
Factorised Representations of Query Results:
Size Bounds and Readability

Dan Olteanu and Jakub Závodný
Department of Computer Science

University of Oxford
{dan.olteanu,jakub.zavodny}@cs.ox.ac.uk

ABSTRACT

We introduce a representation system for relational data
based on algebraic factorisation using distributivity of prod-
uct over union and commutativity of product and union.

We give two characterisations of conjunctive queries based
on factorisations of their results whose nesting structure is
defined by so-called factorisation trees.

The first characterisation concerns sizes of factorised rep-
resentations. For any query, we derive a size bound that is
asymptotically tight within our class of factorisations.

We also characterise the queries by tight bounds on the
readability of the provenance of result tuples and define syn-
tactically the class of queries with bounded readability.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational Data-
bases, Query Processing

General Terms

Theory, Algorithm Design

Keywords

conjunctive queries, data factorisation, hierarchical queries,
provenance, query evaluation, readability, size bounds

1. INTRODUCTION
This paper studies two properties related to the represen-

tation of results of conjunctive queries: size and readability.
In this study, we depart from the standard flat representa-
tion of query results as sets of tuples and consider instead
factorised representations of query results. The relationship
between a flat representation and an equivalent factorised
representation is on a par with the relationship between logic
functions in disjunctive normal form and their equivalent
nested forms obtained by algebraic factorisation. This work
lies at the foundation of a new kind of database systems that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

present relations at the logical layer and use equivalent fac-
torised representations at the physical layer. The underlying
observation is that factorised representations can boost the
performance of query processing in relational databases in
case of large input, intermediate, or final results, since they
can be exponentially more succinct than flat representations.
This paper characterises conjunctive queries by their ability
to map flat input data to small factorised results; the case
of factorised input data is deferred to future work.

We derive a number of results about factorised representa-
tions of query results and provenance. The structure of such
representations is defined by so-called factorisation trees,
which can be derived from the query hypergraph.

The size of a factorised representation is the number of
its data values. For any (non-Boolean) conjunctive query
Q, there is a rational number s(Q) such that (1) for any
database D, there exists a factorised representation of Q(D)

with size at most |S| · |D|s(Q), where |S| is the size of the re-
sult schema, and (2) for any factorisation tree T of Q, there
exist arbitrarily large databases D for which the factorised
representation ofQ(D) over T has size at least (|D|/|Q|)s(Q).
The results of Boolean queries either consist of the nullary
tuple (〈〉) or are the empty relation (∅), both of size 1.

The parameter s(Q) is the fractional edge cover number of
a subquery of Q. The problem of deciding whether s(Q) ≤ k
for a given queryQ and rational number k is in NP. However,
its exact complexity remains open. A factorised representa-
tion of the query result can be computed in time O(|D|s(T)),
where T is a factorisation tree of Q without projections and
extends a factorisation tree of Q.

We also characterise conjunctive queries by the readability
of provenance of their result tuples. A factorisation Φ of a
relation or Boolean function is read-k if each value or variable
appears at most k times in Φ. The readability of a relation
or function Φ is then the smallest number k such that there
is a read-k factorisation of Φ [5, 4, 3].

For any conjunctive query Q, there is a rational number
r(Q) called readability width such that for any database D,
the readability of the provenance of any tuple in the result
Q(D) is at most read-M · |D|r(Q), where M is the maxi-
mum number of repeating relation symbols in Q. This up-
per bound is asymptotically matched by a lower bound of
read-(|D|/|Q|)r(Q) for arbitrarily large databases D and any
factorisation tree within a special class.

A remarkable dichotomy holds for readability: hierarchi-
cal queries [2] are precisely those conjunctive queries with
readability width 0, and the readability width of any non-
hierarchical query is at least 1. Moreover, for non-repeating

285

non-hierarchical queries there exist arbitrarily large databa-
ses D such that the readability of the provenance of some
result tuple is Ω(

p

|D|). The hierarchical property thus
characterises queries with bounded readability and the read-
ability width characterises how “far” a query is from being
hierarchical. Hierarchical queries are intimately connected
to tractability in probabilistic databases [20], admit parallel
evaluation with one broadcast step [13], and have one-step
streaming evaluation in the finite cursor model [9].

2. PRELIMINARIES
Databases. We consider relational databases with named
attributes. An attribute A is any symbol. A schema S is
a set of attributes and a tuple t of schema S is a mapping
from S to a domain D. A relation R over S is a set of tuples
of schema S . A database D is a collection of relations. The
size |R| of R is the number of its tuples; the size |D| of a
database D is the sum of the sizes of its relations.
Queries. In this paper we consider conjunctive queries writ-
ten in the canonical relational algebra form

πP(σψ(R1 × . . .×Rn)),

where R1, . . . , Rn are distinct relation symbols over disjoint
schemas S1, . . . ,Sn, ψ is a conjunction of equalities of the
form A1 = A2 with attributes A1 and A2, and the projection
list P ⊆

S

i
Si. The attributes in P are called the head

attributes. If P =
S

i
Si we can drop the projection πP and

Q is an equi-join query. The equi-join of Q is the query
Q̂ = σψ(R1 × . . .×Rn). The size of Q is |Q| = n.

Although we require for simplicity that the relation sym-
bols are distinct, they may be mapped to the same rela-
tion. Our query language can thus capture queries with
self-joins, but we assume that different copies of relations
are already given different names and we thus need not use
explicit aliases in the query syntax. Similarly, the attribute
names are assumed distinct and we thus need not use explicit
renaming operators in the query syntax.

For an attributeA in a queryQ, we denote by A∗ its equiv-
alence class, i.e., the set consisting of A and of all attributes
that are transitively equal to A in the selection condition of
Q. We denote by rel(A) the set of all relation symbols of Q
with attributes in A∗. The hypergraph of Q has one node
for each attribute class of Q and for each relation symbol R
has a hyperedge over all nodes with attributes of R.

Definition 1. [2] A conjunctive query is hierarchical, if
for any two non-head attributes A and B, either rel(A) ⊆
rel(B), or rel(A) ⊃ rel(B), or rel(A) ∩ rel(B) = ∅. 2

Computational model. We use the uniform-cost RAM
model where the values of the domain D as well as the point-
ers into the database are of constant size.

3. FACTORISED REPRESENTATIONS
In this section we introduce the notion of factorised repre-

sentations of relations. Such representations are expressed in
a fragment of relational algebra consisting of unions, Carte-
sian products, and singleton relations.

Definition 2. Let S be a relational schema. A factorised
representation, or f-representation for short, over S , is a
relational algebra expression of the form

• ∅, the empty relation over schema S ,

• 〈〉, the relation consisting of the nullary tuple, if S = ∅,
• 〈A :a〉, the unary relation with a single tuple with value
a, if S = {A} and a is a value in the domain D,

• (E), where E is an f-representation over S ,
• E1 ∪ · · · ∪ En, where each Ei is an f-representation

over S ,
• E1 × · · · × En, where each Ei is an f-representation

over Si and S is the disjoint union of all Si. 2

The expressions 〈A :a〉 are called singletons of type A or
A-singletons and the expression 〈〉 is called the nullary sin-
gleton. The size |E| of an f-representation E is the number
of singletons plus the number of empty relations in E.

Any f-representation E can be interpreted as a relation
JEK. We say that JEK is the relation of E. Different f-
representations can represent the same relation. Two f-
representations E1 and E2 are equivalent if JE1K = JE2K.

Any relation has a so-called flat f-representation that is a
(possibly empty) union of products of singletons, where each
product of singletons represents one tuple in the relation.
This property of f-representations is called completeness.

Proposition 1. Factorised representations form a com-
plete representation system for relational data.

Although any relation has a flat f-representation, nested
f-representations can be exponentially more succinct than
their equivalent flat f-representations, where the exponent
is the size of the schema.

Example 1. The f-representation (〈A1 :0〉∪〈A1 :1〉)×. . .×
(〈An :0〉 ∪ 〈An :1〉) has size 2n, while any equivalent flat f-
representation has size 2n+1. 2

When describing algorithms on f-representations, we as-
sume wlog that f-representations are given as parse trees in
memory. We also assume that they are normalised in the
sense that no f-representation contains an empty relation or
a nullary singleton, unless it is itself the empty relation or the
nullary singleton. An f-representation can be normalised in
linear time similarly to simplification by propagation of the
constants true and false in Boolean functions. By expanding
an f-representation using the distributivity of product over
union, we obtain an equivalent flat f-representation that is
a union of products of singletons (akin to disjunctive nor-
mal form of a Boolean function). These products can be
enumerated efficiently.

Proposition 2. The products of singletons in an f-repre-
sentation E over a schema S can be enumerated with O(|E|)
space and precomputation time and O(|S|) delay.

The products of singletons obtained by expanding an f-
representation E using the distributivity of product over
union correspond to the tuples of JEK under bag semantics.
The present work is concerned with set semantics and in
the sequel we thus only consider f-representations with dis-
tinct products of singletons. This implies that for any such
f-representation the distinct tuples of the represented rela-
tion JEK can be enumerated efficiently in some order. The
problem of tuple enumeration under a given order is out
of the scope of this paper. Allowing duplicate tuples can
make f-representations more succinct, yet the enumeration
of distinct tuples may require larger delay or precomputa-
tion time.

286

Remark 1. Earlier work in incomplete databases has in-
troduced a representation system called world-set decompo-
sitions [16] to represent succinctly sets of possible worlds.
Such decompositions can be seen as f-representations whose
structure is a product of unions of products of singletons.2

4. F-TREES FOR RELATIONS
We next introduce factorisation trees that define the schemas

as well as the nesting structures of f-representations.

Definition 3. A factorisation tree, or f-tree for short, over
a possibly empty schema S is an unordered rooted forest
with each node labelled by a non-empty subset of S such
that each attribute of S occurs in exactly one node. 2

We next define f-representations over a given f-tree.

Definition 4. An f-representation E over a given f-tree T
is recursively defined as follows:

• If T is a forest of trees T1, . . . , Tk, then

E = E1 × · · · ×Ek

where each Ei is an f-representation over Ti.
• If T is a single tree with a root labelled by {A1, . . . , Ak}

and a non-empty forest U of children, then

E =
S

a
〈A1 :a〉 × · · · × 〈Ak :a〉 × Ea

where each Ea is an f-representation over U and the
union

S

a is over a collection of distinct values a.
• If T is a single node labelled by {A1, . . . , Ak}, then

E =
S

a
〈A1 :a〉 × · · · × 〈Ak :a〉.

• If T is empty, then E = ∅ or E = 〈〉. 2

In an f-representation over an f-tree T , all attributes la-
belling a node in T have equal values in the represented
relation. The shape of T defines a hierarchy of attributes by
which we group the represented relation in the factorisation.
We group its tuples by the values of the attributes labelling
the root, factor out the common values in each group, and
then continue recursively on each group using the attributes
lower in the f-tree. Branching into several subtrees denotes
a product of f-representations over the individual subtrees.

Example 2. Consider a relation over schema {A,B,C}
and domain D = {1, . . . , 5} that represents the inequalities
A < B < C. An f-representation of this relation is

〈B : 2〉 × 〈A : 1〉 × (〈C : 3〉 ∪ 〈C : 4〉 ∪ 〈C : 5〉)∪

〈B : 3〉 × (〈A : 1〉 ∪ 〈A : 2〉) × (〈C : 4〉 ∪ 〈C : 5〉)∪

〈B : 4〉 × (〈A : 1〉 ∪ 〈A : 2〉 ∪ 〈A : 3〉) × 〈C : 5〉.

over the f-tree B

A C 2

For a given f-tree T over a schema S , not all relations over
S have an f-representation over T since the subexpressions
over subtrees that are siblings in T must appear in a product
and this may not be possible for all relations.

Example 3. The relation {〈1, 1, 1〉, 〈2, 1, 2〉} over schema
{A,B,C} does not admit an f-representation over the f-tree
from Example 2, since any such f-representation must essen-
tially be of the form 〈B :1〉×EA×EC , where EA is a union
of A-values and EC is a union of C-values. 2

Lemma 1. Let R be a relation over schema S and T be
an f-tree over S. If there is an f-representation of R over T ,
then it is unique up to commutativity of union and product.

If it exists, the f-representation of relation R over the f-
tree T is denoted by T (R) and can be constructed as follows:

• If T is a forest T1, . . . , Tk then

T (R) = T1(πT1
(R)) × · · · × Tk(πTk

(R)).

• If T is a tree with root {A1, . . . , Ak} and a non-empty
forest U of children, then

T (R) =
S

a∈A 〈A1 :a〉 × · · · × 〈Ak :a〉 × U(πUσA=aR).

• If T is a node {A1, . . . , Ak} then

E =
S

a∈A〈A1 :a〉 × · · · × 〈Ak :a〉.

• If T is empty, then E = ∅ if R is empty and E = 〈〉 if
R consists of the nullary tuple.

In the above equations, we considered A = πA1
(R) = · · · =

πAk
(R), (A = a) denotes

V

i
(Ai = a), and πU denotes the

projection on the attributes of the f-tree U .
The above construction ensures that T (R) is a normalised

f-representation and encodes distinct products of singletons
that can be enumerated according to Proposition 2.

We next define two notions that are necessary in subse-
quent sections to characterise sizes of f-representations over
f-trees. For an attribute A in an f-tree T , we denote by
anc(A) the set of all attributes at nodes that are ancestors
of the node labelled by A in T , and by path(A) the set of
attributes at the ancestors of the node of A and at the node
of A; thus, path(A) = anc(A) ∪A∗.

Example 4. In the left f-tree in Figure 1, path(C) is the
union of all attribute sets at nodes on the root-to-leaf path
ending at C: path(C) = {AR, AS, AT , BR, BS, C}. 2

5. F-TREES FOR QUERY RESULTS
In this section, we characterise the f-trees over which the

result of a conjunctive query Q is factorisable for any input
database. These f-trees can be inferred from the query Q.
We first discuss the simpler case of equi-join queries, i.e.,
queries without projection, and then show how to extend it
to arbitrary conjunctive queries.

In the following statements, we only consider f-trees whose
nodes are bijectively labelled by the equivalence classes of
head attributes in the input query Q. This assumption is
justified later in the section.

Proposition 3. Given an equi-join query Q, Q(D) has
an f-representation over an f-tree T for any database D iff
for each relation in Q its attributes lie along a root-to-leaf
path in T .

The condition in Proposition 3 is called the path condition.
Any f-tree satisfying Proposition 3 is valid for the query Q,
or simply an f-tree of Q.

Example 5. Consider the relations R, S and T over sche-
mas {AR, BR, C}, {AS, BS , D} and {AT , ET } respectively
and the query Q1 = σϕ(R × S × T) with ϕ = (AR = AS =
AT , BR = BS). The left and middle f-trees in Figure 1 are
valid for Q1. The right f-tree is invalid since the attributes
AS and D of S are not on a common root-to-leaf path. 2

287

AR, AS , AT

BR, BS

C D

ET

BR, BS

AR, AS , AT

C D ET

BR, BS

AR, AS , AT

C ET

D

Figure 1: Left to right: two valid f-trees T1 and T2

and one invalid f-tree for the query Q1 in Example 5.

The intuition behind Proposition 3 is as follows. The path
condition states that the attributes of a relation are in gen-
eral “dependent” on each other: as shown in Example 3, the
set of combinations of values of two attributes of a relation
may not be expressible as the product of two unions of val-
ues. Dependent attributes thus need to be along the same
path in an f-tree T ; if they would be on different paths in T ,
then their values appear in two sub-expressions that are in
a product in any f-representation over T . In case the path
condition is satisfied, we can produce an f-representation
of Q(D) over T by first joining the input relations on the
attributes in the root of T and then on the attributes in
the lower nodes, leaving products unexpanded whenever T
branches into independent subtrees.

Proposition 3 does not capture all f-trees that can be de-
rived from queries: it only deals with f-trees whose nodes
are labelled by the attribute classes of Q. For an f-tree to
factorise the results of Q, only attributes within the same
class may appear at a node, yet nodes need not be labelled
by whole attribute classes. The f-trees left out are those
where several nodes have attributes from the same class,
and for each class, among the nodes containing attributes of
that class, there is one which is an ancestor of the others.
For any such f-tree, the f-tree constructed by pushing up
all attributes of a class to the top-most node labelled by an
attribute in that class defines f-representations with smaller
or equal size and readability. For the purpose of this paper,
Proposition 3 thus characterises all interesting f-trees.

We next extend the above characterisation from equi-join
to arbitrary conjunctive queries. The difference is that pro-
jections can introduce additional dependencies between head
attributes: if we join two relations on attributes that are
subsequently projected away, the remaining attributes from
the two relations become dependent as enforced by the join.
These dependent attributes thus need to lie along the same
path in the f-tree. To capture this observation, we lift de-
pendencies from attributes to nodes in f-trees.

Definition 5. Let Q be a conjunctive query.
Two relations R and S in Q are dependent if
• They have attributes in a common class that does not

contain head attributes of Q, or
• There exists a relation T in Q such that R and T are

dependent and S and T are dependent.
Two attributes are dependent if they belong to the same

relation or to dependent relations.
Two nodes are dependent if their attributes belong to

equivalence classes of dependent attributes. 2

For conjunctive queries, Proposition 3 extends as follows.

Proposition 4. Given a conjunctive query Q, Q(D) has
an f-representation over an f-tree T for any database D iff
any two dependent nodes lie along a root-to-leaf path in T .

AT

C

D

ET

AT

C D ET

Figure 2: Left to right: a valid and an invalid f-tree
for the query πAT ,C,D,ET

Q1 in Example 6.

Similar to Proposition 3, the condition in Proposition 4
is called the path condition and the f-trees satisfying it are
called valid for Q.

Example 6. Consider the query πAT ,C,D,ET
Q1, where Q1

is defined in Example 5. The attribute class {BR, BS} is
entirely projected out, so the relations R and S are now de-
pendent, all their attributes are mutually dependent, and
hence the corresponding nodes {AT }, {C}, {D} are depen-
dent. The relation T induces the dependency of the nodes
{AT } and {ET }. The left f-tree in Figure 2 satisfies the path
condition and hence is valid for our query, while the right
f-tree, which is obtained by removing from the first f-tree in
Figure 1 the attributes projected away, is not valid. 2

An alternative characterisation of the f-trees of a conjunc-
tive query Q is via f-trees of its equi-join Q̂. Given an f-tree
T̂ of Q̂, a first approach to compute an f-tree T of Q is to
remove the attributes from T̂ that are projected away in
Q. A problem arises when all attributes of a node are pro-
jected away: the node remains unlabelled, the expressions of
the corresponding union would not be labelled by distinct
singletons, and the resulting f-representation may encode
duplicate products of singletons. Removing an empty node
from the f-tree is also not always feasible as illustrated by
Example 6: the attributes in its children subtrees may be-
come dependent, which invalidates the f-tree. However, this
problem does not arise when removing a leaf node. This ob-
servation leads to an alternative characterisation of f-trees
of arbitrary conjunctive queries.

Definition 6. An extension of an f-tree T of a conjunctive
query Q is an f-tree T̂ of the equi-join Q̂ of Q such that T
can be obtained from T̂ by erasing the non-head attributes
in Q and repeatedly removing empty leaf nodes. 2

Proposition 5. An f-tree T is valid for a conjunctive
query Q iff there exists an extension T̂ of T .

Example 7. The left f-tree in Figure 2 is valid for the
query πAT ,C,D,ET

Q1 and can be extended to an f-tree T̂ for
Q1 by adding a leaf with attributes BR, BS under D, and
adding the attributes AR, AS to the node labelled by AT .
The f-tree T̂ then satisfies the condition from Proposition 5.

The right f-tree in Figure 2 cannot be extended to an f-
tree valid for Q1, since the leaf BR, BS would have to be a
descendant of C and also a descendant of D. 2

We finally note a connection between f-trees and path de-
compositions of the query hypergraph [19]. A path decom-
position of a query Q is a path P whose nodes are bags of
attribute classes of Q, such that

• for each attribute class of Q, the nodes of P containing
that class form a non-empty connected path, and

288

• for each relation R in Q, there is a node in P that
contains the classes of all attributes of R.

Proposition 6. Each f-tree of an equi-join query corre-
sponds to a path decomposition of its hypergraph.

For queries with projection, this connection is lost since
the query hypergraph cannot be recovered from the f-trees.

We next sketch the proof of Proposition 6. Consider a
left-to-right order of the nodes in the f-tree T of the query
Q. Let L1, . . . , Lk be the leaves of T in this order and Pi
be the set of attribute classes (i.e., nodes of T) on the path
from Li to the root. For each attribute class A, the set of
indices i for which Pi contains A is a contiguous range of
integers. Therefore, if we arrange the collections Pi in a path
P1 − · · · − Pk, for each A the set of Pi containing A forms
a connected path. Moreover, for any relation R in Q, the
attributes of R lie on a root-to-leaf path in T , so they are
contained in Pi for some index i. Therefore, P1 − · · · − Pk
is a path decomposition P of the hypergraph of Q.

6. SIZE BOUNDS
The main result of this section is the following characteri-

sation of conjunctive queries based on the size of f-representa-
tions of their results.

Theorem 1. For any non-Boolean query Q = πPσψ(R1×
· · · ×Rn) there is a rational number s(Q) such that:

• For any database D, there exists an f-representation of
Q(D) with size at most |P| · |D|s(Q).

• For any f-tree T of Q, there exist arbitrarily large
databases D for which the f-representation of Q(D)

over T has size at least (|D|/|Q|)s(Q).

The results of Boolean queries either consist of the nullary
tuple or are the empty relation, both of size 1. In this section
we only consider non-Boolean queries.

Under the assumption that the size |Q| of the query Q and
the size |P| of Q’s projection list are constant, the bounds

become tight and in Θ(|D|s(Q)). The precise meaning of
s(Q) is given later in this section.

In the sequel, we first derive the size of the f-representation
T (R) as a function of the relation R and the f-tree T . We
then derive upper and lower bounds on the size of the f-
representation of a query result as functions of the sizes of
the input database and query.

6.1 Counting Singletons in F-representations
Let R be a relation and T be an f-tree for which the f-

representation T (R) exists. If C is an attribute in the root of
T , T (R) contains a single occurrence of the singleton 〈C :c〉
for each C-value c in R. Now suppose B is an attribute in
a child of the root, and TB is the subtree of T rooted at
B. For each C-value c, T (R) contains a subexpression over
TB which contains a singleton 〈B :b〉 for each B-value b in
σC=cR. Continuing top-down along T , we deduce that for
any attribute A, each singleton 〈A :a〉 appears once for each
combination of values of the ancestor attributes of A, with
which it contributes to some tuple of R.

We next formalise the above observation and express the
size of the f-representation T (R) as a function of R and T .

Lemma 2. Let T (R) be the f-representation of a relation
R over an f-tree T , A be an attribute of R, and v be a value.

• The number of occurrences of the singleton 〈A :v〉 in
T (R) is |πanc(A)σA=vR|.

• The number of occurrences of A-singletons in T (R) is
|πpath(A)R|.

• |T (R)| =
P

A attribute of R
|πpath(A)R|.

6.2 Upper Bounds
Lemma 2 gives an exact expression for the size of an f-

representation T (R) in terms of the relation R and f-tree
T . In case R is the result Q(D) of a non-Boolean query Q
on a database D, and T is an f-tree of Q, we can quantify
the size of the f-representation T (Q(D)) directly in terms of
the database size |D| as follows.

Recall from Lemma 2 that for any attribute A in T , the
number of singletons of type A is |πpath(A)Q(D)|. Define the
equi-join query QA to be Q restricted to the attributes in
path(A). That is, QA = σψA

(RA1 ×· · ·×RAn), where ψA and
RAi are ψ and Ri respectively, restricted to the attributes
in path(A). Define also DA to be the database D projected
onto the attributes in path(A).

Lemma 3. For any database D, the number of occurrences
of A-singletons in the f-representation T (Q(D)) is at most
|QA(DA)|.

We can further estimate the size of QA(DA) as a function
of |DA| and QA. Intuitively, if we can cover all attributes of
the query QA by k ≤ |QA| of their relations, then |QA(DA)|
is at most the product of the sizes of these relations, which
is at most |DA|

k. This corresponds to an edge cover of size
k in the hypergraph of QA. The following result strengthens
this idea by lifting covers to a weighted version [1].

Definition 7. For a query Q = σψ(R1 × · · · × Rn), the
fractional edge cover number ρ∗(Q) is the cost of an optimal
solution to the linear program with variables {xRi

}ni=1:

minimise
P

i
xRi

subject to
P

i:Ri∈rel(A)
xRi

≥ 1 for each attribute class A,

xRi
≥ 0 for all i.

For each relation Ri (or edge in the query hypergraph), its
weight is given by the variable xRi

. Each attribute class A
(or each vertex in the query hypergraph) has to be covered
by relations with attributes in A such that the sum of the
weights of these relations is greater than 1. The objective is
to minimise the sum of the weights of all relations. In the
non-weighted version of the edge cover, the variables xRi

can
only be assigned the values 0 and 1, whereas in the weighted
version the variables can hold any positive rational number.
The following lemma improves the upper bound of |DA|

k

on |QA(DA)| by shifting from a (minimal) edge covering
number k to its fractional version.

Lemma 4 ([1]). For any equi-join query Q and database

D, we have |Q(D)| ≤ |D|ρ
∗
(Q).

Together with Lemma 3, this yields the following bound.

Corollary 1. For any database D, the number of oc-
currences of A-singletons in the f-representation T (Q(D))

is at most |D|ρ
∗
(QA).

289

AR, AS , AT

BS , BT

CS , CU

DT , DU

ER, EU

AR, AS , AT

CS , CU

DT , DU

BS , BT ER, EU

Figure 3: F-trees T3 and T4 of query Q2 in Example 8.

Corollary 1 gives an upper bound on the number of oc-
currences of singletons of any attribute. By summing these
bounds over all attributes of Q, we obtain an upper bound
on the total number of occurrences of singletons in the f-
representation T (Q(D)), that is, on the size of T (Q(D)).
Define s(T) = maxA∈P ρ

∗(QA) to be the maximal possible
ρ∗(QA) over all head attributes A ∈ P from Q. The bound
on the size of T (Q(D)) becomes as follows:

Corollary 2. The size of the f-representation T (Q(D))

is at most |P| · |D|s(T).

Let us now define s(Q) = minT s(T) to be the minimum
possible s(T) over all f-trees T valid for Q. We then have:

Corollary 3. For any database D, there exists an f-
representation of Q(D) with size at most |P| · |D|s(Q).

Example 8. Consider a database with relations R, S, T ,
and U with schemas {AR, ER}, {AS, BS , CS}, {AT , BT , DT }
and {CU ,DU , EU} respectively, and the query Q2 = σψ(R×
S × T × U), with ψ = (AR = AS = AT , BS = BT , CS =
CU , DT = DU , ER = EU).

We compute |T3(Q2(D))|, where T3 is the left f-tree in Fig-
ure 3. For any attribute E ∈ {ER, EU}, path(E) contains all
attributes of Q2 and hence QE2 = Q2. The attribute classes
of this query can be covered by the two relations S and U ,
so ρ∗(QE2) ≤ 2. On the other hand, the attribute classes
{BS , BT } and {ER, EU} have no relations in common, so
their corresponding conditions xS+xT ≥ 1 and xR+xU ≥ 1
imply ρ∗(QE2) ≥ 2. We thus obtain ρ∗(QE2) = 2. For each
of the other attributes, their corresponding path is a subset
of path(E), so their fractional cover numbers are at most 2.
It follows that s(T3) = 2 and |T3(Q2(D))| ≤ 11 · |D|2 for
any database D. However, the same bound already holds
for |Q2(D)|, so factorising over T3 is not effective.

We now compute |T4(Q2(D))|, where T4 is the right f-tree
in Figure 3. The nodes with largest paths are {BS , BT } and
{ER, EU}. Let us pick any attribute B and respectively E
from the two attribute classes and consider the query restric-
tions QB2 and QE2 . We need at least two relations to cover
all attributes of QB2 , so the edge cover number of QB2 is 2.
However, in the fractional edge cover linear program, we can
assign xS = xT = xU = 1/2 and xR = 0. The covering con-
ditions are satisfied, since each attribute class is covered by
two of the relations S, T, U . The cost of this solution is 3/2.
It is in fact the optimal solution, so ρ∗(QB2) = 3/2. For QE2 ,
the optimal solution is xU = 2/3 and xR = xS = xT = 1/3
with total cost ρ∗(QE2) = 5/3, and hence s(T4) = 5/3.
Thus by using T4, which unlike T3 separates {BS , BT } and
{ER, EU} into independent branches, we obtain factorisa-

tions T4(Q2(D)) with size at most 11 · |D|5/3 ≪ 11 · |D|2. In
fact, T4 is an optimal f-tree and s(Q2) = 5/3. 2

6.3 Lower Bounds
We next show that the upper bound on the f-representation

size is tight. For any non-Boolean query Q and any f-tree T
of Q, there are arbitrarily large databases for which the size
of the f-representation of the query result over T asymptot-
ically meets the upper bound.

Following Lemma 3, the number of occurrences of A-single-
tons is at most |QA(DA)|. In a first attempt to construct a
database DA with large result for the query QA, we pick k
attribute classes of QA and let each of them attain N differ-
ent values. If each relation has attributes from at most one
of these classes and size at most N , then the result of the
query QA has size Nk. These k attribute classes correspond
to an independent set of k nodes in the hypergraph of QA.

Similar to the upper bound, we can strengthen the above
lower bound by lifting independent sets to a weighted ver-
sion. Since the linear programs for the (fractional) edge
cover and the independent set problems are dual, this lower
bound meets the upper bound from Section 6.2. The follow-
ing result forms the basis of our argument (our proof extends
the one in [1] to queries with repeating relation symbols).

Lemma 5. For any equi-join query Q, there exist arbi-
trarily large databases D such that |Q(D)| ≥ (|D|/|Q|)ρ

∗
(Q).

We now use Lemmata 2 and 5 to derive lower bounds on
the number of occurrences of singletons of an attribute A in
the f-representation of Q(D) over any f-tree T of Q.

Lemma 6. There exist arbitrarily large databases D such
that the number of occurrences of A-singletons in the f-repre-
sentation T (Q(D)) is at least (|D|/|Q|)ρ

∗
(QA).

We now lift Lemma 6 from A-singletons to all singletons
in T (Q(D)) by considering the attribute A for which the

lower bound (|D|/|Q|)ρ
∗
(QA) is the largest.

Corollary 4. There exist arbitrarily large databases D
for which the size of the f-representation T (Q(D)) is at least

(|D|/|Q|)s(T).

Finally, by minimising over all f-trees T valid for Q, we
find a lower bound on the size of the f-representation of
Q(D) over f-trees.

Corollary 5. For any f-tree T of Q there exist arbitrar-
ily large databases D for which the f-representation T (Q(D))

has size at least (|D|/|Q|)s(Q).

For a fixed query and schema, the upper and lower bounds
on the size of f-representations of query results meet asymp-
totically due to duality of linear programming. The frac-
tional versions of the minimum hyperedge cover number
for the upper bounds and of the maximum independent set
number for the lower bounds are essential for the tightness
result, since their integer versions need not be equal.

The parameter s(Q) thus completely characterises queries
by the factorisability of their results within the class of f-
representations defined by f-trees.

Example 9. Let us continue Example 8 and consider the
query Q2 and the right f-tree T4 from Figure 3. The hyper-
graph of QE2 , where E ∈ {ER, EU}, has maximum indepen-
dent set of size 1, since any two nodes share a common edge.

290

We can trivially construct databases D for which the num-
ber of E-singletons is linear in D, yet this is much smaller
than the lower bound given by Corollary 5. The fractional
relaxation of the maximum independent set problem allows
to increase the optimal cost to 5/3, thus meeting ρ∗(QE2)
by duality of linear programming. In this relaxation we as-
sign nonnegative values to the attribute classes, so that the
sum of values in each relation is at most one. By assigning
yA = 2/3 and yC = yD = yE = 1/3, the sum in each rela-
tion is exactly one, and the total cost is 5/3. This is used
in the proofs of Lemmas 5 and 6 to construct arbitrarily
large databases D for which the number of E-singletons in
T4(Q2(D)) is at least (|D|/|Q2|)

5/3 = (|D|/4)5/3.
One such database D would contain the relations R =

[4]×[2], S = [4]×[2]×[1], T = [4]×[2]×[1] and U = [2]×[2]×
[2]. Here [N] denotes {1, . . . , N} and the attributes of each
relation are ordered alphabetically. Each relation has size 8
and the database D has size 32 = 8×|Q2|. The result Q(D)
corresponds to the relation where AR = AS = AT ∈ [4],
BS = BT = 1, CS = CU ∈ [2], DT = DU ∈ [2] and ER =
EU ∈ [2], and any combination of these values is allowed.

Its size is |Q2(D)| = 32 = (32/4)5/3 = (|D|/|Q2|)
5/3.

Since all f-trees T for Q2 have s(T) ≥ s(Q2) = 5/3, the
results in this subsection show that for any such f-tree T we
can find databases D for which the size of T (Q2(D)) is at

least (|D|/|Q2|)
5/3 = (|D|/4)5/3. 2

6.4 Succinctness Gap
Corollary 3 shows that a shift from standard tabular rep-

resentations of query results to equivalent factorised repre-
sentations can bring an exponential gain in representation
size. For equi-join queries, this gain is precisely captured by
the difference between the exponent ρ∗(Q), which defines
tight bounds on the size of tabular representations of query
results [1], and the exponent s(Q) = minT (maxA(ρ∗(QA))),
which defines tight bounds on the size of factorised represen-
tations of query results. We note that ρ∗(Q) has been pre-
viously defined for equi-join queries only [1], whereas s(Q)
is defined for arbitrary conjunctive queries. By definition of
s(Q), we have that s(Q) ≤ ρ∗(Q) for any query Q.

The gap between ρ∗(Q) and s(Q) can be as much as |Q|−1
and thus arbitrarily large: if Q is a product of relations,
then ρ∗(Q) = |Q| and s(Q) = 1. Any query, where at
least one attribute per relation is not involved in joins, has
ρ∗(Q) = |Q| yet it may still retain s(Q) = 1. Equi-join
queries Q whose Boolean projections π∅Q are hierarchical,
and queries whose head attributes belong to one equivalence
class have s(Q) = 1. An arbitrarily large gap can be also
witnessed by shifting from edge covers to fractional edge
covers to characterise bounds on the cardinality of results
for equi-join queries [10].

We next exemplify a class of queries with s(Q) > 1, but
for which the succinctness gap is still exponential.

Example 10. Consider relations Ri over schemas {Ai, Bi}
∀1 ≤ i ≤ n. Let ψ =

Vn−1

i=1
(Bi = Ai+1) and Qn = σψ(R1 ×

· · · ×Rn). This query is a chain of n− 1 joins.
An f-tree T for Q11 (i.e., n = 11) is shown in Figure 4. Let

QA1
be the restriction of Q11 to path(A1). Then, ρ∗(QA1

) =
3. This value is 3 or less for other attributes, so s(T) = 3,
which is the lowest possible value and hence s(Q11) = 3. For
arbitrary n, s(Qn) = Θ(log n). The fractional edge cover of
Qn has cost Θ(n), so by Lemma 5, the query result Qn(D)

B7, A8

B3, A4

B1, A2

A1 B2, A3

B5, A6

B4, A5 B6, A7

B10, A11

B9, A10

B8, A9

B11

Figure 4: An f-tree for Q11 with s(T) = 3, the lowest
possible over all f-trees of Q11 (From Example 10).

can be as large as Ω((|D|/n)Θ(n)). This is exponentially

larger than the upper bound 2n · |D|Θ(log n) on the size of its
equivalent f-representation over an f-tree witnessing s(Qn).2

Example 10 shows that branching in f-trees is key to a
low value for the parameter s(Q) and thus to succinct f-
representations. Equi-join queries Q whose Boolean pro-
jections π∅Q are hierarchical admit f-trees with maximal
branching factor and hence value 1 for s(Q): for each root-
to-leaf path in such an f-tree there is a relation with at-
tributes in each node of the path. If branching is not pos-
sible and the f-tree is a single path, then the factorisation
over such an f-tree is in worst case as large as its equivalent
tabular representation. Example 8 shows this for the left
f-tree T3 in Figure 3. This observation suggests that queries
whose f-trees are paths cannot benefit from factorisations,
since their results are in general not factorisable. All f-trees
of a query Q are paths if and only if any two nodes are
dependent. For equi-join queries this means that any two
attribute classes have attributes from a common relation, as
exemplified next.

Example 11. Consider the relations Ri,j for 1 ≤ i < j ≤ n
with schemas {Aii,j , A

j
i,j}. Let Q = σψ(×i<jRi,j), where ψ

equates all attributes with the same superscript i.
The f-trees of the queryQ have n nodes that correspond to

attribute classes in Q, and for each pair of nodes a relation
containing one attribute from both nodes. Therefore, the
possible (n!) f-trees of Q are paths of n nodes.

For each such tree T , the path of an attribute A in the
bottom node includes all nodes of T , the associated query
QA is equal to Q, and its fractional edge cover number is
ρ∗(Q) =

`

n

2

´

1

n−1
= n

2
. (An optimal fractional edge cover

assigns weight 1

n−1
to each of the

`

n

2

´

relations.) It follows

that s(T) = n
2

for any f-tree T of Q, and hence s(Q) = n
2
.2

7. FINDING THE EXPONENT
In this section we give an algorithm to compute the pa-

rameter s(Q) that characterises the upper bound on the size
of f-representations of query results. The algorithm iterates
with polynomial delay over some f-trees of the input query
Q, including an f-tree T with minimum s(T). For each f-
tree T we then compute in polynomial time the parameter
s(T), which is the maximum ρ∗(QA) over all attributes A
in Q; in contrast, finding the integer version of ρ∗(QA) is
NP-hard. The parameter s(Q) is the minimum s(T) over
all enumerated f-trees T .

An f-tree T valid for a query Q is an unordered rooted
forest whose nodes are labelled by the equivalence classes of
head attributes of Q and satisfy the path condition. In case
T is a tree with root A and subtrees U , then T satisfies the
path condition iff U satisfies the path condition. In case T
is a forest T1, . . . , Tn, then it satisfies the path condition iff

291

Let DA be the set of nodes dependent on node A
Let > be a partial order on nodes: A > B if

• DB ⊂ DA, or
• DB = DA and A comes before B in lexicographic order.

iter (set S of nodes)

if S is empty then

output the empty tree

else let P1, . . . , Pn be a maximal partition of S such that

for all i 6= j, any A ∈ Pi and B ∈ Pj are independent

if n = 1 then

foreach >-maximal A ∈ S do (*)

foreach U ∈ iter(S \ {A}) do

output A(U)

else

foreach (T1, . . . ,Tn) ∈ (iter(P1), . . . , iter(Pn)) do

output T1 ∪ · · · ∪ Tn

Figure 5: Enumerating f-trees of a query. The set
S consists of the nodes labelled by the equivalence
classes of the head attributes in the query.

each of the trees T1, . . . , Tn satisfies the path condition and
the nodes in different trees are independent.

This characterisation of the path condition suggests a re-
cursive algorithm for enumerating all valid f-trees over a set
S of nodes: try all possible partitions of S into indepen-
dent trees, for each tree try all possible nodes as root and
continue recursively for its descendants.

Example 12. Consider the query Q1 in Example 5. Any
valid f-tree must be a single tree since the node {AR, AS, AT }
is dependent on all other nodes. If we choose {AR, AS, AT }
for a root, in the next recursive call we can split the remain-
ing nodes into P1 = {{BR, BS}, {C}, {D}} and P2 = {ET }.
The nodes in P1 and P2 are independent since R and S only
have attributes in P1 and T only has attributes in P2. The
f-tree T1 in Figure 1 is produced within this recursive call. If
we choose {BR, BS} for a root, in the next recursive call the
remaining nodes cannot be split into independent subtrees,
since the {AR, AS, AT } is dependent on all other nodes. In
Figure 1, the f-tree T2 is produced within this call, while the
third tree is not a valid f-tree and thus not produced. 2

Some choices of partitions and of roots are always sub-
optimal when searching for an f-tree T with lowest possible
s(T). We next discuss two improvements that are incorpo-
rated in the algorithm iter given in Figure 5.

Firstly, it always pays off to have as root a node which is
dependent on as many other nodes as possible.

Lemma 7. Let T be an f-tree with nodes A and B such
that B is an ancestor of A and all nodes dependent on B are
also dependent on A. By exchanging A and B in T we do
not violate the path condition and do not increase s(T).

Lemma 7 implies that we do not need to consider f-trees
with root B. For example, the f-tree T2 in Figure 1 is sub-
optimal since {BR, BS} is the root instead of {AR, AS, AT }.
In addition, if the nodes A and B are dependent on the same
nodes, they are interchangeable in any f-tree (with respect

to the path condition), and to find an optimal f-tree we only
need to consider one of them as root.

Secondly, it always pays off to partition the nodes in as
many independent trees as possible. For any set of nodes,
there always exists a maximal partition such that the nodes
are independent across parts. For any coarser partition, we
could further partition while not increasing path(A) for any
attribute A and thus not increasing s(T).

Example 13. For the query Q1 in Example 5, the algo-
rithm iter in Figure 5 does not output the second tree in
Figure 1. The node {BR, BS} is not considered for the
root since it depends on a strict subset of the nodes that
{AR, AS , AT } depends on. In fact, for Q2 iter only pro-
duces the first tree from Figure 1. 2

Using lazy evaluation, at any one time the number of calls
of iter on the stack is at most linear in the number of nodes,
and between two consecutively generated f-trees, there are
at most linearly many recursive calls. The execution time
inside each call is dominated by the computation of the max-
imal partition (takes quadratic time in the number of nodes
in S if node dependencies are precomputed), and the itera-
tion over all >-maximal nodes (takes quadratic time in the
number of nodes in S if the >-order is precomputed). The
delay between consecutive f-trees is thus at most cubic in
the number of nodes. The precomputation of node depen-
dencies takes time quadratic in the number of attributes and
the precomputation of the >-order takes time cubic in the
number of nodes. The space needed for both operations is
quadratic in the number of nodes.

Theorem 2. Given a query Q, Algorithm iter
• enumerates f-trees of Q with delay cubic and space

quadratic in the number of Q’s equivalence classes and
• finds an f-tree T with s(T) = s(Q).

The algorithm can enumerate exponentially many f-trees.

Example 14. The query Q in Example 11 has n attribute
classes and thus n nodes in any f-tree of Q. These nodes
cannot be partitioned by iter since any two of them contain
an attribute of a relation Ri,j and hence all are dependent.
Therefore the valid f-trees for Q are paths of the n nodes.
The algorithm iter outputs n! distinct f-trees of Q. 2

For a given f-tree T , we can compute s(T) in polynomial
time. In this sense we can recognise good f-trees efficiently.
In particular, given a queryQ and a positive rational number
q, the threshold problem of determining whether Q has an
f-tree T with s(T) ≤ q is in NP: the certificate is T itself.

The parameter s(Q) is the lowest value q for which there
exists an f-tree T with s(T) ≤ q. Given an NP oracle an-
swering the threshold problem above, we can find s(Q) by bi-
nary search over the rationals (using the Stern-Brocot tree).
Since the value of s(Q) is of polynomial length, the search
makes only polynomially many queries to the oracle. It re-
mains open whether the threshold problem is NP-hard.

8. COMPUTING F-REPRESENTATIONS

OF QUERY RESULTS
The algorithm gen in Figure 6 computes the f-representati-

on of a query result over a given f-tree of the query. A key
feature of this algorithm is that it does not require the query

292

gen(f-tree T , ranges of tuples (R1, . . . ,Rn))

if ∃i : Ri = ∅ then return ∅

if T is empty then return 〈〉

if T is a forest T1, . . . ,Tk then

return gen(T1, (R1, . . . ,Rn)) × . . .×

gen(Tk , (R1, . . . ,Rn))

if T is a tree A(U) then

foreach 1 ≤ j ≤ n do let R′
j = Rj

let E = ∅

foreach value a shared by all attributes in A do (*)

let F = 〈〉

foreach attribute A ∈ A do

let Ri = range of relation with attribute A

let R′
i = the subrange of Ri with A = a

if A is a head attribute then F = F × 〈A :a〉

else F = F × 〈〉

let E = E ∪ F × gen(U , (R′
1, . . . ,R′

n))

return E

Figure 6: Computing the f-representation of the re-
sult of a query over a given f-tree.

result as input and constructs the f-representation directly
from the input database. This is desirable since the query
result can be much larger than its f-representation.

Given a query Q, an f-tree T0 of Q, and a database D, the
algorithm takes as input (1) an f-tree T that is an extension
of T0 and thus captures all joins in Q, and (2) a list of ranges
of tuples in each relation in the database D; initially, each
range Ri for a relation Ri is (1, |Ri|) and can thus address all
tuples in Ri. We assume that the attributes of each relation
Ri are previously ordered following a topological sort of T
and each relation Ri is sorted lexicographically by the order
of its attributes.

The nodes of the f-tree T are processed top-down, using
recursion on the structure of T . If we sort the tuples of each
relation by attributes according to a topological ordering of
T ’s nodes, then in each call to gen the range of tuples forms
a contiguous range Ri in each relation Ri and we only need
to pass pointers to the beginning and end of Ri.

If an input range is empty, then it represents the empty
relation and thus the whole result is empty. If no range
is empty and the f-tree T is empty, then the represented
relation is not empty and must be the nullary singleton 〈〉.
In case T is a forest, we then recurse on each of its trees
with the same input database given as a list of tuple ranges.

At each call with a tree rooted at a node A, for each re-
lation Ri with an attribute A ∈ A, the tuples of Ri in the
corresponding range Ri are already sorted by A. When iter-
ating over values a common to all attributes in A, the tuples
with value a for each attribute in A appear in sequence and
the values common to all attributes can be found by one
scan over all ranges. This defines the new tuple ranges R′

i

and we recurse on the children of the current node with the
new ranges. The ranges of relations without attributes in A
remain unchanged. For each value a, we construct a prod-
uct of the f-representation returned by the recursive call on
the children of the current node and of the singletons for
the attributes in A. In case of queries with projection, there

may be attributes that are not head. We accommodate this
by considering nullary singletons instead of singletons for
non-head attributes. This corresponds to projecting out the
singletons corresponding to the non-head attributes.

The obtained f-representation is not necessarily normalised,
since during its construction we may introduce nullary sin-
gletons and empty relations. The f-representation can be
normalised in linear time as discussed in Section 4.

Proposition 7. Let Q be a query, T be an f-tree of Q, T̂
be an extension of T , and D = (R1, . . . ,Rn) be a database.

The f-representation T (Q(D)) can be computed by gen(T̂ ,
((1, |R1|), . . . , (1, |Rn|))) followed by normalisation.

In case of a query with projection, during the top-down
processing of the nodes of the f-tree T we can reach a node
without head attributes. To compute the f-representation
of the query result, we only need to check at that node for
the emptiness of the query associated with that node on
the database defined by the ranges valid at that recursion
step. This can be done using any existing query evalua-
tion method for Boolean queries [11]. The (suboptimal) ap-
proach considered here is to compute the f-representation
Φ of the result of that query, normalise it, and then check
for emptiness. An optimisation is to avoid computing the
whole f-representation Φ and stop once the represented re-
lation contains a (nullary) tuple.

We next investigate the time complexity of the algorithm
first for equi-joins and then for arbitrary conjunctive queries.

The time taken by calls in case T is a forest is absorbed
into subsequent calls for trees. Consider now a call in case
T is a tree rooted at a node A. During the execution of the
loop over values a, for each relation Ri ∈ rel(A) the tuples
in the range Ri have equal values for attributes in anc(A).
The next attribute of each Ri in the topological sort of T
is an attribute from A, so each range Ri is sorted by the
values of the attribute from A. Therefore, to iterate over
all ranges R′

i ⊆ Ri sharing the same value of A, it suffices
to scan these ranges simultaneously, searching for common
values of A. The time complexity of this iteration is linear
in the total number of tuples in the ranges Ri for relations
Ri ∈ rel(A). The following lemma quantifies this number.

Lemma 8. Given an f-tree T of an equi-join query Q, the
number of tuples visited by gen when computing T (Q(D))

is O(|S| · |Q| · |D|s(T)).

An additional cost is sorting the relations of D before
calling gen. This takes time O(|S| · |D| · log |D|). Together
with Lemma 8, this yields an upper bound on the running
time of our factorisation algorithm.

Theorem 3. Let Q be an equi-join query. For any f-tree
T of Q and database D, the f-representation T (Q(D)) can
be computed in time

• O(|S| · |D| · (|Q| + log |D|)) if s(T) = 1, and

• O(|S| · |Q| · |D|s(T)) otherwise.

For equi-join queries, the time to compute the f-representa-
tion is thus near-optimal, since it only needs an additional
factor of schema size (|S|) to the size of the f-representation.

This result carries over to arbitrary conjunctive queries
by considering extensions T̂ of T . That is, we construct the
f-representation of the query result by calling our algorithm

293

BR, BS

AR CS , CT

DT

BR, BS

AR DT

BR, BS

AR DT

CS , CT

Figure 7: Left to right: an f-tree T5 for the query
Q3, an f-tree T6 for the query πAR,BR,BS ,DT

Q3 in Ex-

ample 15, and its optimal extension T̂6.

R BR AR
X 2 1

3 1
3 2

S BS CS
X 2 1

3 1
3 2

T CT DT

X 1 2
X 1 3

X 2 3

Figure 8: A database D during the execution of
gen(T5, Q3,R).

with parameter T̂ and projecting out singletons correspond-
ing to non-head attributes. To improve performance, we
consider optimal extensions.

Definition 8. An extension T̂ of an f-tree T is optimal if
s(T̂) is minimal among all extensions of T . 2

The time complexity of computing f-representations in
case of conjunctive queries depends on optimal extensions of
their f-trees. This can incur a considerable overhead, since
their optimal extensions can be arbitrarily larger. For in-
stance, Boolean queries have empty f-trees with optimal ex-
tensions of size linear in the number of equivalence classes.
This overhead accounts however for the hardness of checking
emptiness for conjunctive queries. The following theorem
strictly generalises Theorem 3.

Theorem 4. Let Q be a conjunctive query, T be an f-tree
of Q, and T̂ be an optimal extension of T . For any database
D, Algorithm gen computes the f-representation T (Q(D))
in time

• O(|S| · |D| · (|Q| + log |D|)) if s(T̂) = 1, and

• O(|S| · |Q| · |D|s(T̂)) otherwise.

Example 15. Consider the relations R, S and T over sche-
mas {AR, BR}, {BS , CS} and {CT ,DT }, and the queryQ3 =
σψ(R × S × T) with ψ = (BR = BS ∧ CS = CT). Figure 7
depicts an f-tree T5 of Q3. Let B be the node with the
equivalence class {BR, BS}, and similarly for A, C and D.

Let us examine the execution of the call gen(T5,R), where
R represents the full range in each relation of database D in
Figure 8. The attributes of each relation are already ordered
following a topological sort of T5 in Figure 8. The root of T5

is the node B, and the first execution of the loop (*) finds
the ranges marked by (X) in Figure 8, with the common
value of BR = BS = 2. Notice that T does not have an
attribute in the root node, so its range remains unchanged.
After these ranges are found, they are passed to a next call
of gen on the subtree formed by the children of B, which
recurses separately into the subtree formed by A and the
subtree formed by C and D. The latter call iterates over the
common values CS and CT of S and T respectively within
the current ranges. The only common value found is 1, for
which the range of T is restricted to the first two tuples and
gen is called on the leaf D. The second execution of the loop
(*) in the outermost call of gen finds ranges with common

R AR BR
r12 1 2
r13 1 3
r23 2 3

S BS CS
s21 2 1
s31 3 1
s32 3 2

T CT DT

t12 1 2
t13 1 3
t23 2 3

Figure 9: An annotated database. The leftmost (un-
derlined) column in each relation is the annotation
attribute whose values are tuple identifiers.

value BR = BS = 3 and again recurses into the subtrees
below B. The final result of the algorithm is

T5(Q3(D)) =〈B :2〉〈A :1〉〈C :1〉(〈D :2〉 ∪ 〈D :3〉)∪

〈B :3〉(〈A :1〉 ∪ 〈A :2〉)×

×
`

〈C :1〉(〈D :2〉 ∪ 〈D :3〉) ∪ 〈C :2〉〈D :3〉
´

where we have eliminated most × symbols for clarity.
Consider now the query πAR,BR,BS ,DT

Q3, a projected ver-
sion of Q3, and the computation of its result on the database
D from Figure 8, factorised over the f-tree T6 shown in Fig-
ure 7. Assume that the algorithm gen uses the extension
T̂6 of T6. At node D, we iterate over all ranges of tuples
with the same DT -values of T , but we still need to check
whether the tuples in the newly-computed ranges satisfy the
join condition CS = CT . By using the extension T̂6 shown
in Figure 7, the join condition is enforced by multiplying the
D-singletons with the result of gen at node C. The resulting
f-representation for the sample database D is

〈B :2〉〈A :1〉(〈D :2〉〈〉 ∪ 〈D :3〉〈〉)∪

〈B :3〉(〈A :1〉 ∪ 〈A :2〉)
`

〈D :2〉〈〉 ∪ 〈D :3〉(〈〉 ∪ 〈〉)
´

,

which gives T6(Q3(D)) after normalisation:

〈B :2〉〈A :1〉(〈D :2〉 ∪ 〈D :3〉)∪

〈B :3〉(〈A :1〉 ∪ 〈A :2〉)(〈D :2〉 ∪ 〈D :3〉)

9. ANNOTATED DATABASES
In this section, we consider f-representations of prove-

nance for conjunctive queries over annotated databases. An-
notations are used to encode provenance information, condi-
tions in uncertain tables, events in probabilistic databases,
and tuple multiplicities to support bag semantics.

An annotated relation R is a relation with special anno-
tation attributes, denoted by R, which carry annotations in
the form of tuple identifiers. Annotations are propagated
through queries from input to the result [12, 8]; in particu-
lar, they cannot be projected away.

Example 16. Figure 9 shows an annotated version of the
database in Figure 8. Some tuples in the result of query Q3

from Example 15 on this database are

R S T AR BR BS CS CT DT
r12 s21 t12 1 2 2 1 1 2
r12 s21 t13 1 2 2 1 1 3
r13 s31 t12 1 3 3 1 1 2

.
2

For an annotated tuple t in the query result, the annota-
tion attributes hold the identifiers of the input tuples used
to create t. Let us denote by I the annotation attributes of
a relation.

294

BR, BS

AR

R

CS , CT

S DT

T

BR, BS

AR

R′

S′

DT

T ′

Figure 10: Left to right: f-tree T5 from Figure 7
extended with annotation attributes at leaves, and
a provenance f-tree T6 for Q4, which is a forest of
two trees.

Definition 9. The provenance ϕ(t) of a tuple t in the re-
sult of a query Q with projection list P on a database D is
the relation πIσV

A∈P
A=t(A)Q(D). 2

If we interpret relational product (×) as multiplication
and relational union (∪) as addition, then ϕ(t) becomes a
provenance polynomial over the semiring of tuple identifiers
with operations addition and multiplication [8]. Provenance
polynomials admit different scenarios: in the Boolean semir-
ing used in probabilistic databases and incomplete informa-
tion, the identifiers are Boolean variables and the operations
are logical “or” and “and”; in the semiring over natural num-
bers used for bag semantics, the identifiers are numbers and
the operations are sum and product of numbers.

Example 17. The provenance of the tuple 〈1, 2, 2, 1, 1, 2〉
in the result of Q3 given in Example 16 is the relation

R S T

r12 s21 t12

The provenance polynomial ϕ(〈〉) for the tuple 〈〉 in the
result of the Boolean query π∅Q3 is

r12s21t12 + r12s21t13 + r13s31t12 + r13s31t13+

r13s32t23 + r23s31t12 + r23s31t13 + r23s32t23.

9.1 Provenance Factorisation
The provenance of a result tuple can be factorised akin to

a standard relation. An f-representation of the provenance
ϕ(〈1, 2, 2, 1, 1, 2〉) in Example 17 is 〈R :r12〉〈S :s21〉〈T : t12〉,
which is a product of annotation singletons.

The f-trees of the input query cannot be used to factorise
effectively its provenance, unless the query is a product of
relations. To see this, consider a Boolean query Q joining
n relations. Any f-tree of Q has one node for each annota-
tion attribute. These nodes are dependent, since any pair of
annotation attributes are dependent (they belong to depen-
dent relations). The f-trees are thus paths of length n and,
according to Section 6.4, lead to poorly factorisable repre-
sentations. Our factorisation approach for provenance of a
query Q does not use f-trees of Q but of a query that can
be derived from Q, as discussed next.

For a Boolean queryQ, we take an f-tree T̂ of the equi-join
Q̂ of Q. This f-tree T̂ can be used to factorise the annotated
result of Q̂, i.e., the result together with its provenance.
From the f-representation of the annotated query result, we
can obtain an f-representation of the provenance of the re-
sult 〈〉 of Q by dropping all data singletons and keeping the
annotation singletons only. This f-representation encodes
exactly once each derivation of Q’s result tuple 〈〉.

Example 18. Recall the Boolean query π∅Q3 and the prove-
nance ϕ(〈〉) whose polynomial is shown in Example 17. If
we consider the f-tree T5 of the equi-join query Q3, now ex-
tended with annotation attributes as shown in Figure 10,
the f-representation of ϕ(〈〉) over this f-tree is

〈r12〉〈s21〉(〈t12〉 ∪ 〈t13〉)∪

(〈r13〉 ∪ 〈r23〉)
`

〈s31〉(〈t12〉 ∪ 〈t13〉) ∪ 〈s32〉〈t23〉
´

.2

For non-Boolean queries, we reduce the factorisation prob-
lem to that of a Boolean query. Indeed, given a query
Q = πPσψ(R1 × · · · ×Rn) on a database D, the provenance
of a result tuple t ∈ Q(D) is the same as the provenance of
the result of the Boolean query Q′ = π∅σψ′(R′

1 × · · · ×R′
n)

on a database D′. The database D′ = (R′
1 . . . ,R

′
n) can be

computed from the database D as follows. If a relation Ri

with schema {A1, . . . , Al} has attributes A1, . . . , Ak in P or
equivalent to attributes in P , then

R′
i = πAk+1,...,Al

σA1=t(A1)∧···∧Ak=t(Ak)(R).

The condition ψ′ is ψ restricted to the attributes of D′. Dif-
ferent tuples in the result Q(D) lead to the same Boolean
query Q′, yet to a different database D′. We can now fac-
torise the provenance of Q’s result tuples using the approach
for Boolean queries.

Example 19. Consider the query Q4 = πCS
Q3 and the

provenance ϕ(〈2〉) of the result tuple t = 〈2〉. We first
rewrite the query Q4 into a Boolean query Q′

4 by drop-
ping the head attributes and their equivalence classes: Q′

4 =
π∅σBR=BS

(R′×S′×T ′), where R′ has schema {AR, BR}, S
′

has schema {BS} and T ′ has schema {DT }. We also define
the database D′ to contain the annotated relations R′ = R
from Figure 9, S′ = {〈s32, 3〉} and T′ = {〈t23, 3〉}.

Now the provenance ϕ(〈2〉) in Q4(D) is the same as the
provenance ϕ(〈〉) in Q′

4(D
′):

ϕ(〈2〉) = 〈R :r13〉〈S :s32〉〈T : t23〉 ∪ 〈R :r23〉〈S :s32〉〈T : t23〉.

An f-tree T6 of the equi-join of Q′
4 is shown right in Fig-

ure 10. The f-representation of the annotated result Q′
4(D

′)
over T6 is

〈B :3〉(〈A :1〉〈R :r13〉 ∪ 〈A :2〉〈R :r23〉)〈S :s32〉〈D :3〉〈T : t23〉

and by dropping the data values we get the f-representation
of ϕ(〈2〉) over T6,

T6(ϕ(〈2〉)) = (〈R :r13〉 ∪ 〈R :r23〉)〈S :s32〉〈T : t23〉.2

The above two cases form a complete approach for fac-
torising provenance of tuples in the results of an arbitrary
conjunctive queryQ. The f-trees that can be used for factori-
sation are valid for a specific query that is obtained from Q

by first rewriting Q into a Boolean query, whereby the head
attributes of Q are dropped, and then taking the equi-join of
the latter. We call this query the provenance query of Q and
its f-trees the provenance f-trees of Q. The provenance query
of a given query Q can be computed in time linear in the size
of Q and the size of the database schema. Optimal prove-
nance f-trees can be found using the algorithm in Section 7.
Given a provenance f-tree T of Q, the f-representation over
T of the provenance ϕ(t) of a tuple t in the result of Q
is denoted by T (ϕ(t)). Similar to f-representations of query
results, the f-representation T (ϕ(t)) is unique up to commu-
tativity of product and union and can be computed using the
algorithm in Section 8.

295

9.2 Readability of Provenance
Besides size, a further measure for provenance is readabil-

ity. This measure has been previously defined for Boolean
functions [5] and our motivation draws on the close connec-
tion between f-representations of annotated relations and
algebraic factorisations of Boolean functions. Functions of
low readability are preferred over functions of high readabil-
ity, since the former can be implemented with smaller logical
circuits. As discussed in the next section, our characterisa-
tion of queries by the readability of their results sheds light
on a key structural property of the queries that goes beyond
compactness of query results.

We next give a definition of readability tailored to f-repre-
sentations.

Definition 10. An f-representation E is read-k if any value
occurs in at most k singletons of E. The readability of a
relation R is the smallest k such that R has a read-k f-
representation. 2

Example 20. The flat f-representation of provenance ϕ(〈〉),
which is given in Example 17 as a polynomial, is read-4 since
the value s31 occurs four times and no value occurs more
than four times. Its f-representation over the f-tree T5 from
Figure 10 is given in Example 18; it is read-2, since the val-
ues t12 and t13 occur twice and all other values only occur
once. The readability of ϕ(〈〉) is 2 because it admits no
read-1 f-representation. 2

The main result of this section is the following charac-
terisation of conjunctive queries based on the readability of
provenance of their result tuples. For any query Q, let M be
the maximum number of repeating relation symbols in Q.

Theorem 5. For any conjunctive query Q, there is a ra-
tional number r(Q) such that:

• For any database D and tuple t ∈ Q(D), the readability

of the provenance ϕ(t) is at most M · |D|r(Q).
• For any provenance f-tree T of Q there exist arbitrarily

large databases D and tuples t ∈ Q(D) for which the

f-representation T (ϕ(t)) is at least read-(|D|/|Q|)r(Q).

The parameter r(Q) is called the readability width of Q.
Our study of readability bounds follows the one on size

bounds, with the difference that we now need only consider
singletons for annotation attributes. The number of occur-
rences of any given singleton in any f-representation over an
f-tree is quantified by Lemma 2. In particular, for a query
result Q(D) and an f-tree T of Q, an annotation attribute R
and an identifier r of a tuple t, the number of occurrences of
the singleton 〈R :r〉 in T (Q(D)) is |πanc(R)σR=rT (Q(D))|.
However, since the attribute R is a key for R, this is equal
to |πanc(R)σR=tT (Q(D))|, where the condition R = t means
that we assign to each attribute of R its value in tuple t.
Just as the bounds for the number of singletons of type
A were derived using the query QA, which is Q restricted
to path(A), the number of individual annotation singletons
〈R :r〉 are derived using a query QR: the query QR is Q
restricted to path(R) but without the attribute classes with
attributes of R, since the attributes of R are already fixed
by values in the tuple t. This is a key difference between our
analysis of readability in case of annotated relations vs. size
in case of standard relations.

AR, AS , AT

BS , BT

CS , CU

S DT , DU

T ER, EU

R U

AR, AS , AT

CS , CU

DT , DU

BS , BT

S T

ER, EU

R U

Figure 11: F-trees from Figure 3 extended with an-
notated attributes at leaves.

Lemma 9. For any annotated query result Q(D) and an
f-tree T of Q, the number of occurrences of any R-singleton

in the f-representation T (Q(D)) is at most |D|ρ
∗
(QR).

Recall that the provenance ϕ(t) of a tuple t in a query
result Q(D) can be factorised over any f-tree T of the prove-

nance query Q̃ of Q. The f-representation T (ϕ(t)) of ϕ(t) is
obtained by dropping all data singletons from the f-represent-
ation T (Q̃(D′)), where D′ is constructed as described in
Section 9.1. The number of occurrences of any annotation
identifier in T (ϕ(t)) is thus the same as in T (Q̃(D′)), for
which we can use Lemma 9.

Similarly to s(T), we define r(T) = maxR ρ
∗(Q̃R) to be

the maximal possible ρ∗(Q̃R) over all relations R from Q̃.
This parameter controls the exponent of the readability in
a similar way s(T) does for sizes: for any database D and
tuple t ∈ Q(D), the f-representation T (ϕ(t)) is at most read-

M · |D|r(T). The factor M arises because a given value can
appear in the singletons of up to M different types.

Finally, by defining r(Q) = minT r(T) to be the minimum
possible r(T) over all provenance f-trees T of Q, we obtain
an upper bound for the readability of provenance of Q.

Corollary 6. For any database D and tuple t ∈ Q(D),

the readability of the provenance ϕ(t) is at most M · |D|r(Q).

Example 21. Consider the Boolean query π∅Q3 for Q3

from Example 15. The f-tree T5 ofQ3 shown left in Figure 10
is a provenance f-tree of π∅Q3. For relation R, all ancestor
nodes of R contain attributes of R, so the query QR is empty
and ρ∗(QR) = 0. This is also the case for the relation S.
For relation T we have QT = σBR=BS

(πBR
R× πBS

S). The
hypergraph of QT has a single node and two edges of size
1, so ρ∗(QT) = 1. It follows that each annotation singleton
of type T appears at most |D| times in any f-representation
over T5, while all other annotation singletons appear at most
once. The provenance of 〈〉 in π∅Q3(D) is therefore at most
read-|D| for any database D.

We now repeat Example 8, for readability bounds instead
of size bounds.

Consider the Boolean query π∅Q2 for Q2 in Example 8,
and the f-tree T3 of Q2 extended with annotation attributes
at leaves (shown left in Figure 11). The query QR has at-
tributes B, C and D, its hypergraph is a triangle and hence
ρ∗(QR) = 3/2. For the other relations, the fractional edge
cover number of their queries is less and hence r(T3) = 3/2.

For the right f-tree T4 in Figure 11, each of QR, QS,
QT and QU can be covered by a single relation and hence
r(T4) = 1. This is the smallest possible value for an f-
tree of Q2, or equivalently, for a provenance f-tree of π∅Q2,

296

so r(π∅Q2) = 1. We deduce that the provenance of 〈〉 in
π∅Q2(D) is at most read-|D| for any database D. 2

The lower bounds can also be adapted correspondingly.

Lemma 10. For any query Q, f-tree T of Q, and annota-
tion attribute R in Q, there exist arbitrarily large databases
D such that the number of occurrences of an R-singleton in
the f-representation T (Q(D)) of the annotated query result

Q(D) is at least (|D|/|Q|)ρ
∗
(QR).

Using the above lemma we obtain lower bounds on read-
ability of f-representations with respect to f-trees.

Corollary 7. For any provenance f-tree T of Q, there
exist arbitrarily large databases D and tuple t ∈ Q(D) such

that the f-representation T (ϕ(t)) is at least read-(|D|/|Q|)r(Q).

Theorem 5 follows from Corollaries 6 and 7.

10. DICHOTOMY FOR READABILITY
In case of conjunctive queries on annotated relations, a

remarkable property holds: hierarchical queries [2] are pre-
cisely those queries for which the provenance of tuples in
query results has bounded readability.

We next present this property in more detail. At the out-
set is the observation that there are queries for which the
readability width r(Q) is zero and hence the upper bound
on readability is constant. Unlike the size parameter s(Q),
which is at least 1 for non-empty queries, r(Q) = 0 for a
wide class of queries.

Proposition 8. A conjunctive query Q is hierarchical iff
the readability width r(Q) of Q is zero.

For any non-hierarchical query Q, we have r(Q) > 0.
However, r(Q) = r(T) = ρ∗(QR) for some f-tree T and
relation R, so r(Q) > 0 implies r(Q) ≥ 1. This creates a
gap in the possible readability bounds for queries.

Theorem 6. Let Q be a conjunctive query.
1. If Q is hierarchical, then the readability of the prove-

nance ϕ(t) for any tuple t ∈ Q(D) and database D is
bounded by a constant.

2. If Q is non-hierarchical, for any provenance f-tree T
of Q there exist arbitrarily large databases D and tuple
t ∈ Q(D) such that T (ϕ(t)) is read-Ω(|D|).

For non-repeating queries, we can strengthen the above
dichotomy to readability irrespective of f-trees. We first state
the readability for the simplest non-hierarchical query:

Qnh = π∅σAR=AS∧BS=BT
(R× S × T)

where the relations R,S, T are over schemas {AR}, {AS , BS},
and {BT } respectively. Consider the relation instances R =
[N], T = [N] and S = [N] × [N] annotated by identifiers
ri, tj and sij respectively, with 1 ≤ i, j ≤ N . The flat
f-representation of Qnh’s provenance is then

ΦN =
SN

i,j=1
〈ri〉〈sij〉〈tj〉.

Lemma 11. The relation ΦN has readability N
2

+O(1).

Lemma 11 can be generalised by having the relation T of
sizeM , which may be different fromN . The f-representation
becomes

SN

i=1

SM

j=1
〈ri〉〈sij〉〈tj〉 and readability NM

N+M
+O(1).

The dichotomy result for non-repeating conjunctive queries
is given next.

Theorem 7. Let Q be a non-repeating conjunctive query.
1. If Q is hierarchical, the readability of the provenance
ϕ(t) for any tuple t ∈ Q(D) and database D is 1.

2. If Q is non-hierarchical, there exist arbitrarily large
databases D and tuple t ∈ Q(D) such that the read-

ability of the provenance ϕ(t) is Ω(
p

|D|).

The hierarchical property plays a central role in stud-
ies with seemingly disparate focus, including the present
one, probabilistic databases, parallel query evaluation, and
streamed query evaluation. Our characterisation of query
readability revolves around how far the query is from a hi-
erarchical query. This is quantified by the readability width
r(Q) of the query, and is similar in spirit to existing width
measures that capture the complexity of conjunctive queries,
such as the fractional hypertree width [7, 14].

Theorem 7 draws on earlier work on probabilistic databa-
ses [15, 20], where read-once probabilistic events are useful
since their exact probability can be computed in polynomial
time. For read-m events with m > 3, probability compu-
tation is #P-hard [21]. In our case, however, a readability
that is polynomial in the sizes of the input database and
query is acceptable, since it means that the size of the f-
representation of the query result is polynomial, too.

The hierarchical property also divides queries that can be
evaluated in one step from those that cannot in the finite
cursor machine model of computation [9]. In this model,
queries are evaluated by first sorting each relation, followed
by one pass over each relation. Furthermore, in the Mas-
sively Parallel computation model, any conjunctive query
that can be evaluated (under bag semantics) with one syn-
chronisation step is hierarchical [13].

11. EXTENSIONS AND FUTURE WORK
The results in this paper can be extended in several ways,

e.g., by considering a larger query language and more expres-
sive f-representations. We next highlight a few challenges,
initial results, and point out open problems. We have com-
piled elsewhere a list of challenges in managing factorised
representations of annotated relations and provenance poly-
nomials [18].

11.1 Query Language Extensions
Of foremost importance is the extension of our factori-

sation framework to queries with aggregates and order-by
clauses. The addition of selections with constants to our
framework carries over immediately [17].

Beyond conjunctive queries, the readability results be-
come more involved. We exemplify with simple in/dis-equal-

ity joins. LetQN =
SN

i,j=1;i6=j 〈ri〉〈sj〉 be the flat f-represent-

ation of the result of a disequality join σXR 6=YS
(R×S), where

XR and YS attributes of R and S respectively.

Proposition 9. The readability of QN is Ω(logN

log logN
) and

O(logN).

297

If i 6= j is replaced by i ≤ j in QN , the lower and upper
bounds on readability still hold and we obtain an inequal-
ity query. In case Boolean factorisation is allowed, a lower

bound of
q

logN

log logN
on readability is already known [5].

11.2 Fractional Hypertree Decompositions
Earlier work on tractability of Boolean conjunctive queries

has considered characterisations based on structural proper-
ties of the query hypergraph, such as hypertree width and
its fractional version, e.g., [6, 14]. Queries of bounded width
have polynomial combined complexity.

There is a strong connection between our work and this
earlier work, as noted in Proposition 6: Each f-tree T of an
equi-join query Q corresponds to a path decomposition H
of Q’s hypergraph. In addition, the parameter s(T) is the
fractional hyperpath width of H . This implies that the frac-
tional hypertree width of any equi-join query Q is at most
s(Q). In Example 10 the query Qn has fractional hypertree
width 1 while s(Qn) = Θ(logn). However, fractional hyper-
tree width determines the exponent for the complexity of an-
swering the Boolean version of the query, while we represent
the entire query result of size O(|D|Θ(n)) in O(|D|Θ(log n))
time and space.

It is known that if the fractional hypertree width is w, it
is possible to compute a decomposition of width O(w3) in
polynomial time, but given a query Q and a number w, it
is NP-hard to decide whether the fractional hypertree width
of Q is less than w [14]. This hardness result is done by re-
duction from generalised hypertree width and is not useful
in our case, since our f-trees are special cases of fractional
hypertree decompositions. It remains open whether the de-
cision problem s(Q) ≤ w for a given w is also NP-hard.

Also, finding f-representations with tight readability and
size bounds with respect to general hypertree decomposi-
tions is a promising avenue for future research.

11.3 Queries on F-representations
Our factorisation framework can benefit query processing

particularly when the input is given as an f-representation.
We are building a database management system that presents
relations at the logical layer and uses equivalent factorised
representations at the physical layer. Such a system needs
novel query evaluation and optimisation techniques.

The operators of physical query plans have to be adapted
to work on factorised representations and unfold the factori-
sation to the extent needed to compute the f-representations
of the query results. For instance, a join of two attributes
needs unfolding unless the join attributes are along a same
root-to-leaf path or siblings in the f-tree defining the input
f-representation.

For query optimisation, specific rules that take the input f-
tree into account are needed. For instance, there are several
possibilities to change the input f-representation such that
two join attributes become aligned on a path or siblings in
the f-tree so as to facilitate efficient join evaluation.

Acknowledgments. Jakub Závodný was supported by an
EPSRC DTA Grant EP/P505216/1.

12. REFERENCES
[1] A. Atserias, M. Grohe, and D. Marx. Size bounds and

query plans for relational joins. In Foundations of
Computer Science (FOCS), 2008.

[2] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB Journal, 16(4), 2007.

[3] K. M. Elbassioni, K. Makino, and I. Rauf. On the
readability of monotone boolean formulae. In
International Computing and Combinatorics
Conference (COCOON), 2009.

[4] M. C. Golumbic, A. Mintz, and U. Rotics. An
improvement on the complexity of factoring read-once
boolean functions. Discrete Applied Mathematics,
156(10), 2008.

[5] M. C. Golumbic, U. N. Peled, and U. Rotics. Chain
graphs have unbounded readability. Technical report,
University of Haifa, 2006.

[6] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions and tractable queries. In Principles of
Database Systems (PODS), 1999.

[7] G. Gottlob, N. Leone, and F. Scarcello. The
complexity of acyclic conjunctive queries. Journal of
ACM, 48, 2001.

[8] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Principles of Database
Systems (PODS), 2007.

[9] M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt,
J. Tyszkiewicz, and J. V. den Bussche. Database
query processing using finite cursor machines. Theory
of Computing Systems, 44(4), 2009.

[10] M. Grohe and D. Marx. Constraint solving via
fractional edge covers. In Symposium on Discrete
Algorithms (SODA), 2006.

[11] M. Grohe, T. Schwentick, and L. Segoufin. When is
the evaluation of conjunctive queries tractable? In
Symposium on Theory of Computing (STOC), 2001.

[12] T. Imielinski and W. Lipski. Incomplete information
in relational databases. Journal of ACM, 31(4), 1984.

[13] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In Principles of Database Systems
(PODS), 2011.

[14] D. Marx. Approximating fractional hypertree width.
In Symposium on Discrete Algorithms (SODA), 2009.

[15] D. Olteanu and J. Huang. Using obdds for efficient
query evaluation on probabilistic databases. In
Scalable Uncertainty Management (SUM), 2008.

[16] D. Olteanu, C. Koch, and L. Antova. World-set
decompositions: Expressiveness and efficient
algorithms. Theoretical Computer Science, 403(2-3),
2008.

[17] D. Olteanu and J. Závodný. Factorised representations
of query results. Technical report, Oxford, April 2011.
http://arxiv.org/abs/1104.0867.

[18] D. Olteanu and J. Závodný. On factorisation of
provenance polynomials. In Theory and Practice of
Provenance (TaPP), 2011.

[19] N. Robertson and P. Seymour. Graph minors. i.
excluding a forest. Journal of Combinatorial Theory,
Series B, 35(1), 1983.

[20] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[21] S. Vadhan. The Complexity of Counting in Sparse,
Regular, and Planar Graphs. SIAM Journal on
Computing, 32(2), 2001.

298

