
RAIRO-Theor. Inf. Appl. 47 (2013) 241–259 Available online at:

DOI: 10.1051/ita/2013038 www.rairo-ita.org

FACTORING AND TESTING PRIMES IN SMALL SPACE ∗

Viliam Geffert
1

and Dana Pardubská
2

Abstract. We discuss how much space is sufficient to decide whether
a unary given number n is a prime. We show that O(log log n) space
is sufficient for a deterministic Turing machine, if it is equipped with
an additional pebble movable along the input tape, and also for an
alternating machine, if the space restriction applies only to its accept-
ing computation subtrees. In other words, the language un-Primes =
{1n : n is a prime} is in pebble–DSPACE(log log n) and also in accept–
ASPACE(log log n). Moreover, if the given n is composite, such ma-
chines are able to find a divisor of n. Since O(log log n) space is too
small to write down a divisor, which might require Ω(log n) bits, the
witness divisor is indicated by the input head position at the moment
when the machine halts.

Mathematics Subject Classification. 11A51, 68Q15, 68Q17.

1. Introduction

Few mathematical ideas are as simple as the concept of a prime number: a prime
number can evenly be divided by no number other than 1 and itself. The number 1
is not normally considered to be prime.

Keywords and phrases. Prime numbers, factoring, sublogarithmic space, computational
complexity.

∗ The first author was supported under contract VEGA 1/0479/12 “Combinatorial Struc-
tures and Complexity of Algorithms”, the second author partially supported under contract
VEGA 1/0671/11 “Computations with Supplementary Information”. A preliminary version
of this work was presented at SOFSEM 2009 [Lect. Notes Comput. Sci., vol. 5404. Springer-
Verlag (2009) 291–302].

1 Department of Computer Science, P. J. Šafárik University, Jesenná 5, 04001 Košice,
Slovakia. viliam.geffert@upjs.sk
2 Department of Computer Science, Comenius University, Mlynská dolina, 84248 Bratislava,
Slovakia. pardubska@dcs.fmph.uniba.sk

Article published by EDP Sciences c© EDP Sciences 2013

http://dx.doi.org/10.1051/ita/2013038
http://www.rairo-ita.org
http://www.edpsciences.org

242 V. GEFFERT AND D. PARDUBSKÁ

The first proof showing the existence of infinite number of primes is due to
Euclid. He also taught us that the prime numbers are “bricks” for constructing all
other integers. Stated in other words, the Fundamental Theorem of Arithmetic says
that each integer n ≥ 1 can uniquely be factorized into n =

∏
m≥0 pαm

m , where αm ≥
0 is an integer and pm is the mth prime3. However, factoring (together with discrete
logarithms) are computationally very hard. The difficulty of these problems has
been utilized to design cryptographic systems for secure data transmission over
insecure networks, such as internet.

In 2004 [1], it was shown that the binary version of Primes belongs to P.
Nevertheless, this algorithm does not exhibit any divisors, if the given n is com-
posite, and hence it does not break security of cryptographic systems. At present,
the most promising approach for a fast factoring seems to be the polynomial time
quantum algorithm from 1994 [21].

Our paper is devoted to the problem of how much space is sufficient to decide
whether a unary given number n is prime or composite. We show that O(log log n)
space4 is sufficient for a deterministic Turing machine, if it is equipped with a
single additional pebble movable along the input tape, and also for an alternating
Turing machine (no pebble), if the space restriction applies only to its accepting
computation subtrees. In what follows, let un-Primes = {1n : n is a prime}; the
corresponding binary language is referred to as Primes. Then

un-Primes ∈ pebble–DSPACE(log log n),
un-Primes ∈ accept–ASPACE(log log n). (1.1)

It should be pointed out that, by an easy combination of known results [1, 6],
we get that Primes ∈ P = ASPACE(log n). It is also well-known that a binary
language L is in ASPACE(s(n)) if and only if its unary version un-L is in
ASPACE(s(log n)). However, this traditional translation works only if s(log n) ∈
Ω(log n). This follows from the fact that, for a unary given input 1n, we need log n
bits to store its binary representation. Hence, although Primes ∈ ASPACE(log n),
accepting its unary version in alternating space O(log log n) is not a consequence
of the previous result.

Actually, by a more sophisticated argument, log n bits are not necessary for
deterministic demon machines (by definition, starting with �log log n� worktape
cells marked off automatically): by the New Translation Lemma [2,3] (see Lem. 5.2
below), a binary language L is in DSPACE(log n) if and only if its unary version
un-L is in demon–DSPACE(log log n). Though not published in the literature, the
argument for the “⇒” part can be extended to alternating machines. (We do not
give a proof here, since this is not required for our results). This gives un-Primes ∈
demon–ASPACE(log log n). However, such result is weaker than (1.1): a demon
machine based on results published in [1] does not use its own computational
power to keep the space bound, nor does it give any factoring into divisors.

3For technical reasons, p0 =2, p1 =3, p2 =5, . . . That is, for m≥1, pm denotes actually the
mth odd prime.

4Throughout the paper, log x denotes the binary logarithm of x.

FACTORING AND TESTING PRIMES IN SMALL SPACE 243

Our approach is different: we simply verify divisibility of the input n by values
X = 2, 3, 4, . . . , n−1. (Note that a straightforward binary representation of n or X
cannot be used, since it requires at least log n bits on the worktape). The key to
our result is a space-efficient arithmetic with integers using the so-called Chinese
Residual Representation, already utilized in several other applications [3,9–12,19].
(The reader is referred to [2] for a good survey on such results).

As an additional bonus, our machines can exhibit all the divisors. Since the
space of size O(log log n) is too small to write down a divisor, which might require
Ω(log n) bits, a pebble machine can reveal the smallest divisor X > 1 by leaving
the pebble at the input position X at the moment when it halts. (Alternatively,
the machine can be equipped with an additional write-only output tape, to print
a binary sequence d1 . . . dn, with dX ∈ {0, 1} indicating whether X divides n).

Similarly, the alternating machine can also be modified to accept composites
and detect divisors. The computation tree of this machine is such that an X ∈
{2, . . . , n−1} divides n if and only if at least one path, in at least one accepting
computation subtree, halts with the input head at the position X . All accepting
computation subtrees stay within the space bound O(log log n). Thus,

un-Composites ∈ pebble–DSPACE(log log n),
un-Composites ∈ accept–ASPACE(log log n),

where un-Composites denotes a complement language for un-Primes. Note that
the second result is not a trivial consequence of (1.1), since it is still an open
problem whether the alternating space below log n is closed under complement.
(For completeness, deterministic pebble space is closed under complement even
below log n [8]).

2. Basic definitions

Our machines are equipped with a finite-state control, a two-way read-only
input tape, and a separate two-way read-write worktape. We assume the reader is
familiar with an alternating Turing machine [6, 22].

Several different modes of space complexity have been defined in the litera-
ture: a deterministic, nondeterministic, or alternating Turing machine works in
(a) strong space s(n), if every computation on each input of length n uses no more
than s(n) cells on the worktape, (b) accept space s(n), if every accepting compu-
tation subtree on each input of length n uses no more than s(n) cells, (c) weak
space s(n), if, for each accepted input of length n, there exists at least one accepting
computation subtree not using more than s(n) cells, (d) demon space s(n), if the
machine starts with a worktape consisting of �s(n)� cells delimited by endmarkers,
i.e., the worktape is not initially blank.

Clearly, these modes are listed in increasing computational power. Notation for
the corresponding complexity classes should be obvious. As an example, accept–
ASPACE(s(n)) is the class of languages recognizable by alternating machines

244 V. GEFFERT AND D. PARDUBSKÁ

working in O(s(n)) accept space, while demon–DSPACE(s(n)) the class recog-
nizable by deterministic s(n) space bounded demon machines.

A function s(n) is fully space constructible, if there exists a deterministic Turing
machine that prints the binary representation of s(n) on an extra one-way out-
put tape, not using more than s(n) space on the worktape, for each input of
length n. Similarly, a function f(n) is computable by an alternating machine in
accept space s(n), if there exists an alternating machine such that each input of
length n is accepted by at least one computation subtree and, moreover, each path
of each accepting computation subtree prints the same value f(n) on the output,
not using more than s(n) space. (Some paths may also accept after printing values
different from f(n) or using space above s(n), however, such paths can only be a
part of a rejecting computation subtree).

For fully space constructible functions, the space complexity classes for all
above modes coincide. Since log n is fully space constructible, we simply write
ASPACE(log n) without any mode prefix.

The mode difference becomes important for log log n, since no unbounded mono-
tone function below log n is fully space constructible [14]. Moreover, the argu-
ment of [14] can easily be extended to alternating machines. Nevertheless, as
shown in Lemma 4.5, a very tight approximation of log log n is computable by
an alternating machine in accept space O(log log n). Therefore, except for strong–
ASPACE(log log n), all remaining classes coincide for alternation in log log n space.

We shall also use a modification of the standard model, namely, a machine with a
single additional “pebble” which can be placed on, detected, and removed from the
input tape cell currently scanned by the input head; the corresponding complexity
classes are prefixed with “pebble”. Since log log n is fully space constructible with a
help of a pebble [7,8,22], the mode difference need not be distinguished for pebble–
DSPACE(log log n).

3. Modular arithmetic

Here we explain how some basic operations on numbers can be performed
efficiently in small space. We first introduce two representations of numbers and
then, simplifying several details, we present algorithms for some basic arithmetic
in these representations.

3.1. Representation of numbers

We first need to introduce some notation. Throughout the paper, N, Z, and R

denote, respectively, the sets of natural, integer, and real numbers. The set of all
real numbers ϕ satisfying α ≤ ϕ ≤ β is denoted by 〈α, β〉 and of those satisfying
α < ϕ < β by (α, β). The meaning of 〈α, β) should be obvious. Let pi denote the
ith odd prime. The product of the first m odd primes is denoted by Mm,

Mm = p1 · . . . · pm. (3.1)

FACTORING AND TESTING PRIMES IN SMALL SPACE 245

Our machines are based on two representations of natural numbers. The first one
is referred to as the (Chinese) residual representation: each X ∈ {0, . . . , Mm−1}
can uniquely be represented as X = (x1, . . . , xm), where xi = X mod pi, for
i = 1, . . . , m. Clearly, the binary coded numbers xi and pi are of length O(log pm).

The second one is a scalar representation: X = αX ·Mm, where αX ∈ 〈0, 1). We
use this representation to compare numbers: for each X = αX·Mm and Y = αY·Mm,
X ≤ Y if and only if αX ≤ αY . The disadvantage of this representation is that αX

is a real number with a long fractional part.
Given a number in the residual representation, e.g., some X = (x1, . . . , xm), the

corresponding scalar value αX can be obtained analytically, as given by (3.2). To
keep the notation a little bit simpler, an operation/operator/function [p]
 denotes
the corresponding operator
 taken modulo p. As an example,

x [p]+ y
df.= (x+y) mod p,

[p]

∏m
i=1 xi

df.=
(∏m

i=1 xi

)
mod p,

x[p]−1 df.= min{y ∈ N : (x·y) mod p = 1}.

It is well-known (see, e.g., Cor. 1 in Chapter I/3 in [18]) that the value x[p]−1 does
exist and, moreover, it is unique, provided that p is a prime and x mod p �= 0.
(Otherwise, this value might be undefined).

We naturally enlarge the domain for residual arithmetic to real numbers as
follows. For each α ∈ R and p ∈ N, p �= 0, let

[p]α
df.= α mod p

df.= β, where 0 ≤ β < p and β = α + k·p, for some k ∈ Z.

In particular, [1]α is the fractional part of α, for each α ≥ 0.
Now we are ready to give the definition of αX , for X = (x1, . . . , xm):

αX = [1]

∑m
i=1

[(
[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]
/pi (3.2)

In the next two lemmas, we will show the correctness of this definition, i.e., that
X = αX ·Mm.

Lemma 3.1. For each X ∈ {0, . . . , Mm − 1}, αX ·Mm is an integer value in
{0, . . . , Mm−1}, where αX and Mm are defined as above.

Proof. Obviously, for each ϕ1, . . . , ϕm ∈ R, we have [1]

∑m
i=1 ϕi =

∑m
i=1 ϕi −L, for

a suitable integer L. In what follows, L is indexed by X , to point out its connection
to the number X . Using (3.2), this gives:

Mm × αX = Mm ×
(∑m

i=1

[(
[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]
/pi − LX

)

=
∑m

i=1 Mm ×
[(

[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]
/pi − Mm×LX

=
∑m

i=1

(∏m
j=1
j �=i

pj

)
×

[(
[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]
− Mm×LX.

246 V. GEFFERT AND D. PARDUBSKÁ

It is easy to see that all operations performed in the last formula above produce
integer values. Therefore, Mm×αX ∈ Z. Second, by (3.2), αX is obtained as a
sum of reals taken modulo 1, which gives that 0 ≤ αX < 1, and hence the result
follows. �

Lemma 3.2. For each X ∈ {0, . . . , Mm−1} and each k ∈ {1, . . . , m}, we have
(αX ·Mm) mod pk = xk.

Proof. Taken modulo pk, the formula derived in the proof of Lemma 3.1 gives:

[pk](Mm× αX) = [pk]

∑m
i=1

⎛
⎜⎜⎝ [pk]

∏m
j=1
j �=i

pj︸ ︷︷ ︸
zero, if i �= k

⎞
⎟⎟⎠ [pk]×

[(
[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]

[pk]− Mm︸︷︷︸
multiple of pk

[pk]×LX

=
(

[pk]

∏m
j=1
j �=k

pj

)
[pk]×

[(
[pk]

∏m
j=1
j �=k

pj

)[pk]−1

[pk]× xk

]

=
[(

[pk]

∏m
j=1
j �=k

pj

)
[pk]× ([pk]

∏m
j=1
j �=k

pj)[pk]−1
]

[pk]× xk

= xk,

which completes the argument. �

By combining Lemmas 3.1 and 3.2, we have X = αX ·Mm, since two different
numbers in {0, . . . , Mm−1} cannot agree in all residues x1, . . . , xm.

3.2. Testing divisibility

Using the above number representations, we now give a summary of algo-
rithms for modular arithmetic. Some of them have already been used for other
purposes [3, 9–12,19]. In order to present a complete self-contained construction,
we recall their slightly modified versions as Algorithms 1 and 2 (introduced by
Lems. 3.3 and 3.4). Based on these we then present our method for testing divis-
ibility, as Algorithm 3, described in Lemma 3.5. Finally, we conclude this section
by estimating the total space resources required by this algorithm.

To underline space requirements, we use uppercase literals to denote “large”
numbers (not stored on a worktape – usually, due to a space limit); lowercase
literals for “small” numbers (stored in space O(log log n)); and Greek alphabet for
“real” numbers (actually, rational values in 〈0, 1), stored in binary with fractional
parts truncated to O(log log n) bits). The only exception is n, the length of the
input, which is actually a “large” value, for historical reasons.

Lemma 3.3. Let X = (x1, . . . , xm) be a number in its residual representation. If
the value xi can effectively be computed in O(log pm) deterministic space, for each
given i ∈ {1, . . . , m}, then the question of whether X ≤ Mm/2 can also be decided
in the same space.

FACTORING AND TESTING PRIMES IN SMALL SPACE 247

Proof. Since X = αX ·Mm, where αX ∈ 〈0, 1), it is sufficient to decide whether
αX ≤ 1/2. However, although the scalar αX can be obtained from the residues
x1, . . . , xm by the use of (3.2), the real numbers used in the formula (3.2) cannot
be stored in O(log pm) space.

The way out is to truncate fractional parts in the binary representation of all
reals in 〈0, 1) to some � bits, with � bounded by O(log pm), and to guarantee the
correctness of obtained results. (The value of � will be determined below). That
is, a binary written real number β = 0 . b1b2b3 . . . is truncated to βo = 0 . b1 . . . b�.
Here bi ∈ {0, 1} represents a single bit. Clearly, this involves an error of size
ε =

∑∞
i=�+1 bi ·2−i ≤ 1/2�.

Thus, to decide whether αX ≤ 1/2, we compute some “lower” bound αo and
“upper” bound αo, both of length � bits. αo is computed according to the following
mutation of (3.2):

αo = [1]

∑m
i=1

[(
[pi]

∏m
j=1
j �=i

pj

)[pi]
−1

[pi]
× xi

]
/≈�

pi (3.3)

Here u /≈�
v, for u, v ∈ N, denotes u/v ∈ R, truncated to � bits. Clearly, if u and v

can effectively be computed in O(log pm) space and � ∈ O(log pm), the value of
u /≈�

v can also be computed and stored in the same space, using a “binary version”
of an elementary division algorithm taught in grade schools. The same amount of
space is sufficient for all remaining operations in (3.3), not producing any other
numerical errors. The sum of m real numbers with errors bounded by ε ≤ 1/2�

thus gives an approximate result5 satisfying [1](αX−αo) ≤ m/2�. The upper bound
is computed as follows:

αo = αo [1]+
m
2� (3.4)

Clearly, [1](αo−αX) ≤ m/2�. To keep αo and αo close enough, we take

� = �log(m·pm)
 + 1,

thus satisfying
m
2� < 1

2·pm
· (3.5)

Since m ≤ pm, we get � ∈ O(log pm), and hence both αo and αo can be computed
in O(log pm) space, by the use of (3.3) and (3.4). (See lines 2−7 in Algorithm 1).

Now we are ready to explain how the approximations αo and αo can be used
to decide whether X = αX ·Mm ≤ Mm/2. Note that if αX is far enough from the
“borders”, i.e., if αX ∈ 〈0 + m/2�, 1 − m/2�), then αo ≤ αX ≤ αo. Otherwise, for
αX very close to zero or one, αo < αo might also be true. There are several cases
to consider.

If both αo and αo are smaller than or equal to 1/2, we can safely declare that
αX ≤ 1/2, and hence X ≤ Mm/2. Similarly, if both αo and αo are above 1/2, we

5Using [1](αX −αo) instead of αX −αo follows from the fact that the summation in (3.3) is
computed modulo 1.

248 V. GEFFERT AND D. PARDUBSKÁ

1: � := �log(m·pm)� + 1; � Numeric precision for real arithmetic
2: loop αo := 0; εo := m/2�;
3: for i := 1, . . . , m do c := 1; p̃ := pi;
4: for j := 1, . . . , m do
5: if j �= i then c := c [p̃]× pj

end ;
6: c := c[p̃]−1

; c := c [p̃]×xi; ϕ := c /≈� p̃ ; αo := αo [1]+ ϕ
end ;

7: αo := αo [1]+ εo;
8: if αo ≤ 1/2 and αo ≤ 1/2 then return “X ≤ Mm/2 ”;

9: if αo > 1/2 and αo > 1/2 then return “X > Mm/2 ”;

10: m := m − 1 � Tail recursion: decide whether X̃ = (x1, . . . , xm−1) ≤ Mm−1/2
end

Algorithm 1: Decide whether X = (x1, . . . , xm) ≤ Mm/2.

have X > Mm/2. (Lines 8 and 9 in Algorithm 1). The only problems to be decided
are αo ≤ 1/2 together with αo > 1/2, or αo > 1/2 with αo ≤ 1/2.

First, consider 0 ≤ αo ≤ 1/2 < αo < 1. Divide the segment 〈0, Mm) of the
length Mm into pm subsegments, each of equal length Mm−1. Recall that Mm =
p1 · . . . ·pm, by (3.1). It is not too hard to see that both αo·Mm and αo·Mm belong
to the same, namely middle, subsegment: Since 0 ≤ αo ≤ 1/2 < αo < 1, we get
αo−αo = [1](αo−αo) = m/2� < 1/(2 ·pm), by (3.4) and (3.5). The inequality
αo·Mm−αo·Mm < Mm−1/2 easily follows which, together with αo·Mm ≤ Mm/2 <
αo ·Mm, proves that both αo ·Mm and αo ·Mm (hence, X = αX ·Mm as well)
lie inside the middle subsegment of length Mm−1, between Mm/2−Mm−1/2 and
Mm/2+Mm−1/2. Therefore, we can use a tail recursion to solve the problem:

X = (x1, . . . , xm) ≤ Mm/2 iff X̃ = (x1, . . . , xm−1) ≤ Mm−1/2. (3.6)

Second, if 0 ≤ αo ≤ 1/2 < αo < 1, then αX belongs to one of the intervals
〈αo, 1) or 〈0, αo〉. Also here 〈0, Mm) can be divided into pm subsegments of equal
length Mm−1. Since [1](αo−αo) = m/2� < 1/(2 ·pm), by (3.4) and (3.5), we get
that 1−1/(2·pm) < αo < 1, and also 0 ≤ αo < 0+1/(2·pm). Therefore, αo·Mm lies
in (Mm−Mm−1/2, Mm), while αo ·Mm is in 〈0, 0+Mm−1/2). Since X = αX ·Mm

lies “in between” αo·Mm and αo ·Mm (modulo 1), we have that (i) if X > Mm/2,
then X lies in the second half of the last subsegment of length Mm−1, and (ii) if
X ≤ Mm/2, then it is in the first half of the first subsegment of length Mm−1.
Therefore, (3.6) holds true even in this case, and hence we can use the same tail
recursion to solve the problem.

This kind of recursion does not increase space requirements: the value of m is
decremented by one and the procedure restarts from the beginning6. (Line 10 in
Algorithm 1).

6However, once we have allocated an O(�) space for arithmetic with reals, it is fruitless to
reduce this space for smaller m. On the contrary, utilizing all this space increases arithmetic
precision, which results in a shorter chain of tail-recursion calls.

FACTORING AND TESTING PRIMES IN SMALL SPACE 249

1: let W
df.
= (y1 [p1]− x1, . . . , ym [pm]− xm);

2: if X > Mm/2 then return “X > Y ” � Comparisons with Mm/2 by Algorithm 1
3: else if W ≤ Mm/2 then return “X ≤ Y ”
4: else return “X > Y ”

Algorithm 2: Decide whether X ≤ Y (assuming Y ≤ Mm/2).

Quite atypically, the procedure does not need any special handling for m = 1.
(At the “bottom level”, no tail recursion can be used). This follows from the fact
that, for m = 1, Algorithm 1 halts in one of the lines 8 or 9, never trying to execute
line 10: Assume m = 1. Then, by (3.1), (3.2), and (3.3), we get that M1 = p1 = 3,
αX = x1/3, and αo = x1 /≈�

3. Moreover, by (3.4), [1](αo−αo) = m/2� = 1/2� ≤ 1/8,
using also the fact that � = �log(m·pm)
+1 ≥ �log(3)
+1 = 3. Thus, the numerical
error does not exceed 1/8. (This holds even if, initially, the value of m was larger
than one. Note that Algorithm 1 computes � only once, using the initial value
of m). Since x1 ∈ {0, 1, 2}, the case analysis shows:

• if x1 = 0, then αX = 0, αo = 0 /≈�
3 = 0, and αo ∈ 〈0, 0+ 1

8 〉;

• if x1 = 1, then αX = 1
3 , αo ∈ 〈1

3− 1
8 , 1

3 〉, and αo ∈ 〈1
3 , 1

3 + 1
8 〉;

• if x1 = 2, then αX = 2
3 , αo ∈ 〈2

3− 1
8 , 2

3 〉, and αo ∈ 〈2
3 , 2

3 + 1
8 〉.

Thus, for each x1, either both αo and αo are below 1/2, or they are both
above 1/2. �

Lemma 3.4. Let X = (x1, . . . , xm) and Y = (y1, . . . , ym) be two numbers in
the residual representation, Y ≤ Mm/2. If the values xi and yi can effectively
be computed in O(log pm) deterministic space, for each given i ∈ {1, . . . , m}, then
the question of whether X ≤ Y can also be decided in the same space.

Proof. Let us begin with a small technical detail. Note that Mm/2 �∈ Z, since
Mm is a product of odd primes, but X ∈ Z. Therefore, X �= Mm/2, and hence
X ≤ Mm/2 if and only if X < Mm/2.

Now, to compare X with Y , we first compare X with Mm/2, using Algorithm 1
described in Lemma 3.3. If X > Mm/2, we are done; X > Y .

Conversely, for X ≤ Mm/2, thus X < Mm/2, it is easy to see that X ≤ Y if and
only if W = [Mm](Y−X) ≤ Mm/2. Clearly, the residual representation of this value
is W = (y1 [p1]−x1, . . . , ym [pm]−xm). By assumption, the values xi and yi can be
computed by some deterministic procedures in O(log pm) space. This allows us
to devise a procedure computing, on demand, the value wi = yi [pi]

−xi, for each
given i ∈ {1, . . . , m}, in the same space. Thus, to decide whether X ≤ Y , we
compare W with Mm/2 by the use of Algorithm 1. (These ideas are summarized
in Algorithm 2). �

Lemma 3.5. Let X = (x1, . . . , xm) and Z = (z1, . . . , zm) be two numbers in
the residual representation, X ≤ Z <

√
Mm. Moreover, zi �= 0, for each

250 V. GEFFERT AND D. PARDUBSKÁ

1: let Y
df.
= (x

[p1]−1

1 [p1]× z1, . . . , x[pm]−1
m [pm]× zm);

2: for i := 1, . . . , m do
3: if xi = 0 then return “X does not divide Z”

end ;
4: if Y ≤ Z then return “X divides Z” � Y ≤ Z by Algorithm 2
5: else return “X does not divide Z”

Algorithm 3: Decide whether X divides Z (assuming zi �= 0 and X ≤ Z <
√

Mm).

i ∈ {1, . . . , m}. If the values xi and zi can effectively be computed in O(log pm)
deterministic space, for each given i ∈ {1, . . . , m}, then the question of whether X
divides Z can also be decided in the same space.

Proof. Details for the procedure performing this task are shown by Algorithm 3.
The algorithm first verifies whether xi �= 0, for each i ∈ {1, . . . , m}. If xi = 0
for some i, then X does not divide Z, since X is an integer multiple of pi, but
Z mod pi = zi �= 0, by assumption.

Assume now that xi �= 0, for each i. For this case, we can easily show that X
divides Z if and only if X [Mm]−1

[Mm]×Z ≤ Z:
First, if X divides Z, then there exists a Y ∈ N such that X × Y = Z.

Clearly, Y ≤ Z. Moreover, X [Mm]×Y = [Mm]Z = Z. This gives that Y =
X [Mm]−1

[Mm]×Z ≤ Z. (Since pi is a prime and xi �= 0, for each i, the value

Y = (x[p1]−1

1 [p1]× z1, . . . , x[pm]−1

m [pm]× zm) does exist and, moreover, Y is unique, for
each given X and Z).

Conversely, assume that Y = X [Mm]−1

[Mm]×Z ≤ Z. This gives X [Mm]×Y = Z.
Moreover, since Y ≤ Z and X ≤ Z, we have 0 ≤ X × Y ≤ Z2 < Mm. But then
X × Y = X [Mm]×Y = Z, and hence X divides Z.

Thus, to decide whether X divides Z, Algorithm 3 simply compares Y =
X [Mm]−1

[Mm]×Z with Z, solving the problem by the use of Algorithm 2 intro-
duced by Lemma 3.4. Since, by assumption, the values xi and zi can be computed
by some deterministic procedures in O(log pm) space, we can devise a subprogram
computing, on demand, the value yi = x

[pi]
−1

i [pi]
× zi, for each given i ∈ {1, . . . , m}.

Clearly, this subprogram works also in O(log pm) space. �

We conclude this section by estimating space requirements for Algorithm 3,
introduced by the above lemma. Recall that, for each given Z = (z1, . . . , zm), the
algorithm assumes, among others, that Z <

√
Mm. That is, the value of m, stored

initially in a global variable, must be sufficiently large so that Z2 <Mm =p1·. . .·pm.
The most natural choice would be the smallest m ∈ N satisfying Mm > Z2.
However, this value is hard to compute by a machine with sublogarithmic space.
Therefore, we shall use a little bit larger m. Let

m′ = min{k ∈ N : Mk > Z},
m = 2·m′. (3.7)

Defined this way, m can be computed easily, which will be shown later.

FACTORING AND TESTING PRIMES IN SMALL SPACE 251

Note that m is “sufficiently large”, satisfying the initial assumption Mm > Z2:
since Mm′ = p1 · . . . · pm′ > Z, we get Mm = p1 · . . . · pm′ · pm′+1 · . . . · p2m′ >
p2
1 · . . . · p2

m′ > Z2.
On the other hand, m is not “too large”, so that Algorithm 3 decides whether

Z is divisible by X ≤ Z in space O(log pm) ≤ O(log log Z). To see this, note
that Mm′−1 = p1 · . . . · pm′−1 ≤ Z. This gives that 2m′−1 ≤ Z, and hence also
m′ ≤ 1 + log Z. By the Prime Number Theorem (see, e.g., Chapters 2 and 3
in [13], or [5, 23]), we have pm ≤ O(m · log m), which gives log pm ≤ O(log m) ≤
O(log m′) ≤ O(log log Z). Summing up,

O(log pm) ≤ O(log log Z). (3.8)

Note also that
pm < Z, for each Z ≥ 18. (3.9)

This follows from the fact that pm ≤ m2 = 4·m′ 2 ≤ 4·(1+logZ)2 < Z, for each
Z ≥ 361 (for which we have also m ≥ 8). Analyzing the finite number of remaining
cases, namely, Z ∈ {1, . . . , 360}, we get that (3.9) actually holds for each Z ≥ 18.

4. Testing primes and factoring in small space

Now we are ready to test a unary given number n for primality with O(log log n)
space. We first present a conceptually simpler deterministic Turing machine
equipped with a single pebble. After that, using the power of alternation, we
present a modified machine not using any pebble. This is based on the observation
that, in the alternating machine, the residual representation of each X is “known”
by each process with the input head at the position X , and hence such process is
capable to imitate the actual position of a pebble.

4.1. Testing primes and factoring with a help of a pebble

The main idea is simple: using the residual and scalar representations together
with Algorithms 1, 2, and 3, we test divisibility of the unary given input number
n = Z = (z1, . . . , zm) by candidates X = 2, . . . , Z−1, one after another. The
value X is not stored on the worktape, but rather represented by a position of
the movable pebble on the input tape. Recall that Algorithm 3, introduced by
Lemma 3.5, needs the following prerequisites for each given X and Z satisfying
X≤Z:

• A value of m, sufficiently large so that Z2 < Mm = p1 · . . . · pm, must initially
be stored in a global variable.

• For each i ∈ {1, . . . , m}, the condition Z mod pi = zi �= 0 must be satisfied.
• Finally, Algorithm 3 must be able to call two deterministic subprograms com-

puting the values xi = X modpi and zi = Z modpi, for each given parameter
i ∈ {1, . . . , m}, whenever the computation demands. These two subprograms
do not use space above O(log pm).

252 V. GEFFERT AND D. PARDUBSKÁ

With a help of the pebble, it is not hard to fulfill these prerequisites. First, let

f(X) = the smallest odd prime not dividing X,
g(Z) = max{f(1), f(2), . . . , f(Z)}. (4.1)

We point out that the function log g(n) is a very good approximation of log log n.
For each n ≥ 4, we have −1 ≤ �log g(n)�−�log log n� ≤ +1. (For argument, see7

the proofs of Thm. 4.3, Lem. 3.1, and Thm. 6.3 in [8]. See also [7]).
Note that m′ used in the next two lemmas coincides with m′ defined by (3.7).

Lemma 4.1. For each Z ≥ 1, g(Z) = pm′ , where m′ = min{k ∈ N : Mk > Z}.
Proof. Clearly, by (4.1), we have that g(Z) = pi, for some odd prime pi. By
definition of m′, we get Mm′ = p1 · . . . · pm′ > Z ≥ p1 · . . . · pm′−1 = Mm′−1.
Thus, there exists an X ∈ {1, 2, . . . , Z}, namely, X = p1 · . . . · pm′−1, such that
f(X) = pm′ . Therefore, g(Z) = max{f(1), f(2), . . . , f(Z)} ≥ pm′ .

On the other hand, f(Y) ≤ pm′ for each Y ∈ {1, 2, . . . , Z}. Supposing the
contrary, we could obtain a Y that is an integer multiple of p1, . . . , pm′ , and hence
Y ≥ p1 · . . . · pm′ > Z, which is a contraction. Therefore, g(Z) ≤ pm′ , which gives
g(Z) = pm′ . �

Lemma 4.2. The values g(Z) = pm′ and m′, and hence also pm and m, are
computable by a deterministic pebble machine in space O(log g(Z)) = O(log pm′) ≤
O(log pm) ≤ O(log log Z).

Proof. The basic idea has already been used, e.g., in [7, 8], for a function slightly
different from g(Z): To compute g(Z) = pm′ , we use a machine M that systemat-
ically computes f(X), for X = 1, 2, . . . , Z, one by one, keeping the actual values
of m′′ and pm′′ = g = max{f(1), f(2), . . . , f(X)}. M does not have to store the
value X on the worktape, it is represented by the distance of the pebble from the
left endmarker. To compute f(X), M repeatedly checks if X is divisible by odd
primes p1 =3, p2 =5, . . . until it finds the first prime pi not dividing X . In order to
check if pi divides X , M forms a counter on the worktape and, traversing between
the left endmarker and the position indicated by the pebble, counts X modulo pi.

Obviously, as g = g(Z) = pm′ at the end of the computation, the machine M
uses O(log g(Z)) = O(log pm′) cells on its worktape. By (3.7) and (3.8), we then
have O(log pm′) ≤ O(log pm) ≤ O(log log Z). �

Now we are ready to show:

Theorem 4.3. un-Primes ∈ pebble–DSPACE(log log n).

Proof. The main idea of the procedure testing for primality is illustrated by
Algorithm 4. Let Z be a number whose unary representation is given as input.

7Actually, the proofs presented in [7, 8] concern functions slightly different from our g(Z):
in [8], f(X) is defined as the first prime not dividing X, thus taking also into account divisibility
by the number 2. This difference needs a minor modification in the argument, which is left to
the reader.

FACTORING AND TESTING PRIMES IN SMALL SPACE 253

1: if Z ∈ {2, 3, 5, 7, 11, 13, 17} then return “Z is a prime”;

2: if Z < 18 then return “Z is not a prime ”;

3: let f(X)
df.
= the smallest odd prime not dividing X ;

4: g := max{f(1), f(2), . . . , f(Z)}; � g = pm′ , for some odd prime pm′
5: m := 2·m′, where pm′ = g;
6: for i := 0, . . . , m do
7: if Z mod pi = 0 then return “Z is a composite”

end ;
8: for X := pm+2, pm+4, pm+6, . . . , Z−2 do
9: if X divides Z then return “Z is a composite” � Divisibility by Algorithm 3

end ;
10: return “Z is a prime”

Algorithm 4: Decide whether Z ∈ N is a prime.

First, our machine M′ resolves the problem of a finite number of “short” inputs:
at the very beginning, in an initial phase consisting of a single left-to-right traversal
followed by a single right-to-left traversal, it accepts or rejects, if the input is of
length Z < 18. (Lines 1−2 in Algorithm 4). From now on, assume that Z ≥ 18.

For “long” inputs, M′ computes pm′ and m′ by using M described in the proof
of Lemma 4.2. This is needed to obtain m := 2·m′. (In a more sophisticated imple-
mentation, the value of � can also be computed once and for all at the beginning,
instead of recomputing it over and over again, in line 1 of Algorithm 1). This marks
off a space of size Θ(log log Z) on the worktape. (Lines 3−5 in Algorithm 4).

After that, for i = 0, 1, 2, . . . , m, M′ repeatedly traverses the input and checks
whether the prime pi does not divide Z. If, for some i, Z is an integer multiple
of pi, then either Z is not a prime or Z = pi. However, by (3.9), Z > pm ≥ pi for
each Z ≥ 18. Therefore, M′ rejects Z as composite, after moving the pebble to the
pith input tape cell.

Therefore, if Algorithm 4 does not halt in the loop nested between lines 6−7,
we have Z mod pi = zi �= 0, for each i ∈ {0, 1, . . . , m}.

But then M′ can execute Algorithm 3, introduced by Lemma 3.5, to test di-
visibility of Z by candidates X = 2, . . . , Z−1. The value X is represented as a
distance of the pebble from the left endmarker. Whenever Algorithm 3 requires,
for some parameter i ∈ {1, . . . , m}, the values zi or xi, they are recomputed again,
in space O(log pm): M′ temporarily interrupts the execution of the “main” pro-
gram, computes pi, forms a counter on the worktape and, by traversing from the
left endmarker to the right endmarker (or, respectively, to the position indicated
by the pebble), counts Z (or X) modulo pi.

It should be pointed out that we can save most of the input tape traver-
sals, which speeds up the computation: the first-level speed-up utilizes the
fact that, in the loop nested between lines 6−7, we have already verified
that Z mod p0 = Z mod 2 �= 0. Thus, Z is odd, and hence we can skip testing

254 V. GEFFERT AND D. PARDUBSKÁ

divisibility of Z by even values8 of X and also by values X ≤ pm. (Lines 8−9 in
Algorithm 4).

The correctness of the described pebble machine M′ follows from the above
discussion, the space complexity of O(log log n) follows from (3.8). �

It is easy to see that the pebble machine M′, described above, can be modified
to accept un-Composites in the same space:

Corollary 4.4. un-Composites ∈ pebble–DSPACE(log log n).

As follows from the construction in the Proof of Theorem 4.3, M′ always halts
with the pebble placed at the position X representing the smallest divisor of Z
greater than one. (If X = Z, then Z is a prime). By equipping this pebble machine
with an additional write-only output tape, it can be modified to output a binary
sequence D = d1 . . . dZ , with dX ∈ {0, 1} indicating the divisibility of Z by the
number X .

4.2. Testing primes and factoring with a help of alternation

With the power of alternation, the role of the pebble can be imitated by input
head positions of processes running in parallel. The computation tree is such that
an X ∈ {2, . . . , n−1} divides n = Z if and only if there exists at least one accepting
computation subtree with at least one of its parallel paths halting at the input
tape position X .

Now we are ready for alternating counterparts of Lemma 4.2 and Theorem 4.3.

Lemma 4.5. The values g(Z) = pm′ and m′, and hence also pm and m, are
computable by an alternating machine in accept space O(log g(Z)) = O(log pm′) ≤
O(log pm) ≤ O(log log Z).

Proof. Analogously to the pebble machine in Lemma 4.2, the construction of g(Z),
for the unary given input Z, is based on (4.1).

Guessing phase: Our machine N first nondeterministically picks a position g ∈
{1, . . . , Z} along the input tape. After that, N moves deterministically back to the
left endmarker and counts the value of g in binary on the worktape. Thus, N never
allocates more space than O(log Z). However, for the right guess, the guessed value
is exactly g = g(Z) = pm′ , marking off the space 1 + �log g(Z)� ≤ O(log log Z),
by (3.7) and (3.8).

Verifying phase: Now N verifies the correctness of the guessed value g. This
is based on the fact that g(Z) = max{f(1), f(2), . . . , f(Z)}, and hence, for some
X ∈ {1, 2, . . . , Z}, we have g(Z) = f(X). Therefore, N moves along the input tape

8A second-level speed-up can also utilize the fact that Z mod 3 �= 0, thus testing divisibility
by numbers satisfying X mod 6 ∈ {1, 5}. An even more advanced version can also skip integer
multiples of 5, and so on.

FACTORING AND TESTING PRIMES IN SMALL SPACE 255

again, this time picking out nondeterministically the position X . To check that
g = g(Z), it is sufficient to verify that

• f(X) = g, i.e., the smallest odd prime not dividing X is g; and
• for each Y �= X in {1, . . . , Z}, f(Y) ≤ g, i.e., the smallest odd prime not

dividing Y does not exceed g.

With the input head positioned at X , N first universally splits into 3 processes,
namely, PX , P ′

<, and P ′
>. The process PX checks whether f(X) = g, while P ′

<

and P ′
>

verify if f(Y) ≤ g, for each Y < X and Y > X , respectively. Therefore,
the process P ′

<
moves to the left of the position X and, branching universally at

each input tape cell, it splits into parallel processes P ′
1, . . . , P

′
X−1. The process P ′

Y ,
for Y �= X , will check whether f(Y) ≤ g. For the same reasons, P ′

> moves to the
right of X along the input and splits universally into copies P ′

X+1, . . . , P
′
Z
. Note

that none of the processes P ′
1, . . . , P

′
X−1, PX , P ′

X+1, . . . , P
′
Z

stores its index on the
worktape, it is merely represented by the position of the input head.

To verify if f(X) = g, the process PX first checks whether g is an odd prime.
If the answer is “no”, PX halts and rejects. Otherwise, branching universally, it
writes j ∈ {1, . . . , g} in a separate track on the worktape. This splits PX into
copies PX,1, . . . , PX,g running in parallel. The process PX,j , for each j < g, first
checks whether j is an odd prime. If the answer is “no”, PX,j halts and accepts.
Otherwise, it deterministically verifies that X is divisible by j, by moving from
the input position X to the left endmarker and counting X modulo j. Similarly,
for j = g, the process PX,j verifies that X is not divisible by j.

To verify if f(Y) ≤ g, for each Y �= X , the process P ′
Y

nondeterministically
chooses a j ∈ {1, . . . , g}, checks whether j is an odd prime and, after that, it
deterministically verifies that Y is not divisible by j, by moving from the input
position Y to the left endmarker and counting Y modulo j.

Note that all parallel paths in each accepting computation subtree halt with
the correct value g = g(Z) = pm′ written on their worktapes, using O(log log Z)
space. Moreover, no rejecting computation subtree will ever try to use space above
O(log Z). �

Theorem 4.6. un-Primes ∈ accept–ASPACE(log log n).

Proof. Let Z be the unary input. Analogously to the pebble machine of Theo-
rem 4.3, our alternating machine N′ follows the main ideas of Algorithm 4. First,
N′ resolves the problem of short inputs, of length Z < 18, by a deterministic
left-to-right traversal along the input tape followed by a right-to-left traversal.
(Lines 1−2 in Algorithm 4).

For Z ≥ 18, N′ computes the values pm′ and m′ by simulation of N described
in Lemma 4.5. However, before switching from the guessing phase to the verifying
phase (see the proof of Lem. 4.5), N′ universally splits into two processes V and R.
The process V verifies the correctness of the guessed value g = g(Z) = pm′ as
described in the proof of Lemma 4.5, while R follows the steps of Algorithm 4

256 V. GEFFERT AND D. PARDUBSKÁ

assuming the guess is correct. That is, R starts by computing m := 2·m′. (Lines 3−5
in Algorithm 4).

Now, branching universally, R spawns new processes R′
0, R

′
1, . . . , R

′
m

running
in parallel and verifying that Z is not divisible by p0, p1, . . . , pm. If, for some
i ∈ {0, 1, . . . , m}, R′

i
finds that Z is an integer multiple of pi, R′

i
rejects Z as

composite, after parking the input head at the pith cell. Otherwise, R′
i accepts

with the input head at the position 1. This only requires traversing the entire
input and counting modulo pi. (Lines 6−7 in Algorithm 4).

Assuming that none of the processes R′
0, R

′
1, . . . , R

′
m rejects, i.e., that Z mod

pi = zi �= 0 for each i ∈ {1, . . . , m}, R examines divisibility of Z by candidates
X = 2, . . . , Z − 1, using Algorithm 3. (Lines 8−9 in Algorithm 4). Therefore,
R moves along the input tape and, branching universally at each tape cell, it
splits into parallel processes R2, . . . , RZ−1.

From this point forward, the process RX keeps its input head parked at the
Xth cell. With the value m stored on the worktape, RX executes Algorithm 3 and
verifies that Z cannot be divided by X . The computation of RX is deterministic
until the moment Algorithm 3 requires, for some parameter i ∈ {1, . . . , m}, the
values xi or zi. Whenever this happens, the process RX computes pi and nonde-
terministically guesses the required value xi ∈ {0, . . . , pi−1} (or zi, respectively).
Then, branching universally, RX spawns a new process Xpi,xi (or Zpi,zi , respec-
tively) to verify the guess, with the values pi and xi (or zi) written on the work-
tape. After that, the process RX resumes the execution of Algorithm 3 assuming
the guessed value is correct.

The process Xp,x, starting with some values p and x on the worktape and the
input head at a position X , accepts or rejects depending on whether X mod p = x.
This only requires traversing from the current input tape position to the left and
counting modulo p.

Similarly, the process Zp,z, starting with p and z on the worktape, verifies if
Z mod p = z. That is, after moving the input head to the right endmarker, it
traverses the entire input to the left and counts modulo p.

Finally, if the process RX, executing Algorithm 3, finds out that Z is not di-
visible by X , it accepts the input, after parking the input head at the position 1.
Otherwise, it rejects, leaving the input head at the position X .

Clearly, N′ does not use more space than does the machine N of Lemma 4.5, since
N′ uses N as its initial subprogram to allocate space on the worktape. All parallel
paths in each accepting computation subtree use the same correct value of g =
g(Z) = pm′ , and hence also the same worktape space of size O(log log Z). Moreover,
even a rejecting computation subtree never uses space above O(log Z). �

It is easy to modify N′ so that it accepts composites: recall that N′ rejects a
composite Z after identifying some X as a divisor of Z, still staying within the
space bound O(log log Z). More precisely, a path in N′ can halt in four possible
states. First, it can halt in “correct guess” or “wrong guess” states, which means
acceptance/rejection, entered by offsprings of V verifying whether the guessed

FACTORING AND TESTING PRIMES IN SMALL SPACE 257

value g = g(Z) = pm′ is correct. Second, the process RX (or R′
i
) halts in “reject”

or “accept” states, depending on whether the number X (or pi, respectively) di-
vides Z. (This applies also to all spawned offsprings Xp,x and Zp,z). Thus, the
machine accepting un-Composites can be obtained by swapping the roles of “ac-
cept/reject” states, but keeping the roles of “correct guess/wrong guess”, and by
choosing one RX or R′

i
from among the processes R2, . . . , RZ−1 or R′

0, R
′
1, . . . , R

′
m

existentially rather than universally9. This gives:

Corollary 4.7. un-Composites ∈ accept–ASPACE(log log n).

5. Concluding remarks

By an easy modification, branching existentially at the very beginning, we can
choose whether to simulate the machine presented by Theorem 4.6 or the one
presented by Corollary 4.7. This gives a single self-verifying machine with two
accepting states, namely, “prime” and “composite”, detecting whether the unary
given number is prime or composite and revealing divisors, such that no accepting
computation subtree uses space above O(log log n). (Due to wrong nondetermin-
istic guesses, some computation subtrees are not accepting. Even in this case, no
path will try to use space above O(log n)).

A more careful analysis reveals that, in the alternating machines above, no
computation path changes the direction of input head movement more than O(1)
times. The product of space by input head reversals was studied in a line of re-
search towards the simplest possible complexity classes still containing nonregular
languages [4,15,20]. The class of languages accepted by alternating machines work-
ing simultaneously in accept s(n) space and i(n) input head reversals satisfying
s(n)·i(n) ∈ O(h(n)) is usually denoted by accept–ASPACE×REVERSALS(h(n)).
Thus, we have actually shown:

Corollary 5.1. Both un-Primes and un-Composites are contained in the class
accept–ASPACE×REVERSALS(log log n).

The upper bounds presented in Theorems 4.3 and 4.6 as well as in Corollar-
ies 4.4, 4.7, and 5.1 cannot be improved since they match the corresponding lower
bounds for accepting nonregular languages [7,17,20]. We conjecture that the above
alternating machines cannot be improved so that they work in strong O(log log n)
space and that, for strong–ASPACE, the lower bound for accepting un-Primes is
Ω(log n). The argument is an open problem.

However, the most challenging open problem in this area is whether we can
factorize a binary given number deterministically in polynomial time. Since P =
ASPACE(log n) [6] and we have shown here a factoring of a unary given number

9A plain swapping of all existential/universal decisions and all accepting/rejecting halting
states is not sufficient: this gives only a machine corresponding to ASPACE(log n), since the
original machine may reject in the “wrong guess” state after using log Z space.

258 V. GEFFERT AND D. PARDUBSKÁ

working in ASPACE(log log n), such factoring could, at first glance, be obtained
by using some modification of the New Translation Lemma [2,3]:

Lemma 5.2. Let s(n) ∈ Ω(log n) be a fully space constructible function. Then
L ∈ DSPACE(s(n)) if and only if un-L ∈ demon–DSPACE(log log n + s(log n)).

In particular, for s(n) = log n, a binary language L is in DSPACE(log n) if
and only if its unary version un-L is in demon–DSPACE(log log n). Though not
published in the literature, it is not very difficult to show that the argument for the
“⇒” part can be extended to alternating (and also to nondeterministic) machines.
However, quite recently [16], it was shown that the “⇐” part does not hold for
alternating machines with small space, unless P = NP.

For this reason, we cannot turn the unary machine of Corollary 4.7 into a binary
ASPACE(log n) machine for Composites exhibiting divisors which, in turn, would
have given us a deterministic polynomial time algorithm for factoring, with drastic
consequences for security of cryptographic systems.

However (assuming P �= NP), this negative answer gave a unary language un-L
belonging to demon–ASPACE(log log n) and hence, by Lemma 4.5, to accept–
ASPACE(log log n), such that its binary version L is not in ASPACE(log n) = P.
Consequently, un-L is not in demon–NSPACE(log log n). This should be compared
with observation made in [2, 3]: in order to show that NP is not contained in
DSPACE(log n) = L, it suffices to present a language L ∈ NP such that un-L �∈
demon–DSPACE(log log n).

References

[1] M. Agrawal, N. Kayal and N. Saxena, Primes is in P. Ann. Math. 160 (2004) 781–93.
[2] E. Allender, The division breakthroughs. Bull. Eur. Assoc. Theoret. Comput. Sci. 74 (2001)

61–77.
[3] E. Allender, D.A. Mix Barrington and W. Hesse, Uniform circuits for division: Consequences

and problems, in Proc. of IEEE Conf. Comput. Complexity (2001) 150–59.
[4] A. Bertoni, C. Mereghetti and G. Pighizzini, Strong optimal lower bounds for Turing ma-

chines that accept nonregular languages, in Proc. of Math. Found. Comput. Sci., Lect. Notes
Comput. Sci., vol. 969. Springer-Verlag (1995) 309–18.

[5] C. Boyer, A History of Mathematics. John Wiley & Sons (1968).
[6] A. K. Chandra, D.C. Kozen and L. J. Stockmeyer. Alternation. J. Assoc. Comput. Mach.

28 (1981) 114–33.
[7] J.H. Chang, O.H. Ibarra, M.A. Palis and B. Ravikumar, On pebble automata. Theoret.

Comput. Sci. 44 (1986) 111–21.
[8] R. Chang, J. Hartmanis and D. Ranjan. Space bounded computations: Review and new

separation results. Theoret. Comput. Sci. 80 (1991) 289–302.
[9] A. Chiu, Complexity of Parallel Arithmetic Using The Chinese Remainder Representation.

Master’s thesis, University Wisconsin-Milwaukee (1995). (G. Davida, supervisor).
[10] A. Chiu, G. Davida and B. Litow, Division in logspace-uniform NC1. RAIRO: ITA 35

(2001) 259–75.
[11] G.I. Davida and B. Litow, Fast parallel arithmetic via modular representation. SIAM J.

Comput. 20 (1991) 756–65.
[12] P.F. Dietz, I.I. Macarie and J.I. Seiferas, Bits and relative order from residues, space effi-

ciently. Inform. Process. Lett. 50 (1994) 123–27.

FACTORING AND TESTING PRIMES IN SMALL SPACE 259

[13] W. Ellison and F. Ellison, Prime Numbers. John Wiley & Sons (1985).
[14] V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibil-

ity. SIAM J. Comput. 20 (1991) 484–98.
[15] V. Geffert, C. Mereghetti and G. Pighizzini, Sublogarithmic bounds on space and reversals.

SIAM J. Comput. 28 (1999) 325–40.
[16] V. Geffert and D. Pardubská, Unary coded NP-complete languages in ASPACE(log log n),

in Proc. of Develop. Lang. Theory, Lect. Notes Comput. Sci., vol. 7410. Springer-Verlag
(2012) 166–77.

[17] K. Iwama, ASPACE(o(log log n)) is regular. SIAM J. Comput. 22 (1993) 136–46.
[18] N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Math.,

vol. 114. Springer-Verlag (1994).
[19] I. I. Macarie, Space-efficient deterministic simulation of probabilistic automata, in Proc. of

Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput. Sci., vol. 775. Springer-Verlag
(1994) 109–22.

[20] C. Mereghetti, The descriptional power of sublogarithmic resource bounded Turing ma-
chines. In Proc. of Descr. Compl. Formal Syst. IFIP (2007) 12–26. (To appear in J. Automat.
Lang. Combin).

[21] P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proc.
of IEEE Symp. Found. Comput. Sci. (1994) 124–34.

[22] A. Szepietowski, Turing Machines with Sublogarithmic Space, Lect. Notes Comput. Sci.,
vol. 843. Springer-Verlag (1994).

[23] http://en.wikipedia.org/wiki/Prime number theorem.

Communicated by A. Bertoni.
Received December 3, 2011. Accepted June 12, 2013.

	Introduction
	Basic definitions
	Modular arithmetic
	Representation of numbers
	Testing divisibility

	Testing primes and factoring in small space
	Testing primes and factoring with a help of a pebble
	Testing primes and factoring with a help of alternation

	Concluding remarks
	References

