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Factoring Multivariate Polynomials
over Algebraic Number Fields

By Paul S. Wang*

Abstract. The algorithm for factoring polynomials over the integers by Wang and

Rothschild is generalized to an algorithm for the irreducible factorization of multi-

variate polynomials over any given algebraic number field. The extended method

makes use of recent ideas in factoring univariate polynomials over large finite fields

due to Berlekamp and Zassenhaus. The procedure described has been implemented

in the algebraic manipulation system MACSYMA.** Some machine examples with

timing are included.

1.   Introduction.  An algorithm for the irreducible factorization of multivariate
polynomials over any given algebraic number field is presented.  The algebraic number
field is given as an extension field of the rational numbers by specifying a minimal
polynomial over the integers.   In other words, we describe an algorithm for finding all
the irreducible factors of a given multivariate polynomial over the field of the rationals
adjoined by a root of a prescribed minimal polynomial.   This algorithm is a generali-
zation of the factoring algorithm for multivariate polynomials over the integers by
Wang and Rothschild [11].

The multivariate polynomial to be factored is first reduced to a polynomial in
just one variable by substituting properly selected integers for all but one variable.  The
resulting univariate polynomial is then factored over the given algebraic field.

There are two different approaches for the univariate factorization depending on
whether a suitable small rational prime p exists such that the given minimal polynomial
is irreducible modulo p.  If p can be found, then the factoring is carried out via a
finite field approach using methods suggested by Berlekamp [1] and Zassenhaus [13].
Otherwise, if the minimal polynomial is reducible modulo every prime, a classical method
is used which transforms the factorization into factoring a multivariate polynomial of
much higher degree over the rationals.  The univariate factors will then be used to con-
struct the desired multivariate factors by a "p-adic" interpolation described by Wang
and Rothschild [11],

Our interest in factoring over algebraic number fields, as that in factoring over the
integers, originated in the problem of indefinite integration of elementary functions in
finite terms [6], [9].   However, the algorithm is also useful in computations related to
groups and algebraic number fields.  The entire algorithm has been implemented in
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MACLISP [5] for the algebraic manipulation system MACSYMA [14] at Laboratory for
Computer Science at M.I.T. The routines for arithmetic and greatest common divisor of
polynomials over a given algebraic field are implemented in MACSYMA by Barry Träger.
A number of machine examples with timing are included in the appendix.

Peter Weinberger, at the University of Michigan, has also been working on certain
aspects of factoring over algebraic number fields.  The author wishes to thank him for
discussions and communications on this subject.  He also wishes to thank Barry Träger
and Joel Moses for their comments and suggestions.

2. Preliminaries and Notation. The field of rational numbers is denoted by Q
and the rational integers by Z. Any finite extension K of Q can be obtained by the
adjunction of an algebraic number 8 which satisfies f(8 ) = 0 where f(x) is an irredu-
cible polynomial in Z[x]. This extension K is denoted as Q(0). The polynomial f(x)
is called the minimal polynomial of 6 and [K : Q] = m = deg(/). We present an al-
gorithm for the irreducible factorization of any multivariate polynomial U(x,x2,.. . ,xt)
G YL[x, x2, . . . , xt] over Q(6>) for any given minimal polynomial f(x).

An element in K satisfying a monic polynomial is called an algebraic integer in
K.  The algebraic integers in K form a ring R.   It is obvious that Z C R.  Let f(x) =
x2 + 1, for example; then R is the ring of Gaussian integers.   It can be shown that if
a G K, there exist z G Z such that za G R.  Thus, we may assume, without loss of
generality, that f(x) is monic.  Also, we may assume that U and all its factors have
coefficients in R.

An element in K can be written in the form zZ^^cfi'/d,  5 and c¡ G Z.  For
elements in R, there exist positive integers D such that any a G R can be written
uniquely in the form a = S^o'c^'/D,   c¡ G Z.  The set {1/D, 9/D, . . . , 0m-'/£>} is
known as an integral basis of R.  One such integer D is the largest integer A such that
A2 divides the discriminant of f(x).  We denote the discriminant by Discr(/) which is
equal to the resultant of/(jc) and df(x)/dx denoted by Res(f(x),f'(x)).

By choosing a main variable, say x, we can write U(x, x2, . . . , xt) G
R[x, x2, . . . , xt] in the form

U(x, x2,..., xt) = Vnx» + • • • + V0

with Vf G R[x2, x3, . . . , xt] for i = 0, 1, . . . , n.   Vn =£ 0 is the leading coefficient
of U, denoted as \c(U).  The content of U with respect to the main variable x,
CONT(L0, is GCD(F0, Vx, . . . , Vn); and the principal part of U, pp(<7)is t//CONT(t/).
U is primitive if CONT(t/) = 1, and U is squarefree if U has no repeated factors.  Any
content of U, or repeated factors of U can be removed by relatively simple greatest
common divisor (GCD) computations (see [3] ).  Thus, U may be assumed primitive
and squarefree.  As in factoring over Z, the leading coefficient plays an important role
in the factoring process [7], [11].  Factorization is easier if the leading coefficient is
1, for if U is monic, then any factor of U is monic.  But if U is not monic, then ad-
ditional computation is required to determine the leading coefficient of each factor.
Therefore, we choose the main variable of U to make lc(<7)   1 or small, in order to
avoid or simplify later computations related to the leading coefficient.   If several vari-
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ables have a monic leading coefficient, it is best to choose the variable giving the small-
est «, thus limiting the number of possible factors.

Let p G Z be a prime and (p) be the ideal generated by p.  We denote by Zp the
quotient field Z/(p).  If the minimal polynomial f(x) is irreducible mod(p), then Rp =
Rl(P) is isomorphic to the Galois field GF(pm).

For any set F = {/,, f2, . . . , fr] C Z[x2, x3.xt], the ideal generated by
P,  if\f f2f ■ ■ ■ i fr)f is defined as the set

{gj, +g2f2 + ---+ grfr- g, e z[x2, ...,xt] v/}.

The set F need not be finite. For any integer k > 0 and any ideal S, ik denotes the
ideal generated by all products of the form hlh2 • • • hk, h¡ G g, i = 1,2, . . . , k.

HA and B are polynomials and $ is an ideal in Z[x, x2, . . . , xt], we define
A = B mod i if A - B G S, i.e., if A - B is divisible by an element of ¿. For ex-
ample, if i = {x2 - a2, x3 — a3,. . . , xf — at), ai G Z, then A{x, x2, . . . , xt) =
A{x, a2, . . . , at) mod 8 for A{x, a2, . . . , at) is the remainder of dividing A by every
x, - a¡,  i = 2, . . . , t. $k is the ideal generated by all polynomials of the form

t c. t
1 {x. - a.) '    with    £ c. = k,      c. > 0.

1=2 1=2

For this ideal á we define, for any positive integer k,

A=B  mod«*    if A = B  modáfc    and    deg{A)in x2, . . . , xf < k.

Similarly, A = B  mod{q) for any prime power q > 2 if A = B mod(<7) and the coef-
ficients of A are between -q/2 and q/2.

3.  An Outline of the Factoring Algorithm.   An overall view of the algorithm is
presented in the form of a brief description of each key step.  Details and examples
are included in later sections.  To begin with, we have a primitive and squarefree poly-
nomial U{x, x2, . . . , xt) G R[x, x2, . . . , xt] and a monic minimal polynomial fix)
G Z[x] with deg(/) = «z.  We can assume that the constant coefficients of U are of
the form E™o1c¡6',  c¡ G Z.  The algorithm takes the following steps in obtaining the
irreducible factorization of U.

I. Obtaining an integral basis.   Compute Discr(/) = Res{f{x),f'{x)).   Set A to
the largest integer such that A2 divides Discr(/).  Then the set {1 /A, 0/A, ..., 8m ~ 1/A}
forms an integral basis of R.   For certain forms of fix) smaller values of A are known
(see Section 6).  In such cases these smaller values are used.

II. Substitution.
(i)   Selecting integers.   Find a set of integers {a2, a3, . . . , at] (not necessarily

distinct) such that U{x, a2.a A remains squarefree and has the same degree as
U{x, x2, . . . , xt) in the main variable x.  The a¡ should be small in absolute value.
Best values for the a¡ are 0, ± 1, in that order [11].

(ii)  Normalizing the leading coefficient.  Compute the inverse of a =
\c{U{x, a2, . . . , at)) G R.  Let

m-l
a_1 = Z c,ö'/s.      cGZ,   Ô GZ.

í=i
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Set U{x) = ôa~l U{x, a2.at) so that lc(í/) is an integer.
III. Choosing a prime.   Find a small prime p G Z which satisfies the following

three conditions:   (1) p does not divide lc(i7), (2)   U(x) is squarefree modulo p, and
(3) f{x) is irreducible over Z .  If such a prime p is not found within a given number
of trials, the algorithm then uses a different factoring procedure as described in Sec-
tion 8.  Otherwise, the algorithm continues to the next step.

IV. Factoring over G¥(pm).  Compute u(x) = U(x) mod(p).   Factor u(x) over
GF(pm) into irreducible factors (see Section 5):

(1) u(x) = Ul{x)u2{x) ■ ■ ■ uix).

If r= 1, then u{x) is irreducible over Z (0) which implies that U{x), and therefore,
Uix, x2, . . . , xt) are irreducible over K.  The algorithm ends in this case.   If there
are several small primes that satisfy the requirements in step III, it is usually advanta-
geous to try more than one prime in this step.  The smallest prime that produces the
minimum r will be used.

V. Construction of factors of U{x).
(i) Coefficient bound. Find a number B such that for any rational number ß

in any coefficient of any divisor of U{x), B > Aß. Let d be the least integer such
that p2d > 2 k{U)B. Let b = p2°'.

(ii)  Constructing factors.  From (1) we have

(2) Uix) = u^u^x) ■ ■ ■ ur{x)    modip).

A "p-adic" algorithm by Zassenhaus is used to construct from (2) factors zz,(x),
û2{x), . . . , ûAx) such that ü¡{x) = ít¡  mod(p) and U{x) = ûlû2 ■ ■ ■ ûr  mod(o ).

VI. Actual factors of U{x) over R.  The algorithm TRUEFACTORS in Section 7
is applied with respect to the ideal (b) to obtain from the u¡ a factorization over R:

(3) Uix) = Ui (x)U2(x) ■ ■ ■ Us(x),      1 < s < r.

If s = 1, U is irreducible and the algorithm terminates.  The U¡ are distinct and rela-
tively prime and they may have rational numbers in their coefficients.

VII. Construction of factors of U.
(i)  Coefficient bound.   Let y¡ = x¡ - a¡,  i = 2, . . . , t, and

V = 8a-lU(x,y2 + av . . . , yf + af).

Find a number B such that for any rational number ß in the coefficients of any factor
of \c(V)V, B > 2A|3.   Let d be the smallest integer such that p2d > B.  Let b =
max(/>, p2 ).  The prime power b is used as a modulus in part (ii).

(ii)  Constructing factors.  First the coefficients in the U¡ are reduced modulo b.
It follows from (3) that

V=UAx)- ■ ■ Us(x)   mod(M),

where 8 is the ideal (y2, y3, . . . , yt).  A Hensel type construction by Wang and
Rothschild [11] is used to compute, from the above congruence, polynomials
V¡(x, y2, . . . , yt),  i = 1, . . . ,s, such that V¡ = U¡(x)  mod(b, g) and
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y = VÁx, y2.yf) ■■■ Vs{x, y2, ...,yf)    mod(b,iH),

where « = 1 + degree of Um x2, x3, . . . , xr
VIII. Actual factors of U.   The V¡ give rise to possible factors of V.  Irreducible

factors U¡ of U are obtained from the V¡ by using the algorithm TRUEFACTORS de-
scribed in Section 7. All factors will be found and we obtain

U(x, x2.x{) = ao-'í/jíx, x2-, xt) ■ ■ ■ U.(x, x2-, x{),     1 </ < s.

4.   An Example.   In this section the factoring algorithm is applied to a specific
polynomial in three variables.  The computation follows the steps outlined in the
previous section.   Let 0 be a root of f(x) = x4 + x3 + x2 + x + 1 = 0 and let K =
Q(0).  The polynomial to be factored over K is

U(x, y, z) = x8 + 2xn + (-y - z2 - 8)x6 + (-4y + 6z2 - 40)x5
+ (y2 + (2z2 - 48)v + z4 + 32z2 + 256)x4
+ (-4y2 + (2z2 + 32)v - 4z4 + 32z2 + 960)*3
+ (-y3 + (-3z2 + 28)v2 + (2z4 - 4z2 + 384)^ - z6 - 32z4

+ 144z2 - 1152)x2
+ (2y3 + (-4z2 + 72)^2 + (6z4 + 24z2 - 576)^

+ 2z6 - 48z4 - 576z2 + 3456)*
+ y4 + (-z2 - 12)v3
+ (z4 + 24z2 + 144)v2 + (-z6 + 24z4 - 432z2 - 1728)y
+ z8 - 12z6 + 144z4 - 1728z2 + 20736,

which is primitive and squarefree.  If x is chosen the main variable, then t = 3, «z = 4,
« = 8.

I. Since f(x) is a cyclotomic polynomial, we know A = 1 and {1, 0, 02, 03} is
an integral basis of R.

II. The values a2 = a3 = 0 are selected and

U(x) = U(x, 0, 0) = jc8 + 2xn - 8x6 - 40xs + 256x4

+ 960x3 - 1152x2 + 3456* + 20736.

III. The primes 7, 13 and 17 are found to satisfy the three conditions in Step
m.  Both 7 and 13 give eight factorsin Step IV while 17 gives only four factors. Hence,
p = 17.

IV. U(x) = x8 + 2x7 - 8x6 - 6x5 + x4 + 8x3 + 4x2 + 5x - 4 = U(x) mod(17).
And it is found that

U(x) = (x2 - 2dx - 563)(x2 - 2d2x - 50)

• (x2 - 263x + 503 + 502 +50+5)

■ (x2 + 2(03 + 02 + 0 + l)x - 502)    mod(17).

See the example in Section 5 for details of this step.
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V. The computer program computed 172   = 6975757441 as a coefficient bound
at this point.   For simplicity let us use 174 = 83521 as a bound in both the univariate
and multivariate stages.  The Hensel construction gives

U(x) = (x2 - 26x + 1203)(jc2 - 2d2x + 120)

• (x2 - 263x - 12(03 + 02 + 0 + 1))

• (x2 + 2(03 + 02 + 0 + 1)jc + 1202)    mod(172).

It turns out that the same congruence holds mod(174).
VI. Division tests in algorithm TRUEFACTORS show that the above congruence

is actually an equality in K.  Thus, U(x, y, z) has no more than four irreducible factors.
VII. Since a2= a3 = 0, the ideal i = (y, z). We have

U(x, y, z) = (x2 - 20* + I293)(x2 - 202x + 120)

• (x2 - 203jc - 12(03 + 02 + 0 + 1))

• (x2 + 2(03 + 02 + 0 + \)x + 1202)    mod(174, «),

Uix, y, z) = (x2 - 20* + 82y + 1203)(x2 - 2d2x - (03 + 02 + 0 + \)y + 120)

• (x2 - 263 + By - 12(03 + 02 + 0 + 1))

• (x2 + 2(03 + 02 + 0 + l)x + 93y + 1202)   mod(174, i2),

U(x, y, z) = (x2 - 26x + 92y - (03 + 02 + 0 + l)z2 + 1203)

• (x2 - 2d2x - (63 + 02 + 0 + \)y + 03z2 + 120)

• (x2 - 293x + 0v + 02z2 - 12(03 + 02 + 0 + 1))

• (x2 + 2(03 + 02 + 0 + 1)jc + 93y + 0z2 + 1202)    mod(174,«3).

VIII. There is no need to go to a higher power of a since the last congruence is
an actual equality over K.

5.  Univariate Factorization Over Z (9).  Let u(x) be a polynomial of degree «
in Zp(0)[;c], where p is a small prime in Z and 0 is a zero of the minimal polynomial
f(x) G Z [x].   Let deg(/) = «z and q = pm.  An algorithm for the complete factoriza-
tion of u(x) over Z (0) is given.  All arithmetic is in Z (0) which is isomorphic to
GF(c7).  The main ideas are due to Berlekamp [1] and Zassenhaus [13].

As a first step, a basis {d,(jc), v2(x), . . . , ur(x)} for the solution space of

v(x)q = v(x)   mod u(x)

is computed by finding the null space of the matrix Q - I, where / is the « x « identity
matrix and Q is the « x « matrix whose zth row is the coefficient vector of the re-
mainder of xq('~ ' ) divided by u(x).  Here the principal computation involved is the
triangularization of Q - I.

Now, if m = 1, i.e., Zp(0) = Zp, we can factor u(x) directly from

uix) =     IT      GCD(u(x), v.(x) -a),      i = 1, 2, . . . , r;
aeGF(q)
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because q = p is small.  In the case «z > 1, the size of GF{q) usually makes this straight-
forward approach of trying every element in GF(í7) unfeasible.  What is needed here is
a way of finding, for a given v¡(x), all the a G GF(z7) that make GCD(u(x), v^-á)^1
1.  We call such an a nontrivial.   A method to this end has been suggested by Zas-
senhaus [13].  The residues modulo u(x) of 1, v¡(x), v¡(x)2, ... are computed until
a power of v¡(x) which is linearly dependent on the previous powers is found.   It can
be shown that 1, v¡(x), . . . , v¡(x)r are always linearly dependent modulo u(x). The
linear dependence relation is in the form of a monic polynomial Gj(V;(x)) = 2gjVj(x)' =
0 mod u(x).  It can be shown that

G.(v.(x)) =Ylivjix) ~ a)>      a nontrivial.

Hence, G¡(x) splits and its roots are the nontrivial a's for v¡(x).  Thus, the problem of
finding factors of u(x) is reduced to that of finding the roots of G¡(x) in GF(q).  For
p small, the roots of a nonlinear polynomial G(x) which splits over GF(pm) can be
computed using an algorithm of Berlekamp [1].   Let

m —l     ¡
"Tri» =   £ xp     mod G(x).

i=0

Berlekamp shows that the relations

(%*) =   FI GCD(C7(jc), Ti(9'x) - ß),      j = 0, 1, . . . , m - 1,
ßezp

lead to all the linear factors of G(x) over GF(q). In actual computation the residues
of xp, xp , . . . , xp ~ generated in computing Tr(x) are stored for possible later
use in calculating Tr(0'.x).

It frequently happens that the prime p chosen in step II causes u(x) to split over
GF(q).  Thus, in our process for generating the matrix Q, the residues of xp, xp2, . . . ,
xPm ~     mod u(x) are stored away.  If the algorithm finds r = n, then the procedure
for obtaining nontrivial a's is bypassed and the linear factors of u(x) are found directly
by the above root finding procedure.

As an example, let us consider factoring the squarefree polynomial

uix) = x8 + 2xn - 8x6 - 6xs + x4 + 8x3 + 4.x2 + 5x - 4

over Z,7(0), where 0 is a zero of f(x) = x4 + x3 + x2 + x + 1.
Triangularization of the matrix Q gives (see [3] ) {xs + x4 — 8x3 - 3x2 - Ix,

x6 + 2x4 -2x3 + 8x2 + 8x, x7 +2x4 + 5x3 + 8x2 - 5x, 1} as a basis of the sol-
ution space of u(x)8352 ' = v(x) mod u(x). This means that u(x) has 4 irreducible
factors.  Taking d,(x) to be the first polynomial in this basis, we find

GjOc) = x4 - 3x3 + 2x2 + 6x + 2,

with the property G^v^x)) = 0  mod u{x).  The four roots of Gl are then found to
be 303 + 402 + 40 - 5, 03 + 302 + 0 - 8, - 02 - 40 + 8 and -403 -0+8.  These
roots turn out to be sufficient for obtaining the four factors of u{x) by GCD computa-
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tions:

u(x) = (x2 -

■(x2

292x - 59)(x2 + 2(03 + 02 + 0 + l)x

293x + 5(03 + 02 + 0 + l))(;c2 29x

502)

- 503).

6.  Coefficient Bound.  Factors of U and U can be assumed to have coefficients
in R. Thus, coefficients of factors of U or U when written in terms of the chosen in-
tegral basis {1/A, 0/A, . . . , 0m-'/A} are in the form J^^cfi'/A where c¡ G Z.  The
factoring algorithm depends on finding upper bounds for the magnitude of the c¡ in
both the univariate and the multivariate stages of computation.

It is advantageous to have A as small as possible. In some cases the smallest A
is known. If f(x) = x2 + a, a squarefree, we have A = 1 when a = 2 or 3 mod (4);
and A = 2 when a = 1   mod(4).  Also, A = 1 if f(x) is a cyclotomic polynomial.

If P(x) = HI-qPjX1 is a polynomial with complex coefficients, we define \\ft\ =
(Slpj-I2)1/2.  Let Zj, z2, . . . ,zk (distinct or not) be those zeros of P(x) with absolute
value > 1.  Mignotte [4] has shown that

ipjriK-Ki^i and ip^fi)!2! •••zfciipj-
i'=l

From this we can deduce the following lemma.
Lemma. // b is a coefficient of any primitive factor g(x) of U(x), and if lc(g)

is a rational integer, then \b\ < (n12)\\U\\-
Proof. If g(x) = b0 + b¡x -\ + bjx', bj G Z, then \b¡\ < ('.)\\U\\; because

lc(f7) G Z and \\c(Û)\ > |è-|.   Since deg(fT) = «, the lemma follows.
Recall that 0 is a root of the minimal polynomial f(x) = xm + am _ 1xm ~1 +

be the largest absolute value of any of its conjugates: 0,
is bounded by the largest positive root of

+ «¡x + aQ.  Let
e 'm-l-

X™ Ifljl* 0.
-,m-lIf c G R and \c\ < B, and if c is expressed in the form c = 2(=0   c¡9'/A,   c¡ G Z, then

Weinberger [12] shows that

max|c.| < At5«z!| um -1 /det(M),

where det(M) is the determinant of the matrix

1

/

M-

m-\

im — 1
2

ûffi —
m —'
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Thus, a bound for the c, exists and can be computed in the univariate case.  Since the
factorization of any multivariate polynomial can be done by univariate factoring using
the Kronecker method, a coefficient bound in the multivariate case can also be com-
puted.  These theoretical bounds are often too large.  In our factoring program we
provide the following optional heuristic bounds that are much smaller and easier to
compute :

B = A(nnl2)lÜl    and    B = MAx(ß, mQu^),

where umax is the greatest absolute value of the integer coefficients in V(x,y2,... ,yt).
Care should be taken in using the heuristic bounds for they may not, though very
rarely, be large enough and thus produce reducible factors.

7. Obtaining True Factors.   Recall that

V{x,y2, . . . , yt) = U(x, y2+a2,...,yf+ a().

We have the factorization

V(x, y2,...,yt)= Vx(x, yv...,yt)--- VAx, y2,. . . , yt)   mod(b,$h),

where s > 2 and i is the ideal (y2, y3.yt).  The V¡ are distinct and irreducible
and V¡ = Üj(x)  mod(Z>, e).  The V{ are unique up to units in the quotient ring 4> =
R\y2,...,yt]l(b,$h).

If U is monic, then V and the V¡ are all monic and any irreducible factor
G(x, y2, . . . , yt) of V over R satisfies G = H mod(ft), where H is either some V¡
or the product of two or more V¡ reduced mod(ft, $h).  Then G is computed as

G = H* IA   over R where H* = AH   mod(o).

If U is not moniC; then G = H mod(ô, i1') up to units in $>.  Thus, if

H* = A lc( V)lc(H)- ' H   mod(b, «" ),

then G = pp(//*/A) over R.  The quantity lc(F)lc(//)_1 is computed from the leading
coefficients of the V¡.  For example,

IctlOlciF.)-1 =    Il    HV.)    mod(M").

In actual computation, the H* are formed in a systematic and efficient manner from
the V¡ by multiplying an increasing number of them together modulo (b, $").  Any
H* that divides \c(V)V over K produces a true factor pp(//*/A) of V over R.  True
factors of U(x, x2, . . . , xt) are obtained from those of V by the substitutions y. =
xt - a¡,  2 < i < t.  The reader is referred to [11] for more details.

8. Univariate Factorization Over K by Multivariate Factorization Over Z.   Ra-
tional primes satisfying conditions (1) and (2) in step III exist.  They are small and
easy to find in almost all cases.   However, condition (3) is more difficult to meet
because there are polynomials that are irreducible over the rational integers which are
reducible modulo any rational prime.   If the given minimal polynomial belongs to this
class, no prime p can be found such that /is irreducible over Z     Our factoring pro-
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gram attempts to find a suitable p by trying members from a list of small primes.  If
a suitable p cannot be found after a set number of trials, the algorithm proceeds with
the factorization of U(x) over K = Q(0) by a different procedure which is not depend-
ent on factorization over Zp(0).

Let g(x, 0) be a polynomial in x with coefficients in R which is given by the
minimal polynomial f(x) G Z[x].  Since deg(/) = «z, there are «z conjugates of 0:
9{,92, . . . ,9m.  The norm of g(x, 0), N(g(x, 6)), is defined as

m
N(g(x,9)) = l\g(x,9.).

f=i

N(g(x, 9)) is equal to the resultant of g(x, 9) and f(9) with respect to 9,
Res(g(x, 9), /(0)) and N(g(x, 0» G Z[x].

Given U(x, 9) and f(x), U can be factored over K by the following procedure:
(a) Compute V(x, y) = Res(U(x - y9, 9), f(9)) over Z.
(b) Factor V(x, y) into irreducible factors over Z (see [11]).

V(x, y) = VAx, y)V2(x, y) ■ ■ ■ VAx, y).

(c) Compute the contents with respect to the variable y,

cfx, 9) = CONT(V.(x + y9, y)).

(d) The irreducible factorization of U(x) over K is given by

U(x, 0) = fl GCD(f7(x, 0), c.(x, 9)),
/=i

with the GCD computed over K.
The above procedure, when used, replaces steps IV, V and VI in our algorithm.

The prime power needed as a modulus in the construction of factors of U can be
formed with any prime p that satisfies the first two conditions in step III.

A proof for this procedure can be found in [10, pp. 136-137].  It can be seen
that if deg(C/) = « and deg(/) = «z, the degree of V(x, y) is «z« in either variable.
Therefore, almost all the work in this procedure lies in the factorization of V(x, y).
Although a rather efficient algorithm for multivariate factoring is available, it is still
best to use this method only when a suitable prime cannot be found after considerable
effort.

Appendix.  Eleven examples of factoring polynomials over algebraic number
fields are given.  They are done by the MACSYMA system (version 254) at Project
MAC, M.I.T.  In MACSYMA, the command FACTOR(i/, f(9)) causes the polynomial
U to be factored over Q(0) with f(9) the given minimal polynomial.   If f(9) is omitted,
then it means factoring over Q.  The command GFACTOR is implemented for the con-
venient use of factoring over Gaussian integers.  It is equivalent to FACTOR(C/, ,42 + 1).
In MACSYMA, labels (Cz) and (Dz) are used for the z'th command and display lines,
respectively.  The symbol %I is used for V-1 and % for the previous expression.  The
times indicated are in milliseconds measured on a PDP-10 computer with a memory-
cycle time of about two microseconds.
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*
(Dl) X    - 1

(C2>  GFACTOR(Z);
TIME. 625 MSEC.
(02) (X - 1)   (X ♦ 1)  (X ♦ XI)  (X - XI)

4 3 3 2 2
(D3> X    «XIX    t 2 X    ♦ 2 XI X    t S X    +2XIX+6X+6

<C4>  GFBCTORU);
TME=  1288 nSEC.

2
(04) (XI + X ♦ 1)   (- XI ♦ X ♦ 1)   (X XI ♦ X    ♦ 3)

4 4 3 3 2 2
(05) 2XIX    ♦ 3 X    ♦ 3 XI X    - 2 X    -2XIX    - 2 X    + XI X - 1

(C6>  GFBCTORCO;
TIME*  11866 MSEC.

2 2
(06) (- 2 XI ♦ 13 X    + 3)   (2 XI ♦ 3)   (X XI ♦ X    - 1)

13

2       2
(07) Y   ♦ X

(C81  GFBCT0R(*>¡
TIHE= 607 MSEC.
(D8) (X XI ♦ Y)   (Y - X XI)

2
(D9) X    + X - 1

(CIO)  FACTOR </.,fi*2-5>¡
TIME-  745 MSEC.

(DIO)
(2 X ♦ B ♦ 1)   (2 X - R ♦ 1)

4

4 2
(DU) X    ♦ 3 X    ♦ 4

(C12)   FACTOR</,[P2«n+2>¡
TIME» 2563 MSEC.
(012) (X « A)   (X ♦ A ♦  1)   (X - A)   (X - A - 1)

6
(013) 64 X    - 4

(C14)   FACTORS,A"3+2>|
TltlE. 5938 nSEC.

2 2 2 2
(014) (2 X  + A)   (2 X - A)   (4 X    - 2 A X ♦ A  )   (4 X    ♦ 2 A X  ♦ A  )

4 3 2
(D15) 16 X    ♦ 8 X    ♦ 4 X    ♦ 2 X ♦ 1

(C16)   FACT0R</,A-4+A-3+A-2*A*l)j
TIriEr  12777 nSEC.

2 3       2 3
(D16) (2 X - A)   (2 X - A )   (2 X ♦ A    + A    ♦ A ♦ 1>   (2 X - B )

4       4
(D17) X    + Y

(C18) FACTOR (7,A"4tl>;
TInE = 27702 MSEC.

3       3
(D18) (X + B Y) (X - B Y) (X ♦ B Y) (X - A Y)
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8 7 2 6 2 5
(019) X    +2X    +(-Y-Z    -8)X    ♦(-4Y + 6Z   -48)X

22 42422 423
♦  (Y    +(2 2    - 48) Y 4 Z   4 32 Z   4 256) X   4 (- 4 Y   4 (2 Z   4 32) Y - 4 Z   4 32 Z   4 968) X

3 2242 642 2
4   (- Y    4  (- 3 Z    4 28) Y    4  (2 Z    - 4 2   4 384) Y - Z   - 32 Z   4 144 Z   - 1152) X

32242 642 4
4   (2 Y    4   (- 4 Z    4 72)  Y    4  (6 Z    4 24 Z   - 576) Y 4 2 Z   - 48 Z   - 576 Z   4 3456) X 4 Y

2 342 2642 86«
4  (- 2   - 12) Y   4 (Z   4 24 Z   4 144) Y   4 (- Z   4 24 Z   - 432 Z   - 1728) Y 4 Z   - 12 Z   ♦ 1*4 Z

2
-  1728 Z    4 20736

(C20)   FACTOR«,B-44A-34A-24A41);
TIME*  118613 nSEC.

2       3 2 3 2 2
(020) (AZ    4 A    Y t  X    4<2B    » 2 H    +2A*2)X4l2A)

2 2 2 3 3 2
(B    Z    ♦ fi Y ♦ X    -2B    X-12B    -12B    -12B-12)

3 2 3        2 2 2
(fl    Z    4<-fi    -B    - R - 1) Y 4 X    -2B    X412B)

3        2 2        2 2 3
((-B    _R    -A-DZ   4fl   Y4X   -2RX4 12R)

S 3 3 222222 22 3
(021) X    -5VYX    -5UZX    4 5 U Y    X    45Z   YX    4 5 V   ZX    45VU   X    -5ZY    X

22 3 32235 322
45V    Y    X-SVUZYX-SU    YX-5VZ   X 4 S U   Z   X-5V   UX4Y   -5VUY    4SVZ    Y

22 3 3 22522 35S
+5U    ZY    -5UZ    Y-5V    Z Y 4 5 V   U   ïtZ   45V   UZ   -5VU   Z«U    4V

(C22)   FACTOR(P0LY,B-4+B-34RA24fl4l)¡
TinE=  94927 «SEC.

3       2 3 2
(022) II * V « 7 « Il t V)   (V I- Il    -fl    - R - 1) 4 U R   4ZR    4YR4X)

32 32 32 32
(U(-B    -A    -B-l)4Yfl    «VA    4Zfl4X)(Z(-B   -fl   - R - 1) 4 V R    tïK    4UR4X)

3        2 3 2
(Y(-fl    -A    - R -  1)  4 Z R    «DU    4VA4X)
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