT∗ X∗)−1. A design that is not admissible is said to be inadmissible.

According to this definition, the design X3 is inadmissible since X1 and X2 are examples of X∗ that
violate the conditions for admissibility.

To illustrate the importance of choosing an efficient design, it is useful to compare the performance of

admissible designs and some commonly used inadmissible alternatives. For simplicity we will consider

the 2 × 2 factorial experiment with six slides. In this case there are 462 possible designs of which 21

are admissible; these designs are shown in Table 3. Figure 3 presents diagrams of the three admissible

designs which estimate the interaction parameter most efficiently. The design in the third row of Table 3

corresponds to the third diagram in Figure 3 and Admissible Design 1 of Table 4, and is subject to the

constraint that cα = cβ .

We now consider the performance of some inadmissible designs. To simplify the comparison, we

compare them only to the admissible designs which satisfy the additional constraint cα = cβ . There

are three such designs and these are shown in Table 4. The first inadmissible design we consider is the

reference design with two slides allocated to each of configurations 1, 2 and 3, as shown previously in

Figure 2. Although this design has been widely used, the results of Table 4 show it to be very inefficient

under our formulation, especially with respect to the interaction parameter. Based on the comparison of

c(αβ), the Admissible Design 1 is clearly far superior to the reference design, and improves the efficiency

of estimation by 100%. In fact, it can be shown that the reference design would require 12 slides to achieve

the same precision in estimating the crucial parameter (αβ).

The design considered recently by Speed (2001), comprising six slides corresponding to all six

possible comparisons as shown in Figure 1, is also analysed in Table 4. Although superior to the reference

design, it is nevertheless inadmissible and provides a substantially less precise estimate of (αβ) than

Admissible Design 1, which here provides an efficiency gain of 33%. The reference design and the all-

pairwise comparison design do provide for more efficient estimates of certain other contrasts, such as

α − β and α + β + γ . However, a key element of our approach is to identify explicitly the contrasts that
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Table 3. Admissible designs with six slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

2 1 0 2 1 0 0.42 0.67 0.67 2 1 1 1 0 1 0.38 0.46 1.15

1 2 0 1 2 0 0.67 0.42 0.67 1 2 1 0 1 1 0.46 0.38 1.15

2 2 0 1 1 0 0.42 0.42 0.75 4 1 0 1 0 0 0.25 1.00 1.25

3 1 0 1 1 0 0.30 0.70 0.80 1 4 0 0 1 0 1.00 0.25 1.25

1 3 0 1 1 0 0.70 0.30 0.80 3 1 0 1 0 1 0.29 0.57 1.29

2 1 0 1 1 1 0.38 0.54 0.85 1 3 0 0 1 1 0.57 0.29 1.29

1 2 0 1 1 1 0.54 0.38 0.85 3 2 0 1 0 0 0.33 0.50 1.33

3 1 1 1 0 0 0.33 0.67 1.00 2 3 0 0 1 0 0.50 0.33 1.33

1 3 1 0 1 0 0.67 0.33 1.00 2 2 0 1 0 1 0.38 0.38 1.38

2 2 1 1 0 0 0.50 0.40 1.10 2 2 0 0 1 1 0.38 0.38 1.38

2 2 1 0 1 0 0.40 0.50 1.10

00

a0

0b

ab

2

4

5

1

00

a0

0b

ab

2

4

5

1

00

a0

0b

ab

2

4

5

1

Fig. 3. Three optimal admissible designs for 2× 2 factorial experiments with six slides: the three designs correspond
to those with the smallest c(αβ) for estimation of the interaction parameter as set out in Table 3. The third design is

subject to the constraint that the main effects c’s are equal, i.e. cα = cβ , and corresponds to Admissible Design 1 in

Table 4.

Table 4. Designs with six slides

Replication

configuration

Design 1 2 3 4 5 6 cα cβ c(αβ)

Admissible 1 2 2 0 1 1 0 0.42 0.42 0.75

Admissible 2 2 2 0 1 0 1 0.38 0.38 1.38

Admissible 3 2 2 0 0 1 1 0.38 0.38 1.38

Reference 2 2 2 0 0 0 0.50 0.50 1.50

All comparisons 1 1 1 1 1 1 0.50 0.50 1.00

are of interest and optimize with respect to those. We argue that improved estimation of other contrasts is

an unwarranted diversion of experimental effort rather than a virtue.

These examples show that large gains in efficiency can be obtained by using admissible designs. The

improved efficiency ultimately translates into an enhanced ability to detect differential expression for a

given amount of experimental effort. For this reason, it is recommended that only admissible designs be
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Fig. 4. Four designs for the study of mutant leukaemic mice in which cell lines FI! (F) and V449E (V) were compared

at times zero and 24 hours. Each arrow represents a hybridization, and cell line comparisons at zero and 24 hours were

replicated with the dye assignment reversed. Eight slides in total were available in this experiment: (a) the design

that was used; (b) an admissible design; (c) our recommended admissible design; (d) the design used but with both

diagonal comparisons omitted.

considered.

In a given problem, that is, a set of possible configurations and total number of slides, there is no simple

way to identify the set of admissible designs. It transpires that, even for relatively small experiments, there

are a very large number of designs to choose from. For example, if a total of 24 slides are available, then

there are 118 755 possible ways to allocate them amongst the six slide types shown in Table 2. However,

for relatively small problems they can be identified by simple enumeration of all possibilities. In the

Appendix, admissible designs for the 2 × 2 case are listed for experiments with up to 18 slides and

subject to the additional constraint that cα = cβ . In situations where the total number of slides is the only

constraint, it is our recommendation that only admissible designs be used.

4.5 The leukaemic mice case study revisited

The study of leukaemic mice motivated our consideration of the design issues discussed in this paper, but

the experiment itself was conducted prior to our elucidation of these issues. At the time, the best design

appeared to be the all-pairwise comparison design—this design provides a robust and comprehensive

basis for estimation and statistical inference. Using the eight slides available, the six possible pairwise

hybridizations were conducted and the cell line (i.e. sample) comparisons at times zero and 24 hours were

replicated since they represented the direct comparisons of most biological interest. The two replicated

hybridizations were performed as dye-swapped replicates.

The (inadmissible) experimental design we actually employed is shown in Figure 4(a). For this design,

it can be checked that cα = 1/3, cβ = 5/12 and c(αβ) = 2/3. The fact that this design is inadmissible

is demonstrated by the design shown in Figure 4(b). For that design, we have cα = 0.29, cβ = 0.39 and

c(αβ) = 0.54. However, since estimation of the interaction parameter (αβ) is of primary interest, and for

reasons of balance, we would recommend in practice that the admissible design shown in Figure 4(c) be

used. For that design, we have cα = cβ = 3/8 and c(αβ) = 1/2. The simplest case of the 2 × 2 factorial

experiment with eight slides corresponds to the ‘loop’ design advocated by Kerr and Churchill (2001).

It is of interest to observe that the diagonal comparisons used in the (inadmissible) case study design
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Table 5. Two designs with six slides derived from the

leukaemic mice experiment

Replication

configuration

Design 1 2 3 4 5 6 cα cβ c(αβ)

A 2 1 0 2 1 0 0.42 0.67 0.67

B 1 1 1 1 1 1 0.5 0.5 1.0

do not contribute to the estimation of the interaction parameter. In particular, the design matrix is given by

X =



1 −1 0 1 1 −1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 1 −1 1 0



T

where the second and sixth rows of X represent the dye-swapped replicates of configurations 1 and 4.

The coefficients for estimation of the interaction (αβ) are given by the third row of (XT X)−1XT and are
in this case 1

3
(−1, 1, −1, 0, 1, −1, 1, 0). This shows that (αβ) could have been estimated with the same

precision if the experiment had used only the six slides of configurations 1, 2, 4 and 5, as shown in Figure

4(d). In other words, two out of the eight slides do not contribute to the estimation of the key parameter

of interest.

It is important to demonstrate that the differences in efficiency shown theoretically for different designs

is observable in experimental data. A complete comparison of the data from the original eight-slide

leukaemic mice experiment to the reduced version with six slides would need to take account of the

corresponding reduction in degrees of freedom. To avoid this complication, we compared the data obtained

from two six-slide experiments. In particular, we compared the six-slide experiment shown in Figure 4(d)

to the all-pairs design obtained by removing one slide from of each of the dye-swapped replicate pairs. In

what follows, we refer to the two designs as A and B respectively. Table 5 shows the calculated variances

for designs A and B. We observe that design A is admissible but, as shown previously, design B is not.

To demonstrate the apparent improvement likely to be realized in practice, the data corresponding to

designs A and B were analysed as separate experiments and the variance estimates for (̂αβ) calculated.

Each slide consists of 16 128 spots so that there are 16 128 pairs of variances to be compared. The mean

of these variances was 0.068 for design A and 0.088 for design B. There is also considerable variability

from gene to gene arising from the variability in the mean squared error, and this is shown in Figure 5.

The black points correspond to genes where the variance estimate from design A was lower and the grey

points are those for which design B was lower. We see that there is a modest but nevertheless clearly

discernible benefit associated with the use of admissible design A. We would expect that a comparison

with the reference design shown in Figure 2 would demonstrate an even more marked effect. It should be

noted that the high degree of variability apparent in Figure 5 is due to the very small residual degrees of

freedom for these designs and this aspect of the problem is quite separate from the issues considered in

this paper. From the perspective of designing an experiment, subject to a constraint on the total number of

slides, the most relevant comparison is that given in Table 5.

5. ADDITIONAL CONSTRAINTS

In practice, it sometimes happens that in addition to constraints on the total number of slides available,

the amount of mRNA from the different sources is also limited. In this situation, the principle of selecting
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Fig. 5. Variance estimates for (̂αβ) from admissible design A and the all-pairs comparison design B, both with six

slides, for the leukaemic mice experiment.

admissible designs can still be applied. The only practical consideration is that the search must be

constrained to those designs compatible with the limitations on the available mRNA.

Consider the 2 × 2 factorial design with a total of 18 slides available. With no constraints on the

available mRNA, there are a total of 33 649 possible designs; the 16 admissible designs with cα = cβ
are shown in Table 17 in the Appendix. For illustration, suppose that for each of the combinations a0,

0b and ab, there is only sufficient mRNA to produce m slides, but that there is no limit on the baseline

combination 00. If m = 6, there is only one possible design with 18 slides, namely the reference design

with six replicates of each of the configurations 1, 2 and 3. At the other extreme, if m = 18, then there

are no restrictions and the number of possible designs is 33 649. Table 6 shows the admissible designs

with cα = cβ for m = 6, 7, 8 and 9. When m = 9, the number of possible designs is restricted to 2002

and the design comprising five replicates of configurations 1 and 2 and four replicates of configurations

4 and 5 appears as an admissible design within this restricted subset. It is of interest to observe that the

same design is also admissible when no restrictions are imposed, and produces the lowest possible value

for c(αβ).

Another situation in which constraints may arise is in enabling comparability for multiple experiments.

Suppose a certain treatment combination is likely to be used as the baseline treatment in several different

experiments. We may then require that each treatment combination be hybridized with the baseline a

prescribed minimum number of times. For example, consider again the 2× 2 factorial experiment with a

total of 18 slides and suppose that each of the combinations a0, 0b and ab are to be hybridized with the

baseline 00 at least twice. Our approach is then to consider admissible designs from within the constrained

subset which, in this example, comprises 6188 possible designs. There are eight admissible designs with

cα = cβ , and these are shown in Table 7.

The admissible designs obtained without constraint (see Tables 13–17 in the Appendix) generally

include only a very small number of slides of the configurations 3 and 6. The designs that give the

overall minimum value for c(αβ) contain no slides of either configuration. When additional constraints

are introduced, similar patterns are observed. In particular, the numbers of slides of the configurations 3
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Table 6. Designs with 18 slides when available mRNA is restricted to m slides for each of a0,

0b and ab

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

m = 6 m = 9

6 6 6 0 0 0 0.17 0.17 0.50 5 5 0 4 4 0 0.16 0.16 0.23

m = 7 6 6 0 3 3 0 0.14 0.14 0.25

6 6 4 1 1 0 0.15 0.15 0.38 6 6 2 2 2 0 0.14 0.14 0.30

6 6 5 0 0 1 0.15 0.15 0.53 6 6 1 2 2 1 0.13 0.13 0.31

7 7 4 0 0 0 0.14 0.14 0.54 7 7 0 2 2 0 0.13 0.13 0.32

m = 8 6 6 2 1 1 2 0.12 0.12 0.42

5 5 2 3 3 0 0.15 0.15 0.26 7 7 1 1 1 1 0.12 0.12 0.45

6 6 2 2 2 0 0.14 0.14 0.30 8 8 0 1 1 0 0.12 0.12 0.56

6 6 3 1 1 1 0.13 0.13 0.39 7 7 2 0 0 2 0.12 0.12 0.79

7 7 2 1 1 0 0.13 0.13 0.40 8 8 1 0 0 1 0.11 0.11 1.25

7 7 3 0 0 1 0.13 0.13 0.62

8 8 2 0 0 0 0.12 0.12 0.75

Table 7. Designs with 18 slides when at least two replicates of configurations 1, 2 and 3 are

prescribed

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

4 4 2 4 4 0 0.17 0.17 0.25 6 6 3 1 1 1 0.13 0.13 0.39

5 5 2 3 3 0 0.15 0.15 0.26 7 7 2 1 1 0 0.13 0.13 0.40

6 6 2 2 2 0 0.14 0.14 0.30 6 6 2 1 1 2 0.12 0.12 0.42

5 5 2 2 2 2 0.13 0.13 0.32 7 7 2 0 0 2 0.12 0.12 0.79

and 6 tend to be small and the designs which minimize c(αβ) prescribe the smallest possible numbers

for both configurations. It is interesting to observe that, excluding the trivial case where it was the only

possible design, the reference design was not admissible in any context.

6. FACTORIAL EXPERIMENTS WITH MORE THAN TWO FACTORS OR TWO LEVELS

Our approach to the design of factorial microarray experiments can be used for experiments with more

than two factors and/or more than two levels per factor, and we now demonstrate the utility of admissible

designs on a 2× 3 factorial experiment.

Illustration: a 2× 3 experiment of GM-CSF. We are collaborating with researchers from the Institute

of Medical and Veterinary Science, Adelaide, on investigating the role of the cell-surface receptors for

a group of signalling molecules in human disease. The signalling molecules are the cytokines GM-CSF,

interleukin 5 and interleukin 3. The aim is to understand how these receptors are activated normally and

what goes wrong with them in diseases such as leukaemia, certain solid cancers, asthma and rheumatoid

arthritis. The experiment involves knocking out the GM-CSF receptor in a cell line and comparing it to the

parental ‘normal’ cells. Two cell lines are compared in this experiment, mutant (M) and normal wild-type

(W), at three time points: zero, six and 12 hours. The biologists are particularly interested in the cell line
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Fig. 6. Possible hybridizations for a 2×3 factorial experiment. The interaction parameters (αγ ) and (βγ ) are of most

interest in this experiment, representing the changes in gene expression at six and 12 hours respectively.

comparisons at six and 12 hours. In what follows, we will suppose that 10 slides are available for the

experiment and that there are no other restrictions.

We decided in advance to consider only hybridizations for which the samples differ on one factor.

That is, we consider comparisons of the two cell lines at the same time or comparisons of the same

cell line at two different times, but exclude the case of comparing the two different cell lines at two

different times. The nine hybridizations we consider are shown in Figure 6. The parameter µ represents

the baseline (wild-type W at time zero), γ is the cell line (sample) parameter at time zero, α the difference

in W between zero and six hours, and β the change in W from six to 12 hours. The parameters of primary

interest in this experiment are (αγ ) and (βγ ), the changes in expression between the cell lines at six hours

compared to time zero, and 12 hours compared to time zero, respectively. The main effect parameters α,

β and γ are of secondary but nevertheless significant interest. The a priori exclusion of the other six

comparisons was largely for practical reasons. However, in the light of our experience with the 2 × 2

case, we considered it very unlikely that any such slides would feature in an optimal design. To choose

an optimal design, all possible designs using 10 slides were enumerated and, subject to the constraint

c(αγ ) = c(βγ ), 55 admissible designs were found. Of these, the design shown in Figure 7 provides the

smallest smallest value for c(αγ ). In particular, for this design we have cα = cβ = 0.66, cγ = 0.36 and

c(αγ ) = c(βγ ) = 0.63.

7. TIME COURSE EXPERIMENTS

7.1 Parametrizations for time course experiments

The approach illustrated for factorial designs may also be applied in other situations such as time course

experiments. Consider a simple time course experiment in which a single sample is to be analysed at times

0, 1, 2, . . . , n, and for a single gene, let µt denote the level of expression at time t . A key step is to first

identify the effects of interest. In contrast to the 2× 2 factorial experiment, where it is frequently the case
that the interaction parameter is unambiguously of prime importance, the situation for a time course will

depend more specifically on the particular context. In what follows, we will consider three approaches

that may be applicable in certain practical situations.

In the first, we assume that time zero represents a meaningful baseline and that the purpose is simply to

detect differential expression relative to this baseline at any time. In this case, it would appear reasonable

to define the parameters to be αt = µt − µ0 for t = 1, 2, . . . , n. The second situation we consider is
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Fig. 7. Best admissible design for a 2 × 3 factorial experiment with 10 slides when interest is in the interaction

parameters (αγ ) and (βγ ).

to define the parameters of interest as the differences between adjacent time points, δt = µt − µt−1 for
t = 1, 2, . . . , r . This approach is relevant when the time scale is such that changes in expression are likely

to be observed as an abrupt step from one time point to the next and the purpose of the experiment is to

identify, for each gene, the time points at which such changes occur.

The third situation relevant to time course experiments and where our methods can be applied is when

certain time-profiles are specified in advance as being of interest. Suppose r < n particular profiles are

defined in advance to be of interest. The n-dimensional space of all possible time profiles can then be

parametrized by constructing a basis comprising the r profiles (vectors) of interest and another n − r

vectors that span the complementary space. The concept of admissibility can then be applied to identify

those designs that provide for the most efficient estimation of the coefficients associated with the profiles

of interest. Suppose, for example, four equally-spaced time points are taken and let the space of all four-

dimensional profiles, M = {(µ1, µ2, µ3, µ4)}, be parametrized in terms of orthogonal polynomials. The

four basis vectors are

v0 =




0.5

0.5

0.5

0.5


 , v1 =




−0.6708
−0.2236
0.2236

0.6708


 , v2 =




0.5

−0.5
−0.5
0.5


 and v3 =




−0.2236
0.6708

−0.6708
0.2236


 .

For the purposes of illustration, we will consider designs that are optimal for the estimation of the

linear and quadratic terms. The same approach can also be used for any other specified profiles of interest.

However, it would seem that the designs tailored for the estimation of the linear and quadratic terms would

also be well suited to the estimation of any other profile that is well approximated by a quadratic function

of time.

7.2 Designs

To demonstrate the application of our methods, the admissible designs are calculated under each of the

three situations discussed above for time course experiments with four time points and six or 12 slides.

In a time course experiment with n time points, there are n(n + 1)/2 possible slides and the question

of design again amounts to that of how many slides of each type should be made. In the case n = 4,
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Fig. 8. Possible hybridizations for a time course experiment with four time points.

Table 8. Expected log ratio M for the time course experiment, for the

three parametrizations

Configuration Expected

log ratio

1 Time 0 Time 1 α1 δ1 0.4472β1 − β2 + 0.8944β3
2 Time 0 Time 2 α2 δ1 + δ2 0.8944β1 − β2 − 0.4472β3
3 Time 0 Time 3 α3 δ1 + δ2 + δ3 1.3416β1 + 0.4472β3
4 Time 1 Time 2 α2 − α1 δ2 0.4472β1 − 1.3416β3
5 Time 1 Time 3 α3 − α1 δ2 + δ3 0.8944β1 + β2 − 0.4472β3
6 Time 2 Time 3 α3 − α2 δ3 0.4472β1 + β2 + 0.8944β3

Table 9. Time course experiments: α

parameters

Replication

configuration

1 2 3 4 5 6 cα1 cα2 cα3
2 2 2 0 0 0 0.50 0.50 0.50

1 1 1 1 1 1 0.50 0.50 0.50

3 3 3 1 1 1 0.22 0.22 0.22

there are six possible types of slides as illustrated in Figure 8. The expected log ratio for each of the

six types of slides are shown in Table 8 using each of the three different parametrizations. It should be

emphasized that the three different parametrizations are equivalent representations of the same model. As

previously explained, in any single application it is likely that one particular set of parameters would be

most relevant to the question at hand. In our approach, the appropriate parametrization is first chosen and

then designs admissible with respect to that parametrization considered. When six slides are available,

and the α parameters are of interest, there are 462 possible designs of which 44 are admissible. Of these,

two provide equal variances for all three parameter estimates and are shown in Table 9. When 12 slides

are available, there is only one admissible design that provides equal variances for the three parameter

estimates and this is also shown in Table 9.

The two designs in Table 9 for estimation of the α parameters involving six slides give identical
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Table 10. Time course experiments: δ

parameters

Replication

configuration

1 2 3 4 5 6 cδ1 cδ2 cδ3
2 0 0 2 0 2 0.50 0.50 0.50

1 1 1 1 1 1 0.50 0.50 0.50

Table 11. Time course experiments: δ parameters with 12 slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cδ1 cδ2 cδ3 1 2 3 4 5 6 cδ1 cδ2 cδ3
3 2 1 2 1 3 0.22 0.25 0.23 3 1 1 2 2 3 0.23 0.25 0.22

4 0 1 3 1 3 0.21 0.24 0.24 3 1 1 3 0 4 0.24 0.24 0.21

3 1 1 3 1 3 0.23 0.21 0.23 3 2 0 2 1 4 0.24 0.25 0.21

4 1 0 2 2 3 0.21 0.25 0.24

variances for the parameter estimates and it is therefore of interest to compare the covariance matrices.

These are given respectively by



0.5 0 0

0 0.5 0

0 0 0.5


 and



0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5


 .

The positive covariances in the second design indicate, as would be expected, that the second design

provides superior estimates of differences αt1 − αt2 .

When six slides are available, and the δ parameters are of interest, there are 462 possible designs of

which 36 are admissible. Of these, two provide equal variances for all three parameter estimates and are

shown in Table 10. However, if a total of 12 slides are available, it transpires that of the 352 admissible

designs, none provide equal variance for each of the three parameter estimates. An obvious choice for

the design with 12 slides might then be to simply double the numbers of slides from the two admissible

designs for the six slides. Clearly both of those designs will give cδ1 = cδ2 = cδ3 = 0.25. In this case,

there are seven admissible designs that provide lower variances for all three parameter estimates and these

are listed in Table 11.

Finally, we consider admissible designs for the parametrization based on the orthogonal polynomials.

When six slides are available, there are 462 possible designs of which 71 are admissible. Of these, one

provides equal variances for the parameter estimates β̂1 and β̂2 and these are shown in Table 12. Similarly,

when 12 slides are available, there are two admissible designs that provide equal variances and these are

also given in Table 12.

In the light of these considerations, designs that allocate equal numbers of each of the six possible

types of slides would seem to be well suited to the time course experiment with four time points. Although

they are not necessarily optimal, the preceding calculations show that they are quite efficient in all three

situations. Moreover, the balance in these designs is an attractive property that may well out-weigh the

minor losses in efficiency.
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Table 12. Time course experiments: β

parameters

Replication

configuration

1 2 3 4 5 6 cβ1 cβ2 cβ3
1 1 1 1 1 1 0.25 0.25 0.25

2 2 2 2 2 2 0.13 0.13 0.13

1 4 2 0 4 1 0.10 0.10 0.29

8. DISCUSSION AND FURTHER DESIGN ISSUES

8.1 The role of parameters

One of the key steps in the development of this paper is the identification of the parameters of interest.

Although this may be an unfamiliar step for many experimentalists, it is necessary for any formulation

of good design and in many contexts should be straightforward. It is important to note that, for a given

set of possible hybridizations, the corresponding levels of expression can be described using appropriate

parameters in several different, but equivalent, ways. See, for example, Tables 9 and 10 in the context

of the time course experiment. Moreover, the experimental designs that are optimal for one particular

parametrization may not be optimal for a different parametrization of the same experiment. The key

point to be made here is that the parameters must be formulated to correspond directly to the underlying

questions of substantive interest. In non-technical terms, this amounts to the fact that experiments can be

designed to answer specific questions in a given context. One should not expect an experiment designed

for a particular question to be optimal for answering some other question. Further issues arise when

parameters of subsidiary interest, such as main effect parameters, are present or when a question involving

several parameters simultaneously is of interest. The treatment of those issues is somewhat technical and

beyond the scope of the present paper.

8.2 Additional contrasts

In this paper, we began with the parametrization given in Table 1 and then studied the question of how

best to design an experiment to estimate efficiently the parameters of interest. In the 2× 2 experiment, it

is frequently the case that the interaction parameter is the sole parameter of interest. However, in different

experiments it may happen that both the original parameters and some additional derived contrasts are of

equal interest. For example, in the simple time course experiment, it may be of equal interest to estimate

both the α and δ parameters. In algebraic terms, this leads to a certain redundancy in the sense that if we

know the values of the α parameters we can use that information to deduce the values of the δ parameters.

As was previously discussed, it is not the case that the designs which give the best estimate of the α

parameters are also optimal for estimating δ. In this case, the definition of admissibility could be extended

to find designs that best accommodate both requirements. This extension will be the subject of future work.

8.3 Larger scale studies

The examples considered in this paper have been small in terms of both the number of parameters

involved and the number of slides available. In situations involving a larger number of parameters, the

same arguments for considering only admissible designs can be made. However, in such cases it may

happen that the number of admissible designs is so large that it is not useful simply to examine the list.

In such cases, additional criteria for selecting a design are needed. If the number of parameters is small
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but a large number of slides are available, then a different problem arises. Namely, the total number of

configurations rapidly becomes too large for the enumeration methods used here to be feasible. Although

the problems outlined above are yet to be resolved, it has been our experience that our methods are useful

for many experiments currently being considered in practice.

8.4 Robustness

In this paper, we have been primarily concerned with finding admissible designs subject to a single

constraint on the total number of slides. In Section 5, we considered further contraints owing to limitations

on the available mRNA. In practice, it may be necessary to introduce constraints for other reasons. For

example, we might require a design with even numbers of each type of slide so that dye-swapping can be

used or, more importantly, the requirement may be for a design in which all parameters can be estimated

even if one slide fails completely. The latter is only likely to be a problem in small experiments with a very

small number of replicated slides, but it raises the general issue of robustness of admissible designs. One

approach would be to consider only designs with the property that all parameters remain estimable when

any single slide is removed, and then choose a design admissible within the restricted subset. However,

most of the admissible designs in Tables 13–17 already have this property so, in practice, it would appear

that conducting a restricted search to identify robust, admissible designs may not be necessary.

8.5 Classical designs

In this paper, we have described in detail simple notional applications of factorial and time course designs

to microarray experiments. It is important to recognize that classical designs and standard approaches

to estimation seek to minimize the standard error of all estimable treatment contrasts, whereas we are

interested in particular contrasts, frequently although not exclusively the interaction parameter. Moreover,

owing to the practical constraints often arising in microarray experimentation due to limited numbers of

slides, limitations on the available mRNA probes, uncertainty about the actual experimental process, and

so on, each complex experiment needs its own tailor-made design. In other words, although it is possible to

generate banks of admissible designs, it is very useful to have a way of treating each experiment on a case-

by-case basis to accommodate features particular to that experiment. Furthermore, classical experimental

design does not offer optimal designs of direct practical utility to the microarray context, and although

there is a large and established literature on classical experimental design, it has not been able to offer

definitive answers for even the simplest microarray experiments.

In summary, we have proposed classes of admissible designs, for factorial and time course microarray

experiments with a fixed number of arrays available for experimentation and information on the effects of

primary interest to biologists. For relatively small problems, this may be done simply by enumerating the

possibilities. For larger problems, where the number of possible configurations is so large that enumeration

is not feasible, we are presently exploring approximate methods of optimisation. The anticipated result of

this research will be a computational tool that enables experimentalists and other researchers to identify

good designs in problems too large to be analysed by enumeration.
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Table 13. Designs with eight slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

2 2 0 2 2 0 0.38 0.38 0.50 3 3 0 1 1 0 0.29 0.29 0.67

2 2 0 2 1 1 0.34 0.34 0.59 3 3 0 1 0 1 0.27 0.27 1.27

2 2 0 1 2 1 0.34 0.34 0.59 3 3 0 0 1 1 0.27 0.27 1.27

Table 14. Designs with 10 slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

3 3 0 2 2 0 0.27 0.27 0.42 4 4 0 1 1 0 0.23 0.23 0.63

3 3 0 2 1 1 0.25 0.25 0.51 4 4 0 1 0 1 0.21 0.21 1.21

3 3 0 1 2 1 0.25 0.25 0.51 4 4 0 0 1 1 0.21 0.21 1.21

3 3 1 1 1 1 0.23 0.23 0.60

Table 15. Designs with 12 slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

3 3 0 3 3 0 0.25 0.25 0.33 4 4 1 1 1 1 0.19 0.19 0.54

3 3 0 3 2 1 0.23 0.23 0.37 5 5 0 1 1 0 0.18 0.18 0.60

3 3 0 2 3 1 0.23 0.23 0.37 4 4 0 1 1 2 0.18 0.18 0.63

4 4 0 2 2 0 0.21 0.21 0.38 5 5 0 1 0 1 0.17 0.17 1.17

4 4 0 2 1 1 0.19 0.19 0.47 5 5 0 0 1 1 0.17 0.17 1.17

4 4 0 1 2 1 0.19 0.19 0.47

APPENDIX A

Further results for 2× 2 experiments

In this section, we present the key admissible designs for 2× 2 factorial experiments on 8, 10, 12, 16

and 18 slides. The results presented generalize those in Table 3 for six slides, but assume that the main

effects are to have equal variances. These tables were produced using a C++ program that identifies the

admissible designs in a given situation by enumeration. We offer these designs here in the hope that they

may be informative to researchers on the brink of conducting 2×2 factorial microarray experiments. Note
that it is not necessary to assume an even number of slides; we have done so for convenience and to enable

dye-swapped replication when feasible. It is clear that the ‘cross-hybridizations’ rarely enter the optimal

admissible designs.
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Table 16. Designs with 16 slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

4 4 0 4 4 0 0.19 0.19 0.25 6 6 0 1 2 1 0.14 0.14 0.42

5 5 0 3 3 0 0.16 0.16 0.27 6 6 1 1 1 1 0.13 0.13 0.47

5 5 0 3 2 1 0.15 0.15 0.30 7 7 0 1 1 0 0.13 0.13 0.57

5 5 0 2 3 1 0.15 0.15 0.30 6 6 0 1 1 2 0.13 0.13 0.58

6 6 0 2 2 0 0.15 0.15 0.33 6 6 0 1 0 3 0.13 0.13 1.13

5 5 0 2 2 2 0.15 0.15 0.35 6 6 0 0 1 3 0.13 0.13 1.13

6 6 0 2 1 1 0.14 0.14 0.43

Table 17. Designs with 18 slides

Replication Replication

configuration configuration

1 2 3 4 5 6 cα cβ c(αβ) 1 2 3 4 5 6 cα cβ c(αβ)

5 5 0 4 4 0 0.16 0.16 0.22 6 6 0 2 2 2 0.13 0.13 0.33

5 5 0 4 3 1 0.15 0.15 0.24 7 7 0 2 1 1 0.12 0.12 0.41

5 5 0 3 4 1 0.15 0.15 0.24 7 7 0 1 2 1 0.12 0.12 0.41

6 6 0 3 3 0 0.14 0.14 0.25 7 7 1 1 1 1 0.12 0.12 0.45

6 6 0 3 2 1 0.13 0.13 0.29 6 6 1 1 1 3 0.12 0.12 0.47

6 6 0 2 3 1 0.13 0.13 0.29 7 7 0 1 1 2 0.11 0.11 0.57

6 6 1 2 2 1 0.13 0.13 0.31 7 7 0 1 0 3 0.11 0.11 1.11

7 7 0 2 2 0 0.13 0.13 0.32 7 7 0 0 1 3 0.11 0.11 1.11
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