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Abstract

This paper proposes the combination of several ideas, some old

and some new, from machine learning and speech processing.

We review the max approximation to log spectrograms of mix-

tures, show why this motivates a “refiltering” approach to sep-

aration and denoising, and then describe how the process of

inference in factorial probabilistic models performs a computa-

tion useful for deriving the masking signals needed in refiltering.

A particularly simple model, factorial-max vector quantization

(MAXVQ), is introduced along with a branch-and-bound tech-

nique for efficient exact inference and applied to both denoising

and monaural separation. Our approach represents a return to

the ideas of Ephraim, Varga and Moore but applied to auditory

scene analysis rather than to speech recognition.

1. Sparsity & Redundancy in Spectrograms

1.1. The Log-MaxApproximation

When two clean speech signals are mixed additively in the

time domain, what is the relationship between the individual

log spectrograms of the sources and the log spectrogram of

the mixture? Unless the sources are highly dependent (syn-

chronized), the spectrogram of the mixture is almost exactly

the maximum of the individual spectrograms, with the maxi-

mum operating over small time-frequency regions (fig. 2). This

amazing fact, first noted by Roger Moore in 1983, comes from

the fact that unless e1 and e2 are both large and almost equal,

log(e1 + e2) ≈ max(log e1, log e2) (fig. 1a). The sparse na-

ture of the speech code across time and frequency is the key to

the practical usefulness of this approximation: most narrow fre-

quency bands carry substantial energy only a small fraction of

the time and thus it is rare that two independent sources inject

large amounts of energy into the same subband at the same time.

(Figure 1b shows a plot of the relative energy of two simultane-

ous speakers in a narrow subband; most of the time at least one

of the two sources shows negligible power.)

1.2. Masking and Refiltering

Fortunately, the speech code is also redundant across time-

frequency. Different frequency bands carry, to a certain extent,

independent information and so if information in some bands

is suppressed or masked, even for significant durations, other

bands can fill in. (A similar effect occurs over time: if brief

sections of the signal are obscured, even across all bands, the

speech is still intelligible; while also useful, we do not exploit

this here.) This is partly why humans perform so well on many

monaural speech separation and denoising tasks. When we solve

the cocktail party problem or recognize degraded speech, we are

doing structural analysis, or a kind of “perceptual grouping” on

the incoming sound. There is substantial evidence that the ap-

propriate subparts of an audio signal for use in grouping may be

narrow frequency bands over short times. To generate these parts

computationally, we can perform multiband analysis – break the

original speech signal y(t) into many subband signals bi(t) each
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Figure 1: (left) Relationship between log of sum and max of logs;

each function’s value is shown using the color scale indicated

in the middle. Significant differences occur only when e1 ≈ e2

and both are large. (right) Relative energy of two sources in a

single subband; few points appear on the diagonal.

filtered to contain only energy from a small portion of the spec-

trum.

The basic idea of refiltering [1, 2] is to separate or denoise

sources by selectively reweighting the bi(t) obtained from multi-

band analysis of the original mixed or corrupted recording. Cru-

cially, unlike in unmixing algorithms, the reweighting is not con-

stant over time; it is controlled by a set of masking signals. Given

a set of masking signals, denoted αi(t), a clean source s(t) can

be recovered by modulating the corresponding subband signals

from the original input and summing:

s(t)
︸︷︷︸

estimated source

=

mask 1
︷ ︸︸ ︷

α1(t) b1(t)
︸ ︷︷ ︸

sub-band 1

+ . . . +

mask K
︷ ︸︸ ︷

αK(t) bK(t)
︸ ︷︷ ︸

sub-band K
(1)

The αi(t) are gain knobs on each subband that we can twist

over time to bring bands in and out of the source as needed. This

performs masking on the original spectrogram. (An equivalent

operation can be performed in the frequency domain by making

a conventional spectrogram of the original signal y(t) and modu-

lating the magnitude of each short time DFT while preserving its

phase: sw(τ) = F−1 {αw‖F{yw(τ)}‖∠F{yw(τ)}} where

sw(τ) and yw(τ) are the wth windows (blocks) of the recov-

ered and original signals, αw

i is the masking signal for subband

i in window w, and F [·] is the DFT.) This approach, illustrated

in figure 3, forms the basis of many CASA systems[2, 3]. The

basic intuition is to “gate in” subbands deemed to have high sig-

nal to noise and to be part of the source we are trying to separate

and “gate out” subbands when they are deemed to be noisy or

part of another source.

For any specific choice of masking signals αi(t), refiltering

attempts to isolate a single clean source from the input signal

and suppress all other sources and background noises. Different

sources can be isolated by choosing a different set of masking

signals. Although, in general, masking signals are real-valued,

positive quantities that may take on values greater than unity,

in practice the (strong) simplifying assumption that αi(t) are

binary and constant over a timescale τ of roughly 30ms can be

made. This assumption is physically unrealistic, because the en-

ergy in each small region of time-frequency never comes entirely

from a single source. However, for small numbers of sources,
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Figure 2: (left) Log spectrogram of a mixture of two sources.

(right) Elementwise maximum (within each time-frequency bin)

of log spectrograms of original sources.

this approximation works quite well[1], in part because of the

effect illustrated in figure 1b. Refiltering can also be thought of

as a highly nonstationary Wiener filter in which both the signal

and noise spectra are re-estimated at a rate 1/τ ; the binary as-

sumption is equivalent to assuming that over a timescale τ the

signal and noise spectra are nonoverlapping. It is a fortunate

empirical fact that refiltering, even with piecewise constant bi-

nary masking signals, can cleanly separate sources from a single

mixed recording.

2. Multiband grouping as a statistical
pattern recognition problem

Since refiltering for separation and denoising is indeed possible

if the masking signals are well chosen, the essential problem

is: how can the αi(t) be computed automatically from a sin-

gle input recording? The goal is to group together regions of

the spectrogram that have high signal-to-noise and belong to the

same auditory object. Fortunately, natural auditory signals—

especially speech—exhibit a lot of regularity in the way energy

is distributed across the time-frequency plane. Grouping cues

based on these regularities have been studied by psychophysi-

cists and are hand built into many CASA systems. The approach

advocated in this paper is to use statistical learning methods to

discover these regularities from a large amount of speech data

and then to use the learned models to compute the masking sig-

nals for new signals in order to perform refiltering.

2.1. MAXVQ: Factorial-Max Vector Quantization

It is often advantageous to model complicated sensory observa-

tions using a number of separate but interacting causes. One

general way to pursue this modeling idea is to have a fixed

number M of vector quantizers (or mixture models), each of

which proposes an output, and then have some way of com-

bining the output proposals into a final observation. Motivated

by the observation above regarding the max approximation to

log spectrograms of mixtures, we propose such a model, called

Factorial-Max Vector Quantization (MAXVQ), which uses the

Maxoperation to combine outputs from the various causes. The

model has a bank of M independent vector quantizers, each of

which stochastically selects a prototype with which to model

the observation vector. The final output vector is a noisy com-

posite of the set of proposed prototypes, obtained by taking the

elementwise maximum of the set and adding nonnegative noise.

The MAXVQ model is useful in situations where there are

multiple “objects”, “sources” or “causes” in the world but there is

some kind of occlusion or sparseness governing how the sources

interact to produce observations. For example, as noted above,

in clean speech recordings, the log spectrogram of a mixture of

speakers is almost exactly the elementwise maximum of the log

spectrograms of the individual speakers. For noisy mixtures of

speech signals, each clean speaker and each noise source can be

thought of as an independent cause contributing to the observed

signal. We will use the short-time log power in linearly spaced

narrow frequency bands as our vectors when analyzing speech

with this model.

Formally, MAXVQ is a latent variable probabilistic model

for D-dimensional data vectors x. The model consists of M
vector quantizers, each with Km codebook vectors v

k

m. Latent

variables zm ∈ {1 . . . Km} control which codebook vector each

vector quantizer selects. Given these selections, the final output

x is generated as a noisy version of the elementwise maximum

of the selected codewords. If we assume that the each vector

quantizer chooses its codebook entries independently with fixed

rates πk

m, then the model can be written as:

p(zm = k|π) = πk

m m ∈ {1 . . . M}, k ∈ {1 . . . Km}

p(z) =
∏

m

p(zm), z = (z1, . . . , zM )

ad = arg max
m

(vzm

md
)

p(xd|ad, v, Σ) = N+(xd|v
za

ad
, Σad)

p(x|v, Σ, π) =
∑

z

p(z|π)p(x|z, v, Σ)

were zm are latent variables, vk

m are the codebook vectors, Σmd

are noise variances (shared across k), and M, Km are structural

size parameters chosen to control complexity. The distribution

N+ is the positive side of a Gaussian.

MAXVQ can be thought of as an exponentially large mixture

of positive Gaussians having (
∏

m
Km) components, with the

mean of each component constrained to be the elementwise max

of some underlying parameters v. This technique, of represent-

ing an exponentially large codebook using a factorial expansion

of a small number of underlying parameters has been very influ-

ential and successful in recent machine learning algorithms (e.g.

transformed mixtures, multiple-cause VQ).

This model can also be extended through time to generate

a Factorial-Max Hidden Markov Model [1, 4]. There are some

additional complexities, and the details of the heuristics used for

inference are slightly different but in our experience the frame-

independent MAXVQ model performs almost as well and so for

simplicity, we will not discuss the full HMM model.

2.2. Parameter Estimation from Isolated Sources

Given some isolated (clean) recordings of individual speech or

noise sources, we can estimate the codebook means vk

d , noise

variances Σd and the selection probabilities πk associated with

the source’s model by training a mixture density or a vector

quantizer on the columns of a short-time narrowband log spec-

trogram. Some care must be taken in training to properly obey

the nonnegativity assumption on the noise and to avoid too many

codebook entries (mixture components) representing low energy

(silent) segments (which are numerous in the data).

2.3. Inference for Refiltering

The key idea in this paper is that the process of inference (i.e. de-

ducing the values of the hidden variables given the parameters
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Figure 3: Refiltering for separation and denoising. Multiband analysis of the original signal y(t) gives sub-band signals bi(t) which

are modulated by masking signals αi(t) (binary or real valued between 0 and 1) and recombined to give an estimated source s(t).

and observations) in a MAXVQ model performs a computation

which is extremely useful for computing the masking signals

required to perform refiltering for denoising or separation. Be-

cause the number of possible joint settings of the hidden selection

variables z is exponentially large, we are usually only interested

in finding the single most likely (MAP) setting of z given x or

the N-best settings. (For unsupervised learning and likelihood

computations we may also be interested in efficiently summing

over all possible joint settings of z to compute the marginal

likelihood of a given observation x.) Computing these Viterbi

settings (or the sum) is intractable either by direct summation or

by naive dynamic programming because of the factorial nature

of the model. We must resort to branch-and-bound algorithms

for efficient decoding or else approximations (e.g. variational

methods) to estimate likely settings of z.

Once we have computed the MAP (or approximate) setting

of z, we can use this to estimate the refiltering masking signals as

follows: for each (overlapping) frame of the input spectrogram,

set the masking signal to unity for every frequency at which the

output proposed by the model corresponding to the source to be

recovered is the maximum proposal over all models. Other fre-

quencies have their masks set to zero. Actual refiltering is then

performed by retaining the phase from the spectrogram of the

original (noisy/mixed) recording, applying the (binary) masking

signals to the log magnitude of each frequency, and reconstitut-

ing the clean signal using overlap-and-add reconstruction. The

windowing function used to compute the original spectrogram

must be known (or estimated) in order to remove its effect prop-

erly during refiltering.

2.4. Branch-and-Bound for Efficient Inference

As discussed above, naive computation of the MAP joint settings

of the hidden selection variables in MAXVQ is exponentially

expensive. Fortunately, there is a clever branch and bound trick

which can be used, based on the following observation: if zm =
k, we can upper bound the log likelihood we can achieve on a

data case x, no matter what values the other zm′ �=m take on.

The bound log p(x|zm = k) ≤ Bmk is constructed as follows

(using constant Σ for simplicity):

Bmk = −
1

2

∑

d

[xd − vk

md]2+ −
D

2
log |Σ| − log πk

m (2)

where [r]+ takes the max of zero and r. The intuition is that

either v
k

m is greater than x along a certain dimension d of the

output, in which case the error will be at least (xd − vk

md)2 or

else it is less than x along dimension d in which case the error

on that dimension could potentially be zero.

This bound can be used to quickly search for the MAP set-

ting of z given x as follows. For each m ∈ {1 . . . M} and

each k ∈ {1 . . . Km}, compute the bound Bmk. Initially set

the guess of the best configuration to the settings with the best

bounds: z∗
m = arg mink Bmk and compute the true likelihood

achieved by that guess: ℓ∗ = log p(x|z∗). Now, for each

m ∈ {1 . . . M}, we can eliminate all k for which Bmk < ℓ∗.

In other words, we can definitively say that certain codebook

choices are impossible for certain models, independent of what

other models choose because they would incur a minimum error

worse that what has already been achieved. Now, for each m,

and for all possible settings of k that remain for that m, system-

atically evaluate log p(x|z) and if it is less than ℓ∗, eliminate

the setting. If the likelihood is greater than ℓ∗, we accept it as

the new best setting and reset z
∗ and ℓ∗; we also re-eliminate

all settings of k that are now invalid because of this improved

bound, and repeat until all settings have been either pruned or

checked explicitly. This method is guaranteed to find the ex-

act MAP setting, but it comes with no guarantees about its time

complexity. In practice, however, we have found it to prune very

aggressively and almost always find the MAP configuration in

reasonable time.

3. Experiments

As an illustration of the methods presented above, we per-

formed simple denoising and separation experiments using

TIMIT prompts read by a single speaker and noise (babble)

from the NOISEX database. Narrowband spectrograms we con-

structed from isolated, clean training examples of the speaker

and noise. (Signals were downsampled to 12.5kHz, frames of

length 512 were used with Hanning windows and frame shifts

of 64 samples, resulting in one 257-vector of log energies each

5ms representing the signal over the last 40ms.) A simple vector-

quantization codebook with 512 codewords was trained on the

speech and one with 32 codewords was trained on the noise. Ap-

proximately 5 minutes of speech (with low energy frames elim-

inated) and 100 seconds of noise were used for training. A mod-

ified k-means algorithm which includes split-and-merge heuris-

tics for finding good local optima was used. (We have also exper-

imented with training “scaled” vector quantizers which cluster

onto rays in the input space rather than on points, although this

technique was not used in the results below.) The trained mod-

els were then used to perform MAXVQ inference on previously

unseen test data, using the branch-and-bound technique. Based

on this inference, refiltering was performed as described above

to recover clean/isolated sources. In the denoising experiment,

a 6 second speech segment was linearly mixed with 6 seconds

of babble noise at 0dB SNR (equal power). Figure 4 shows

the results of denoising with MAXVQ and also with a simple

spectral subtraction trained on the same isolated noise sample

as used for the VQ model. For the separation experiment, two

different utterances, spoken by the same speaker, were mixed at

equal power and the speech model was used (symmetrically) to

perform MAXVQ inference. The results of this monaural sep-

aration are shown in figure 5. Of course, these results do not

represent competitive performance on either denoising or sepa-

ration tasks; they are merely a proof of concept that the marriage

of refiltering and inference in factorial models can be used for

powerful speech processing tasks.

EUROSPEECH 2003 - GENEVA

1011



time

fr
eq

u
en

cy

time

fr
eq

u
en

cy

time

fr
eq

u
en

cy

time

fr
eq

u
en

cy

time
fr

eq
u

en
cy

time

fr
eq

u
en

cy

Figure 4: Denoising using MAXVQ. Clockwise from top left: noisy input, spectral subtraction estimate (trained on isolated noise),

original clean source, MAXVQ estimate after exact branch-and-bound inference and refiltering (trained on isolated speech and noise),

proposed codebook output sequence from speech model, proposed codebook output sequence from noise model.
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Figure 5: Monaural separation using MAXVQ. (left) mixed input of two different utterances spoken by the same speaker. (middle, right)

MAXVQ estimates of original utterances after exact branch-and-bound inference and refiltering (trained on isolated speech).

4. Discussion, Related & Future Work

In this paper, we have argued that the refiltering approach to sep-

aration and denoising can be successfully achieved by using the

inference step in a factorial model to provide the masking signals.

Varga and Moore [4] proposed a factorial model for spectrograms

(focusing on the factorial nature and using the log-max approxi-

mation) as did Gales andYoung [5] (focusing on the combination

operation) but these models were used for speech recognition in

the presence of noise only, and not for refiltering to do separation

and denoising. In a series of papers, Green et.al. [2] have studied

masking (refiltering) for denoising, but do not employ factorial

model inference as an engine for finding masking signals. There

have also been several approaches to monaural separation and

denoising that operate mainly in the time domain, without using

refiltering or factorial models. Cauwenberghs [6] investigated

separation based on maximizing periodic coherence; Wan and

Nelson [7] use nonlinear autoregressive networks and extended

Kalman filtering.

Our work here and previously[1] is closest in spirit to that of

Ephraim et.al. [8] who model speech using a HMM and noise

using an AR model and then attempt to approximately infer the

clean speech by alternating between Wiener filtering to find the

noise and Viterbi decoding in the HMM. Logan and Moreno [9]

also investigated the use of factorial HMMs for modeling speech

and found standard HMMs to be just as good, but they did not

compose their model using the max of two underlying models;

rather they learned separate parameters for each combination

of states. Reyes et.al. [10] investigated factorial HMMs for

separation but using multi-channel inputs. The main challenge

for future work is to develop techniques for learning from only

mixed/noisy data, without requiring clean, isolated examples of

individual sources or noises at training time.
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