
 Open access  Proceedings Article  DOI:10.1145/1005285.1005289

Factoring polynomials via polytopes — Source link 

Fatima K. Abu Salem, Shuhong Gao, Alan G. B. Lauder

Institutions: University of Oxford, Clemson University

Published on: 04 Jul 2004 - International Symposium on Symbolic and Algebraic Computation

Topics: Orthogonal polynomials, Classical orthogonal polynomials, Discrete orthogonal polynomials,
Difference polynomials and Gegenbauer polynomials

Related papers:

 Modern Computer Algebra

 Decomposition of Polytopes and Polynomials

 Factoring multivariate polynomials via partial differential equations

 Absolute Irreducibility of Polynomials via Newton Polytopes

 Complexity issues in bivariate polynomial factorization

Share this paper:    

View more about this paper here: https://typeset.io/papers/factoring-polynomials-via-polytopes-
wa39eh7fcq

https://typeset.io/
https://www.doi.org/10.1145/1005285.1005289
https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq
https://typeset.io/authors/fatima-k-abu-salem-2ikwqvvbhd
https://typeset.io/authors/shuhong-gao-m4ir5aa70d
https://typeset.io/authors/alan-g-b-lauder-2vptezb7rs
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/institutions/clemson-university-1q0prrem
https://typeset.io/conferences/international-symposium-on-symbolic-and-algebraic-hem2v4nz
https://typeset.io/topics/orthogonal-polynomials-ba0ajvvf
https://typeset.io/topics/classical-orthogonal-polynomials-2meu4yjb
https://typeset.io/topics/discrete-orthogonal-polynomials-1aavvynk
https://typeset.io/topics/difference-polynomials-3ul7el1r
https://typeset.io/topics/gegenbauer-polynomials-1cu869s8
https://typeset.io/papers/modern-computer-algebra-z3jr7xbjkr
https://typeset.io/papers/decomposition-of-polytopes-and-polynomials-v95nxac73j
https://typeset.io/papers/factoring-multivariate-polynomials-via-partial-differential-36djn1den8
https://typeset.io/papers/absolute-irreducibility-of-polynomials-via-newton-polytopes-1qt2zx9jx2
https://typeset.io/papers/complexity-issues-in-bivariate-polynomial-factorization-xqd7x3b770
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq
https://twitter.com/intent/tweet?text=Factoring%20polynomials%20via%20polytopes&url=https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq
https://typeset.io/papers/factoring-polynomials-via-polytopes-wa39eh7fcq


Factoring polynomials via polytopes ∗

Fatima Abu Salem†, Shuhong Gao‡and Alan G.B. Lauder§

January 7, 2004

Abstract

We introduce a new approach to multivariate polynomial factori-
sation which incorporates ideas from polyhedral geometry, and gener-
alises Hensel lifting. Our main contribution is to present an algorithm
for factoring bivariate polynomials which is able to exploit to some
extent the sparsity of polynomials. We give details of an implemen-
tation which we used to factor randomly chosen sparse and composite
polynomials of high degree over the binary field.

1 Introduction

Factoring polynomials is a fundamental problem in algebra and number
theory and it is a basic routine in all major computer algebra systems.
There is an extensive literature on this problem; for an incomplete list of
references see [2, 3, 4, 12, 15, 17, 22, 24, 27] for univariate polynomials and
[5, 7, 11, 14, 16, 18, 19, 20, 21, 23, 25, 26] for multivariate polynomials.
Most of these papers deal with dense polynomials, except for two of them
[11, 18]. The latter two papers reduce sparse polynomials with more than
two variables to bivariate or univariate polynomials which are then treated
as dense polynomials. It is still open whether there is an efficient algorithm

∗Fatima Abu Salem is supported by the EPSRC, Shuhong Gao is partially supported

by the NSF, NSA and ONR, and Alan Lauder is a Royal Society University Research

Fellow. Mathematics Subject Classification 2000: Primary 14Q10, 11Y99. Key words and

phrases: multivariate polynomial, factorisation, algorithm, Newton polytope.
†Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford

OX1 3QD, U.K. E-mail: fkas@comlab.ox.ac.uk
‡Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975,

USA. E-mail: sgao@math.clemson.edu.
§Mathematical Institute, Oxford University, Oxford OX1 3LB, U.K. E-mail:

lauder@maths.ox.ac.uk.

1



for factoring sparse bivariate or univariate polynomials. Our goal in this
paper is to study sparse bivariate polynomials using their connection to
integral polytopes.

Newton polytopes of multivariate polynomials reflect to a certain extent
the sparsity of polynomials and they carry a lot of information about the
factorization patterns of polynomials as demonstrated in our recent work
[6, 8]. In [9], we deal with irreducibility of random sparse polynomials. In
this paper our focus is on the more difficult problem of factoring sparse poly-
nomials. We do not solve this problem completely. However, our approach
is a practical new method which generalises Hensel lifting; its running time
will in general improve upon that of Hensel lifting and sparse bivariate poly-
nomials can often be processed significantly more quickly. As with Hensel
lifting it has an exponential worst-case running time.

Here is a brief outline of the paper. In Section 2 we present a brief intro-
duction to Newton polytopes and their relation to multivariate polynomials,
and in Section 3 we state our central problem. Section 4 contains an outline
of our method, and highlights the theoretical problems we need to address.
The main theorem underpinning our method is proved in Section 6, after a
key geometric lemma in Section 5. Section 7 contains a concise description
of the algorithm. Finally in Section 8 we present a small example, as well
as details of our computer implementation of the algorithm. We believe
the main achievements of this paper are the theoretical results in Section
6, and the high degree polynomials we have factored using the method, as
presented in Subsection 8.2.

2 Newton polytopes and Ostrowski’s theorem

This paper considers polynomial factorisation over a field F of arbitrary
characteristic. We denote by N the non-negative integers, and Z, Q and R

the integers, rationals and reals.
Let F[X1, X2, . . . , Xn] be the ring of polynomials in n variables over

the field F. For any vector e = (e1, . . . , en) of non-negative integers define
Xe := Xe1

1 . . .Xen

n . Let f ∈ F[X1, . . . , Xn] be given by

f :=
∑

e

aeX
e

where the sum is over finitely many points e in Nn, and ae ∈ F. The Newton
polytope of f , Newt(f), plays an essential role in all that follows. It is the
polytope in Rn obtained as the convex hull of all exponents e for which the

2



corresponding coefficient ae is non-zero. It has integer vertices, since all the
e are integral points; we call such polytopes integral. Given two polytopes
Q and R their Minkowski sum is defined to be the set

Q + R := {q + r | q ∈ Q, r ∈ R}.

When Q and R are integral polytopes, so is Q + R. If we can write an
integral polytope P as a Minkowski sum Q + R for integral polytopes Q
and R then we call this an (integral) decomposition. The decomposition is
trivial if Q or R has only one point. The motivating theorem behind our
investigation is (see [6]):

Theorem 1 (Ostrowski) Let f, g, h ∈ F[X1, . . . , Xn]. If f = gh then
Newt(f) = Newt(g) + Newt(h).

An immediate result of this theorem relates to testing polynomial irre-
ducibility: In the simplest case in which the polytope does not decompose,
one immediately deduces that the polynomial must be irreducible. This
was explored in [6, 8, 9], in particular a quasi-polynomial time algorithm
is presented in [9] for finding all the decompositions of any given integral
polytope in a plane. In this paper, we address the more difficult problem:
Given a decomposition of the polytope, how can we recover a factorisation
of the polynomial whose factors have Newton polytopes of that shape, or
show that one does not exist?

In the remainder of the paper, we restrict our attention to bivariate
polynomials, and f always denotes a bivariate polynomial in the ring F[x, y].
For e = (e1, e2) ∈ N2, we redefine the notation Xe to mean xe1ye2 . We
shall retain the term “Newton polytope” for the polygon Newt(f) to avoid
confusion with other uses of the term “Newton polygon”.

3 Extending Partial Factorisations

Let Newt(f) = Q + R be a decomposition of the Newton polytope of f into
integral polygons in the first quadrant. For each lattice point q ∈ Q and
r ∈ R we introduce indeterminates gq and hr. The polynomials g and h are
then defined as

g :=
∑

q∈Q gqX
q

h :=
∑

r∈R hrX
r.

We call g and h the generic polynomials given by the decomposition Newt(f)
= Q + R. Let #Newt(f) denote the number of lattice points in Newt(f).

3



The equation f = gh defines a system of #Newt(f) quadratic equations
in the coefficient indeterminates obtained by equating coefficients of each
monomial Xe with e ∈ Newt(f) on both sides. The aim is to find an effi-
cient method of solving these equations for field elements. Our approach,
motivated by Hensel lifting, is to assume that, along with the decomposi-
tion of the Newton polytope, we are given appropriate factorisations of the
polynomials defined along its edges. This “boundary factorisation” of the
polynomial is then “lifted” into the Newton polytope, and the coefficients of
the possible factors g and h revealed in successive layers. Unfortunately, to
describe the algorithm properly we shall need a considerable number of ele-
mentary definitions — the reader may find the figures in Section 8.1 useful
in absorbing them all.

Let S be a subset of Newt(f). An S-partial factorisation of f is a spe-
cialisation of a subset of the indeterminates gq and hr such that for each
lattice point s ∈ S the coefficients of monomials Xs in the polynomials gh
and f are equal field elements. (A specialisation is just a substitution of
field elements in place of indeterminates.) The case S = Newt(f) is equiv-
alent to a factorisation of f in the traditional sense, and we will call this a
full factorisation. Now suppose we have an S-partial factorisation and an
S′-partial factorisation. Suppose further S ⊆ S′ and the indeterminates spe-
cialised in the S-partial factorisation have been specialised to the same field
elements as the corresponding ones in the S′-partial factorisation. Then we
say the S′-partial factorisation extends the S-partial factorisation. We call
this extension proper if S′ has strictly more lattice points than S.

Let Edge(f) denote the set of all edges of Newt(f). Any rational affine
functional l on R2 may be written as

l : (r1, r2) $→ ν1r1 + ν2r2 + η.

where ν1, ν2, η ∈ Q. Given δ ∈ Edge(f), let lδ be the unique affine functional
such that

δ = {r = (r1, r2) ∈ Newt(f) | lδ(r) = 0}

and ν1, ν2, η ∈ Z, gcd(ν1, ν2) = 1 with Newt(f) lying in the non-negative
halfplane

{r ∈ R2 | lδ(r) ≥ 0}.

(The first two conditions specify this functional up to the sign of its first co-
efficient, and the final condition specifies the sign). We call lδ the normalised
affine functional of δ.

4



Let Γ ⊆ Edge(f), and let K = (kγ)γ∈Γ be a vector of positive integers
labelled by Γ. Define

Newt(f)|Γ,K := {e ∈ Newt(f) | 0 ≤ lγ(e) < kγ for some γ ∈ Γ}.

This defines a strip along the interior of Newt(f), or a union of such strips.
For each δ ∈ Edge(f), there exists a unique pair of faces (either edges or

vertices) δ′ and δ′′ of Q and R respectively such that δ = δ′ + δ′′. One can
also easily show that there exists a unique integer cδ such that

δ′ = {q ∈ Q | lδ(q) = cδ}
δ′′ = {r ∈ R | lδ(r) = −cδ + η}

where η = lδ(0). We denote by Q|Γ,K and R|Γ,K the subsets of Q and R
respectively given by

Q|Γ,K := {e ∈ Q | 0 ≤ lδ(e) < kδ + cδ for some δ ∈ Γ}
R|Γ,K := {e ∈ R | 0 ≤ lδ(e) < kδ − cδ + η for some δ ∈ Γ}.

Once again these denote strips along the inside of Q and R whose sum
contains the strip Newt(f)|Γ,K in Newt(f).

We now come to the main definition of this section.

Definition 2 A Newt(f)|Γ,K-factorisation is called a (Γ, K; Q, R)-factorisation
if the following two properties hold:

• Exactly the indeterminate coefficients of g and h indexed by lattice
points in Q|Γ,K and R|Γ,K , respectively, have been specialised.

• Let K ′ = (k′
γ)γ∈Γ be a vector of positive integers with k′

γ ≥ kγ for all
γ ∈ Γ, with the inequality strict for at least one γ. Then not all of the
indeterminate coefficients of g indexed by lattice points in Q|Γ,K′ have
been specialised.

The second property will be used only once, in the proof of Lemma 8.
In most instances Q, R and Γ will be clear from the context. If so we will

omit them and refer simply to a K-factorisation. Furthermore, if K is the
all ones vector, denoted (1), of the appropriate length indexed by elements
of some set Γ, then we call this a (Γ; Q, R)-boundary factorisation. We shall
simplify this to partial boundary factorisation or (1)-factorisation when Γ,
Q and R are evident from the context. This special case will be the “lifting
off” point for our algorithm.

5



The central problem we address is

Problem 3 Let f ∈ F[x, y] have Newton polytope Newt(f) and fix a
Minkowski decomposition Newt(f) = Q + R where Q and R are integral
polygons in the first quadrant. Suppose we have been given a (Γ;Q, R)-
boundary factorisation of f for some set Γ ⊆ Edge(f). Construct a full
factorisation of f which extends it, or show that one does not exist.

Moreover, one wishes to solve the problem in time bounded by a small
polynomial function of #Newt(f).

4 The Polytope Method

4.1 An outline of the method

We now give a basic sketch of our polytope factorisation method for bivariate
polynomials. Throughout this section Γ will be a fixed subset of Edge(f)
and Newt(f) = Q+R a fixed decomposition. We shall need to place certain
conditions on Γ later on, but for the time being we will ignore them. Since
Γ, Q and R are fixed we shall use our abbreviated notation when discussing
partial factorisations.

We begin with K = (1) the all-ones vector of the appropriate length and
a K-factorisation (partial boundary factorisation). Recall this is a partial
factorisation in which exactly the coefficients in the sets Q|Γ,K and R|Γ,K ,
subsets of points on the boundaries of Q and R, have been specialised.

At each step of the algorithm we either show that no full factorisation of
f exists which extends this partial factorisation, and halt. Or that at most
one can exist, and we find a new K ′-factorisation with K ′ = (k′

δ) such that

∑

δ∈Γ

k′
δ >

∑

δ∈Γ

kδ.

(Usually the sum will be incremented by just one.) Iterating this procedure
either we halt after some step, in which case we know that no factorisation
of f exists which extends the original partial boundary factorisation. Or
we eventually have Newt(f) ⊆ Newt(f)|Γ,K , for the updated K (or just
Q ⊆ Q|Γ,K or R ⊆ R|Γ,K will do). At that point all of the indeterminates
in our partial factors have been specialised, and we may check to see if we
have found a pair of factors by multiplication. (In the case, say, that just
Q ⊆ Q|Γ,K we only know that the partial factor g has all of its coefficients
specialised, so we may use division to see if this is a factor.)

6



Note that in the situation in which Newt(f) is just a triangle with ver-
tices (0, n), (n, 0) and (0, 0) for some n, our method reduces to the standard
Hensel lifting method for bivariate polynomial factorisation. As such, our
“polytope method” is a natural generalisation of Hensel lifting from the case
of “generic” dense polynomials to arbitrary, possibly sparse, polynomials.

4.2 Hensel lifting equations

In this section we derive the basic equations which are used in our algorithm.
For any δ ∈ Edge(f) recall that lδ is the associated normalised affine

functional. For i ≥ 0 we define

f δ
i :=

∑

lδ(e)=i

aeX
e.

Thus f δ
i is just the polynomial obtained from f by removing all terms whose

exponents do not lie on the “ith translate of the supporting line of δ into
the polytope Newt(f)”. We call the polynomials f δ

0 edge polynomials.
Given the decomposition Newt(f) = Q + R let δ′ and δ′′ denote the

unique faces of Q and R which sum to give δ. As before assume “lδ(δ
′) = cδ”

and “lδ(δ
′′) = −cδ +η”. Let g and h denote generic polynomials with respect

to Q and R. For i ≥ 0 define

gδ
i :=

∑

q∈Q, lδ(q)=cδ+i

gqX
q

hδ
i :=

∑

r∈R, lδ(r)=−cδ+η+i

hrX
r.

Once again gδ
i and hδ

i are obtained from g and h by considering only those
terms which lie on particular lines. The next result is elementary but fun-
damental.

Lemma 4 Let f ∈ F[x, y] and Newt(f) = Q + R be an integral decompo-
sition with corresponding generic polynomials g and h. Let Edge(f) denote
the set of edges of Newt(f) and δ ∈ Edge(f). The system of equations in
the coefficient indeterminates of g and h defined by equating monomials on
both sides of the equality f = gh has the same solutions as the system of
equations defined by the following:

f δ
0 = gδ

0h
δ
0, and gδ

0h
δ
k + hδ

0g
δ
k = f δ

k −
k−1
∑

j=1

gδ
jh

δ
k−j for k ≥ 1. (1)

7



Thus any specialisation of coefficient indeterminates which is a solution of
equations (1) will give a full factorisation of f .

Proof: In the equation f = gh gather together on each side all monomi-
als whose exponent vectors lie on the same translate of the line supporting
δ.

These are precisely the equations which are used in Hensel lifting to
try and reduce the non-linear problem of selecting a specialisation of the
coefficients of g and h to give a factorisation of f , to a sequence of linear
systems which may be recursively solved. We recall precisely how this is
done, as our method is a generalisation.

We begin with a specialisation of the coefficients in the polynomials gδ
0

and hδ
0 which yields a full factorisation of the polynomial f δ

0 . Equation (1)
with k = 1 gives a linear system for the indeterminate coefficients of gδ

1

and hδ
1. In the special case in which standard Hensel lifting applies this

system may be solved uniquely, and thus a unique partial factorisation of f
is defined which extends the original one. This process is iterated for k > 1
until all the indeterminate coefficients in one of the generic polynomials have
been specialised, at which stage one checks whether a factor has been found
by division.

The problem with this method is that in general there may not be a
unique solution to each of the linear systems encountered. There will be a
unique solution in the dense bivariate case mentioned at the end of Section
4.1, subject to a certain coprimality condition. General bivariate polyno-
mials may be reduced to ones of this form by randomisation, but the sub-
stitutions involved destroy the sparsity of the polynomial. Our approach
avoids this problem, although again is not universal in its applicability. As
explained earlier, our method extends a special kind of partial boundary
factorisation of f , rather than just the factorisation of one of its edges. In
this way uniqueness in the bivariate case is restored.

5 A Geometric Lemma

This section contains a geometric lemma which ensures our method can
proceed in a unique way at each step provided we start with a special type
of partial boundary factorisation. We begin with a key definition.

Definition 5 Let Λ be a set of edges of a polygon P in R2 and r a vector in
R2. We say that Λ dominates P in direction r if the following two properties

8



hold:

• P is contained in the Minkowski sum of the set ∪λ∈Λλ and the infinite
line segment rR≥0 (the positive hull of r). Call this sum Mink(Λ, r).

• Each of the two infinite edges of Mink(Λ, r) contains exactly one point
of P .

Thus Mink(Λ, r) comprises a region bounded by the interior strip be-
tween its two infinite edges and all edges in Λ. This definition is illustrated
in Figure 1 where Λ consists of all the bold edges on the boundary indicated
by T .

T
1

s

r

r

T

0

P

Figure 1: Dominating set of edges

We will call Λ an irredundant dominating set if it is a dominating set
which does not strictly contain any other dominating set. The edges in an
irredundant dominating set are necessarily connected. For a polygon P in
R2, it is obvious that there exists at least one such irredundant dominat-
ing set, namely, the set comprising all edges connecting the leftmost and
rightmost, or the highest and lowest vertices of P .

The next lemma is at the heart of our algorithm.

Lemma 6 Let P be an integral polygon and Λ an irredundant dominating
set of edges of P . Suppose Λ1 is a polygonal line segment in P such that each
edge of Λ1 is parallel to some edge of Λ. If Λ1 is different from Λ then Λ has
at least one edge that has strictly more lattice points than the corresponding
edge of Λ1.

9



The lemma is illustrated in Figure 1, where T denotes the union of the
edges in Λ and T1 the union of the line segments in Λ1.

Before proving this lemma we make one more definition. We define a
map πr onto the orthogonal complement ⟨r⟩⊥ := {s ∈ R2 | (s · r) = 0} of the
vector r as follows:

πr(v) = v −

(

v · r

r · r

)

r.

We call this projection by r, and we have that πr(P ) = πr(Λ). Notice that
if e1 and e2 are adjacent edges in an irredundant dominating set, then the
length of the projection by r of the polygonal line segment e1e2 is just the
sum of the lengths of the projections by r of the individual edges e1 and e2.
For otherwise, we would have, say, πr(e1) ⊆ πr(e2) and hence the Minkowski
sum of the positive hull of r and e1 would lie within that of r and e2. Thus
the edge e1 would be redundant, a contradiction. The same is true if we
replace e1 and e2 by any adjacent line segments parallel to them — we still
obtain an “additivity” in the lengths, which shall be used in the proof of the
lemma.

Proof: We assume that Λ dominates P in the direction r as shown in
Figure 1. Let δ1, · · · , δk be the edges in Λ and δ′1, · · · , δ

′
k the corresponding

edges of Λ1. Let ni be the number of lattice points on δi, and mi that on
δ′i, 1 ≤ i ≤ k. We want to show that ni > mi for at least one i, 1 ≤ i ≤ k.
Suppose otherwise, namely

ni ≤ mi, 1 ≤ i ≤ k. (2)

We derive a contradiction by considering the lengths of Λ and Λ1 on the
projection by πr. Note that if mi = 0 for some i then certainly ni > mi and
we are done; thus we may assume that mi ≥ 1 for all i.

First, certainly π(Λ1) ⊆ π(Λ) as Λ is a dominating set. Since Λ1 is
different from Λ, their corresponding end points must not coincide. Hence
at least one end point of Λ1 will not be on the infinite edges in the direction
r. Hence πr(Λ1) lies completely inside πr(Λ), so has length strictly shorter
than πr(Λ).

Now for 1 ≤ i ≤ k let ϵi be the length of the projection of a primitive line
segment on δi (which means that the line segment has both end points on
lattice points but no lattice points in between). Certainly ϵi ≥ 0. Since the
end points of δi are lattice points, the length of πr(δi) is exactly (ni − 1)ϵi

for 1 ≤ i ≤ k, hence πr(Λ) has length
∑k

i=1(ni−1)ϵi. (Here we need the fact
that the dominating set is irredundant, to give us the necessary “additivity”
in the lengths.) For δ′i, since it is parallel to δi, the projected length of a

10



primitive line segment on it is also ϵi. Hence the length of πr(Λ1) is at least
∑k

i=1(mi − 1)ϵi and from (2) we know that

k
∑

i=1

(mi − 1)ϵi ≥
k

∑

i=1

(ni − 1)ϵi.

This contradicts our previous observation that πr(Λ1) is strictly shorter than
πr(Λ). The lemma is proved.

6 The Main Theorem

Let Γ be an irredundant dominating set of Newt(f). We call a (Γ; Q, R)-
boundary factorisation of f a dominating edges factorisation relative to Γ, Q
and R. A coprime dominating edges factorisation is a (Γ;Q, R)-boundary
factorisation with the property that for each δ ∈ Γ the edge polynomials
gδ
0 and hδ

0 are coprime, up to monomial factors. (In other words, they are
coprime as Laurent polynomials. Note that our factorisation method applies
most naturally to Laurent polynomials.)

We are now ready to state our main theoretical result.

Theorem 7 Let f ∈ F[x, y] and Newt(f) = Q + R be a fixed Minkowski
decomposition, where Q and R are integral polygons in the first quadrant. Let
Γ be an irredundant dominating set of Newt(f) in direction r, and assume
that Q is not a single point or a line segment parallel to rR≥0. For any
coprime dominating edges factorisation of f relative to Γ, Q and R, there
exists at most one full factorisation of f which extends it, and moreover this
full factorisation may be found or shown not to exist in time polynomial in
#Newt(f).

We shall prove this theorem inductively through the next two lemmas.

Lemma 8 Let f, Q, R and Γ be as in the statement of Theorem 7. Suppose
we are given a K-factorisation of f , where K = (kδ)δ∈Γ (more specifically,
a (Γ, K; Q, R)-factorisation). For each δ ∈ Γ, denote by δ′ the face of Q
supported by lδ − cδ. There exists δ ∈ Γ with the following properties

• The face δ′ is an edge (rather than a vertex).

• The number of unspecialised coefficients of gδ
kδ

is non-zero but strictly
less than the number of integral points on δ′.

11



• All the unspecialised terms have exponents which are adjacent integral
points on the line defined by the vanishing of lδ − cδ + kδ.

Proof: Let Q̄ be the polygon

Q̄ := {r ∈ Q | lδ(r) ≥ cδ + kδ for all δ ∈ Γ}.

Note that the lattice points in Q̄ correspond to unspecialised coefficients of
g. Let Λ denote the set of edges δ ∈ Γ of Newt(f) such that the functional
lδ − cδ supports an edge of Q (rather than just a vertex). Note that Λ ̸= ∅,
for otherwise Q must be a single point or a line segment in direction r,
contradicting our assumption. We denote the edge by δ′, and write δ̄ for
the face of Q̄ supported by lδ − cδ + kδ. Note that each δ̄ contains at least
one lattice point. (This follows from the second property in Definition 2.)
Certainly, δ̄ is parallel to δ′ for each δ ∈ Λ, and the edge sequence {δ̄}δ∈Λ,
forms a polygonal line segment in Q. Since Γ is an irredundant dominating
set for Newt(f), the set of edges {δ′}δ∈Λ is an irredundant dominating set
for Q. By Lemma 6, there is at least one edge δ ∈ Λ, such that δ′ has strictly
more lattice points than δ̄. This edge δ has the required properties. This
completes the proof.

Lemma 9 Let f, Q, R and Γ be as in the statement of Theorem 7. Suppose
we are given a K-factorisation of f , where K = (kδ)δ∈Γ. Moreover, assume
this factorisation extends a coprime dominating edges factorisation, i.e., the
polynomials gδ

0 and hδ
0 are coprime up to monomial factors for all δ ∈ Γ.

Then there exists δ ∈ Γ such that the coefficients of gδ
kδ

are not all specialised,
but they may be specialised in at most one way consistent with equations (1).
This specialisation may be computed in time polynomial in #Newt(f).

Proof: Select δ ∈ Γ such that the properties in Lemma 8 hold. Let nδ

and mδ be the number of integral points on the edges δ′ and δ̄ respectively,
where δ′ and δ̄ are defined as in the proof of Lemma 8. Thus we have mδ < nδ

and mδ ≥ 1. Write lδ(e1, e2) = ν1e1 +ν2e2 +η, where ν1 and ν2 are coprime.
Thus there exist coprime integers ζ1 and ζ2 such that ζ1ν1 + ζ2ν2 = 1, and
they are unique under the requirement that 0 ≤ ζ2 < ν1. First, we shall
perform a “unimodular change of basis” on our exponents to transform our
lifting equations (1) into a more convenient form.

Define the change of variables z := xν2y−ν1 and w := xζ1yζ2 . Note that
any monomial of the form xe1ye2 can be written as

xe1ye2 = zi1wi2

12



where
i1 = e1ζ2 − e2ζ1, i2 = e1ν1 + e2ν2 = lδ(e1, e2) − η.

Every monomial in gδ
i is of the form xe1ye2 where lδ(e1, e2) = cδ + i. Let

the monomials s and t be the terms of g and h respectively whose expo-
nents vectors are the left-most (and lowest in a tie) vertices of the faces of
Q and R defined by lδ − cδ and lδ + cδ − η, respectively. Thus we have
gδ
i (z, w) = swiGi(z) for some univariate Laurent polynomial Gi(z). Simi-

larly hδ
i (z, w) = twiHi(z) and f δ

i (z, w) = stwiFi(z), where Hi(z) and Fi(z)
are univariate Laurent polynomials. With this construction, G0(z), H0(z)
and F0(z) have non-zero constant term and are “ordinary polynomials”, i.e.,
contain no negative powers of z. For i < kδ all of the coefficients in the poly-
nomials Gi(z) and Hi(z) have been specialised. Moreover G0(z) is of degree
nδ, and all but mδ of the coefficients of Gkδ

(z) have been specialised. (By
“degree” of a Laurent polynomial we mean the difference in the exponents
of the highest and lowest terms, if the polynomial is non-zero, and −∞
otherwise). Equations (1) with this change of variables may be written as

F0(z) = G0(z)H0(z)

and for k ≥ 1

Gk(z)H0(z) + G0(z)Hk(z) = Fk(z) −
k−1
∑

j=1

Gj(z)Hk−j(z).

We know that all of the coefficients of Gi(z) and Hi(z) have been specialised
for 0 ≤ i < kδ in such a way as to give a solution to F0 = G0H0 and the
first kδ − 1 equations above. Thus we need to try and solve

Gkδ
H0 + G0Hkδ

= Fkδ
−

kδ−1
∑

j=1

GjHkδ−j . (3)

for the unspecialised indeterminate coefficients of Gkδ
and Hkδ

.
We first compute using Euclid’s algorithm ordinary polynomials U(z)

and V (z) such that

V (z)H0(z) + U(z)G0(z) = 1

where degz(U(z)) < degz(H0(z)) and degz(V (z)) < degz(G0(z)). (Note
that G0(z) and H0(z) are coprime since we have a coprime partial boundary
factorisation.) Any solution Gkδ

of Equation (3) must be of the form

Gkδ
= {V (Fkδ

−
kδ−1
∑

j=1

GjHkδ−j) mod G0} + εG0 (4)

13



for some Laurent polynomial ε(z) with undetermined coefficients.
We rearrange (4) as

Gkδ
− {V (Fkδ

−
kδ−1
∑

j=1

GjHkδ−j) mod G0} = εG0 (5)

Let the degree in z of the Laurent polynomial on the lefthand side of this
equation be d. Now the degree of the polynomial G0(z) as a Laurent polyno-
mial (and an ordinary polynomial) is nδ−1. If d < nδ−1 then we must have
d = 0. In other words, (4) has a unique solution, namely that with ε = 0.
Otherwise d ≥ nδ − 1 and the degree in z of ε(z) as a Laurent polynomial is
d− (nδ − 1). Hence in this case we need to also solve for the d− nδ + 2 un-
known coefficients of ε(z). We know that all but mδ coefficients of Gkδ

have
already been specialised, and these unspecialised ones are adjacent terms.
Hence exactly (d+1)−mδ coefficients on the lefthand side of (5) have been
specialised, which are adjacent lowest and highest terms. By assumption we
have that mδ < nδ, and hence (d + 1) − mδ ≥ d − nδ + 2.

All of the coefficients of the righthand side of Equation (5) have been
specialised, except those of the unknown polynomial ε(z). On the lefthand
side all but the middle mδ coefficients have been specialised. This defines a
pair of triangular systems from which one can either solve for the coefficients
of ε uniquely, or show that no solution exists (this may happen when nδ >
mδ + 1). We describe precisely how this is done: Suppose that exactly r of
the lowest terms on the lefthand side have been specialised, and hence also
(d+1)−(mδ+r) of the highest terms. We can solve uniquely for the r lowest
terms of ε(z) using the triangular system defined by considering coefficients
of the powers za, za+1, . . . , za+r−1 on both sides of Equation (4), where za

is the lowest monomial occurring on the lefthand side. One may also solve
for the coefficients of the (d + 1)− (mδ + r) highest powers uniquely using a
similar triangular system. (Note that to ensure the triangular systems each
have unique solutions we use here the fact that the constant term of G0 is
non-zero, and the polynomial is of degree exactly nδ − 1.) Noticing that
(d + 1) − (mδ + r) + r = (d + 1 − mδ) ≥ d − nδ + 2, we see that all the
coefficients of ε have been accounted for. However, if d+1−mδ > d−nδ +2
(i.e. nδ > mδ + 1) there will be some “overlap”, and the two triangular
systems might not have a common solution. In this case there can be no
solution to the Equation (4). If an ε(z) does exist which satisfies Equation
(5) then the remaining coefficients of Gkδ

can now be computed uniquely.
Having computed the only possible solution of (4) for Gkδ

we can substitute

14



this into Equation (3) and recover Hkδ
directly. More precisely compute

(Fkδ
−

∑kδ−1
j=1 GjHkδ−j) − Gkδ

H0

G0
. (6)

If its coefficients match with the known coefficients of Hkδ
then we have suc-

cessfully extended the partial factorisation; otherwise we know no extension
exists.

These computations can be done in time quadratic in the degree of the
largest polynomial occurring in the above equations. Since all polynomials
are Newton polytopes which are line segments lying within Newt(f) this is
certainly quadratic in #Newt(f). (In fact, the running time is most closely
related to the length of the side nδ from which we are performing the lifting
step.) This completes the proof.

Theorem 7 may now be proved in a straightforward manner: Specifi-
cally, one first shows that for any partial factorisation extending a coprime
dominating edges factorisation, there exists at most one full factorisation
extending it, and this may be efficiently found. This is proved by induction
on the number of unspecialised coefficients in the partial factorisation using
Lemma 9. Theorem 7 then follows easily as a special case.

7 The Algorithm

We now gather everything together and state our algorithm. We shall
present it in an unadorned form, omitting detail on how to perform the
more straightforward subroutines.

Algorithm 10
Input: A polynomial f ∈ F[x, y].
Output: A factorisation of f or “failure”.

Step A: Compute an irredundant dominating set Γ of Newt(f). For this
choice of Γ, compute all coprime (Γ;Q, R)-boundary factorisations of f , i.e.,
coprime partial boundary factorisations relative to the summands Q and R
and the dominating set Γ. Here Q and R range over the summand pairs of
Newt(f).

Step B: By repeatedly applying the method in the proof of Lemma 9, lift
each coprime dominating edges factorisation of f as far as possible. If any
of these lift to a full factorisation output this factorisation and halt. If none
of them lift to a full factorisation then output “failure”.

15



Step A can be accomplished using a summand finding algorithm, an
algorithm for finding dominating sets, and a univariate polynomial factori-
sation algorithm. A detailed description of these stages of the algorithm is
given in the report [1]. For now, we just note that the summand finding
algorithm is just a minor modification of the summand counting algorithm
given in [8, Algorithm 17].

The algorithm is certainly correct, for it fails except when it finds a factor
using the equations in Lemma 9. On the running time, using Theorem 7
lifting from each coprime dominating edges factorisation can be done in time
polynomial (in fact cubic) in #Newt(f). However, although one can find
such a dominating edges factorisation efficiently, the number of them may be
exponential in the degree. In practice we recommend that a relative small
number of dominating edges factorisations are tried before the polynomial
is randomised and one resorts to other “dense polynomial” techniques.

The algorithm will always succeed when one starts with a dominating
set Γ of Newt(f) such that the polynomials f δ

0 , δ ∈ Γ, are all squarefree.
Precisely, if the algorithm outputs “failure” one knows that in fact the poly-
nomial f is irreducible, and otherwise the algorithm will output a factor.
One might call polynomials for which such sets exist nice. This algorithm
should be compared with the standard method of factoring “nice” poly-
nomials using Hensel lifting [10]. Precisely, in the literature a bivariate
polynomial of total degree n which is squarefree upon reduction modulo y is
often called “nice”. The standard Hensel lifting algorithm will factor “nice”
bivariate polynomials, on average very quickly [10], although in exponential
time in the worst case. Notice a “nice” polynomial would be one whose
Newton polytope has “lower boundary” a single edge of length n which is
squarefree. The above algorithm factors not just these polynomials, but also
any polynomials which have a “squarefree dominating set”. In the case of a
generic dense “nice” polynomial, it reduces to a modified form of standard
Hensel lifting. (The algorithm also includes as a special case that given
in Wan [24], where one “lifts downward” from the edge joining (n, 0) and
(0, n))

8 Examples and Implementation

8.1 Example

Suppose we want to factor the following polynomial over F2

f = x12+x19+(x10+x11+x13)y+(x8+x9+x12+x17)y2+x7y3+(x4+x11)y4

16



+(x2 + x5 + x10)y5 + y6 + x10y8 + (x8 + x11)y9 + x6y10 + x9y12 + x15y16

with Newton polytope pictured in Figure 2 where a star indicates a nonzero

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

(0 6)

(12 0) (19 0)

(15 16)

Figure 2: Newton polytope of f

term of f .

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

(0 2)

(4 0) (11 0)

(9 8)

Figure 3: Newton polytope Q of the generic polynomial g

Newt(f) is found to have three non-trivial decompositions, and eight ir-
redundant dominating sets. None of these sets have edge polynomials which
are all squarefree; however, fortunately we are still able to lift successfully
from one of the coprime partial boundary factorisations. Specifically, con-
sider the decomposition Newt(f) = Q + R, where Q and R are the convex
hulls of the sets {(0, 2), (4, 0), (11, 0), (9, 8)} and {(0, 4), (8, 0), (6, 8)} respec-
tively (see Figures 3 and 4). The generic polynomials for this decomposition
are as usual denoted g and h. The dominating edges of Newt(f) which allow

17



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

(0 4)

(8 0)

(6 8)

Figure 4: Newton polytope R of the generic polynomial h

a coprime edge factorisation are given by

δ1 = conv{(0, 6), (12, 0)}, δ2 = conv{(12, 0), (19, 0)}

and the corresponding edge polynomials are

f δ1
0 = y6 + x2y5 + x4y4 + x8y2 + x10y1 + x12

f δ2
0 = x12 + x19.

The coprime factors from which the lift begins are

gδ1
0 = y2 + x2y + x4, hδ1

0 = y4 + x8

gδ2
0 = x4 + x11, hδ2

0 = 1.

The lifting process is then initiated; we refer the reader to our report [1] for
more details. For now, we just note that the lines drawn in the interior of the
polygons in Figures 3 and 4 indicate the first few layers of coefficients which
are revealed during the lifting, and the lines in the interior of Newt(f) the
known coefficients of f which are used to do this. This choice for a partial
boundary factorisation is found to be successful leading to the specialisation
of the 57 unknown coefficients of g and the 32 unknown coefficients of h.
The factors are

g = x4 + x11 + (x2 + x5 + x10)y + y2 + x9y8

h = x8 + x7y + y4 + x6y8.

which indeed satisfy f = gh.
It is perhaps appropriate at this stage to make a few observations on how

sparse polynomials may be factored more quickly using Algorithm 10. Using

18



standard Hensel lifting the polynomial f above would first be randomised
to obtain a dense polynomial of total degree 31. It could have as many as
(32 × 33)/2 = 528 non-zero terms, and heuristically around half this many
since f is over the binary field. The factor g we found above would then
correspond to a “dense” factor of our original polynomial of total degree 17.
It would be found by Hensel lifting a degree 17 factor of the reduction modulo
y of our randomised version of f , and (17×18)/2 = 153 terms (heuristically
half of them non-zero) need to be determined. In our algorithm, one restricts
attention to unknown terms in possible factors whose exponents lie within
certain polygons. Thus for the factor g we found we only need to determine
57 coefficients. Moreover, if the polynomial f is sparse, there is good chance
that most of these term, and those in h, will be zero and so one can exploit
sparse data structures. The main benefit, though, of our approach appears
to be for very sparse but composite polynomials of very high degree. In
this case, one expects few coprime partial boundary decompositions, and
as one can try and lift each one to a full factorisation, the algorithm will
succeed (or fail) relatively quickly. If one randomises the polynomial by
substitution of linear forms, the special sparse structure is completely lost.
To factor the randomised polynomial using Hensel lifting, for example, one
expects to have to try a large number of lifts. Thus, as demonstrated in the
next section, our algorithm can be used to factor very sparse polynomials
of degree beyond the reach of classical Hensel lifting.

8.2 Implementation

We have developed a preliminary implementation of the algorithm with the
aim of demonstrating how it would work for bivariate polynomials over F2.
The work was carried out at the Oxford University Supercomputing Centre
(OSC) on the Oswell machine, using an UltraSPARC III processor running
at about 122 Mflop/s and with 2 GBytes of memory. The implementation
was written using a combination of C and Magma programs, and was di-
vided into three phases. In the first phase, the input polynomial is read and
its Newton polytope computed using the asymptotically fast Graham’s al-
gorithm for computing convex hulls [13]. In that phase we also compute all
irredundant dominating sets, and output the edge polynomials. In the sec-
ond phase, a Magma program invokes a univariate factorisation algorithm
to perform the partial boundary factorisations, and the results are directed
into the third phase program. In this last phase, a search for coprime dom-
inating edges factorisations is performed, and when appropriate, the lifting
process is started. The polynomial arithmetic was performed using classical

19



multiplication and division, and the triangular systems were solved using
dense Gaussian elimination over F2.

We generated a number of random experiments with total degree reach-
ing d = 2000. In all these cases, the input polynomial f was constructed
be multiplying two random polynomials g and h of degree d/2 each with a
given number of non-zero terms. Specifically, for each polynomial the given
number of exponent vectors (e1, e2) were chosen uniformly at random sub-
ject to 0 ≤ e1 + e2 ≤ d/2. These vectors always included ones of the form
(e1, 0), (0, e2) and (e3, (d/2)−e3) to ensure the polynomial was of the correct
degree and had no monomial factor. As the polynomials chosen were sparse
the corresponding Newton polytopes had very few edges. In all these cases,
the components of edge vectors of Newt(f) had a very small gcd, so that the
edges had few integral points and consequently the polygon itself had very
few summands. The table below gives the running times (in seconds) of the
total factorisation process to find at least one non-trivial factor involving all
three phases described above. Here s is the number of non-zero terms of
the input polynomial f ; #Newt(f), #Newt(g), and #Newt(h) are the total
number of lattice points in Newt(f), Newt(g) and Newt(h) respectively; and
t is the total running time in seconds. The actual polynomials f, g and h in
each of the five cases are also listed.

Table 1: Run time data for random experiments.

d s #Newt(f) #Newt(g) #Newt(h) t

50 14 561 166 50 2.3
100 16 2234 472 222 11.6
500 15 52940 12758 11282 21.5
1000 30 206461 28582 56534 42.9
2000 28 848849 133797 132932 410.7

d = 50:
f = x9 +x18y0 +x22y8 +x14y16 +(x4 +x13)y20 +(x8 +x17)y21 +x18y24 +

x17y28 + x21y29 + x1y32 + y36 + x4y37,
g = x4 + x13 + x17y8 + y16,
h = x5 + x1y16 + y20 + x4y21.

d = 100:
f = x26+x29y3+x31y5+x34y8+x20y13+x25y18+x6y19+(x9+x48)y22+

x53y27 + y32 + x28y41 + x11y45 + x14y48 + x5y58 + x33y67,
g = x20 + x25y5 + y19 + x5y45,
h = x6 + x9y3 + x28y22 + y13.

20



d = 500:
f = x99 + x151y30 + x176y130 + x151y142 + x228y160 + x99y181 + x56y220 +

x43y223 +x108y250 +x228y272 +x176y311 +x120y353 +x108y362 +x56y401 +y443,
g = x56 + x108y30 + x108y142 + x56y181 + y223,
h = x43 + x120y130 + y220.

d = 1000:
f = x727 + x678y3 + x935y13 + x886y16 + x679y67 + x600y79 + x887y80 +

x551y82+x469y86+x420y89+x448y93+x399y96+x279y136+x636y143+x552y146+
x487y149 +x421y153 +x844y156 +x400y160 +x152y215 +(x21 +x509)y222 +(1+
x378)y229 + x357y236 + x611y251 + x562y254 + x563y318 + x163y387 + x520y394,

g = x448 + x399y3 + x400y67 + y136 + x357y143,
h = x279 + x487y13 + x152y79 + x21y86 + y93 + x163y251.

d = 2000:
f = x875 + x856y6 + x1469y18 + x1450y24 + x776y66 + x1370y84 + x722y157 +

x703y163 + x963y190 + x944y196 + x623y223 + x864y256 + x487y291 + x468y297 +
x647y334 + x628y340 + x982y375 + x548y400 + x235y514 + x476y547 + x769y619 +
x1363y637 + x0y648 + x160y691 + x616y776 + x857y809 + x381y910 + x541y953,

g = x487 + x468y6 + x388y66 + y357 + x381y619,
h = x388 + x982y18 + x235y157 + x476y190 + x160y334 + y291.

9 Conclusion

In this paper we have investigated a new approach for bivariate polynomial
factorisation based on the study of their Newton polytopes. The approach
combines results on polytopes with generalised Hensel lifting. In standard
Hensel lifting, one lifts a factorisation from a single edge, and uniqueness
can be ensured by randomising the polynomial to enforce coprimality condi-
tions and make sure the edge being lifted from is sufficiently long. However,
this randomisation is by substitution of linear forms which destroys the
sparsity of the input polynomial. Our main theoretical contribution is to
show how uniqueness may be ensured in the bivariate case, only under cer-
tain coprimality conditions, and without restrictions on the lengths of the
edges. For certain classes of sparse polynomials, namely those whose New-
ton polytopes have few Minkowski decompositions, this gives a practical
new approach which greatly improves upon Hensel lifting. As with Hensel
lifting, our method has an exponential worst-case running time; however,
we have demonstrated the practicality of our algorithm on several randomly
chosen composite and sparse binary polynomials of high degree.

21



References

[1] F. Abu Salem, S. Gao, and A.G.B. Lauder “Factoring poly-
nomials via polytopes: extended version”, Internal Report, Oxford
University Computing Laboratory.
Available from mid-January 2003 at:
http://web.comlab.ox.ac.uk/oucl/work/alan.lauder/

[2] E. R. Berlekamp, “Factoring polynomials over finite fields”, Bell
System Tech. J., 46 (1967), 1853-1859.

[3] E. R. Berlekamp, “Factoring polynomials over large finite fields”,
Math. Comp., 24 (1970), 713-735.

[4] D. G. Cantor and H. Zassenhaus “A new algorithm for factoring
polynomials over finite fields”, Math. Comp. 36 (1981), no. 154, 587–
592.

[5] A. L. Chistov, “An algorithm of polynomial complexity for factor-
ing polynomials, and determination of the components of a variety
in a subexponential time” (Russian), Theory of the complexity of
computations, II., Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 137 (1984), 124–188. [English translation: J. Sov.
Math. 34 (1986).]

[6] S. Gao, “Absolute irreducibility of polynomials via Newton poly-
topes,” J. of Algebra 237 (2001), 501–520.

[7] S. Gao, “Factoring multivariate polynomials via partial differential
equations,” Mathematics of Computation 72 (2003), 801–822.

[8] S. Gao and A.G.B. Lauder, “Decomposition of polytopes and
polynomials”, Discrete and Computational Geometry 26 (2001), 89–
104.

[9] S. Gao and A.G.B. Lauder, Fast absolute irreducibility testing
via Newton polytopes, preprint 2003.

[10] S. Gao and A.G.B. Lauder, “Hensel lifting and bivariate polyno-
mial factorisation over finite fields”, Mathematics of Computation 71
(2002), 1663-1676.

[11] J. von zur Gathen and E. Kaltofen, “Factoring sparse multi-
variate polynomials”, J. of Comput. System Sci. 31 (1985), 265–287.

22



[12] J. von zur Gathen and V. Shoup, “Computing Frobenius maps
and factoring polynomials”, Computational Complexity 2 (1992),
187–224.

[13] R. L. Graham, “An efficient algorithm for determining the convex
hull of a finite planar set”, Inform. Process. Lett. 1 (1972), 132-3.

[14] D. Yu Grigoryev, “Factoring polynomials over a finite field and
solution of systems of algebraic equations” (Russian), Theory of the
complexity of computations, II., Zap. Nauchn. Sem. Leningrad. Ot-
del. Mat. Inst. Steklov. (LOMI) 137 (1984), 124–188. [English trans-
lation: J. Sov. Math. 34 (1986).]

[15] M. van Hoeij, “Factoring polynomials and the knapsack problem,”
J. Number Theory 95 (2002), 167–189.

[16] E. Kaltofen, “Polynomial-time reductions from multivariate to bi-
and univariate integral polynomial factorisation”, SIAM J. Comp.,
vol. 14, 469-489, 1985.

[17] E. Kaltofen and V. Shoup, “Subquadratic-time factoring of poly-
nomials over finite fields”, Math. Comp. 67 (1998), no. 223, 1179–
1197.

[18] E. Kaltofen and B. Trager, “Computing with polynomials given
by black boxes for their evaluations: Greatest common divisors, fac-
torization, separation of numerators and denominators”, J. Symbolic
Comput. 9 (1990), 301-320.

[19] A. K. Lenstra, “Factoring multivariate integral polynomials”, The-
oret. Comput. Sci. 34 (1984), no. 1-2, 207–213.

[20] A. K. Lenstra, “Factoring multivariate polynomials over finite
fields”, J. Comput. System Sci. 30 (1985), no. 2, 235–248.

[21] A. K. Lenstra, “Factoring multivariate polynomials over algebraic
number fields”, SIAM J. Comput. 16 (1987), no. 3, 591–598.

[22] A. K. Lenstra, H.W. Lenstra, Jr. and L. Lovász, “Factoring
polynomials with rational coefficients”, Mathematische Annalen, 161
(1982), 515–534.

[23] D.R. Musser, “Multivariate polynomial factorization”, J. ACM 22
(1975), 291–308.

23



[24] D. Wan, “Factoring polynomials over large finite fields”, Math.
Comp. 54 (1990), No. 190, 755–770.

[25] P. S. Wang, “An improved multivariate polynomial factorization
algorithm”, Math. Comp. 32 (1978), 1215–1231.

[26] P. S. Wang and L. P. Rothschild, “Factoring multivariate poly-
nomials over the integers,” Math. Comp. 29 (1975), 935–950.

[27] H. Zassenhaus, “On Hensel factorization I”, J. Number Theory 1
(1969), 291–311.

24




