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Introduction. The problems of “factorisatio numerorum”, which go
back more than 65 years, are concerned principally with (i) the total number
f(n) of factorizations of a natural number n > 1 into products of natural
numbers larger than 1, where the order of the factors is not counted, and
(ii) the corresponding total number F (n) of factorizations when the order
of the factors is counted. For example, f(12) = 4 while F (12) = 8. Some
results and further references on such problems may be found in [1], [2], [5],
[6] and [7] in particular.

The object of this paper is to consider similar problems and results,
with emphasis on the average numbers of factorizations of each kind, within
the partly analogous but also quite distinct context of additive arithmeti-
cal semigroups. Such semigroups (to be defined below) are treated in the
monographs [3], [4] within an abstract setting designed to conveniently cover
(under minimal assumptions) concrete cases like (i) the multiplicative semi-
group Gq of all monic polynomials in one indeterminate over a finite field
Fq, (ii) semigroups of ideals in principal orders within algebraic function
fields over Fq, (iii) semigroups formed under direct sum by the isomorphism
classes of certain kinds of finite modules or algebras over such principal
orders.

Although the first main result below will be derived within a still more
general framework, we shall formulate and state our second main conclusion
within a context (see [4]) which conveniently covers the preceding concrete
cases:

An (additive) arithmetical semigroup will be understood to be a free
commutative semigroup G with identity element 1, generated by a (count-
able) set P of “prime” elements, which admits an integer-valued “degree”
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mapping ∂ such that

(i) ∂(1) = 0, ∂(p) > 0 for all p ∈ P ,
(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,
(iii) the total number G#(n) of elements of degree n in G is finite for all

n ∈ N.

All the concrete cases referred to above provide examples of an arith-
metical semigroup G which satisfies

Axiom A#. There exist constants A > 0, q > 1, and ν with 0 ≤ ν < 1
such that

G#(n) = Aqn + O(qνn) as n → ∞ .

In dealing with an arithmetical semigroup G, it is frequently helpful to
consider the “zeta” (or “generating”) function

Z(y) = ZG(y) =

∞
∑

n=0

G#(n)yn .

Under Axiom A#, Z(y) is holomorphic for |y| < q−1, and extends to a
meromorphic function in the disc |y| < q−ν , having exactly one pole (of
order 1) at y = q−1. In fact,

Z(y) =
A

1 − qy
+ h1(y)

where h1(y) is holomorphic for |y| < q−ν .
Now consider the functions f(a), F (a) of a 6= 1 in G which are directly

analogous to the factorization-counting functions f(n), F (n) earlier, and let
f(1) = F (1) = 1. Define

f(n) =
∑

∂(a)=n

f(a) , F (n) =
∑

∂(a)=n

F (a).

Theorem 1. Let G 6= {1} be an arithmetical semigroup having a zeta

function Z(y) which is holomorphic in some disc |y| < r and takes values

> 2 for some real values of y < r. Then

F (n) =
y−n−1
0

Z ′(y0)
+ O(t−n

0 ) as n → ∞ ,

where y0 ∈ (0, r) is the unique real solution of Z(y)−2 = 0, and y0 < t0 < r.

In particular, under Axiom A# the average number of ordered factoriza-
tions of an element of degree n in G has the form

F (n)

G#(n)
=

q−ny−n−1
0

AZ ′(y0)
+ O((qt0)

−n) ,

where y0 < t0 < q−1.
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This theorem provides an analogue to one of Kalmár [2] for natural
numbers, in which Z(y) is replaced by the Riemann zeta function. It is
applicable not only to the explicit examples outlined earlier, but also to
many other quite different concrete cases, as listed in [3], Chapter 8, say.
Theorem 1 also provides an asymptotic generalization of the conclusion valid
for the special semigroup G = Gq above, for which G#(n) = qn, Z(y) =
(1 − qy)−1, y0 = (2q)−1, and F (n) = 2n−1qn exactly when n > 0. (Here
the exact equation for F (n) may be deduced either with the aid of that for
Z(y) or by simple combinatorial reasoning: Factorizations of polynomials
of degree n into factors of degrees n1, . . . , nm respectively, where n1 + . . . +
nm = n, can be formed in qn1 . . . qnm = qn ways. Since we have 2n−1 such
compositions of n, the result follows.)

As happens for natural numbers according to Oppenheim [5] and Sze-
keres and Turán [7], the result for unordered factorizations under Axiom
A# is more involved than that for the ordered case:

Theorem 2. Under Axiom A#, the average number of unordered factor-

izations of an element of degree n in G has the form

f(n)

G#(n)
= CGn−3/4 exp(2

√
An)(1 + O(n−1/2)) as n → ∞ ,

where

CG =
A−3/4eA/2

2
√

π
exp

( ∞
∑

m=0

(G#(m) − Aqm)q−m +

∞
∑

k=2

Z(q−k) − 1

k

)

.

In the unordered case covered by this theorem, the conclusion remains
nontrivial even for the very special semigroup Gq earlier: For Gq, the average
has the form

f(n)

qn
=

1

2

√

e

π
exp

( ∞
∑

k=1

1

(k + 1)(qk − 1)

)

n−3/4 exp(2
√

n)(1 + O(n−1/2)) .

At the expense of more involved computational analysis (which we may
return to elsewhere), it seems possible to replace the asymptotic formula of
Theorem 2 by an asymptotic series of arbitrary length (cf. [7] for natural
numbers).

1. Ordered factorizations. For any (additive) arithmetical semigroup
G, the total number Fk(a) of ordered factorizations of a 6= 1 into exactly
k ≥ 1 factors in G has the formal generating function

∑

16=a∈G

Fk(a)y∂(a) =
(

∑

16=b∈G

y∂(b)
)k

= (Z(y) − 1)k .
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Since F (a) =
∑∞

k=1 Fk(a), this formally implies that

∞
∑

n=0

F (n)yn =

∞
∑

k=0

(Z(y) − 1)k = (2 − Z(y))−1 .

Under Axiom A#, this relation will be analytically valid for |y| < y0, where
y0 ∈ (0, q−1) is the real solution of Z(y) − 2 = 0:

Lemma 1.1. For any arithmetical semigroup G 6= {1} having a zeta

function Z(y) which is holomorphic in some disc |y| < r and takes values

> 2 for some real y < r, the equation Z(y)− 2 = 0 has a unique and simple

root y0 ∈ (0, r), but no other complex root y with |y| ≤ y0.

P r o o f. Since Z(y) is strictly increasing and passes the value 2 on (0, r),
there must be a unique y0 ∈ (0, r) with Z(y0) = 2. Since Z ′(y0) > 0, y0

is a simple zero of Z(y) − 2 = 0. Next, if there was a complex root y1 of
Z(y) − 2 = 0 with |y1| < y0, we would have 2 = Z(y1) and thus

2 = |Z(y1)| ≤
∞
∑

n=0

G#(n)|y1|n <
∞
∑

n=0

G#(n)yn
0 = 2 ,

which is impossible. Further, if y2 was a complex root with y2 = y0e
iθ, θ 6∈

2πZ, we would have

2 = Z(y2) = Re(Z(y2)) =

∞
∑

n=0

G#(n)yn
0 cos nθ <

∞
∑

n=0

G#(n)yn
0 = 2 ,

which is also impossible.

Under the rather light assumptions on G in Lemma 1.1, the function

(2 − Z(y))−1 =

∞
∑

n=0

F (n)yn

satisfies the hypothesis on g(y) in Lemma 1.2 below, and consequently, The-
orem 1 follows directly from that lemma.

Lemma 1.2. Let h(y) be holomorphic for |y| < r, and let w0 = h(y0) for

some complex y0 with 0 < |y0| < r. Suppose that h′(y0) 6= 0 and h(y) 6= w0

for |y| ≤ |y0|, y 6= y0. Then, if

g(y) := (w0 − h(y))−1 =
∞
∑

n=0

a(n)yn for |y| < |y0| ,

there exists t0 with |y0| < t0 < r such that

a(n) =
y−n−1
0

h′(y0)
+ O(t−n

0 ) as n → ∞ .
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P r o o f. Since h′(y0) 6= 0, y0 is a simple zero of h(y) − w0 = 0. Thus
g(y) is holomorphic for |y| ≤ |y0|, apart from a simple pole at y = y0. In
fact g(y) remains otherwise holomorphic for |y| < r0 where |y0| < r0 < r,
and such an r0 exists because: (i) every y 6= y0 with |y| = |y0| is the centre
of some disc of holomorphy for g(y), and (ii) y0 is the centre of some disc in
which h(y)−w0 = 0 has no other zero, i.e. g(y) is holomorphic in that disc
apart from the pole at y = y0; hence r0 exists by compactness of the circle
|y| = |y0|.

Now choose any t0 with |y0| < t0 < r0, and put

J(n) =
1

2πi

∫

|y|=t0

1

w0 − h(y)

dy

yn+1
.

On the one hand, J(n) = O(t−n
0 ), and, on the other, Cauchy’s residue

theorem yields

J(n) = a(n) − y−n−1
0

h′(y0)
.

This proves the lemma.

R e m a r k s. (i) At the expense of a slightly weaker error estimate, The-
orem 1 could also be derived with the aid of Lemma 7.3 of [4], page 60.

(ii) In considering concrete examples of semigroups satisfying Axiom A#,
as indicated in the Introduction, cases occur in which the fixed constant
q is an arbitrarily large prime-power. There is therefore some interest in
considering the behaviour of y0 and of the average F (n)/G#(n) as q → ∞.
One then obtains the approximate values

y0 ∼ 1

(A + 1)q
, Z ′

G(y0) ∼
q

A
(A + 1)2 ,

F (n)

G#(n)
∼ (A + 1)n−1 ,

which may be compared with the earlier-mentioned conclusions for the spe-
cial semigroup Gq (for which A = 1).

2. Unordered factorizations. For any arithmetical semigroup G we
may formally write

f#(y) : =

∞
∑

n=0

f(n)yn =
∑

a∈G

f(a)y∂(a) =
∏

16=b∈G

(1 + y∂(b) + y2∂(b) + . . .)

=
∏

16=b∈G

(1 − y∂(b))−1 =
∞
∏

m=1

(1 − ym)−G#(m) .

If Z(y) is holomorphic in a disc |y| < r, the resulting Cauchy inequality
for G#(m) implies that the last product converges uniformly on every disc
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|y| ≤ t < r. Thus f#(y) is holomorphic, and

f#(y) = exp
(

∞
∑

m=1

G#(m) log(1 − ym)−1
)

= exp

( ∞
∑

k=1

Z(yk) − 1

k

)

,

for |y| < min{r, 1}, on expanding log(1 − ym) = −∑∞
k=1 ymk/k and inter-

changing orders of summation. Further

f#(y) = exp(Z(y) − 1 + h2(y)) ,

where h2(y) is holomorphic for |y| <
√

r, if Z(y) is holomorphic for |y| <
r < 1, 0 < r (so that G#(m) ≪ rm

1 for 0 < r1 < r): To see this, let |y| < r2

for 0 < r2 <
√

r1 <
√

r. Then

h2(|y|) =

∞
∑

k=2

1

k

∞
∑

m=1

G#(m)|y|km ≪
∞
∑

k=2

∞
∑

m=1

(r−1
1 rk

2 )m

≤
∞
∑

k=2

r−1
1 rk

2

∞
∑

m=0

(r−1
1 r2

2)
m < ∞

since r2 < 1, r−1
1 r2

2 < 1.

Now suppose that G satisfies Axiom A#, so that we can take r = q−1

above. Then, as stated earlier,

Z(y) =
A

1 − qy
+ h1(y)

where h1(y) is holomorphic for |y| < q−ν , and we obtain

f#(y) = exp

(

A

1 − qy

)

g(y) ,

where g(y) = exp(h1(y)−1+h2(y)) is holomorphic for |y| < min(q−ν , q−1/2).
It follows that f∗(w) = E(w)g∗(w), where f∗(w) = f#(w/q), E(w) =
exp(A/(1 − w)), g∗(w) = g(w/q), and we have expansions

E(w) =
∞
∑

n=0

ε(n)wn for |w| < 1 ,

g∗(w) =

∞
∑

n=0

δ(n)wn for |w| < r1 := min(q1−ν , q1/2) ,

and f∗(w) =
∑∞

n=0 β(n)wn with β(n) = f(n)q−n.

In order to prove Theorem 2, we shall estimate β(n) by the Cauchy
integral formula

β(n) =
1

2πi

∫

L

E(w)g∗(w)
dw

wn+1
,
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where L is the contour

in which Γ consists of the indicated vertical segments plus portion of the
circle |w| = R, R = 1

2 (r1 + 1), and C is the indicated semicircle of radius

̺ =
√

A/n about w = 1, with ̺ < 1 (for n > n0, say). Thus for n > n0

β(n) =
1

2πi

(

∫

C

+
∫

Γ

)

=
1

2πi

∫

C

+ O(1) .

On C we have

g∗(w) = g∗(1) + g∗′(1)(w − 1) + O(̺2) ,

where w = 1 − ̺e−iθ (−π/2 ≤ θ ≤ π/2). So

1

2πi

∫

C

= g∗(1)J1(n) + g∗′(1)J2(n) + J3(n) ,

where

J1(n) =
̺

2π

π/2
∫

−π/2

exp

(

A

̺
eiθ

)

e−iθ

(1 − ̺e−iθ)n+1
dθ ,

J2(n) =
−̺2

2π

π/2
∫

−π/2

exp

(

A

̺
eiθ

)

e−2iθ

(1 − ̺e−iθ)n+1
dθ ,

and the similar integral

J3(n) ≪ ̺3 exp

(

A

̺

)

1

(1 − ̺)n+1
≪ ̺3 exp

(

A

̺
+ n̺

)(

e−̺

1 − ̺

)n

≪ ̺3 exp

(

2A

̺

)

,

since

̺ =
√

A/n , n̺ = A/̺ , (1 − ̺)−1 = 1 + O(̺) ,

and
(

e−̺

1 − ̺

)n

= exp

(

n

(

− ̺ + log
1

1 − ̺

))

≪ exp(n̺2) = eA .
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Next, if H(θ) =
exp(−̺e−iθ)

1 − ̺e−iθ
, then

J2(n) =
−̺2

2π

π/2
∫

−π/2

exp

(

A

̺
eiθ + n̺e−iθ

)

(H(θ))n e−2iθ

1 − ̺e−iθ
dθ

=
−̺2

2π
exp

(

2A

̺

) π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

2

)

(H(θ))n e−2iθ

1 − ̺e−iθ
dθ ,

since

A

̺
eiθ + n̺e−iθ =

A

̺
(eiθ + e−iθ) =

2A

̺
cos θ =

2A

̺

(

1 − 2 sin2 θ

2

)

.

Also

H(θ) = exp

(

−̺e−iθ + log

(

1

1 − ̺e−iθ

))

= exp

(

1

2
(̺e−iθ)2 +

∞
∑

k=3

1

k
(̺e−iθ)k

)

= exp

(

Ae−2iθ

2n
+ O(̺3)

)

,

and so

(H(θ))n e−2iθ

1 − ̺e−iθ
= exp

(

A

2
e−2iθ + O(̺)

)

(1 + O(̺))e−2iθ

= exp

(

A

2
(1 − 2iθ + O(θ2)) + O(̺)

)

(1 + O(̺))e−2iθ

= exp(A/2) exp(−i(A + 2)θ)(1 + O(θ2 + ̺)) .

Thus

J2(n) ≪ ̺2 exp

(

2A

̺

) ∞
∫

−∞
exp

(

−4
A

̺

θ2

π2

)

dθ ,

since sin2 θ

2
≥

(

2

π

θ

2

)2

. Hence

J2(n) ≪ ̺2 exp

(

2
A

̺

)√
̺ ,

if one substitutes θ = φ
√

̺ in the integral, say.

Lastly, an argument similar to that for J2(n) shows that

J1(n) =
̺

2π
exp

(

2
A

̺

) π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

2

)

K(θ) dθ ,
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where

K(θ) = exp

(

A

2
e−2iθ + O(̺)

)

e−iθ

1 − ̺e−iθ

= exp

(

A

2

)

(1 + O(|θ|) + O(̺)) .

Hence

J1(n) =
̺

2π
exp

(

2
A

̺
+

A

2

)( π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

)

dθ + O(̺)

)

,

since
π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

2

)

(O(|θ|) + O(̺)) dθ ≪ ̺ + ̺3/2 = O(̺)

similarly to the discussion of the second integral for J2(n) above. Also

π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

2

)

dθ =

√

̺π

A
(1 + O(̺))

for the reasons below, and after this the proof of Theorem 2 is complete.
For the final integral, note that

exp

(

−4
A

̺
sin2 θ

2

)

=

(

− A

̺
θ2

)

exp

(

−4
A

̺

(

sin2 θ

2
− θ2

4

))

,

and sin2 θ

2
− θ2

4
= O(θ4). Therefore

exp

(

−4
A

̺

(

sin2 θ

2
− θ2

4

))

= 1 + O

(

θ4

̺

)

for |θ| ≤ ̺1/4 ,

and
π/2
∫

−π/2

exp

(

−4
A

̺
sin2 θ

2

)

dθ

=

̺1/4

∫

−̺1/4

exp

(

−A

̺
θ2

)(

1 + O

(

θ4

̺

))

dθ + O

( ∞
∫

̺1/4

exp

(

−A

̺

θ2

π2

)

dθ

)

=
∞
∫

−∞
exp

(

−A

̺
θ2

)

dθ + O

(

1

̺

∞
∫

−∞
exp

(

−A

̺
θ2

)

θ4 dθ

+
∞
∫

̺1/4

exp

(

−A

̺

θ2

π2

)

dθ

)

.
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On substituting θ = φ
√

̺/A, this becomes
√

̺π

A
+ O

(

1

̺
̺5/2 +

√
̺

∞
∫

√
A̺−1/4

exp

(

−φ2

π2

)

dφ

)

=

√

̺π

A
(1 + O(̺)) .
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