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Abstract. We give a necessary and sufficient condition on an operator A
for the existence of an operator B in the nest algebra AlgN of a continuous
nest N satisfying AA∗ = BB∗ (resp. A∗A = B∗B). We also characterise the
operators A in B(H) which have the following property: For every continuous
nest N there exists an operator BN in AlgN satisfying AA∗ = BNB

∗
N (resp.

A∗A = B∗NBN ).

1. Introduction–Preliminaries

The problem of factorisation of operators with respect to a nest algebra has been
studied by many authors [8], [1], [13], [9], [11], [12], [10]. In this work we give a
necessary and sufficient condition on an operator A for the existence of an operator
B in the nest algebra AlgN of a continuous nest N satisfying AA∗ = BB∗ (resp.
A∗A = B∗B). This result improves Theorem 4.9 in [9] for continuous nests. We also
characterise the operators A in B(H) which have the following property: For every
continuous nest N there exists an operator BN in AlgN satisfying AA∗ = BNB

∗
N

(resp. A∗A = B∗NBN ).
Throughout this work H denotes a separable Hilbert space and B(H) the space

of all bounded operators from H into itself. If V is a subset of H we denote by
[V ] the linear span of V . By subspace of H we mean a subset of H which is closed
under addition of vectors and scalar multiplication. If {Vn}∞n=1 is a sequence of
closed mutually orthogonal subspaces of H we denote by

∑∞
n=1⊕Vn the closure

of their linear span. If A is in B(H) we denote by r(A) the range of A and by
cokerA the orthogonal complement of the kernel of A. An operator range is the
range of a bounded operator in H. A nest in H is a totally ordered set of closed
subspaces of H containing {0} and H which is closed under intersection and closed
span. If N is a nest in H and P is in N we will denote by the same symbol the
orthogonal projection on the subspace P . If N is a nest we denote by N⊥ the
nest {P⊥ : P ∈ N}. A nest N is continuous if P = [

⋃
Q<P Q] for every P in N .

Given a nest N the associated nest algebra AlgN is the set of operators A in B(H)
satisfying PAP = AP for every P in N . For a general discussion of nest algebras
the reader is referred to [3].
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2. Proper subspaces

We introduce in this section the notion of N -proper subspace for a nest N .
We show that a closed subspace of H of co-finite dimension is N -proper for every
continuous nest N .

Definition 1. Let N be a nest on H. A vector x in H is called N -proper if x = Px
for some P in N , P 6= I.

Definition 2. Let N be a nest on H. A subspace V of H is called N -proper if
[V ∩ P : P ∈ N,P 6= I] is dense in V .

Lemma 3. Let N be a continuous nest on H. Let {Pn}∞n=1 be a sequence of ele-
ments of N such that: Pn 6= I, Pn+1 ≥ Pn, and Pn converges strongly to I. Let
x1, x2, . . . , xm be orthonormal vectors in H. Set V = [x1, x2, . . . , xm]⊥. Then:

(a) There exists n0 such that Pnx1, Pnx2, . . . , Pnxm are linearly independent for
n ≥ n0.

(b) We set V1 = P1H 	 P1V
⊥ and we define inductively

Vn = PnH 	
(
n−1∑
i=1

⊕Vi ⊕ PnV ⊥
)
.

Then V =
∑∞
i=1⊕Vi.

Proof. (a) The Grammian of the vectors Pnx1, Pnx2, . . . , Pnxm converges to the
Grammian of the vectors x1, x2, . . . , xm which equals 1.

(b) It is easy to see that the Vn’s are mutually orthogonal and that Vn is contained
in V for every n. We show that (

∑∞
i=1⊕Vi) ⊕ V ⊥ = H. Let x be a vector in H

which is orthogonal to (
∑∞
i=1⊕Vi)⊕V ⊥. For each n the vector Pnx is orthogonal to∑n

i=1⊕Vi so Pnx is in PnV
⊥. For n ≥ n0 we have Pnx = Pn(

∑m
i=1 aixi), where the

ai’s are complex numbers not depending on n. So x = limn→∞ Pnx =
∑m
i=1 aixi.

But x is orthogonal to V ⊥, hence it is 0.

Proposition 4. Let N be a continuous nest and V a closed subspace of H of co-
finite dimension. Then V is N -proper.

Proof. It follows immediately from Lemma 3.

Let N be a continuous nest on H and A an operator in B(H). Consider the
set
⋃
P∈N,P 6=I A

−1(P ). This set is equal to
⋃
P∈N,P 6=I Ker(P⊥A). If A is an AlgN

the set
⋃
P∈N,P 6=I A

−1(P ) contains
⋃
P∈N,P 6=I P ; hence it is dense in H. There

exist operators A in B(H) for which
⋃
P∈N,P 6=I A

−1(P ) is not dense in H. We
construct such an operator in Example 9. We will prove in the next section that⋃
P∈N,P 6=I A

−1(P ) is dense in H if and only if there exists an operator B in AlgN
such that AA∗ = BB∗. We first prove some preliminary results.

Lemma 5. Let N be a nest on H and A an operator in B(H). The following are
equivalent:

(a) The set
⋃
P∈N,P 6=0(A∗)−1(P⊥) is dense in H.

(b)
⋂
P∈N,P 6=0 r(AP ) = {0}.

Proof. We have that (A∗)−1(P⊥)={x ∈ H : A∗x ∈ P⊥}={x ∈ H : P⊥A∗x=A∗x}
= Ker(PA∗) = r(AP )

⊥
and

⋃
P∈N,P 6=0 r(AP )

⊥
is dense in (

⋂
P∈N,P 6=0 r(AP ))⊥.
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Proposition 6. Let N be a nest on H and A an operator in B(H).
(a) Suppose that the set

⋃
P∈N,P 6=I A

−1(P ) is dense in H. Then r(A) is N -
proper.

(b) Suppose that r(A) is N -proper and closed. Then the set
⋃
P∈N,P 6=I A

−1(P )
is dense in H.

Proof. (a) The set A(
⋃
P∈N,P 6=I A

−1(P )) is contained in [r(A)∩P : P ∈ N,P 6= I]

and is dense in r(A).
(b) The restriction of A to cokerA is an isomorphism from cokerA onto r(A).

Hence (
⋃
P∈N,P 6=I A

−1(P )) ∩ cokerA = A−1(
⋃
P∈N,P 6=I P ) ∩ cokerA is dense in

cokerA. Therefore
⋃
P∈N,P 6=I A

−1(P ) is dense in H.

Proposition 7. Let N be a nest on H and A an operator in B(H).

(a) Suppose that
⋂
P∈N,P 6=0 r(AP ) = {0}. Then cokerA is N⊥-proper.

(b) Suppose that cokerA is N⊥-proper and r(A) is closed. Then
⋂
P∈N,P 6=0 r(AP )

= {0}.

Proof. (a) It follows from Lemma 5 that
⋃
P∈N,P 6=0(A∗)−1(P⊥) is dense in H. It

follows from Proposition 6 that r(A∗) is N⊥-proper. Since the closure of an N⊥-
proper subspace is an N⊥-proper subspace we conclude that cokerA is N⊥-proper.

(b) It follows from [2, Ch. VI, Th. 1.10] that r(A∗) is closed. Hence r(A∗) =
cokerA. It follows from Proposition 6 that

⋃
P∈N,P 6=0(A∗)−1(P⊥) is dense in H.

Therefore from Lemma 5 we conclude that
⋂
P∈N,P 6=0 r(AP ) = {0}.

3. Factorisation

In this section we prove our main results and give some applications.

Theorem 8. Let N be a continuous nest and A an operator in B(H). The follow-
ing are equivalent:

(a) There exists an operator B in AlgN such that AA∗ = BB∗.
(b) The set

⋃
P∈N,P 6=I A

−1(P ) is dense in H.

Proof. Assume (a) holds. In order to prove (b) it is enough to prove that the
set

⋃
P∈N,P 6=I(A

−1(P ) ∩ cokerA)is dense in cokerA. Using polar decomposition
one can see that there exists a partial isometry U with domain cokerA and range
cokerB such that A = BU . We put R = [

⋃
P∈N,P 6=I(A

−1(P ) ∩ cokerA)] and M =

cokerA	R. We will show that M = {0}. Take m in M and P in N , P 6= I. Since
r(A) = r(B) ([5, Th. 1]), we have BPUm = AxP for some xP in cokerA. Since
BPUm is in P , xP is in A−1(P ) ∩ cokerA and hence in R. We have BPUm =
AxP = BUxP and so PUm−UxP is in kerB. We have PUm = PUm−UxP+UxP
which belongs to ker B⊕UR. Note that the decompositionH = kerB⊕UR⊕UM is
orthogonal. Therefore Um = limP∈N,P 6=I,P→I PUm is in (kerB⊕UR)∩UM = {0}.
We conclude that m = 0.

Assume (b) holds. It is then clear that the set
⋃
P∈N,P 6=I(A

−1(P ) ∩ cokerA) is

dense in cokerA. Take a sequence {Pn}∞n=0 of elements of N such that: P0 = 0,
Pn+1 > Pn, Pn 6= I for every n and Pn converges strongly to I. We set: R1 =
A−1(P1) ∩ cokerA, Rn = (A−1(Pn) ∩ cokerA)	Rn−1 for n > 1.

It is clear that Rn is orthogonal to Rm for n 6= m and that Rn is contained in
cokerA for every n. We show that cokerA =

∑∞
n=1⊕Rn. Take y in cokerA. If y

is orthogonal to
∑∞
n=1⊕Rn, then y is orthogonal to A−1(Pn) ∩ cokerA for every

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 M. ANOUSSIS AND E. G. KATSOULIS

n; hence y is orthogonal to (
⋃∞
n=1(A−1(Pn) ∩ cokerA)). Since (

⋃∞
n=1(A−1(Pn) ∩

cokerA)) is dense in cokerA, y = 0, and so cokerA =
∑∞
n=1⊕Rn.

Consider for n ≥ 1 a partial isometry Vn with domain contained in (Pn+1−Pn)H
and range Rn. Put V =

∑∞
n=1⊕Vn. Then V is a partial isometry with range

cokerA. Note that A = AV V ∗. We show that AV belongs to AlgN . Let P be
in N and x be a vector in P . We show that AV x is in P . If P ≤ P1 we have
AV x = 0. If P > P1 there exists m ≥ 1 such that Pm < P ≤ Pm+1. Then
AV x = A(

∑m
n=1⊕Vn)x and (

∑m
n=1⊕Vn)x is contained in (

∑m
n=1⊕Rn). Therefore

AV x is in A(
∑m
n=1⊕Rn) which is contained in Pm. Since Pm < P we conclude

that AV x is in P .
Put B = AV . Then BB∗ = AV V ∗A∗ = AA∗ and B is in AlgN .

Remark. Theorem 8 remains true under the weaker assumption that N is a nest
which satisfies H = [

⋃
Q<H Q].

Let N be a continuous nest. We give an example of an operator with N -proper
range which does not satisfy condition (b) of Theorem 8.

Example 9. Let N be a continuous nest. Take a sequence {Pn}∞n=0 of elements of
N such that:

P0 = 0, Pn+1 > Pn, Pn 6= I for every n and Pn converges strongly to I.

For each n consider a vector en of norm 1 and such that (Pn+1 − Pn)en = en.
Put y =

∑∞
i=1 n

−1en. Let A be the operator defined by: Aen = n−1en for n ≥ 1,
Ae0 = y and A is 0 on [en : n = 0, 1, 2, . . . ]⊥. Then r(A) is N -proper and it is easy
to see that A does not satisfy condition (b) of Theorem 8. In fact, e0 is orthogonal
to
⋃
P∈N,P 6=I A

−1(P ). So A does not satisfy condition (a) of Theorem 8.

Corollary 10. Let N be a continuous nest and A an operator in B(H). The
following are equivalent:

(a) There exists an operator B in AlgN such that A∗A = B∗B.

(b)
⋂
P∈N,P 6=0 r(AP ) = {0}.

Proof. There exists an operator B in AlgN such that A∗A = B∗B if and only if
there exists an operator C in AlgN⊥ such that A∗A = CC∗. The corollary follows
now from Theorem 8 and Lemma 5.

Corollary 11. Let N be a continuous nest and A an operator in B(H). Suppose
A is onto (resp. one-to-one and r(A) is closed). Then there exists an operator B
in AlgN such that AA∗ = BB∗ (resp. A∗A = B∗B).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and
Corollary 10).

Corollary 12. Let N be a continuous nest and Q a projection in B(H). Then
there exists an operator B in AlgN such that Q = BB∗ (resp. Q = B∗B) if and
only if QH is N -proper (resp. N⊥-proper).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and
Corollary 10).

The following corollary answers a question posed by Shields in [13].
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Corollary 13. Let N be a continuous nest and A a positive operator in B(H).
Assume there exists an operator B in AlgN such that A2 = B∗B. Then there
exists an operator C in AlgN such that A = C∗C.

Proof. We have to show that if
⋂
P∈N,P 6=0 r(AP ) = {0}, then

⋂
P∈N,P 6=0 r(A

1/2P )

= {0}. Let y be in
⋂
P∈N,P 6=0 r(A

1/2P ). Then A1/2y is in
⋂
P∈N,P 6=0 r(AP ) = {0};

hence A1/2y = 0. So y is in Ker A1/2. Since y is also in r(A1/2) we see that
y = 0.

We will characterise now the operators that satisfy condition (a) of Theorem 8
(resp. condition (a) of Corollary 10) for every continuous nest.

Proposition 14. Let V be an operator range. Assume V is not of co-finite dimen-
sion in H. Then there exists a continuous nest N in H such that V ∩ P = {0} for
every P in N , P 6= I.

Proof. (i) We first show that there exists a non-closed operator range W which
contains V . We will use the following fact: If V1, V2 are operator ranges, then
V1 + V2 is an operator range [7, Ch. I, 1]. If V is closed we consider an operator
range U which is non-closed and is contained in V ⊥. We set W = V +U . Then W
is an operator range which is non-closed and contains V .

(ii) It follows from (i) above that we may assume that V is non-closed. An oper-
ator range R is called of type JS (Dixmier’s notation) if it is dense and there exists
a sequence {Hn}∞n=0 of closed mutually orthogonal infinite dimensional subspaces
of H such that R = {

∑∞
n=0 xn : xn ∈ Hn and

∑∞
n=0(2n‖xn‖)2 < ∞}. It is shown

in the proof of Theorem 3.6 in [6] that any non-closed operator range is contained
in an operator range of type JS . It follows that there exists an operator range S
of type JS such that V ⊂ S. It follows from Theorem 3.6 in [6] that there exists a
unitary operator U on H such that US ∩ S = {0}. We conclude that there exists
an operator range T of type JS such that V ∩ T = {0}. Now it is easy to see that
there exists a continuous nest N in H such that P ⊂ T for every P in N , P 6= I.
It follows that P ∩ V = {0} for every P in N , P 6= I.

Theorem 15. Let A be an operator in B(H).
(a) There exists for every continuous nest N an operator BN in AlgN satisfying

AA∗ = BNB
∗
N if and only if A is a right Fredholm operator.

(b) There exists for every continuous nest N an operator BN in AlgN satisfying
A∗A = B∗NBN if and only if A is a left Fredholm operator.

Proof. (a) Assume that for every continuous nest N there exists an operator BN in
AlgN satisfying AA∗ = BNB

∗
N . It follows from Theorem 8 and Proposition 6 that

r(A) is N -proper for very continuous nest N . Proposition 14 implies that r(A) is of
co-finite dimension in H. If the range of an operator is of co-finite dimension, then
it is closed [4, Prop. 3.7]. Therefore A is a right Fredholm operator. Assume now
that A is a right Fredholm operator. Then r(A) is closed and of co-finite dimension
in H. By Proposition 4, r(A) is N -proper for every continuous nest N . It follows
then from Proposition 6 and Theorem 8 that for every continuous nest N there
exists an operator BN in AlgN satisfying AA∗ = BNB

∗
N .

(b) Consider the following properties of an operator A:

(i) There exists for every continuous nest N an operator BN in AlgN satisfying
AA∗ = BNB

∗
N .
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(ii) There exists for every continuous nest N an operator BN in AlgN satisfying
A∗A = B∗NBN .

Since a nest N is continuous if and only if the nest N⊥ is continuous we see that
an operator A has property (i) if and only if the operator A∗ has property (ii). The
assertion follows now from (a).

Added in proof

After this work was submitted a paper of G. T. Adams, J. Froelich, P. J. McGuire,
and V. I. Paulsen entitled Analytic reproducing kernels and factorisation, Indiana
Univ. Math. J. 43 (1994), came to our attention. Condition (b) of our Theorem
8 is essentially the same with the density condition given in Theorem 3.1 of this
paper in a different but related context.
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