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Factoring Polynomials Over Large Finite Fields

By E. R. Berlekamp

Abstract. This paper reviews some of the known algorithms for factoring polynomials
over finite fields and presents a new deterministic procedure for reducing the problem of
factoring an arbitrary polynomial over the Galois field GF(p"!) to the problem of finding the
roots in GF(p) of certain other polynomials over GF(p). The amount of computation and
the storage space required by these algorithms are algebraic in both the degree of the
polynomial to be factored and the logarithm of the order of the finite field.

Certain observations on the application of these methods to the factorization of poly-
nomials over the rational integers are also included.

1. Introduction and Summary of Results. This paper presents algorithms for
the factorization of a polynomial over a finite field. We are given the polynomial's co-
efficients, /o, /i, f2, • • ■ , /„, which are elements in the finite field GF(q), where q is a
power of the prime p, and we wish to find the factors of f(x) = £?_0 fjx< which are
irreducible over GF(q).

The algorithm includes several major steps, which we present in different sections.
In Section 3, we obtain a partial factorization,

fix) =  fl hu\x),,=i
where n'"(x) is the product of r, irreducible-power factors each of which has degree /,
and £"_i ir¡ = n. In Section 4, we reduce the problem of factoring hU)(x), a poly-
nomial of degree ir¡, to the problem of finding the roots in GF(q) of a new polynomial,
H(x), which has degree r,-. If we denote the factorization of hU)(x) into irreducible-
power factors by

/,<*>(*)= n «<*»(*)i-i
where

«"•"(*)=  ¿Ai'-'V.
¡t-0

then the roots of H(x) give us the coefficients h"'''. From the roots of H(x), we obtain
a partial factorization of hM(x). This partial factorization separates the irreducible-
power factors according to their n¿',,). If this factorization is incomplete, then we may
construct another polynomial whose roots are the values of the coefficients n"'" of
the factors of j(x) which have a particular lowest coefficient h0i,i). From the roots of
this new polynomial, we obtain a further refinement of the factorization of hii}(x).
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714 E.   R.   BERLEKAMP

The process may be continued until h(t)(x) is factored into the product of irreducible-
power factors. In other words, in Sections 3 and 4 we reduce the problem of factoring
an arbitrary polynomial, f(x), to the problem of finding the roots of a new polynomial
which factors into linear factors over GF(q).

In Sections 5, 6, and 7, we present algorithms for finding the roots of a polynomial
over GF(q). In Sections 5 and 6, we present two different methods for converting the
root-finding problem in GF(pm) to a root-finding problem in GF(p), wherep is prime.
The method of Section 5 is better for small primes, while the method of Section 6 is
better for very large primes. Finally, in Section 7 we present an algorithm for finding
the roots of a polynomial in a large prime field, thus completing the algorithm for
factoring an arbitrary polynomial over a finite field.

The algorithms presented in Sections 3-5 are completely deterministic. Although
the amount of time and space these algorithms require to factor a polynomial will
depend somewhat on the input polynomial, these costs may be overbounded by an
algebraic function of the degree of the input polynomial and the logarithm of q, the
order of the finite field.

The algorithm presented in Section 7, on the other hand, is probabilistic rather
than deterministic in nature. The algorithm makes a sequence of trials, each of which
uses a parameter which is selected at random. Whether or not the trial succeeds in
obtaining a factorization depends on the particular choice of this random parameter
as well as on the polynomial to be factored. However, each trial succeeds with proba-
bility greater than 1 /2, independent of the input polynomial and of all previous trials.
Thus, although the number of computations required by the algorithm of Section 7
is a random variable, its mean, variance, and any finite moment may be bounded by
an algebraic function of the degree of the input polynomial and log p, where the
prime p is the order of the field. For any given e > 0, we may therefore obtain a
number N, proportional to log 1/e, a small power of log/?, and a small power of the
degree of the input polynomial, such that the probability that the algorithm of
Section 7 will require more than N computations is no greater than e. However, for
e = 0, the only known general bounds on N are proportional to a root of p rather
than a power of log p.

Section 8 reviews a procedure for factoring a polynomial over the rational integers.
From the coefficients of the polynomial, we first compute a general bound on the
magnitude of any coefficient of any possible factor. We then select a prime, p, larger
than twice this bound and factor the polynomial modulo this enormous prime. The
factors of the original rational polynomial must then lie among the known factors
mod p, so we then try each factor mod p to see whether it is also a factor over the
rational integers. The greatest difficulty with this procedure is that a polynomial
which has / irreducible factors mod p will have 2' factors altogether, all but 2 of which
will be nontrivial. Consequently, if the original polynomial, of large degree n, factors
into b X n irreducible factors mod/? (where perhaps b = 1/2 or 1/3), then the amount
of computation required to find which of the 2bn factors mod p are also factors over
the rational integers grows exponentially in n, even though the expected amount of
computation required to obtain the complete factorization mod p grows only alge-
braically in n. Fortunately, however, most polynomials of degree n have only about
In n irreducible factors mod /?, and if a particular polynomial which we wish to factor
over the rational integers turns out to have unpleasantly many irreducible factors
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mod /?, we can simply factor it again modulo a still larger prime. While it is easily
shown that such a strategy will factor "almost all" polynomials over the rational
integers in a very modest amount of effort, the "worst" irreducible polynomials have
at least T'2 factors modulo every prime. However, even for one of these polynomials
our procedure is substantially better than the classical Kronecker algorithm. (The Kro-
necker algorithm is presented in Section 25, p. 77 of van der Waerden (1931).)

Some of the material presented in this paper is based on other work. The central
notion of this paper, which is the <2 matrix of Section 3, appeared in a previous paper,
Berlekamp (1967), a revised version of which was republished as Section 6.1 of Berle-
kamp (1968). The algorithm presented there succeeded in factoring an arbitrary
polynomial of degree n over GF(q) in an amount of computation which grew only
algebraically in n, but it was proportional to q rather than algebraic in log q. The
fact that the a matrix could be used to determine the number of factors had been
anticipated by Schwarz (1956), but he gave no procedure for finding the actual factors.
The results of Sections 5 and 6 are based on a suggestion of L. Welch (1968), and the
results of Section 7 are based on a suggestion of G. Collins ( 1967) and D. Knuth ( 1967).
The algorithm of Section 7 has apparently been independently discovered by a
number of authors, several of whom are listed by Knuth (1969). Indeed, Knuth (1969)
gives a more general probabilistic algorithm which finds factors as well as roots
over GF(/?).

The principal innovation of this paper is the deterministic procedure of Sections 3
and 4, which allows us to reduce an arbitrary factoring problem to a root-finding
problem, thereby postponing the probabilistic part of the general factorization al-
gorithm as much as possible. In this manner, we minimize the amount of computation
which might be caused by a run of bad luck. We also maximize the opportunities to
escape the randomization entirely by the use of special tricks, some of which are
discussed in Section 7.

2. Prerequisites. In this section we list several results which are required in sub-
sequent sections and which are well known in the theory of finite fields. We also
assume that the reader is familiar with the known techniques for performing arith-
metic operations on the elements of a finite field. These techniques may be found in
Chapter 2 of Berlekamp (1968) and Collins (1969).

Lemma 2.1. If g(x) is a polynomial over GF(q), then (g(x))' = g(xQ).
Lemma 2.2. In GF(q), x" — x = YL^ofm (x — s).
Lemma 2.3. In GF(q), x"" — x factors into the product of all monk irreducible

polynomials of degrees dividing m.
Lemma 2.4. Let f(x) and gM(x) all be monk polynomials over GF(q), and suppose

that the gU)(x) are relatively prime. If j(x) | JJj gM(x), then

/(•*) = II gcd (/(*), gU)(x))i
where gcd denotes the monk common divisor of greatest degree.

Lemma 2.5. Every repeated factor off(x) divides its derivative, f(x), and deg f(x) <
deg j(x).

Lemma 2.6. A polynomial f(x) over GF(q) has zero derivative iff there exists another
polynomial, g(x), such that f(x) = g(xv), where p, the characteristic of the field, is
the prime divisor of q.
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716 E.   R.   BERLEKAMP

Lemmas 2.5 and 2.6 provide a method by which we may reduce the factorization
of an arbitrary polynomial, j(x), to the factorization of a polynomial whose irre-
ducible factors are all distinct. We first compute the derivative, f(x). If it is zero, we
then have

n/p / n/v \p

/(*)= £/,*" = (D/î'V)
¿-0 \,-o /

and since the /?th root of an element in GF(/?"') is also its p"'1 power, which we may
calculate with less than 2 log2 (pm~l) multiplications, we may reduce the factorization
of f(x) to the factorization of the /?th root of j(x). On the other hand, if f(x) is non-
zero, then we may compute the gcd (j(x), /'(*))•' If this greatest common divisor has
positive degree, then it is a proper factor of f(x). After dividing out this factor, we
may reapply the same test. Finally, if gcd (f(x), f(x)) = 1, then we know that f(x)
has no repeated factors.

In this manner, we may remove the repeated factors of f(x).
Although it may be advisable to eliminate the repeated factors of f(x) immedi-

ately, it is not necessary to do so. The algorithm of the following sections will factor
an arbitrary polynomial over GF(q) into its irreducible-power factors. Thus if one
prefers, he may first use the algorithm of the following sections to factor f(x) into
irreducible powers, and then compute the derivative of each irreducible-power factor
to factor it "into the power of an irreducible polynomial.

3. From Factorization of an Arbitrary Polynomial over GF(q) to the Factoriza-
tion of a Polynomial Whose Irreducible-Power Factors all have the Same Degree.
If f(x) is a polynomial of degree n over GF(q), then for / = 0, 1, 2, • ■ ■ , n we define
hw(x) as the product of all of the irreducible-power factors of f(x) which have degree i.
We then have the factorization

(3.01) fix) =  u hli)(x).
i-i

In this section, we will present two methods for determining the h'"(x).
Of course, the degree of each n<0 must be a multiple of/. Most «(,) will be 1, but

the factorization of Eq. (3.01) will be nontrivial unless all irreducible-power factors of
f(x) have the same degree. Even in that case, the factorization of Eq. (3.01) will reveal
the number of factors of f(x) of each degree.

Before presenting our new approach to obtaining the factorization of Eq. (3.01),
we review an older, better known approach which works whenever f(x) has no re-
peated factors. For each successive i, the older algorithm computes h('\x), Fii}(x) =
II"-i+i hu\x), and Rw(x), the residue of*"' mod F(i\x), as follows:

Algorithm 3.02: Initialization.

Rm(x) = x, F0)(x) = fix).

1 As described in Chapter 6 of Berlekamp (1968), we may compute the discriminant, D(f),
along with gcd (j(x), fix)). For any given D ^ 0, we can invoke Stickelberger's theorem to determine
whether the number of irreducible factors of f(x) is odd or even. This tells us only a little bit about
the factorization of /, but it requires very little computation.
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Recursion.

R{n(x) = (RU-U(X))° mod Fu~v'ix),

dcgRu) < deg F""1',

hu\x) = gcd (F"'""^), Ru,(x) - x),

Fu,(x) =   F-1,(x)/hu\x).

Assuming that f(x) has no repeated factors, Lemma 2.3 enables us to verify that
each h(,)(x) computed by Algorithm 3.02 is indeed the product of the irreducible
factors which have degree i.

In order to obtain i?(, + 1), Algorithm 3.02 must compute the qth power of
R( '' mod F*". The conventional way of doing this is to compute the residues of
CR(°)2, (R(i)f, (A1")8, ••■ , (R (»)1,,0"«1>ï and then obtain R(i+1} by multiplying to-
gether an appropriate combination of these residues mod F(,). This requires between
log q and 2 log q multiplications mod Fl ' ', and if j(x) is irreducible or the product of
two irreducible polynomials each of degree n/2, then it will be necessary to calculate
n/2 successive R('\ each of which is congruent to (Rl'~1}q mod j(x).

Instead of calculating each of the successive /?'*' independently, we might first
compute rf0)(x), ru'(x), • • • , rc"_1)(x), where each rM(x) is the residue of xiQ modulo
f(x). We could then calculate R'Xx) from the formula

n-l n-1

(3.03) R"'(x) =   £/?;"x' =   £ R):-"r"}(x).
1-0 J-0

If we introduce the n X « matrix, a, whose n rows are the coefficients of rm, r(1), • • • ,
r'"-", Eq. (3.03) may then be rewritten as

(3.04) [r"», «"'. ■ • • . «»-il = [ä"_1>, ä"_1). • • ■ . «il^Ma.
Once we have calculated the matrix a, Eq. (3.04) provides a fast method of calculating
i?c,) from i?<,_1>. If we use a to calculate several successive R{'\ the total savings more
than justifies the initial cost of computing <2. For large q, the time required to com-
pute a is dominated by the time required to compute the second line, rw(x) = R(U(x).
Once rll)(x) is known, each successive row of Q may be obtained in only one multi-
plication and reduction mod f(x).

Although the a matrix does serve to expedite the calculation of Algorithm 3.02,
it plays a relatively peripheral role. On the other hand, this same matrix lies at the
heart of the factorization procedure of Berlekamp (1967). Although conceptually
more complicated, this procedure improves on Algorithm 3.02 in several respects.
First, and most important, it provides us with tools which prove useful in factoring
each h('\x). Second, it turns out that even in the case when each irreducible factor of
j(x) has a different degree, the new procedure often obtains the factorization in sub-
stantially fewer computations than Algorithm 3.02.

The key to the factoring procedure of Berlekamp (1967) lies in finding one or more
other polynomials, g(x), such that

(3.05) g(x)- - g(x) = 0 mod fix),        0 g deg g < deg /.

2 Unless another base is explicitly given, "log" means "log2".
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718 E.   R.   BERLEKAMP

Berlekamp (1967) has shown that if j(x) is the product of powers of r distinct irre-
ducible polynomials, then there are qr solutions of Eq. (3.05). These solutions and the
value of r may be found by solving a system of n linear equations in the n unknown
coefficients of g(x) over GF(q), namely

(3.06) g(& - ê) = 0

where â is the n X n identity matrix and a is the n X n matrix whose /th row is the co-
efficients of x0'*-1' reduced modulo f(x).

If g(x) is any solution of Eq. (3.05), then Lemmas 2.1, 2.2, and 2.4 give us a fac-
torization of f(x), namely

(3.07) f(x) =     II    gcd (f(x), g(x) - s).
«GGF(il)

This factorization of j(x) is nontrivial unless deg g(x) = 0. The factors of f(x) given
by Eq. (3.07) may not be irreducible powers, but in that case the factorization may be
further refined by computing the gcd's of the composite factors and g(x) — s for
other legitimate choices of g(x).

If q is small, this method succeeds in factoring an arbitrary polynomial of degree n.
The number of GF(q) computations required is proportional to n3, most of which
are spent finding r linearly independent g's from Eq. (3.06).3 However, if q is large
compared to n, then Eq. (3.07) becomes the bottleneck step of the computation. If q
is very large, it becomes impractical to compute the gcd of j(x) and g(x) — s for each
s G GF(<7). Of course, most of these computations will prove useless, since at least
q — r of these gcd's must be one.

One method of dealing with Eq. (3.07) when q is large was recently proposed by
Zassenhaus (1969). If S denotes the subset of GF(<tJ consisting of those s for which
gcd (f(x), g(x) — s) 5¿ 1, then Eq. (3.07) can be simplified to

f(x) =  II gcd (f(x), g(x) - s)

from which

fix) | II igix) - 5).

We define
ISI

Giy) =   Hit' -i)=  Hg,S.
«es /-o

Since fix) | Gigix)), we have the congruence
\s\
£ Giigix)y m 0 mod f(x).
i-0

This congruence enables us to determine the polynomial G by computing the residues
mod f(x) of 1, g(x), (g(x))2, (g(x)f, ■ ■ ■ until we find a power of g(x) which is linearly
dependent on its predecessors. Since deg G = \S\ ^ r, the residues of 1, g(x), (g(x))2,
• • • , (g(x)Y cannot be linearly independent. The coefficients of the first linear depend-

8 If n is large but q and r are small, then the number of GF(q) computations which Algorithm
3.02 requires to find the gcd's is also proportional to nz, and the constant of proportionality is
substantially higher for Algorithm 3.02 than for the procedure of Eqs. (3.06) and (3.07).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FACTORING   POLYNOMIALS  OVER   LARGE   FINITE   FIELDS 719

ence among these residues mod f(x) are the coefficients of the polynomial G. The
values of s which yield nontrivial factors of / via Eq. (3.07) are the roots of G. Thus,
the Zassenhaus algorithm transforms the problem of factoring / into the problem
of finding the roots of G.

Unfortunately, as we shall see in Section 7, the best algorithms known for finding
the roots of a polynomial in a large prime field are probabilistic in nature. Although
these algorithms usually run quite quickly, it is difficult to obtain any reasonable
upper bound on the amount of time they may require in the most unlucky case. For
this reason, we present a new, deterministic algorithm which obtains the partial fac-
torization of Eq. (3.01). Although conceptually complicated, the algorithm runs quite
fast. In Section 4 we show how an extension of this algorithm may be used to reduce
the problem of factoring the product of r irreducible d-ûcs to the problem of finding
the roots of a polynomial of degree r.

We begin with some definitions.
Definition 3.08. An r X r matrix of polynomials, 3TC, over GF(q), is a matrix whose

entries are polynomials in one indeterminant over GF(q). We say that such a matrix
is invertible* iff its determinant, |9TC|, is a nonzero polynomial. We say that a matrix
is unimodular iff |3Ti| is a nonzero scalar.

Definition 3.09. Two matrices of polynomials, (B and 6 are said to be equivalent
(written (B = Q) iff there exists a unimodular matrix of polynomials, 31, and an in-
vertible matrix of scalars, S, such that 6 = 9103S.

It is trivially verified that the relation "^" is transitive, reflexive, and symmetric.
Theorem 3.1. 'f j(x) = üí_i f'\x), where each fil)(x) is the power of a distinct

irreducible polynomial, and if\, ¿2)(x), g<3)
monk solutions of the equation

(x), g ' (x) are linearly independent

guV) - gU\x) m 0 mod fix)

andO < deg g'" < deg /, if

(3.11)

and if

(3.12)

then î ^ a.

a =

/ o o
0 0

-1 0

0 -1

0 0

Ï =

/'

o     /
0        0

0       0
(I)   0

(3)

4 If 3TC is invertible, it has an inverse, 3TC-1, whose entries are quotients of polynomials in x.
By Cramer's rule, art-1 will be a matrix of polynomials iff 3K is unimodular.
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Proof Let g(1) = 1, and let the r X r matrix of polynomials cS be defined by

S,.,- - gw(x) mod fu)(x),        0 g deg S.,,- < deg /<".

We claim that
Lemma 3.13. Every entry in the jth column of the product matrix OS is a multiple

off".
Lemma 3.14. S is a matrix of scalars.
Lemma 3.15. S is invertible.
Lemma 3.16. $F(f2S)_1 is a unimodular matrix of polynomials.
Assuming the lemmas, the theorem follows from the formula

(ííasr^as = J.
We now prove the lemmas.

3.13. This lemma is an immediate consequence of the definitions of a and S.
3.14. In GF(q),

i"V) - *'"(*) =     u     Ci(<>« - s).
«eGF(o)

Since g(i\xQ) - g(i)(x) = 0 mod üí-i /"'(*).

fm(x)\    u    (gw(x)-s).
IÊGFI«)

Since the factors in this product are relatively prime, and fu\x) is an irreducible
power, there must exist one particular scalar s, ,,■ for which f(i)(x) \ g(i)(x) — siti and

g(°Cx)-**.,    mod fu\x).

3.15. If S were singular, then 3 scalars Au A2) ■ ■ ■ , Ar, not all zero, such that

£ A,Si,i = 0    for ally.

This implies that

£ Aig(i\x) = 0 mod fu\x)    for all /,

so

£ Aigu\x) m 0 mod fix),

and since deg g(,) < deg /, we conclude that £, AigU)(x) = 0, contradicting the
linear independence of gn\ g(2), • • ■ , g<r).

3.16. In view of Lemma 3.13, the cofactor of the i, j entry in OS is a multiple of
IL*,- fk)(x) = Kx)/fw(x). Furthermore, |OS| = |tt| |S| = /(x)• scalar. Hence,
if we evaluate (&S)-1 by Cramer's rule, we find that every element in the y'th row
of (OS)-1 is of the form polynomial (x)/f')(x). It follows that the product îF(as)"1
is a matrix of polynomials. Its determinant is given by |ü=| |s|"' |a|_1 = f(x)-
scalars//(x) = scalar. Since |iF| ^ 0, |S| ^ 0, and |a| ^ 0, ÍF(OS)"1 is unimodu-
lar. Q.E.D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FACTORING   POLYNOMIALS   OVER   LARGE   FINITE   FIELDS 721

Although the proof of Theorem 3.1 considered the matrix (OS)"1, whose entries
were elements in the field of rational functions, GF(pm)(x), the statement of Theorem
3.1 involves only matrices over the polynomial ring GF(/?m)[x]. Henceforth, all opera-
tions we consider are restricted to this ring.

Since the polynomials in the first column of a may be found by solving the matrix
equation (3.06), Theorem 3.1 shows that the factors of f(x) may be found by diago-
nalizing the matrix of polynomials, a, to obtain 'S, whose diagonal elements are
the factors of f(x). We now consider the problem of diagonalizing a matrix of poly-
nomials.

A square matrix of polynomials may be transformed into another matrix of poly-
nomials by any of the following elementary operations:

(1) Permute any pair of rows.
(2) Multiply any row by a nonzero scalar.
(3) Add a scalar times a power of x times a row into any other row, and determine

the maximum degree of the elements in the new row.
(4) Permute any pair of columns.
(5) Multiply any column by a nonzero scalar.
(6) Add any scalar multiple of any column into any other column.
The row operations are the elementary unimodular operations.
It is obvious that the new matrix formed by any of these operations is equivalent

to the original matrix, because operations (l)-(3) may be performed by premultiplying
the orginal matrix by an appropriate unimodular matrix of polynomials, and opera-
tions (4)-(6) may be performed by postmultiplying the original matrix by an appro-
priate invertible matrix of scalars.

Since operation (3) is more powerful than operation (6), we can perform a greater
variety of operations on rows than columns. Thus, rows have a special importance.

Definitions 3.17. The degree of a row of a matrix of polynomials is the maximal
degree of any of the entries in that row. The degree of an all-zero row is conventionally
taken as — 1.5 The total row degree of a matrix of polynomials is the sum of the degrees
of its rows.

An entry whose degree is equal to the maximum degree occurring in its row is
said to be a maxrowdeg entry. An entry is called a dominant entry iff it is a diagonal
entry and it is the unique maxrowdeg entry in its row. A row containing a dominant
entry is called a dominated row. Likewise, a column containing a dominant entry is
called a dominated column, even though some of the nondiagonal entries in the domi-
nated column may have higher degrees than the diagonal entry.

A matrix of polynomials is said to be a row-dominated matrix iff all of its nonzero
rows are dominated rows. The complexity of a matrix of polynomials is defined as
twice its total row degree minus the number of its dominated rows.

Theorem 3.2. If an r by r matrix of polynomials is not row-dominated, then it is
equivalent to another matrix of smaller complexity, which can be obtained from the
original matrix in at most r — 1 elementary operations.

Proof. Any matrix of polynomials which is not row-dominated must contain a
diagonal entry which is not the unique maxrowdeg entry in its row. Let such an entry

6 Notice that this convention violates the usual law, deg (fg) = deg / + deg g if f or g is 0.
The law can be preserved only by taking deg 0 = ± °°, which would lead to even more difficulties
in the present context.
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be called the pivotal entry, and let the row and column containing the pivotal entry
be called the pivotal row and the pivotal column. We then consider two cases:

Case 1. The pivotal row contains a maxrowdeg entry in an undominated column.
In this case we may perform column operations which will convert the pivotal row

to a dominated row, thereby increasing the number of dominated rows. Since we
will not perform any row operations, we will not increase the degrees of any rows,
and since our column operations will never add a dominated column into an un-
dominated column, every row which was dominated in the original matrix will remain
dominated in the less complex equivalent matrix.

Specifically, we make the pivotal entry a maxrowdeg entry, by column permutation
if necessary. We then decrease the degree of every nonpivotal maxrowdeg entry in
the pivotal row by adding to the column containing it an appropriate scalar multiple
of the pivotal column.

Case 2. Every maxrowdeg entry in the pivotal row occurs in a dominated column.
In this case we define the relevant set of rows as the pivotal row and those rows

which contain a dominant entry in the same column as a maxrowdeg entry in the
pivotal row. We then select from the relevant set of rows a row having row degree at
least as large as any other relevant row, and call this row the key row. We then decrease
the degree of the key row by adding into the key row appropriate multiples of the
other relevant rows. Since all of these operations effect only the key row, they will
transform the original matrix into a matrix of smaller complexity, even if the original
key row is dominated and the transformed key row is not dominated.

Specifically, if the key row is not the pivotal row, we begin by adding to the key
row an appropriate scalar times an appropriate power of x times the pivotal row,
chosen so as to reduce the degree of the key row's diagonal entry. If this reduces the
degree of the key row, we are finished ; if not (or if the key row is the pivotal row),
we may assume that each maxrowdeg entry in the key row lies in the same column
as a diagonal entry of some row in the relevant set. Adding an appropriate multiple
of the corresponding relevant row into the key row will decrease the number of
maxrowdeg entries in the key row, etc., until the degree of the key row is decreased.
Q.E.D.

Theorem 3.3. Let 03 be any r X r matrix of polynomials, with total row degree b.
Then there exists a (possibly nonunique) row-dominated matrix, (ft, such that 03 = (ft.
(ft can be computed from (B in less than 2(b + r)(r — 1) elementary operations.

Proof. The complexity of 63 is no greater than 2¿?. The complexity of (ft is no less
than — 1r, with equality only if (ft is the all-zero matrix. Theorem 3.3 is therefore a
direct consequence of repeated applications of Theorem 3.2. Q.E.D.

If (ft is nonsingular, its complexity is nonnegative and at most 2b(r — 1) elementary
operations are required.

In general, 03 = (ft means only that there exists a unimodular matrix of poly-
nomials, e, and an invertible matrix of scalars, S, such that (BS_1 = C(R. In order
to obtain certain information about the relative row degrees of 63 and (ft, we begin
by considering the special case, (B = C(ft.

Theorem 3.4. If ($>, C, and (ft are r X r matrices of polynomials, such that (B = C(R
and (ft is row-dominated, then any row of 03 which has row degree d is a linear combina-
tion only of rows of Si which have row degrees ^ d.

Proof. The degree of the ith row of 03 is given by
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max deg (B,,, = max deg £ C¿,*0ti,,
i i k

iï max max deg e,-,t(fttií

^ max max deg e,it0tt,,
* i

^ max deg e¿,k(Rk,k.

Let m be chosen so that

deg eiim(Rm.m = max deg e,,4(ftt,t.
k

If k 7* m, then

deg e.-.ifñt.» < deg 6,,*«*,» ^ deg e,,m(ftm,,„

so

deg £ e.-.idU.,, = deg (e,-,„(ftm,m + £ e,,^^)

= deg e,,m(ft„,m

= max deg e^Ot*,*
t

and

max deg 03,,, ^ deg 03;,„ = max deg Qi¡k(ñk,k.
i

Therefore,

max deg œ,-,, = max deg Qi,k(ñk,k.

Hence, if max,- deg 03,-,, = d, then max deg <S,i¡kSik,k = d, whence deg eft»,* > d implies
that Cj, » = 0. Q.E.D.

Definition 3.41. A canonkally-ordered matrix is one whose successive rows have
nonincreasing degrees. A normalized matrix is a canonically ordered row-dominated
matrix in which all diagonal entries are monic polynomials. A uniform matrix is a
normalized matrix in which each polynomial on the diagonal has the same degree.

Theorem 3.5. If '03 is a canonically ordered r X r matrix, and 01 is a normalized ma-
trix, and 03 ̂  (ft, then the degree of every row of($> is at least as great as the degree of
the corresponding row of (ft.

Proof. (& = COIS, so Û3S-1 = C(ft. Since row degrees are unaffected by column
operations, there is no loss of generality in assuming that & = COt. Since all nonzero
rows of Ot are dominated, they are linearly independent, and the rank of 01 is equal
to the number of its nonzero rows. If the degree of the rth row of 03 is less than the
degree of the rth row of Ot, then Theorem 3.4 implies that the j'th, (i + l)st, • • • rows of
05 are all linear combinations of the last r — i rows of (ft. The rank of (S> is therefore
no greater than i — 1 + the dimension of the space spanned by the last r — i rows
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of Si. But the rank of (ft is / + the dimension of the space spanned by the last r — i
rows of Ot, so e must be singular, contradicting the definition of equivalence. Q.E.D.

Theorem 3.6. If two normalized matrices are equivalent, their corresponding rows
have equal degrees.

Proof This is a direct consequence of Theorem 3.5.
A normalized matrix may be partitioned into various submatrices, such that (ft,.,

and 0tt,¡ are in the same submatrix iff deg 01^ = deg Sik%k and deg ot,-,,- = deg (R,,,.
This is called the standard partition corresponding to Ot. The partitioned matrix is
said to be triangular with respect to this partition iff all submatrices below the main
diagonal are zero. (See Fig. 1.) Notice that each diagonal submatrix is uniform.

Figure 1.    A  Partitioned Matrix  With Diagonal Submatrices Shaded And Aboce-Diagonal Sub-
matrices Crosshatched.

Theorem 3.7. If 61 and 3 are equivalent normalized matrices, with 3 = efltS, then
6 is triangular with respect to the standard partition of Si and 3.

Proof. With 3S~' = Cflt, the theorem follows directly from Theorem 3.4.
Theorem 3.8. If (R and 3 are equivalent invertible normalized matrices, and 3 is

triangular with respect to its standard partition, then so is Si. Furthermore, every uni-
form diagonal submatrix of Ot (with respect to the standard partition) is equivalent to
the corresponding uniform diagonal submatrix of 3.

Proof. We have (ft = (33S. 3 is triangular by hypothesis, and <3 is triangular by
Theorem 3.7. Since the product of two triangular matrices is triangular, we deduce
that (C3) is triangular with respect to the standard partition.

If SD is any matrix of polynomials, we may define <5 as the matrix of scalars ob-
tained by setting

3),,, = leading coefficient of 2D,,,,    if £)<,, is a maxrowdeg,

= 0,    otherwise.
Then since the equation ot = (C3)S implies, among other things, that the leading

coefficients of the entries of maximum degree in each row must be equal, we deduce
that s\ = ((e3)*)S. Since 3 is truly diagonal (without respect to any partition, even
nonstandard ones), it is invertible and we have S~l = (R-1((C3)~)> which is triangular
with respect to the standard partition. Therefore S"1 and S are also triangular. We
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conclude that 03 = (C3)S is the product of triangular matrices, so it must be triangular
too.

When one takes the product of matrices which are triangular with respect to the
standard partition, a diagonal submatrix in the multiplier matrix is multiplied only
by the corresponding diagonal submatrix of the multiplicand matrix. It follows that
corresponding diagonal submatrices of equivalent normalized matrices are equiva-
lent. Q.E.D.

Let us now review what we have shown. Given a polynomial f(x), we may construct
a, solve Eq. (3.06), and thereby determine r [the number of distinct irreducible fac-

tors of f(x)] and a certain r X r matrix of polynomials, called a. Using Theorems 3.2
and 3.3, we may transform a to Ot, which is a normalized matrix. From Theorem 3.1
we know that Ot = S, a truly diagonal matrix whose diagonal entries are the r monic
irreducible-power factors of j(x). Since S is triangular, Ot will automatically be
triangular with respect to the standard partition. From Theorems 3.4-3.6, we may
determine the degrees of the various irreducible-power factors, and the number
of factors of each degree. If f(x) has r¡ irreducible-power factors of degree i, then
according to Theorems 3.7 and 3.8, (ft will have a corresponding r¡ X rt submatrix on
its diagonal, and this submatrix will be uniform of degree i. Its determinant will be
the polynomial hw(x) of Eq. (3.01).

Thus, we have obtained a decomposition of the matrix corresponding to the fac-
torization of Eq. (3.01). By calculating the determinants of the corresponding sub-
matrices, we could obtain each factor n(,)(jc). However, if we wish to factor hM(x) into
the product of irreducible-powers of degree i, then it is easier to proceed directly with
the further manipulations on the corresponding r{ by r< matrix of polynomials which
are described in Section 4. There is no real need to evaluate the determinant of this
matrix explicitly.

4. From Factorization of the Product of r Irreducible-Power rf-tics to the Fac-
torization of the Product of r Linear Factors. If we wish to factor a polynomial,
f(x), which is the product of r irreducible-power factors, /<u(x), fi2)(x), •• * » fT)(x),
each of which has the same degree, d, then we might employ the Zassenhaus algorithm,
which is described in Section 3 between Eq. (3.07) and Definition (3.08). An alter-
native procedure continues with Ot, the r X r uniform6 matrix of polynomials with
which the new algorithm of Section 3 terminates. We know that Si = S, where S
is the truly diagonal matrix of polynomials whose diagonal elements are fa\x),
f<2)(x), ■ ■ ■ , /(r)(x). In order to find S from the given 01, we require some additional
results.

Theorem 4.1. If (ft and S are uniform matrices of polynomials and fit = JF, then
Si = S~JSFS where S is a matrix of scalar s.

Proof. Write (ft = CSFS. Since S, Si, and C are matrices of polynomials, we may
write

Ot = Oto + (R.-v + S\2x2 +   ■ • •  + Siix\

e = e0 + e,* + e2x2 + • • • + e,*',

S = S0 + S)X + s2x2 + ■ • • + Skxk,

5 Recall Definitions 3.08, 3.09, 3.17, and 3.41.
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where Ot„, e„, and Sn are matrices of scalars and Ot, ¿¿ 0, e, ^ 0, and Sk ^ 0. Since
01 and S are uniform, 01, = Sk = â, the identity matrix. Equating the scalar matrix
coefficients of the leading powers of x on both sides of the equation Ot = CïS gives
i = j + k and ä = (3,áS, where e, = S"1. Since i = k by Theorem 3.6, we must have
; = 0. Q.E.D.

We must now solve the equation S_10tS = S for S and S, given 0Î.
Letting Su> denote the ith column of S, we write

S =  [S(I) |SC2J|St3>

and similarly

S =

I AU

0

0 o     f

|s">]

0        0        0       •••     f
The equation OtS = SS is equivalent to the equations

(RS(i>  = fu)(x)Sli)     for / =  1, 2, ••

Writing out both sides explicitly as polynomials in x gives

2>,s('V = ¿/}»*«>*'
from which we deduce that

Ot.-S10 = /}"*"'     for    i =  1,2, j = 0, 1, 2,

and

[<R, - /i"*]«"'

Since S" ?* 0.

I«; - mi = o;     /,. = /;-",/^, ■•• ,/;.r).
If (R, is diagonal, then the solutions for the scalar /,- are trivially seen to be the

diagonal components of 0t,. If Ot,- is not diagonal, then the determinant |öt, — f,â\
is a polynomial in /,- of degree r over GF(q), and it must have r (possibly not distinct)
roots in GF(q).

Thus, we may determine the set ff\ f?\ ■■■ , /J*0 from the equation |ot,- — /,0|
= 0.

The details of the problem of finding the roots of this polynomial are discussed
in Sections 5-7.

In general, these r eigenvalues of ot,- (and S,) may not all be distinct. In that case,
we may partition them into disjoint sets, and obtain a corresponding partition of
ÍF,. This partition will be trivial (i.e., it will partition all rows and columns together)
iff ot, is a scalar multiple of the identity matrix. It is obvious that this cannot happen
if 0t, is not diagonal.
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Knowing /Ju, f2), ■ ■ ■ , /¡r>, we may find a scalar matrix S, such that S710t,S, =
S¡. The rth column of S, may be taken as any solution of the equation

[Ot,- - /J0*]*)0 = 0.

If f\° has multiplicity / and /}" = fy+v = ••• = fji + l~l), then the vector solutions
of this equation form an /-dimensional subspace, any basis of which may be selected
oc   P<¿)       O(i-H) c(Í + ¡-l)as s,-   , a,-      , • •    , a,-

We now assert that the matrix S, which truly diagonalizes ot, also diagonalizes
Ot with respect to the (known) partition of 3> This fact follows from the observation
that if /}*' has multiplicity / and /<*' = f¡i+1) = ■ ■ • = #<+,-1>, then the vectors
S<°, S<i+1), • • • , s;.i+I-" and »m, S(,+,), ■ • • , S"*'-1' are both bases of the same
space, and hence linear combinations of each other. Thus, we have obtained a further
decomposition of (ft. If it is not yet truly diagonal, then we may reapply the same pro-
cedure to each diagonal submatrix of Sj'OtS, until we eventually obtain a matrix
whose diagonal entries are the irreducible-power factors of f(x).

5. From Root-Finding in GF(/?m) to Root-Finding in GF(p), p Small. In Sections
3 and 4, we have given a deterministic procedure whereby the problem of factoring
an arbitrary polynomial over GF(^r) may be reduced to the problem of finding the
roots in GF(q) of several other polynomials, each of which has degree no greater than
the number of irreducible-power factors of j(x) of a particular degree. We now con-
sider the root-finding problem in GF(/?m). In this section and the next, we give algo-
rithms which reduce the problem of finding the roots of f(x) to the problem of finding
the roots of another polynomial which splits in GF(p). Although the algorithms we
present here are immediate consequences of the well-known properties of conjugate
polynomials and polynomial norms, the algorithms themselves are little known in
the subject of error-correcting codes, where computational problems in nonprime
finite fields have great practical importance.

In order to represent the elements of GF(/?m), we must begin by specifying an
element to be called a, which is a root in GF(/?m) of some polynomial of degree m
which is irreducible over GF(/?). The minimal polynomial of a is initially selected by
some ad hoc procedure. The coefficients of the minimal polynomial of a are often
wired into the circuitry for doing computations in GF(/?m). Details are given by
Berlekamp (1968).

In GF(pm),

(5.01) xv" - x =     IX    (Tr(*) - s)
• GGF(p)

where
m-l

Tv(x) =  £*p\
i-0

Therefore, if

x"" — x = 0 mod f(x),
then

II     (Tr(*) - s) = 0 mod fix).
• eGF(n)
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Hence, if f(x) is a nonlinear polynomial which splits in GF(pm), then by Lemma 2.4,
we have the factorization

(5.02) f(x) =     II     gcd (fix), Trix) - s)
.EGP(,)

where gcd denotes the monk common divisor of greatest degree. If p is small, Eq.
(5.02) enables us to factor j(x) even if m is large.

We proceed as follows:
Compute the residues of x, x2, x2', • • • , x2Uos "', x", x"', ■ ■ ■ , x"m~* modulo f(x).

By adding together these residues, compute the residue of Tr(x). If Tr(;t) is not con-
gruent to a scalar, then f(x) factors according to Eq. (5.02). If Tr(x) is congruent to a
scalar, then the factorization of Eq. (5.02) degenerates into the trivial result: f(x) =

In this case, additional assaults are required. Let a be the root of an irreducible
(not necessarily primitive) polynomial of degree m over GF(p). Then a0, a, a2, • ■ • ,
a"-1 form a basis for GF(pm) over GF(p). Substituting a'x for x in Eq. (5.01) gives

(a'yV" - a'x =     II     (Tr(a'*) - s).
sGGF(p)

Since a' G GF(pm), (a')'" = a', and we have

xv" - x = a~j     IX     (Tr&x) - s).

We thus obtain the following generalization of Eq. (5.02):

(5.03) fix) =     II     gcd (/(*), Tr(a'*) - s).
«GGF(»)

If Eq. (5.03) yields a trivial factorization when j = 0, we may reapply Eq. (5.03)
with j = 1, 2, 3, • • • , m — 1.

We shall now show that the additive property of traces implies that at least one
of these m special cases of Eq. (5.03) must yield a nontrivial factorization. Let
Pi, P2, • • • , Pn be the roots of f(x) in GF(pm). Then Eq. (5.03) yields a trivial factoriza-
tion iff there exists an 5 (which may depend on /') such that f(x) divides Tr(a'x) — s,
which implies that s = Tr(a'p,) = Tr(a'p2) = • • • = Tr(a'p„). If all m factorizations
are trivial then for any j, 0 ;£ j < m, and any i,k,\ ^ i < k ^ n, we must have

Trta'p.) = Tr(a'pt)    or    Tr(a'(p, - pk)) = 0

and for any A0, Ax, ■■ ■ , Am., G GF(p),

£ AiTria'ipi - pk)) = 0 = Tr((£ A^jipi - Pi)) = 0.

Since a", a1, a2, ■ ■ ■ , am~l form a basis of GF(pm) over GF(/?), this means that

(5.04) Tr(£(p, - Pk)) = 0    for all ? in GF(pm).

If pi ?¿ pk, then every element in GF(/?m) is of the form £(Pi — Pk), and Eq. (5.04)
implies that every element in GF(/?™) has trace 0. But it is evident from Eq. (5.01) that
only z?""1 elements in GF(/?m) have trace 0, so Eq. (5.04) must be false and Eq. (5.03)
must therefore yield a nontrivial factorization for some j, 0 ^ j < m.
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In practice, there is rarely any need to apply all m versions of Eq. (5.03). For any
i G GF(pm), we may factor j(x) as

(5.05) f(x) =     Il     gcd (fix), Tr(£*) - s).
• GGF(j>)

This factorization will be trivial iff Tr(£p0 = Tr(£p2) = • • • = Tr(£p„). In some
cases, this failure may be avoided by wise a priori choice of £. Since fn_x = — £"., p,,
we know that

Tr(/„_,) =   -£ Tr(Pl).
• -i

If n is a multiple of p, we cannot have Tr(pO = Tr(p2) = - • • = Tr(p„) unless
Tr(/„_0 = 0. Hence, if n is a multiple of p, we may insure a nontrivial factorization
in Eq. (5.05) by choosing | so that Tr(/„_1^"1) ^ 0. If /„_, ¿¿ 0, this is easily ac-
complished.

The methods introduced in this section are the best methods known for factoring
f(x) over GF(/?m) when p is small and n = deg / is large. When n is small (in par-
ticular if p = 2 and deg f = 2,3, or 4), the methods of this section are inferior to
those given by Berlekamp, Rumsey, and Solomon (1967), and expanded in Chapter 11
of Berlekamp (1968).

6. From Root-Finding in GF(/?m) to Root-Finding in GF(/?), /? Large. We now
consider the problem of finding the roots of the polynomial f(x) which splits in
GF(/T).

The polynomial whose roots we wish to find is represented as

m-l      n

f(x) = f(a, x) =   £ £ /,.;aV,
í-0    )-0

where /,,, G GF(/?), /0,„ = 1 and /iin = 0 if i y¿ 0. Knowing that x*" = x mod f(x),
we wish to find ßu ß2, ■■■ , ßn G GF(/?m) such that

f(a, x) =  fl(x- ßk).t-i
To find these roots, we first calculate the new polynomial,

f(x) = n /(«pt> *) = n £ £ it.*"*'.
t-0 t-0    Í-0    Í-0

We shall now show that F(x) is a polynomial of degree mn over GF(/?). Since the jth
coefficient of f(a, x) is plus or minus the jth elementary power-sum symmetric func-
tion of the ß's, we have

£ /„y = (-i)' £ £ £ ßtß>. ■ ■ ■ ßki.
ï k,<k.<. . .<k,

Taking pth powers gives

£/,,,a'" = (-i)' £ £ ZAX ■•• ßl,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



730 E.   R.   BERLEKAMP

or
n

fia', x) =   Il (x - ßl)*-i
and therefore

m-l       n n       fm-\ \f(x) = n n (* - ä*) = n (n (* - #*)) = n ^"w,
¡fc-0   i-l i-1   \*-o / i

where each FM is a power of a distinct irreducible polynomial o^er GF(p), and the
degree of each FM is a multiple of m. We may find these FM by factoring F(x) over
GF(/?) according to the methods indicated in Sections 3 and 4.

The factorization of f(x) is then obtained as

fix) =  II gcd [fix), Fu)(x)].

This factorization is nontrivial unless F(x) is itself an irreducible power. In this case
the roots of f(x) are all conjugate. To find them we compute

gcd (f(a, x), f(a\ x)), gcd (f(a, x), f(a»', x)),

gcd (f(a, x), f(a"', x)),        gcd (f(a, x), /(a*""'"' "", x)).

If any of these gcd's is nontrivial, then it gives a nontrivial factor of j(a, x). We claim
that all of these gcd's are trivial iff f(av""", x) = f(a, x). To prove this, we observe
that F(x) is an irreducible power iff all n roots of f(x) are conjugates. In this case,
ß, = ß*'4 for each i = 1,2, • • ■ , n. Without loss of generality, we may assume that
0 = li < l2 < l3 < ■ ■ ■ < /„ < m. Define /„+1 = m, and define A = min"„j(A + i — /,.).
Clearly A S m/n, with equality iff f(avm/", x) = /(a, x). If A < m/n, then the sets
{ßi, ßi, ■■■ , ßn\ and {ßvf, ßv2", ••• , ß^) have a nontrivial intersection, and
gcd (j(a, x), /(apA, x)) is nontrivial.

Thus, we need further consider only the case in which f(avm/", x) = /(a, x), which
happens iff /(a, x) is an irreducible polynomial over GF(pm/n). In this case (assuming
n > 1), we transform the polynomial f(x) to /(a, x) = /(a, ajc)a~". Since the coefficients
of f(x) are in GF(pm/n) but a (£ GF(/?m/"), /(a, x) is monic, of degree n, and has at
least one coefficient not in GF(/?m/"), so f(a, x) can be factored by the methods of this
section. The factorization of f(x) may then be easily recovered from the factorization
of f(a, x).

7. Finding Roots in GF(p), p a Large Prime. In the previous sections of this
paper, we have reduced the factorization of an arbitrary polynomial, /(x) of degree n
over GF(pm), to the special case in which

n

f(X) = n (.x - Pi)
i-l

where the p. are distinct elements in GF(/?). To solve this problem, we observe that
if y is any element in GF(p), p odd, then

n

/(* - y) = IT (x - (7 + Pi))
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and f(x - y) \ (x' - x) = x(x(^I)/2 + l)(x(^u/2 - 1) and therefore, if x X l(x - y),
then

(7.01)        f(x -y) = gcd ifix - y), xiv~l)/2 + 1) gcd (/(* - y), x'*-1"2 - 1).

This equation provides a feasible method of factoring /(x — 7), for we may com-
pute the residues (modulo f(x - y)) of x, x2, x2\ x2', • • • , x2""81" , ■ • -, x(,""1>/2. If
JC»(-i)/2 _¿ ±1^ ^ja&n £q (7.01) yields a nontrivial factorization. However, if x(I>~1)/2 =
±1, then the factorization of Eq. (7.01) is trivial and we must try again with a new
value of 7.

In general, the factorization of Eq. (7.01) will fail iff pl -f- 7, p2 + 7, • • • , p„ + 7
are all quadratic residues or all quadratic nonresidues. If p^ p2, • • • , p„ are all residues
(or nonresidues), then the theory of cyclotomy7 leads us to expect that a randomly
chosen 7 in GF(/?) will yield a nontrivial factorization with probability about (1 — 2~n).
Thus, any given product of linear factors, f(x), may be factored via Eq. (7.01) and a
few randomly chosen values of 7 with very high probability. However, there is an
unfortunate improbable possibility that each successive choice of 7 proves unlucky.

If n = 2, then the success or failure of a particular choice of 7 depends only on
the quadratic character of g0, the constant term in the polynomial

n

g(x) =   £ giX'  = fix — 7).
■ -0

This is because if n is even, then

and hence g0 is a residue iff an even number of the p{ + 7 are residues. In particular,
if n = 2, go is a residue iff both pL + 7 and p2 + y have the same quadratic char-
acter. Thus, the success of factorization via Eq. (7.01) may be anticipated by evaluating
the Legendre symbol, (g0/p) with aid of Gauss' law of quadratic reciprocity. If
(So/p) = — 1, then Eq. (7.01) must yield a nontrivial factorization and the calculation
may be continued. However, if (g0/p) = 1, then Eq. (7.01) will yield only a trivial
factorization, so the calculation should be aborted and resumed with another can-
didate value of 7.

In the special case of a quadratic equation over GF(/?), p = — 1 mod 4, then the
choice of 7 which eliminates the linear term in /(x — 7) also guarantees a nontrivial
factorization via Eq. (7.01). For, in this case, j(x — 7) = x2 — c. If /(x) has two
roots in GF(/?), then c must be a quadratic residue, and since — 1 is a quadratic non-
residue, so is the constant term in the polynomial /(x — 7).

Certain special classes of quadratic equations modulo primes = 1 mod 4 may be
solved by other methods, such as those given by Schönheim (1956).

In the special cases of cubics and quartics over a field whose order, /?, is congruent
to — 1 mod 12, we may use the classical formulas of Scipio del Ferro and Ferrari as
given on pp. 105-108 of Birkhoff and Mac Lane (1965). Since/? = — 1 mod 4, we
may extract square roots and fourth roots by the procedure explained above. Since
p j£ 1 mod 3, we may extract cube roots by taking the (p — l)/3 power. Thus, the

' For details, see pp. 147-166 of Hall (1967).
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classical formulas for solving quartic equations in terms of radicals may be applied
to obtain the factorization in a small number of steps without any reliance on luck.

In general, however, there is no good deterministic procedure for finding the roots
in the large prime field GF(p) of the polynomial /(x), which is known to split into
distinct linear factors in GF(/?). The best practical procedure is to attempt to factor
f(x — y) for several choices of 7, and to hope that you are not too unlucky.

It appears rather difficult to determine the "best" sequence of successive choices
of 7, although the sequence 7 = 0, 1, 2, 3, • • • seems as plausible as any. However, it
is not known how many successive trials are required from this sequence (or any
other good sequence) to guarantee a factorization of the "worst" /(x). Burgess (1962)
has shown that the maximum number of consecutive quadratic residues or non-
residues modulo a large prime p is no greater than 0(/?1/4(log /?)3/2), but there are
probably an infinite number of primes all of whose sequences of consecutive residues
or nonresidues have lengths much, much smaller than plM.

8. From Factorization Over the Integers Mod M to Factorization Over the
Rationals. Let f(x) = U< 1M(x), where /(x) is a given polynomial with integral
coefficients and the /(,)(x) are the distinct irreducible factors of /(x). Our problem
is to determine the fM(x) from the given coefficients of f(x). We may begin by cal-
culating some large integer, C, such that

max l/^l ^ C.». i

One method of calculating such an upper bound to the magnitudes of all of the co-
efficients of the factors of f(x), due to Collins (1967) and Knuth (1969) is based on
the inverse of the Vandermonde matrix which arises in the classical Kronecker fac-
torization algorithm. Several expressions for the coefficients of that inverse matrix
are given by Gautschi (1962). A more recent method of calculating an upper bound,
C, has been presented by Zassenhaus (1969). Either method requires only a modest
amount of computation with the coefficients of the original polynomial, /(x).

Once we have found the upper bound, C, we proceed to factor the polynomial
f(x) modulo some large integer, M > 2C.

If M is a prime/?, we may obtain the factorization of /(x) mod M from the factoriza-
tion algorithms of Sections 3, 4, and 7.

If M is a prime-power, then we first factor f(x) mod p, the prime divisor of M. Fol-
lowing a suggestion of Zassenhaus (1969), we may then extend the complete
factorization of /(x) mod p' to the factorization mod p2' by the classical /?-adic lemma
of Hensel. Continuing this extension for i = 1,2, • • • , 2lo8a '°**M we will eventually
obtain the complete factorization of /(x) mod M. The number of irreducible factors
of f(x) mod M is the same as the number of irreducible factors mod /?.

If M is the product of several distinct primes, then we first factor ](x) mod each
of these primes and then attempt to reconstruct the factorization of f(x) mod M
with the aid of the Chinese remainder theorem. This latter step may require many
attempts, because the degrees of the factors of /(x) mod different primes may be
compatible. For example, if M = pxp2, /?, and px primes, and f(x) has degree 8,
then /(x) may factor into four quadratics mod /?, and into 2 quartics mod p2. There
are then (2) possible factorizations of f(x) mod M. Consequently, if the degrees of
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the factors of /(x) mod several different primes are compatible, it appears unwise to
choose an M which is divisible by more than one of these primes. The simpler course
is to take M as a power of a single prime.

The polynomial f'\x), a factor of f(x) which is irreducible over the rationals, may
factor mod M as

/"'M -  IT/<""(*)m°d M.

Mod M. the original polynomial f(x) then factors as

fix) = II II/"'"C*) mod M.i i
If we know /(,>(x) mod M, then we can easily determine the coefficients of /(,)(x)

over the rational integers because we have chosen M so large that we are guaranteed
that for all i and j,

-M/2 < f/'  <  M/2.
Unfortunately, however, we may have considerable difficulty in determining, mod M,
the /(,)(x) from the irreducible /(,,,>(x), for we do not know which irreducible factors
mod M to multiply together to obtain a factor over the rationals. For example, the
complete factorization of f(x) modulo M might be

f(x) = a(x)b(x)c(x)d(x)e(x) mod M.

Even if we knew that f(x) was the product of exactly two irreducible factors over the
rationals, we would still have no easy way of determining /("(x) and /(2>(x) modulo M.
For example, we might find that /m(x) = 6(x)e(x) and /(2>(x) = a(x)c(x)d(x). In gen-
eral, if /(x) is the product of r distinct irreducible factors modulo M, then there
are 2r subsets of these factors whose product might be congruent mod M to the
irreducible rational factor /(U(x). These 2" subsets occur in 2'"1 complementary
pairs, but this still leaves 2r~l essentially different candidates for the factor /(I)(x).

Fortunately, for the "typical" polynomial, r will be small. This is because the ex-
pected number of irreducible factors of a randomly chosen polynomial of large
degree, d, over GF(/?) is about In d, for all large/?. For further details, see Problem 3.6,
page 86 of Berlekamp (1968).

Unfortunately, however, the "worst" polynomial is much worse than the "typical"
polynomial. The Dirichlet density theorem8 implies that no polynomial which is
irreducible over the rationals can have a linear factor modulo every prime, but there
do exist polynomials which are irreducible over the rationals and factor into only
linear and quadratic factors modulo every prime p. One such class of polynomials,
suggested by Swinnerton-Dyer (1969), is constructed as follows: Let the degree, d,
be a power of 2, say d = 2', and let /?, be the ith prime. Consider the monic poly-
nomial, f(x), whose complex roots are given by ± V — 1 ± V2 ± V3 ± y/5 ±
• • • ± (pi-i)U2, where the 2' combinations of signs give the 2' distinct complex roots.
Since \/ — 1, y/2, y/3, ■ ■ ■ , (/?,-_,)1/2 are rationally independent, it follows that f(x) is

" For reference, see pp. 227-230 and Exercise 6 on p. 361 of Algebraic Number Theory, edited
by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc.. Wash-
ington, D.C., 1967, Math. Rev. 35 #6500.
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irreducible over the rational integers. On the other hand, if p is any prime, then
V -1, V2, V3, • • • , (Pi-¡r/2 all lie in GF(/?2), from which it follows that f(x) splits
into linear factors in GF(/?2) and into quadratic and linear factors in GF(p). Thus,
this polynomial has degree d and is irreducible over the rationals, but it has r ^ d/2
distinct irreducible factors modulo every integer M. Although the amount of work
required to obtain the irreducible factors modulo M of a polynomial is only alge-
braic in its degree, d, the r irreducible factors modulo M lead to 2r_1 candidate
factors over the rationals. When r is large compared to log d, then testing each of
these 2r-1 candidates becomes the bottleneck step of the factorization algorithm.
We now consider programming tricks by which these tests may be speeded up.

If /(1>(x) | f(x), then /{1)(a) | f(a) for every integer a. If we can find an integer a for
which the integer /(a) has only a small number of prime factors, then we may elimi-
nate the candidate factor /l0(x) by computing /(1>(a) and obtaining an answer not
on the small list of factors of j(a). By performing an appropriate translation of /(x)
and each of its irreducible factors modulo M, we may assume that a — 0. Testing
that fm(a) divides f(d) is then equivalent to testing that the constant term of /0,(x)
divides the constant term of /(x).

If we have a sufficiently large memory capacity, then we can use the following
programming technique suggested by L. Welch (1969) to determine the subset of the
2'"1 candidate factors /'"(x) which survive the test f(1)(0) | /(0) in only about
k2r/2 log r operations, where k is the total number of integral divisors of /(0), including
the trivial divisors ±1 and ±/(0). The procedure is as follows. We first discard one
of the r irreducible factors of j(x) modulo Ma and partition the remaining (r — I)
irreducible factors into two sets, each consisting of about r/2 irreducible factors. Each
candidate factor fa)(x) is of the form /<!)(x) = g(x)h(x), where g(x) is the product
of some subset of irreducible factors in the first set and h(x) is the product of some
subset of irreducible factors in the second set.

For each of the 2r/2 candidate g's, we compute the value of g(Q) and its inverse
modulo M, (g(0))_1. This list of 2r/2 entries, represented in any convenient fashion,
is then sorted. The sorting requires about r2'/2 operations. Then, for each candidate
h(x), we compute and store the value of n(0), and sort this list of 2r/2 candidates for
h(0). We then make one joint scan through the two sorted lists to see if there is any
pair of polynomials g(x) and h(x) such that (g(0))_1 = n(0) mod M. In this manner
we find all candidate factors /U)(x) for which /a>(0) = 1. After we have found and
tested all such candidates, we then replace the list of values of h(0) by the list of values
of dh(0), where d is a rational integral divisor of /(0). The list of candidates of dh(0)
is then resorted, and another joint scan reveals all candidate factors /(1)(x) for which
/!l)(0) = d. Repeating this procedure for each (positive and negative) integer d
which divides /(0), we eventually obtain all candidate factors /'"(*) which survive
the test /(,)(0) | /(0).

In some cases, there may be a large number of candidate factors /m(x) which
survive the test /(1)(0) | /(0) and still fail to pass the more general test f(I)(x) | f(x).
For example, it may happen that many irreducible factors of f(x) mod M have con-

9 To reduce duplication of subsequent work, it is wise to discard an irreducible factor whose
constant term is ±1 or a small divisor of/(0). If there are no such irreducible factors, any choice of
discard is good. If there are several such irreducible factors, it may be wise to consider another
choice of a.
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stant terms congruent to ±1. In such cases it may be advantageous to test that
fl\ad I Kad f°r more than one value of a(. There remains the problem of choosing
these a; in a clever manner. If a sufficiently large number of primes or ± l's or a suf-
ficiently large number of sufficiently small integers occur among the values of /(a,-),
then it may be possible to deduce the irreducibility of /(x) immediately, using the
criteria of Brown and Graham (1969) or of Brauer and Ehrlich (1946).
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