PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 1, January 1997, Pages 87–92 S 0002-9939(97)03430-8

FACTORISATION IN NEST ALGEBRAS

M. ANOUSSIS AND E. G. KATSOULIS

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We give a necessary and sufficient condition on an operator A for the existence of an operator B in the nest algebra AlgN of a continuous nest N satisfying $AA^* = BB^*$ (resp. $A^*A = B^*B$). We also characterise the operators A in B(H) which have the following property: For every continuous nest N there exists an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$ (resp. $A^*A = B_N^* B_N$).

1. INTRODUCTION-PRELIMINARIES

The problem of factorisation of operators with respect to a nest algebra has been studied by many authors [8], [1], [13], [9], [11], [12], [10]. In this work we give a necessary and sufficient condition on an operator A for the existence of an operator B in the nest algebra AlgN of a continuous nest N satisfying $AA^* = BB^*$ (resp. $A^*A = B^*B$). This result improves Theorem 4.9 in [9] for continuous nests. We also characterise the operators A in B(H) which have the following property: For every continuous nest N there exists an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$ (resp. $A^*A = B_N^*B_N$).

Throughout this work H denotes a separable Hilbert space and B(H) the space of all bounded operators from H into itself. If V is a subset of H we denote by [V] the linear span of V. By subspace of H we mean a subset of H which is closed under addition of vectors and scalar multiplication. If $\{V_n\}_{n=1}^{\infty}$ is a sequence of closed mutually orthogonal subspaces of H we denote by $\sum_{n=1}^{\infty} \oplus V_n$ the closure of their linear span. If A is in B(H) we denote by r(A) the range of A and by coker A the orthogonal complement of the kernel of A. An operator range is the range of a bounded operator in H. A nest in H is a totally ordered set of closed subspaces of H containing $\{0\}$ and H which is closed under intersection and closed span. If N is a nest in H and P is in N we will denote by the same symbol the orthogonal projection on the subspace P. If N is a nest we denote by N^{\perp} the nest $\{P^{\perp}: P \in N\}$. A nest N is continuous if $P = [\bigcup_{Q < P} Q]$ for every P in N. Given a nest N the associated nest algebra AlgN is the set of operators A in B(H)satisfying PAP = AP for every P in N. For a general discussion of nest algebras the reader is referred to [3].

©1997 American Mathematical Society

Received by the editors December 6, 1994 and, in revised form, April 5, 1995. 1991 Mathematics Subject Classification. Primary 47D25.

2. Proper subspaces

We introduce in this section the notion of N-proper subspace for a nest N. We show that a closed subspace of H of co-finite dimension is N-proper for every continuous nest N.

Definition 1. Let N be a nest on H. A vector x in H is called N-proper if x = Px for some P in N, $P \neq I$.

Definition 2. Let N be a nest on H. A subspace V of H is called N-proper if $[V \cap P : P \in N, P \neq I]$ is dense in V.

Lemma 3. Let N be a continuous nest on H. Let $\{P_n\}_{n=1}^{\infty}$ be a sequence of elements of N such that: $P_n \neq I$, $P_{n+1} \geq P_n$, and P_n converges strongly to I. Let x_1, x_2, \ldots, x_m be orthonormal vectors in H. Set $V = [x_1, x_2, \ldots, x_m]^{\perp}$. Then:

(a) There exists n_0 such that $P_n x_1, P_n x_2, \ldots, P_n x_m$ are linearly independent for $n \ge n_0$.

(b) We set $V_1 = P_1 H \ominus P_1 V^{\perp}$ and we define inductively

$$V_n = P_n H \ominus \left(\sum_{i=1}^{n-1} \oplus V_i \oplus P_n V^{\perp}\right).$$

Then $V = \sum_{i=1}^{\infty} \oplus V_i$.

Proof. (a) The Grammian of the vectors $P_n x_1, P_n x_2, \ldots, P_n x_m$ converges to the Grammian of the vectors x_1, x_2, \ldots, x_m which equals 1.

(b) It is easy to see that the V_n 's are mutually orthogonal and that V_n is contained in V for every n. We show that $(\sum_{i=1}^{\infty} \oplus V_i) \oplus V^{\perp} = H$. Let x be a vector in Hwhich is orthogonal to $(\sum_{i=1}^{\infty} \oplus V_i) \oplus V^{\perp}$. For each n the vector $P_n x$ is orthogonal to $\sum_{i=1}^{n} \oplus V_i$ so $P_n x$ is in $P_n V^{\perp}$. For $n \ge n_0$ we have $P_n x = P_n(\sum_{i=1}^{m} a_i x_i)$, where the a_i 's are complex numbers not depending on n. So $x = \lim_{n \to \infty} P_n x = \sum_{i=1}^{m} a_i x_i$. But x is orthogonal to V^{\perp} , hence it is 0.

Proposition 4. Let N be a continuous nest and V a closed subspace of H of cofinite dimension. Then V is N-proper.

Proof. It follows immediately from Lemma 3.

Let N be a continuous nest on H and A an operator in B(H). Consider the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$. This set is equal to $\bigcup_{P \in N, P \neq I} \operatorname{Ker}(P^{\perp}A)$. If A is an AlgN the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ contains $\bigcup_{P \in N, P \neq I} P$; hence it is dense in H. There exist operators A in B(H) for which $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is not dense in H. We construct such an operator in Example 9. We will prove in the next section that $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H if and only if there exists an operator B in AlgN such that $AA^* = BB^*$. We first prove some preliminary results.

Lemma 5. Let N be a nest on H and A an operator in B(H). The following are equivalent:

(a) The set U_{P∈N,P≠0}(A*)⁻¹(P[⊥]) is dense in H.
(b) ∩_{P∈N,P≠0} r(AP) = {0}.

Proof. We have that
$$(A^*)^{-1}(P^{\perp}) = \{x \in H : A^*x \in P^{\perp}\} = \{x \in H : P^{\perp}A^*x = A^*x\}$$

= $\operatorname{Ker}(PA^*) = \overline{r(AP)}^{\perp}$ and $\bigcup_{P \in N, P \neq 0} \overline{r(AP)}^{\perp}$ is dense in $(\bigcap_{P \in N, P \neq 0} \overline{r(AP)})^{\perp}$.

88

Proposition 6. Let N be a nest on H and A an operator in B(H).

(a) Suppose that the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H. Then r(A) is N-proper.

(b) Suppose that r(A) is N-proper and closed. Then the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H.

Proof. (a) The set $A(\bigcup_{P \in N, P \neq I} A^{-1}(P))$ is contained in $[r(A) \cap P : P \in N, P \neq I]$ and is dense in r(A).

(b) The restriction of A to cokerA is an isomorphism from cokerA onto r(A). Hence $(\bigcup_{P \in N, P \neq I} A^{-1}(P)) \cap \operatorname{cokerA} = A^{-1}(\bigcup_{P \in N, P \neq I} P) \cap \operatorname{cokerA}$ is dense in cokerA. Therefore $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H.

Proposition 7. Let N be a nest on H and A an operator in B(H).

(a) Suppose that $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$. Then cokerA is N^{\perp} -proper.

(b) Suppose that coker A is N^{\perp} -proper and r(A) is closed. Then $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}.$

Proof. (a) It follows from Lemma 5 that $\bigcup_{P \in N, P \neq 0} (A^*)^{-1} (P^{\perp})$ is dense in H. It follows from Proposition 6 that $r(A^*)$ is N^{\perp} -proper. Since the closure of an N^{\perp} -proper subspace is an N^{\perp} -proper subspace we conclude that coker A is N^{\perp} -proper.

(b) It follows from [2, Ch. VI, Th. 1.10] that $r(A^*)$ is closed. Hence $r(A^*) = \operatorname{coker} A$. It follows from Proposition 6 that $\bigcup_{P \in N, P \neq 0} (A^*)^{-1} (P^{\perp})$ is dense in H. Therefore from Lemma 5 we conclude that $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$. \Box

3. Factorisation

In this section we prove our main results and give some applications.

Theorem 8. Let N be a continuous nest and A an operator in B(H). The following are equivalent:

- (a) There exists an operator B in AlgN such that $AA^* = BB^*$.
- (b) The set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H.

Proof. Assume (a) holds. In order to prove (b) it is enough to prove that the set $\bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \operatorname{coker} A)$ is dense in coker *A*. Using polar decomposition one can see that there exists a partial isometry *U* with domain coker *A* and range coker *B* such that A = BU. We put $R = [\bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \operatorname{coker} A)]$ and $M = \operatorname{coker} A \ominus R$. We will show that $M = \{0\}$. Take *m* in *M* and *P* in *N*, $P \neq I$. Since r(A) = r(B) ([5, Th. 1]), we have $BPUm = Ax_P$ for some x_P in coker *A*. Since BPUm is in *P*, x_P is in $A^{-1}(P) \cap \operatorname{coker} A$ and hence in *R*. We have $BPUm = Ax_P = BUx_P$ and so $PUm - Ux_P$ is in ker *B*. We have $PUm = PUm - Ux_P + Ux_P$ which belongs to ker $B \oplus UR$. Note that the decomposition $H = \ker B \oplus UR \oplus UM$ is orthogonal. Therefore $Um = \lim_{P \in N, P \neq I, P \to I} PUm$ is in $(\ker B \oplus UR) \cap UM = \{0\}$. We conclude that m = 0.

Assume (b) holds. It is then clear that the set $\bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \operatorname{coker} A)$ is dense in coker A. Take a sequence $\{P_n\}_{n=0}^{\infty}$ of elements of N such that: $P_0 = 0$, $P_{n+1} > P_n, P_n \neq I$ for every n and P_n converges strongly to I. We set: $R_1 = A^{-1}(P_1) \cap \operatorname{coker} A$, $R_n = (A^{-1}(P_n) \cap \operatorname{coker} A) \ominus R_{n-1}$ for n > 1.

It is clear that R_n is orthogonal to R_m for $n \neq n$ and that R_n is contained in coker A for every n. We show that $\operatorname{coker} A = \sum_{n=1}^{\infty} \oplus R_n$. Take y in coker A. If y is orthogonal to $\sum_{n=1}^{\infty} \oplus R_n$, then y is orthogonal to $A^{-1}(P_n) \cap \operatorname{coker} A$ for every

n; hence *y* is orthogonal to $(\bigcup_{n=1}^{\infty} (A^{-1}(P_n) \cap \operatorname{coker} A))$. Since $(\bigcup_{n=1}^{\infty} (A^{-1}(P_n) \cap \operatorname{coker} A))$ is dense in coker*A*, y = 0, and so coker*A* = $\sum_{n=1}^{\infty} \oplus R_n$.

Consider for $n \ge 1$ a partial isometry V_n with domain contained in $(P_{n+1} - P_n)H$ and range R_n . Put $V = \sum_{n=1}^{\infty} \oplus V_n$. Then V is a partial isometry with range coker A. Note that $A = AVV^*$. We show that AV belongs to Alg N. Let P be in N and x be a vector in P. We show that AVx is in P. If $P \le P_1$ we have AVx = 0. If $P > P_1$ there exists $m \ge 1$ such that $P_m < P \le P_{m+1}$. Then $AVx = A(\sum_{n=1}^{m} \oplus V_n)x$ and $(\sum_{n=1}^{m} \oplus V_n)x$ is contained in $(\sum_{n=1}^{m} \oplus R_n)$. Therefore AVx is in $A(\sum_{n=1}^{m} \oplus R_n)$ which is contained in P_m . Since $P_m < P$ we conclude that AVx is in P.

Put B = AV. Then $BB^* = AVV^*A^* = AA^*$ and B is in AlgN.

Remark. Theorem 8 remains true under the weaker assumption that N is a nest which satisfies $H = \overline{[\bigcup_{Q \leq H} Q]}$.

Let N be a continuous nest. We give an example of an operator with N-proper range which does not satisfy condition (b) of Theorem 8.

Example 9. Let N be a continuous nest. Take a sequence $\{P_n\}_{n=0}^{\infty}$ of elements of N such that:

 $P_0 = 0$, $P_{n+1} > P_n$, $P_n \neq I$ for every *n* and P_n converges strongly to *I*.

For each *n* consider a vector e_n of norm 1 and such that $(P_{n+1} - P_n)e_n = e_n$. Put $y = \sum_{i=1}^{\infty} n^{-1}e_n$. Let *A* be the operator defined by: $Ae_n = n^{-1}e_n$ for $n \ge 1$, $Ae_0 = y$ and *A* is 0 on $[e_n : n = 0, 1, 2, ...]^{\perp}$. Then r(A) is *N*-proper and it is easy to see that *A* does not satisfy condition (b) of Theorem 8. In fact, e_0 is orthogonal to $\bigcup_{P \in N, P \ne I} A^{-1}(P)$. So *A* does not satisfy condition (a) of Theorem 8.

Corollary 10. Let N be a continuous nest and A an operator in B(H). The following are equivalent:

- (a) There exists an operator B in AlgN such that $A^*A = B^*B$.
- (b) $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}.$

Proof. There exists an operator B in AlgN such that $A^*A = B^*B$ if and only if there exists an operator C in Alg N^{\perp} such that $A^*A = CC^*$. The corollary follows now from Theorem 8 and Lemma 5.

Corollary 11. Let N be a continuous nest and A an operator in B(H). Suppose A is onto (resp. one-to-one and r(A) is closed). Then there exists an operator B in AlgN such that $AA^* = BB^*$ (resp. $A^*A = B^*B$).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and Corollary 10). $\hfill \Box$

Corollary 12. Let N be a continuous nest and Q a projection in B(H). Then there exists an operator B in AlgN such that $Q = BB^*$ (resp. $Q = B^*B$) if and only if QH is N-proper (resp. N^{\perp} -proper).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and Corollary 10). $\hfill \Box$

The following corollary answers a question posed by Shields in [13].

Corollary 13. Let N be a continuous nest and A a positive operator in B(H). Assume there exists an operator B in AlgN such that $A^2 = B^*B$. Then there exists an operator C in AlgN such that $A = C^*C$.

Proof. We have to show that if $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$, then $\bigcap_{P \in N, P \neq 0} \overline{r(A^{1/2}P)} = \{0\}$. Let y be in $\bigcap_{P \in N, P \neq 0} \overline{r(A^{1/2}P)}$. Then $A^{1/2}y$ is in $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$; hence $A^{1/2}y = 0$. So y is in Ker $A^{1/2}$. Since y is also in $\overline{r(A^{1/2})}$ we see that y = 0.

We will characterise now the operators that satisfy condition (a) of Theorem 8 (resp. condition (a) of Corollary 10) for every continuous nest.

Proposition 14. Let V be an operator range. Assume V is not of co-finite dimension in H. Then there exists a continuous nest N in H such that $V \cap P = \{0\}$ for every P in N, $P \neq I$.

Proof. (i) We first show that there exists a non-closed operator range W which contains V. We will use the following fact: If V_1, V_2 are operator ranges, then $V_1 + V_2$ is an operator range [7, Ch. I, 1]. If V is closed we consider an operator range U which is non-closed and is contained in V^{\perp} . We set W = V + U. Then W is an operator range which is non-closed and contains V.

(ii) It follows from (i) above that we may assume that V is non-closed. An operator range R is called of type J_S (Dixmier's notation) if it is dense and there exists a sequence $\{H_n\}_{n=0}^{\infty}$ of closed mutually orthogonal infinite dimensional subspaces of H such that $R = \{\sum_{n=0}^{\infty} x_n : x_n \in H_n \text{ and } \sum_{n=0}^{\infty} (2^n ||x_n||)^2 < \infty\}$. It is shown in the proof of Theorem 3.6 in [6] that any non-closed operator range is contained in an operator range of type J_S . It follows that there exists an operator range S of type J_S such that $V \subset S$. It follows from Theorem 3.6 in [6] that there exists a unitary operator U on H such that $US \cap S = \{0\}$. We conclude that there exists an operator range T of type J_S such that $V \cap T = \{0\}$. Now it is easy to see that there exists a continuous nest N in H such that $P \subset T$ for every P in N, $P \neq I$. It follows that $P \cap V = \{0\}$ for every P in N, $P \neq I$.

Theorem 15. Let A be an operator in B(H).

(a) There exists for every continuous nest N an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$ if and only if A is a right Fredholm operator.

(b) There exists for every continuous nest N an operator B_N in AlgN satisfying $A^*A = B_N^*B_N$ if and only if A is a left Fredholm operator.

Proof. (a) Assume that for every continuous nest N there exists an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$. It follows from Theorem 8 and Proposition 6 that r(A) is N-proper for very continuous nest N. Proposition 14 implies that r(A) is of co-finite dimension in H. If the range of an operator is of co-finite dimension, then it is closed [4, Prop. 3.7]. Therefore A is a right Fredholm operator. Assume now that A is a right Fredholm operator. Then r(A) is closed and of co-finite dimension in H. By Proposition 4, r(A) is N-proper for every continuous nest N. It follows then from Proposition 6 and Theorem 8 that for every continuous nest N there exists an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$.

- (b) Consider the following properties of an operator A:
- (i) There exists for every continuous nest N an operator B_N in AlgN satisfying $AA^* = B_N B_N^*$.

(ii) There exists for every continuous nest N an operator B_N in AlgN satisfying $A^*A = B_N^*B_N$.

Since a nest N is continuous if and only if the nest N^{\perp} is continuous we see that an operator A has property (i) if and only if the operator A^* has property (ii). The assertion follows now from (a).

ADDED IN PROOF

After this work was submitted a paper of G. T. Adams, J. Froelich, P. J. McGuire, and V. I. Paulsen entitled *Analytic reproducing kernels and factorisation*, Indiana Univ. Math. J. **43** (1994), came to our attention. Condition (b) of our Theorem 8 is essentially the same with the density condition given in Theorem 3.1 of this paper in a different but related context.

References

- W. B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233. MR 52:3979
- 2. J. B. Conway, A course in functional analysis, Springer-Verlag, 1985. MR 86h:46001
- K. R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, 191 (1988). MR 90f:47062
- J. Dixmier, Etude sur les variétés et les opérateurs de Julia, Bull. Soc. Math. France 77 (1949), 11–101. MR 11:369f
- 5. R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–416. MR 34:3315
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 45:2518
- C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1972), 887–906. MR 53:3734
- I.C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monographs, 24 (1970), AMS. MR 41:9041
- D. R. Larson, Nest algebras and similarity transformations, Ann. of Math. 121 (1985), 409– 427. MR 86j:47061
- D. R. Pitts, Factorization problems for nests: Factorization methods and characterizations of the universal factorization property, J. Funct. Ana. 79 (1988), 57–90. MR 90a:46160
- S. C. Power, Nuclear operators in nest algebras, J. Operator Theory 10 (1983), 337–352. MR 85b:47028
- S. C. Power, Factorisation in analytic operator algebras, J. Funct. Anal. 67 (1986), 413–432. MR 87k:47040
- A. L. Shields, An analogue of a Hardy-Littlewood-Fejer inequality for upper triangular trace class operators, Math. Z. 182 (1983), 473–484. MR 85c:47022

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE AEGEAN, KARLOVASSI 83200, GREECE

Department of Mathematics, East Carolina University, Greenville, North Carolina 27858

92