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We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental

restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q of the

hard interaction, factorization does not yield standard parton distribution functions (PDFs) for the initial

state. The measurement restricting the hadronic final state introduces a new scale �B � Q and probes the

proton prior to the hard collision. This corresponds to evaluating the PDFs at the scale �B. After the

proton is probed, the incoming hard parton is contained in an initial-state jet, and the hard collision occurs

between partons inside these jets rather than inside protons. The proper description of such initial-state jets

requires ‘‘beam functions’’. At the scale �B, the beam function factorizes into a convolution of calculable

Wilson coefficients and PDFs. Below �B, the initial-state evolution is described by the usual PDF

evolution which changes x, while above �B it is governed by a different renormalization group evolution

that sums double logarithms of�B=Q and leaves x fixed. As an example, we prove a factorization theorem

for ‘‘isolated Drell-Yan’’, pp ! X‘þ‘� where X is restricted to have no central jets. We comment on the

extension to cases where the hadronic final state contains a certain number of isolated central jets.

DOI: 10.1103/PhysRevD.81.094035 PACS numbers: 12.39.St, 12.38.Cy, 13.85.Qk, 13.87.Ce

I. INTRODUCTION

Factorization is one of the most basic concepts for

understanding data from the Tevatron at Fermilab and the

CERN Large Hadron Collider (LHC). For a review of

factorization see Ref. [1]. Typically, factorization is viewed

as the statement that the cross section can be computed

through a product of probability functions, namely, parton

distribution functions (PDFs), describing the probability to

extract a quark or gluon from the protons in the initial state,

a perturbative cross section for the hard scattering, and a

probabilistic description of the final state by a parton

shower Monte Carlo or otherwise. This factorization is of

key importance in the program to search for new physics,

as new physics is primarily a short-distance modification of

the hard scattering that must be distinguished from the

array of QCD interactions in the initial and final states.

Factorization is also necessary for controlling QCD effects.

For example, the momentum distributions of the colliding

partons in the protons are nonperturbative, but factoriza-

tion can imply that these are described by universal

distributions which have been measured in earlier

experiments.

As the primary goal of the experiments at the LHC or

Tevatron is to probe the physics of the hard interaction,

measurements often impose restrictions on the hadronic

final state, requiring a certain number of hard leptons or

jets in the final state [2–5]. For example, a typical new

physics search looking for missing transverse energy may

also require a minimum number of jets with pT above some

threshold. To identify the new physics and determine the

masses of new-physics particles, one has to reconstruct

decay chains with a certain number of jets and leptons in

the final state.

Any theoretical prediction for pp or p �p collisions,

whether analytic or via Monte Carlo generators, depends

on factorization. However, for the majority of processes of

interest at hadron colliders where one distinguishes prop-

erties of the hadronic final state, so far no rigorous field-

theoretic derivation of a factorization theorem to all orders

in perturbation theory exists. The most well-known facto-

rization theorem is

d� ¼
X

i;j

d�
part
ij � fið�aÞ � fjð�bÞ; (1)

where fi and fj are the standard PDFs for partons i, j ¼
fg; u; �u; d; . . .g carrying momentum fractions �a and �b

(which we use as our PDF x-variables), and d�
part
ij is the

partonic cross section to scatter i and j calculated in fixed-

order perturbation theory. In Eq. (1), the hadronic final

state is treated as fully inclusive. Hence, in the presence

of experimental restrictions that make a process less in-

clusive, Eq. (1) is a priori not applicable. At best, an

additional resummation of large phase-space logarithms

must be carried out by a further factorization of d�
part
ij ,

while at worst, additional nonperturbative information be-

yond that contained in the PDFs is required or there is no

factorization.

Factorization theorems for threshold resummation in

hadron-hadron collisions are a well-studied case where

Eq. (1) can be extended to sum large phase-space loga-

rithms [6–14]. The corresponding formalism however re-

quires the limit x ! 1, and hence is not directly relevant at
the LHC, where the cross section for most measurements is

dominated by the region x far from one [15].

Our goal is to study factorization for a situation where

the hard interaction occurs between partons with generic
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momentum fractions, away from the limit x ! 1, and

where the hadronic final state is measured and restricted

by constraints on certain kinematic variables. These re-

strictions allow one to probe more details about the final

state and may be used experimentally to isolate central

hard jets or leptons or to control backgrounds.

A typical event at the LHC with three high-pT jets is

illustrated in Fig. 1. There are several complications one

has to face when trying to derive a factorization theorem in

this situation. First, experimentally the number and prop-

erties of the final-state jets are determined with a jet

algorithm. Second, to enhance the ratio of signal over

background, the experimental analyses have to apply kine-

matic selection cuts. Third, in addition to the jets produced

by the hard interaction, there is soft radiation everywhere

(which is part of what is sometimes called the ‘‘underlying

event’’). Fourth, a (large) fraction of the total energy in the

final state is deposited near the beam axes at high rapid-

ities. An important component of this radiation can con-

tribute to measurements, and when it does, it cannot be

neglected in the factorization. In this paper we focus on the

last three items. Methods for including jet algorithms in

factorization have been studied in Refs. [8,16,17].

To allow a clean theoretical description, the observables

used to constrain the events must be chosen carefully such

that they are infrared safe and sensitive to emissions every-

where in phase space. Observables satisfying these criteria

for hadron colliders have been classified and studied in

Refs. [18,19], and are referred to as global event shapes.

(Issues related to nonglobal observables have been dis-

cussed, for example, in Refs. [20–23].) For our analysis

we use a very simple example of such an observable,

constructed as follows. We define two hemispheres, a
and b, orthogonal to the beam axis and two unit lightlike

vectors na and nb along the beam axis pointing into each

hemisphere. Taking the beam axis along the z direction,

hemisphere a is defined as z > 0with n
�
a ¼ ð1; 0; 0; 1Þ, and

hemisphere b as z < 0 with n
�
b ¼ ð1; 0; 0;�1Þ. We now

divide the total momentum pX of the hadronic final state

into the contributions from particles in each hemisphere,

pX ¼ pXa
þ pXb

. Next, we remove the momenta pJ of all

jets (defined by an appropriate jet algorithm) in each hemi-

sphere. Of the remaining hemisphere momenta, we mea-

sure the components Bþ
a and Bþ

b defined by

Bþ
a ¼ na �

�

pXa
�

X

J2a

pJ

�

; (2)

and analogously for Bþ
b . Because of the dot product with

na or nb, energetic particles near the beam axes only give

small contributions to Bþ
a or Bþ

b . In particular, any con-

tributions from particles at very large rapidities outside the

detector reach, including the remnant of unscattered par-

tons in the proton, are negligible. All observed particles

contribute either to Bþ
a , B

þ
b , or a jet momentum, so we are

ensured that we cover all of phase space. Demanding that

Bþ
a;b are small restricts the radiation between central jets,

only allowing highly energetic particles either within these

jets or inside jets along the beam directions labeled ‘‘Jet a’’
and ‘‘Jet b’’ in Fig. 1. Hence, measuring and constraining

Bþ
a;b provides a theoretically clean method to control the

remaining particles in the hadronic final state. This ensures

that observables based on the large momenta of hard jets or

leptons are clean, safe from uncontrolled hadronic effects.

In this paper, we consider the simplest situation where

the above setup can be realized, allowing us to explore the

implications of restrictions on the hadronic final state. We

prove a factorization theorem for Drell-Yan production

pp ! X‘þ‘� where X is allowed to have hard jets close

to the beam, but no hard central jets. We call this ‘‘isolated

Drell-Yan’’. Our proof of factorization uses the soft-

collinear effective theory (SCET) [24–27] plus additional

arguments to rule out possible Glauber effects based in part

on Refs. [28,29]. Although we focus our discussion on

Drell-Yan, our factorization theorem applies to processes

pp ! XL, were the lepton pair is replaced by other non-

strongly interacting particles, such as Higgs or Z0 decaying
nonhadronically. Though our analysis is only rigorous for

pp ! XL, we also briefly discuss what the extended fac-

torization formula may look like for processes with addi-

tional identified jets in the final state.

Our main result is to show that process-independent

‘‘beam functions’’, Biðt; xÞ with i ¼ fg; u; �u; d; . . .g, are

required to properly describe the initial state. For the usual

PDFs in Drell-Yan production appearing in Eq. (1), the

hadronic final-state X is treated fully inclusively, and the

effects of initial- and final-state soft radiation cancel out

[1]. With restrictions on X, the effects of soft radiation can
no longer cancel. Generically, by restricting X one per-

forms an indirect measurement of the proton prior to the

hard collision. At this point, the proton is resolved into a

colliding hard parton inside a cloud of collinear and soft

radiation. The proper description of this initial-state jet is

given by a beam function in conjunction with an appro-

FIG. 1 (color online). A typical event with jet production at the

LHC.
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priate soft function describing the soft radiation in the

event.

One might worry that the collision of partons inside

initial-state jets rather than partons inside protons could

drastically change the physical picture. Although the

changes are not as dramatic, they have important implica-

tions. The beam function can be computed in an operator

product expansion, giving

Biðt; �; �BÞ ¼ �ðtÞfið�;�BÞ þO½�sð�BÞ�; (3)

where �B is an intermediate perturbative scale and t is an
invariant-mass variable closely related to the off-shellness

of the colliding parton (and the Mandelstam variable t).
Thus, the beam functions reduce to standard PDFs at

leading order. For what we call the gluon beam function,

this was already found in Ref. [30], where the same matrix

element of gluon fields appeared in their computation of

�p ! J=cX using SCET.

Equation (3) implies that the momentum fractions �a;b

are determined by PDFs evaluated at the scale �B � Q,

which is parametrically smaller than the scale Q of the

partonic hard interaction. The renormalization group evo-

lution (RGE) for the initial state now proceeds in two

stages. For scales �<�B, the RGE is given by the stan-

dard PDF evolution [31–35], which sums single loga-

rithms, mixes the PDFs, and redistributes the momentum

fractions in the proton to lower x values. For scales �>
�B, the jetlike structure of the initial state becomes rele-

vant and its evolution is properly described by the RGE of

the beam function. In contrast to the PDF, the evolution of

the beam function is independent of x, does not involve any
mixing between parton species, and sums Sudakov double

logarithms. In addition to the change in evolution, the

transition from PDFs to beam functions at the scale �B

also involves explicit �sð�BÞ corrections as indicated in

Eq. (3). These include mixing effects, such as a gluon from

the proton pair-producing a quark that goes on to initiate

the hard interaction and an antiquark that is radiated into

the final state. For our observables such fluctuations are not

fully accounted for by the PDF evolution. These beam

effects must be taken into account, which can be done by

perturbative calculations. The standard PDFs are still suf-

ficient to describe the nonperturbative information required

for the initial state.

One should ask whether the description of the initial

state by beam functions, as well as their interplay with the

soft radiation, are properly captured by current

Monte Carlo event generators used to simulate events at

the LHC and Tevatron, such as Pythia [36,37] and Herwig

[38,39]. In these programs the corresponding effects

should be described at leading order by the initial-state

parton shower in conjunction with models for the under-

lying event [40–43]. The experimental implications and

reliability of these QCD Monte Carlo models have been

studied extensively [44–46]. We will see that the initial-

state parton shower is in fact closer to factorization with

beam functions than to the inclusive factorization formula

in Eq. (1). In particular, the physical picture of off-shell

partons that arises from the factorization with beam func-

tions has a nice correspondence with the picture adopted

for initial-state parton showers a long time ago [47,48].

There are also differences. Our analysis is based solely on

QCD soft-collinear factorization, whereas the initial-state

parton shower is partly based on the picture arising from

small-x physics or semihard QCD [49]. For the parton

distributions our formalism applies in a situation that is

intermediate between the case of very small x, where a

resummation of ln x becomes important, and the case x !
1, where threshold resummation in lnð1� xÞ becomes

important. Numerically, our results apply for the dominant

region of x values that are of interest at the LHC.

Experimentally, measurements of the isolated Drell-Yan

cross section provide a simple observable that can rigor-

ously test the accuracy of the initial-state shower in

Monte Carlo programs, by contrasting it with the analytic

results reported here.

In Sec. II, we discuss our main results and explain

various aspects of the factorization with beam functions.

The goal of this section is to give a thorough discussion of

the physical picture behind our results which is nontech-

nical and accessible to nonexpert readers. In Sec. III, we

elaborate on the field-theoretic definition and properties of

the beam functions and their relation to the PDFs. We

quote explicit results for the quark beam function at one

loop, the derivation of which will be given in a separate

publication [50]. In Sec. IV, we derive in detail the facto-

rization theorem for isolated pp ! XL using SCET, and

apply it to the case of Drell-Yan. Readers not interested in

the technical details can freely skip this section. Plots of

the isolated Drell-Yan cross section are given in Sec. V. We

conclude in Sec. VI.

II. FACTORIZATION WITH BEAM FUNCTIONS

This section provides an extensive discussion of how

factorization with beam functions works, including the

necessary kinematic definitions for the variables that con-

strain the hadronic final state. In the interest of avoiding

technical details, we only discuss the physics contained in

the factorization theorems. Readers interested in the field-

theoretic definitions for the beam functions are referred to

Sec. III, while those interested in the derivation of the

factorization theorem in SCET and explicit definitions for

all its ingredients are referred to Sec. IV.

In Sec. II A, we review the factorization theorems for

inclusive Drell-Yan and threshold Drell-Yan, and then ex-

plain the factorization theorem for our isolated Drell-Yan

process. We use a simple setup where measurements on the

final-state hadrons use hemispheres orthogonal to the

beam. These observables are generalized in Sec. II B to

uniformly account for measurements that sample over a
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wide variety of boosts between the hadronic and partonic

center-of-mass frames. We explain the relation between

beam functions and parton distribution functions in

Sec. II C. We compare the beam-function renormalization

group evolution to initial-state parton showers in Sec. II D.

In Sec. II E, we show how the various pieces in the facto-

rization theorem arise from the point of view of a fixed-

order calculation. In Sec. II F, we compare the structure of

large logarithms and their resummation for the different

factorization theorems. This yields an independent argu-

ment for the necessity of beam functions and provides a

road map for incorporating beam functions in other iso-

lated processes. Finally in Sec. II G, we comment on the

extension of the factorization with beam functions to the

case where one has two or more isolated jets in the final

state.

A. Drell-Yan factorization theorems

To describe the Drell-Yan process pp ! X‘þ‘� or

p �p ! X‘þ‘�, we take

P
�
a þ P

�
b ¼ p

�
X þ q�; (4)

where P
�
a;b are the incoming (anti)proton momenta, Ecm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPa þ PbÞ2
p

is the total center-of-mass energy, and q� is

the total momentum of the ‘þ‘� pair. We also define

� ¼ q2

E2
cm

; Y ¼ 1

2
ln
Pb � q
Pa � q

;

xa ¼
ffiffiffi
�

p
eY ; xb ¼

ffiffiffi
�

p
e�Y ;

(5)

where Y is the total rapidity of the leptons with respect to

the beam axis, and xa and xb are in one-to-one correspon-

dence with � and Y. Their kinematic limits are

0 � � � 1; 2jYj � � ln�;

� � xa � 1; � � xb � 1:
(6)

The invariant mass of the hadronic final state is bounded by

m2
X ¼ p2

X � E2
cmð1�

ffiffiffi
�

p Þ2: (7)

In Drell-Yan

Q ¼
ffiffiffiffiffi

q2
q

� �QCD (8)

plays the role of the hard interaction scale. In general, for

factorization to be valid at some leading level of approxi-

mation with a perturbative computation of the hard scat-

tering, the measured observable must be infrared safe and

insensitive to the details of the hadronic final state.

For inclusive Drell-Yan, illustrated in Fig. 2(a), one

sums over all hadronic final states X allowed by Eq. (7)

without imposing any cuts. Hence, the measurement is

insensitive to any details of X because one sums over all

possibilities. In this situation there is a rigorous derivation

FIG. 2 (color online). Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization

theorems for the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton

pair replaced by dijets.
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of the classic factorization theorem [28,51,52]

1

�0

d�

dq2dY
¼

X

i;j

Z d�a

�a

d�b

�b

Hincl
ij

�
xa
�a

;
xb
�b

; q2; �

�

� fið�a; �Þfjð�b; �Þ
�

1þO

�
�QCD

Q

��

; (9)

where �0 ¼ 4��2
em=ð3NcE

2
cmq

2Þ, and the integration lim-

its are xa � �a � 1 and xb � �b � 1. The sum is over

partons i, j ¼ fg; u; �u; d; . . .g, and fið�aÞ is the parton

distribution function for finding parton i inside the proton
with light-cone momentum fraction �a along the proton

direction. Note that �a;b are partonic variables, whereas

xa;b are leptonic, and the two are only equal at tree level.

The inclusive hard functionHincl
ij can be computed in fixed-

order perturbative QCD as the partonic cross section to

scatter partons i and j [corresponding to d�
part
ij in Eq. (1)]

and is known to two loops [53–57].

For threshold Drell-Yan, one imposes strong restrictions

to only allow soft hadronic final states with mX � Q, as

illustrated in Fig. 2(b). Using Eq. (7), this can be ensured

by forcing ð1� ffiffiffi
�

p Þ2 � �, so that one is close to the

threshold � ! 1. In this case, there are large double loga-

rithms that are not accounted for by the parton distribu-

tions. Furthermore, since

1 	 �a;b 	 xa;b 	 � ! 1; (10)

a single parton in each proton carries almost all of the

energy, �a;b ! 1. The partonic analog of � is the variable

z ¼ q2

�a�bE
2
cm

¼ �

�a�b

� 1; (11)

and � ! 1 implies the partonic threshold limit z ! 1. As
Eq. (6) forces Y ! 0 for � ! 1, it is convenient to integrate
over Y and consider the � ! 1 limit for d�=dq2. The
relevant factorization theorem in this limit is [6,7]

1

�0

d�

dq2
¼

X

ij

Hijðq2; �Þ
Z d�a

�a

d�b

�b

fið�a; �Þfjð�b; �Þ

�QSthr

�

Q

�

1� �

�a�b

�

; �

�

�
�

1þO

�
�QCD

Q
; 1� �

��

; (12)

where we view Eq. (12) as a hadronic factorization theo-

rem in its own right, rather than simply a refactorization of

Hincl
ij in Eq. (9). This Drell-Yan threshold limit has been

studied extensively [12,13,58–62]. Factorization theorems

of this type are the basis for the resummation of large

logarithms in near-threshold situations. In contrast to

Eq. (9), the sum in Eq. (12) only includes the dominant

q �q terms for various flavors, ij ¼ fu �u; �uu; d �d; . . .g. Other
combinations are power-suppressed and only appear at

Oð1� �Þ or higher. The threshold hard function Hij 


jCiC
�
j j is given by the square of Wilson coefficients in

SCET, and can be computed from the timelike quark

form factor. The threshold Drell-Yan soft function Sthr is
defined by a matrix element of Wilson lines and contains

both perturbative and nonperturbative physics. If it is

treated purely in perturbation theory at the soft scale

Qð1� �Þ, there are in principle additional power correc-

tions of O½�QCD=Qð1� �Þ� in Eq. (12) [63].

Our goal is to describe the isolated Drell-Yan process

shown in Fig. 2(c). Here, the colliding partons in the hard

interaction are far from threshold as in the inclusive case,

but we impose a constraint that does not allow central jets.

Soft radiation still occurs everywhere, including the central

region. Away from threshold, the hard interaction only

carries away a fraction of the total energy in the collision.

The majority of the remaining energy stays near the beam.

The colliding partons emit collinear radiation along the

beams that can be observed in the final state, shown by the

green lines labeled ‘‘Jet a’’ and ‘‘Jet b’’ in Fig. 2(c). This

radiation cannot be neglected in the factorization theorem

and necessitates the beam functions. In the threshold case,

these jets are not allowed by the limit � ! 1, which forces
all available energy into the leptons and leaves only soft

hadronic radiation.1 In the inclusive case there are no

restrictions on additional hard emissions, in which case

initial-state radiation is included in the partonic cross

section in Hincl
ij .

Also shown in Fig. 2(c) is the fact that the leptons in

isolated Drell-Yan need not be back-to-back, though they

are still back-to-back in the transverse plane [see

Sec. IVB]. In this regard, isolated Drell-Yan is in-between

the threshold case, where the leptons are fully back-to-back

with Y � 0, and the inclusive case, where they are

unrestricted.

In Figs. 2(d) and 2(e) we show analogs of threshold

Drell-Yan and isolated Drell-Yan where the leptons are

replaced by final-state jets. We will discuss the extension

to jets in Sec. II G below.

To formulate isolated Drell-Yan we must first discuss

how to veto hard emissions in the central region. For this

purpose, it is important to use an observable that covers the

full phase pace. Jet algorithms are good tools to identify

jets, but not necessarily to veto them. Imagine we use a jet

algorithm and require that it does not find any jets in the

1Note that the proof of factorization for the partonic cross
section in the partonic threshold limit z ! 1 is not sufficient to
establish the factorization of the hadronic cross section, unless
one takes the limit � ! 1. The hadronic factorization theorem
assumes that all real radiation is soft with only virtual hard
radiation in the hard function. The weaker limit z ! 1 still
allows the incoming partons to emit energetic real radiation
that cannot be described by the threshold soft function. Only
the � ! 1 limit forces the radiation to be soft. This point is not
related to whether or not the threshold terms happen to dominate
numerically away from � ! 1 due to the shape of the PDFs or
other reasons.
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central region. Although this procedure covers the full

phase space, the restrictions it imposes on the final state

depend in detail on the algorithm and its criteria to decide

if something is considered a jet or not. It is very hard to

incorporate such restrictions into explicit theoretical cal-

culations, and, in particular, into a rigorous factorization

theorem. Even if possible in principle, the resulting beam

and soft functions would be very complicated objects, and

it would be difficult to systematically resum the large

logarithms arising at higher orders from the phase-space

restrictions. Therefore, to achieve the best theoretical pre-

cision, it is important to implement the central jet veto

using an inclusive kinematic variable. This allows us to

derive a factorization theorem with analytically manage-

able ingredients, which can then be used to sum large

phase-space logarithms.

We will consider a simple kinematic variable that fulfills

the above criteria, leaving the discussion of more sophis-

ticated generalizations to the next subsection. The key

variables for the isolated Drell-Yan process are shown in

Fig. 3. The proton momenta P
�
a and P

�
b are used to define

lightlike vectors n
�
a and n

�
b ,

P
�
a ¼ Ecm

2
n
�
a ; P

�
b ¼ Ecm

2
n
�
b ; (13)

where the protons are massless and n2a ¼ 0, n2b ¼ 0, and

na � nb ¼ 2. Using the beam axis, we define two hemi-

spheres a and b opposite to the incoming protons. We then

divide up the total hadronic momentum as

p
�
X ¼ B

�
a þ B

�
b ; (14)

where B
�
a ¼ p

�
Xa

and B
�
b ¼ p

�
Xb

are the total final-state

hadronic momenta in hemispheres a and b. Of these, we
consider the components

Bþ
a ¼ na � Ba ¼ B0

að1þ tanhyaÞe�2ya ;

Bþ
b ¼ nb � Bb ¼ B0

bð1þ tanhybÞe�2yb ;
(15)

where B0
a;b are the energy components and ya;b are the total

rapidities of B
�
a;b with respect to the forward direction na;b

for each hemisphere. Here, limy!1ð1þ tanhyÞ ¼ 2 and

1þ tanhy 	 1:8 for y 	 1, so Bþ
a;b scale exponentially

with the rapidities ya;b.
In terms of the measured particle momenta pk in hemi-

sphere a,

Bþ
a ¼

X

k2a

na � pk ¼
X

k2a

Ekð1þ tanh	kÞe�2	k : (16)

Here, Ek and 	k are the experimentally measured energy

and pseudorapidity with respect to ~na, and we neglect the

masses of final-state hadrons. An analogous formula ap-

plies for Bþ
b . Hence, B

þ
a and Bþ

b receive large contributions

from energetic particles in the central region, while con-

tributions from particles in the forward region are sup-

pressed. Thus, requiring small Bþ
a;b � Q is an effective

way to restrict the energetic radiation in each hemisphere

as a smooth function of rapidity, allowing forward jets

and disallowing central jets. At the same time, soft radia-

tion with energies � Q is measured, but not tightly

constrained.

As an example, consider the cut

Bþ
a;b � Qe�2ycut : (17)

This constraint vetoes any events with a combined energy

deposit of more than Q=2 per hemisphere in the central

rapidity region jyj � ycut. In the smaller region jyj �
ycut � 1, the energy allowed by Eq. (17) is reduced by a

factor of e2 ’ 7, essentially vetoing any jets there. In the

larger region jyj � ycut þ 1, it is increased by the same

factor, so beyond ycut þ 1 the hadronic final state is essen-

tially unconstrained. Thus, a typical experimental value

might be ycut ¼ 2, which vetoes energetic jets in the central
region jyj � 1. The precise value of the cut on Bþ

a;b will of

course depend on the requirements of the experimental

analyses.

Note that the variable Bþ
a is similar to the total transverse

energy in hemisphere a, defined as

ETa ¼
X

k2a

Ek

cosh	k

¼
X

k2a

Ekð1þ tanh	kÞe�	k : (18)

Bþ
a has two advantages over ETa. First, the exponential

sensitivity to rapidity is much stronger for Bþ
a , which

means it provides a stronger restriction on jets in the

central region and at the same time is less sensitive to

jets in the forward region. Second, since Bþ
a is a specific

four-momentum component and linear in four-momentum,
FIG. 3 (color online). Definition of hemispheres and kinematic

variables for isolated Drell-Yan.
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ðp1 þ p2Þþ ¼ pþ
1 þ pþ

2 , it is much simpler to work with

and to incorporate into the factorization theorem. It is clear

that the isolated Drell-Yan factorization theorem discussed

here can be extended to observables with other exponents,

e�a	k , much like the angularity event shapes in eþe� [64].

One should ask, down to what values can Bþ
a;b be reliably

measured experimentally? In principle, particles at any

rapidity contribute to Bþ
a;b, but the detectors only have

coverage up to a maximum pseudorapidity 	det, as indi-

cated in Fig. 3. For the hadron calorimeters at the LHC

	det ’ 5 and at the Tevatron 	det ’ 4. In the hadronic

center-of-mass frame, the unscattered partons inside the

proton have plus components of Oð�2
QCD=EcmÞ, so any

contributions from the unmeasured proton remnants are

always negligible. The question then is, what is the maxi-

mal contribution to Bþ
a;b from initial-state radiation that is

missed as it is outside the detector? In the extreme scenario

where all proton energy is deposited right outside 	det, we

would have Bþ
a;b ¼ 14 TeVe�10 ¼ 0:6 GeV at the LHC

and Bþ
a;b ¼ 2 TeVe�8 ¼ 0:7 GeV at the Tevatron. In

more realistic scenarios, the contribution from such radia-

tion is suppressed by at least another factor of 10 or more.

Therefore, the finite detector range is clearly not an issue

for measuring values Bþ
a;b * 2 GeV, and the relevant limi-

tation will be the experimental resolution in Bþ
a;b.

The factorization theorem for isolated Drell-Yan, which

we prove in Sec. IV, reads

1

�0

d�

dq2dYdBþ
a dB

þ
b

¼
X

ij

Hijðq2; �Þ
Z

dkþa dk
þ
b q

2Bi½!aðBþ
a � kþa Þ; xa; ��Bj½!bðBþ

b � kþb Þ; xb; ��Sihemiðkþa ; kþb ; �Þ

�
�

1þO

�
�QCD

Q
;
!a;bB

þ
a;b

Q2

��

: (19)

The physical interpretation of Eq. (19) is that we take

partons i and j out of the initial-state jets Bi, Bj and

hard-scatter them to final-state particles with Hij, while

including Sihemi to describe the accompanying soft radia-

tion. The hard function Hij is identical to the one in the

threshold factorization theorem in Eq. (12), and the sum in

Eq. (19) is again only over ij ¼ fu �u; �uu; d �d; . . .g. The

quark and antiquark beam functions Bq and B �q describe

the effects of the incoming jets and have replaced the

PDFs. The variables !a;b ¼ xa;bEcm. The hard partons

are taken from initial-state jets rather than protons, so

unlike in the threshold case the gluon PDF now contributes

via the beam functions. Wewill see how this works in more

detail in Sec. II C. Finally, Sihemi is the initial-state hemi-

sphere soft function.

The kinematic variables in Eq. (19) are displayed in

Fig. 3. The soft function depends on the momenta kþa ¼
na � ka and kþb ¼ nb � kb of soft particles in hemispheres a
and b, respectively. Much like PDFs, the beam functions

Biðta; xa; �Þ and Bjðtb; xb; �Þ depend on the momentum

fractions xa and xb of the active partons i and j participat-
ing in the hard collision. In addition, they depend on

invariant-mass variables

ta ¼ !ab
þ
a 	 0; tb ¼ !bb

þ
b 	 0; (20)

where !a;b ¼ xa;bEcm are the hard momentum compo-

nents and bþa ¼ na � ba. The momentum b
�
a is defined as

the total momentum of the energetic particles radiated into

hemisphere a, as shown in Fig. 3, and similarly for bþb .
(The kinematics are shown in more detail in Fig. 13.)

Before the hard interaction, the momentum of the active

quark can be written as

!a

n
�
a

2
� bþa

n
�
b

2
� b

�
a?: (21)

The first term is its hard momentum along the proton

direction, and the last two terms are from the momentum

it lost to radiation, where b2a? ¼ � ~b
2
aT contains the trans-

verse components. The quark’s spacelike invariant mass is

�!ab
þ
a � ~b2aT ¼ �ta � ~b2aT . The beam function Bi for

hemisphere a depends on ta ¼ !ab
þ
a ¼ xaEcmb

þ
a , which

is the negative of the quark’s transverse virtuality. (When

the distinction is unimportant we will usually refer to t
simply as the quark’s virtuality.) By momentum conserva-

tion bþa ¼ Bþ
a � kþa , leading to the convolution of the

beam and soft functions as shown in Eq. (19). Physically,

the reason we have to subtract the soft momentum from Bþ
a

is that the beam function only properly describes the col-

linear radiation, while the soft radiation must be described

by the soft function. An analogous discussion applies to Bj

and tb for hemisphere b. The convolutions in the factori-

zation theorem thus encode the cross talk between the soft

radiation and energetic collinear radiation from the beams.

By measuring and constraining Bþ
a we essentially mea-

sure the virtuality of the hard parton in the initial state. As

the proton cannot contain partons with virtualities larger

than �2
QCD, the initial state at that point must be described

as an incoming jet containing the hard off-shell parton.

This is the reason why beam functions describing these

initial-state jets must appear in Eq. (19). It also follows that

since t � �2
QCD we can calculate the beam functions

perturbatively in terms of PDFs, which we discuss further

in Sec. II C.
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It is convenient to consider a cumulant cross section, including all events with Bþ
a;b up to some specified value, as in

Eq. (17). Integrating Eq. (19) over 0 � Bþ
a;b � Bþ

max we obtain

1

�0

d�

dq2dY
ðBþ

maxÞ ¼
X

ij

Hijðq2; �Þ
Z

dkþa dk
þ
b
~Bi½!aðBþ

max � kþa Þ; xa; �� ~Bj½!bðBþ
max � kþb Þ; xb; ��Sihemiðkþa ; kþb ; �Þ

�
�

1þO

�
�QCD

Q
;
!a;bB

þ
max

Q2

��

; (22)

where the soft function Sihemi is the same as in Eq. (19), and

we defined the integrated beam function

~B iðtmax; x; �Þ ¼
Z

dtBiðt; x; �Þ
ðtmax � tÞ: (23)

The cut Bþ
a;b � Bþ

max implies the limit bþa;b � Bþ
max � kþa;b

and ta;b � !a;bðBþ
max � kþa;bÞ, leading to the convolutions

in Eq. (22).

The factorization theorem Eq. (19) and its integrated

version Eq. (22) are valid in the limit ta;b=Q
2 ’ Bþ

a;b=Q 
�2 � 1, and receive power corrections ofOð�2Þ. Thus, for
Bþ
max ¼ Qe�2ycut with ycut ¼ 1, we expect the power cor-

rections not to exceed e�2 
 10%. This is not a fundamen-

tal limitation, because the power corrections can be

computed in SCET if necessary. If the soft function is

treated purely perturbatively, there are additional power

corrections of Oð�QCD=B
þ
a;bÞ, which account for soft sin-

gularities as Bþ
a;b ! 0. The variables Bþ

a;b are infrared safe

with respect to collinear splittings [65].

The hard function receives perturbative �s corrections at

the hard scale �H ’ Q, the beam functions have �s cor-

rections at the intermediate beam scale �2
B ’ tmax ’

QBþ
max, and the soft function at the soft scale �S ’ Bþ

max.

For example, for Q ’ 1 TeV and ycut ¼ 2 we have �B ’
140 GeV and �S ’ 20 GeV. Even with a very small Q ’
100 GeV, perhaps for Higgs production, �B ’ 14 GeV
and �S ’ 2 GeV are still perturbative (although at this

point nonperturbative contributions 
�QCD=�S to the

soft function might no longer be small and may be

incorporated with the methods in Refs. [66,67]). In fixed-

order perturbation theory, the cross section contains large

single and double logarithms, lnðBþ
max=QÞ ’ �4 and

ln2ðBþ
max=QÞ ’ 16, invalidating a fixed-order perturbative

expansion. The factorization theorem allows us to system-

atically resum these logarithms to all orders in perturbation

theory, which is discussed in more detail in Sec. II F.

The factorization theorem Eq. (19) also applies to other

nonhadronic final states such as Z0 ! ‘þ‘�, or Higgs

production with H ! �� or H ! ZZ� ! 4‘. In each

case, q2 and Y are the total nonhadronic invariant mass

and rapidity, and central jets are vetoed with a cut on Bþ
a;b.

The only dependence on the process is in the hard function,

which must be replaced appropriately and can be taken

directly from the corresponding threshold factorization

theorem. One may also consider W production with W !

‘ ��, with an appropriate replacement of q2 and Y with the

charged lepton’s rapidity. For a light Higgs with Q
mH,

the isolated Drell-Yan factorization theorem applies to

Higgs production through gluon fusion gg ! H and

Higgs-strahlung q �q ! VH, which are the dominant pro-

duction channels at the LHC and Tevatron, respectively.2

For a generic process pp ! XL, the sum over ij ¼
fgg; u �u; �uu; d �d; . . .g includes a gluon-gluon contribution,

but still no cross terms between different parton types,

and there will be two independent soft functions Sq
�q

ihemi

and Sggihemi. [As shown in Sec. IV, only the q �q soft function

contributes to isolated Drell-Yan, so the labels were omit-

ted in Eq. (19).] Indeed, the gluon-gluon contribution in-

volving the gluon beam and soft functions, Bg and Sggihemi,

gives the dominant contribution in the case of Higgs

production.

With the above physical picture, we can understand why

the gluon beam function appeared in �p ! J=cX in the

analysis of Ref. [30] in the limit where EJ=c ! E�. Taking

pX as the total momentum of final-state hadrons other than

the J=c , one has n � pX 
 Ecmð1� EJ=c =E�Þ, where n is

the proton direction. For EJ=c close to E�, energetic ra-

diation in the final state is restricted to a jet close to the n
direction. Just as for our Bþ

a;b, the measurement of EJ=c

probes the radiation emitted by the colliding gluon in the

initial state. Thus, the proton is broken apart prior to the

hard collision, and the gluon beam function is required to

describe the initial state.

B. Generalized observables

The factorization theorem in Eq. (19) applies for ta �
q2 and tb � q2. This includes the situation where in the

hadronic center-of-mass frame there is a numerically sig-

nificant asymmetry !a ¼ xaEcm >!b ¼ xbEcm. This

means that the boost between the hadronic and partonic

center-of-mass frames, given by the leptonic Y ¼
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!a=!b

p

¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffi

xa=xb
p

, is significantly different from

zero. We explore the implications of this here.

If there is no hierarchy, !a � !b �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!a!b

p ¼ Q, cor-

responding to Y � 0, we can define a simple variable to

constrain both hemispheres simultaneously,

2In vector-boson fusion and associated production gg ! t�tH,
the situation is more complicated and one has to explicitly
consider the process pp ! XjjH with two forward (top) jets.
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B̂ ¼ Bþ
a þ Bþ

b

Q
: (24)

From Eq. (19), this gives

1

�0

d�

dq2dYdB̂
¼

X

ij

Hijðq2; �Þ
Z

dtadtbBiðta; xa; �Þ

� Bjðtb; xb; �ÞQSB

�

QB̂� ta
!a

� tb
!b

; �

�

;

(25)

where the soft function is defined as

SBðkþ;�Þ ¼
Z

dkþa dk
þ
b Sihemiðkþa ; kþb ;�Þ�ðkþ � kþa � kþb Þ:

(26)

The advantage of using B̂ is that the soft function now only

depends on the single variable kþ ¼ kþa þ kþb , much like

the soft function for thrust in eþe� collisions.

If we have a hierarchy !b <Q<!a, the final state has

a substantial boost in the na direction, as shown in Fig. 4. In
this case, the energetic radiation will generically be much

closer to the beam axis in hemisphere a than in hemisphere

b. To take this into account, it is natural to impose different

cuts on Bþ
a and Bþ

b . Using the boost-invariant combina-

tions !aB
þ
a =q

2 and !bB
þ
b =q

2 to define the cut, we obtain

!aB
þ
a

q2
¼ Bþ

a

!b

� e�2ycut ;
!bB

þ
b

q2
¼ Bþ

b

!a

� e�2ycut ; (27)

so Bþ
a has a tighter constraint than Bþ

b , as desired. If we

simply replace B̂ by Bþ
a =!b þ Bþ

b =!a, the soft function

analogous to SB in Eq. (26) will depend on the combination

ð!ak
þ
a þ!bk

þ
b Þ=Q2.

However, we should also adjust the hemispheres them-

selves to take into account the significant boost of the

partonic center-of-mass frame. We therefore define a gen-

eralized hemisphere a as y > Y and hemisphere b as

y < Y, as shown in Fig. 4. The corresponding total hemi-

sphere momenta are denoted as Bþ
a;bðYÞ and the soft hemi-

sphere momenta as kþa;bðYÞ. The original definitions in

Fig. 3 correspond to Bþ
a;bð0Þ  Bþ

a;b and kþa;bð0Þ  kþa;b.

The generalization of B̂ is given by the boost-invariant

combination

�B ¼ !aB
þ
a ðYÞ þ!bB

þ
b ðYÞ

q2
: (28)

With the generalized definition of the hemispheres, Bþ
a;bðYÞ

and!a;b transform under a boost by y in the na direction as

Bþ
a ðYÞ ! Bþ0

a ðY þ yÞ ¼ e�yBþ
a ðYÞ;

Bþ
b ðYÞ ! Bþ0

b ðY þ yÞ ¼ eyBþ
b ðYÞ;

!a ! !0
a ¼ ey!a;

!b ! !0
b ¼ e�y!b:

(29)

Thus, boosting by y ¼ �Y from the hadronic to the par-

tonic center-of-mass frame gives

�B ¼ !0
aB

þ0
a ð0Þ þ!0

bB
þ0
b ð0Þ

q2
¼ Bþ0

a ð0Þ þ Bþ0
b ð0Þ

Q
: (30)

In the partonic center-of-mass frame we have !0
a ¼ !0

b ¼
Q, so there is no hierarchy. Correspondingly, the general-

ized hemispheres in this frame are again perpendicular to

the beam axis, so Eq. (30) has the same form as B̂.
Note that for eþe� ! jets, one can use the thrust axis to

define two hemispheres with na;b analogous to our case. In
the 2-jet limit, thrust is then given by 1� T ¼
ðQna � pXa

þQnb � pXb
Þ=Q2. Hence, we can think of �B

as the analog of thrust for incoming jets. For this reason we

will call �B the ‘‘beam thrust’’.

In analogy to Eqs. (17) and (27), we define the cutoff on

�B by

�B � e�2ycutB : (31)

For �B ! 0 or equivalently ycutB ! 1 the jets along the

beam axes become pencil-like, while for generic ycutB we

allow energetic particles up to rapidities y & ycutB (with y
measured in the partonic center-of-mass frame).

The beam functions are boost-invariant along the beam

axis, so the different hemisphere definitions do not affect

them. The soft function is boost-invariant up to the hemi-

sphere definition, which defines its arguments kþa;b. Hence,
boosting by �Y we have Sihemi½eYkþa ; e�Ykþb ;Y� ¼
Sihemi½kþa ; kþb ; 0� ¼ Sihemiðkþa ; kþb Þ, where the third argu-

ment denotes the definition of the hemispheres. This im-

plies that the soft function for �B is the same as in Eq. (26).

The factorization theorem for �B following from Eq. (19) is

1

�0

d�

dq2dYd�B
¼

X

ij

Hijðq2; �Þ
Z

dtadtbBiðta; xa; �Þ

� Bjðtb; xb; �ÞQSB

�

Q�B � ta þ tb
Q

;�

�

:

(32)

FIG. 4 (color online). Generalized definition of hemispheres.

The total rapidity of the leptons is Y, bþa;b ¼ na;b � ba;b, and
kþa;bðYÞ ¼ na;b � ka;bðYÞ.
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Integrating over 0 � �B � expð�2ycutB Þ we obtain

d�

dq2dY
ðycutB Þ ¼

Z expð�2ycutB Þ

0
d�B

d�

dq2dYd�B
: (33)

We will use Eqs. (32) and (33) to show plots of our results

in Sec. V.

C. Relating beam functions and PDFs

The beam functions can be related to the PDFs by

performing an operator product expansion, because

ta;b � �2
QCD.

3 This yields the factorization formula

Biðt; x; �Þ ¼
X

j

Z 1

x

d�

�
I ij

�

t;
x

�
;�

�

fjð�;�Þ

�
�

1þO

�
�2

QCD

t

��

; (34)

where we sum over partons j ¼ fg; u; �u; d; . . .g, I ij are

perturbatively calculable Wilson coefficients, and fj is

the standard PDF for parton j. The Oð�2
QCD=tÞ power

corrections in Eq. (34) involve proton structure functions

at subleading twist. Further mathematical details on

Eq. (34) are discussed in Sec. III, whereas here we focus

on the physical ramifications.

The interpretation of Eq. (34) is illustrated in Fig. 5. At a

hadronic scale �� 
 1 GeV, the initial conditions for the

PDFs fj can be specified, and one has the standard DGLAP

evolution up to the scale �B,

�
d

d�
fjð�;�Þ ¼

X

j0

Z d�0

�0 Pjj0

�
�

�0 ; �
�

fj0ð�0; �Þ: (35)

The anomalous dimensions Pjj0 are the standard QCD

splitting functions for quarks, antiquarks, and gluons

(including the color factors and coupling constant).

Equation (34) applies at the scale � ¼ �B, since this is

the scale at which a measurement on the proton is per-

formed by observing the soft and collinear radiation con-

tributing to Bþ
a;b. At this scale, a parton j with momentum

fraction � is taken out of the incoming proton according to

the probability distribution fjð�;�Þ. As the parton contin-

ues to propagate and evolve with�>�B, it is modified by

virtual radiation and by the emission of real radiation,

which forms a jet. The evolution in this region no longer

depends on �, but instead on the virtuality t. This evolution
occurs with fixed x and fixed parton type i, via the beam-

function RGE

�
d

d�
Biðt; x; �Þ ¼

Z

dt0�i
Bðt� t0; �ÞBiðt0; x; �Þ: (36)

This result for initial-state jet evolution has the same

structure as the evolution for final-state jets. In fact, the

anomalous dimension �
q
B is identical to that for the quark

jet function to all orders in perturbation theory [50]. We

discuss this correspondence further in Sec. III.

The effect of initial-state real and virtual radiation is

described by the perturbatively calculable Wilson coeffi-

cients I ijðt; x=�;�Þ at the scale � ¼ �B. They encode

several physical effects. The virtual loop corrections con-

tribute to the I ii and modify the effective strength of the

various partons. If the radiation is real, it has physical

timelike momentum. Hence, it pushes the active parton

in the jet off shell with spacelike virtuality �t < 0 and

reduces its light-cone momentum fraction from � to x.
In addition, the real radiation can change the identity

of the colliding parton, giving rise to the sum over j in

Eq. (34). For example, an incoming quark can radiate an

FIG. 5 (color online). Evolution of the initial state. Starting from the low scale ��, the incoming proton is described by the

x-dependent evolution of the PDFs, which redistributes the total momentum of the proton between its constituents. At the scale�B, the

proton is probed by measuring the radiation in the final state and breaks apart. This is the scale where the PDFs are evaluated and the

x-dependent evolution stops. Above �B, the proton has ceased to exist, and the initial state behaves like an incoming jet, whose

evolution is governed by the virtuality t of the off-shell spacelike parton that eventually enters the hard interaction at the scale �H.

3A detailed discussion of the appropriate operator product
expansion is given in Ref. [50].
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energetic gluon which enters the hard interaction, while the

quark itself goes into the final state. This gives a contribu-

tion of the quark PDF to the gluon beam function through

Igq. Similarly, an incoming gluon can pair-produce, with

the quark participating in the hard interaction and the

antiquark going into the final state. This gives a contribu-

tion of the gluon PDF to the quark beam function through

Iqg. There are also of course real radiation contributions to

the diagonal terms, Iqq and Igg, where the parton in the

PDF and the parton participating in the hard interaction

have the same identity.

At lowest order in perturbation theory, the parton taken

out of the proton directly enters the hard interaction with-

out emitting radiation,

I tree
ij

�

t;
x

�
;�

�

¼ �ij�ðtÞ�
�

1� x

�

�

: (37)

Thus at tree level, the beam function reduces to the PDF

Btree
i ðt; x; �Þ ¼ �ðtÞfiðx;�Þ: (38)

Beyond tree level, I ijðt; x=�;�Þ can be determined pertur-

batively as discussed in more detail in Sec. III, where we

give precise field-theoretic definitions of the beam func-

tions and quote the one-loop results for Iqq and Iqg.

Interestingly, in the threshold factorization theorem

Eq. (12), cross terms between quark and gluon PDFs are

power suppressed, so the gluon PDF does not contribute at

leading order. In the inclusive case Eq. (9), such cross

terms are leading order in the power counting. For isolated

Drell-Yan, there are no cross terms between quark and

gluon beam functions, but there are leading-order cross

terms between different PDFs, which appear via the con-

tributions of different PDFs to a given beam function in

Eq. (34). Thus, the isolated case is again in-between the

inclusive and threshold cases.

D. Comparison with initial-state parton shower

The physical situation associated with the beam evolu-

tion has an interesting correspondence with that of initial-

state parton showers. As pictured in the region between�B

and �H in Fig. 5, the parton in the beam function evolves

forward in time while emitting a shower of radiation into

the final state governed by the anomalous dimension

�i
Bðt� t0; �Þ in Eq. (36). This equation has no parton

mixing. Each emission by the radiating parton increases

the magnitude of its spacelike virtuality�t < 0, pushing it
further off-shell in a spacelike direction. At the time the

parton is annihilated in the hard collision, it has evolved to

some t with jtj � q2, so the large momentum transfer q2

guarantees that no partons in the final state are spacelike.

This description agrees quite well with the physical picture

associated with the evolution of the primary parton in an

initial-state parton shower, as summarized in Ref. [36].

Differences in the description arise when one considers

the initial-state parton shower in more detail (for simplicity

we focus on the so-called longitudinal evolution). The

shower is based on the evolution equation for the PDFs

in Eq. (35). An evolution forward in time is not practical

because of the lack of prior knowledge of the scale of the

hard interaction, so the shower uses backward evolution

starting at a given partonic hard scale Q [47]. Knowing the

identity of the final parton i, the shower evolves based on

the probability dP i=dt that parton i is unresolved into

parton j via the splitting j ! ij0 at an earlier (lower) scale

t. The evolution equation is [36]

dP iðx; tmax; tÞ
dt

¼
�
X

jj0

Z zmax

x

dz

z
Pj!ij0ðz; tÞ

fjðx=z; tÞ
fiðx; tÞ

�

� 1

t
P iðx; tmax; tÞ; (39)

where P iðx; tmax; tÞ is the shower Sudakov exponential,

which is interpreted as the probability for no emissions to

occur between the initial value tmax and t. The evolution

variable t, which determines the scale of the splitting, is

usually chosen as the virtuality or transverse momentum of

the parton.

The mixing of partons in the PDF evolution influences

the shower. In particular, the evolution kernel depends on

the PDF fjðx=z; tÞ, which determines the number density of

partons of type j at the scale t, and inversely on the PDF

fiðx; tÞ. Thus, unlike in the beam evolution in Eq. (36), the

shower evolution in Eq. (39) still knows the identity of the

initial-state hadron. Double logarithms in the initial-state

parton shower are generated in q ! qg and g ! gg split-

tings because of the soft-gluon singularity 
1=ð1� zÞ in
the splitting functions. This singularity is regulated [36] by

the upper cutoff zmax ¼ x=ðxþ xÞ, where x provides a

lower cutoff on the gluon energy in the rest frame of the

hard scattering, Eg 	 x�Ecm=2 ’ 2 GeV (where � is the

boost factor of the hard scattering). Hence, one logarithm,

ln x, is generated by the z integration, and one logarithm,

ln t, by the collinear 1=t singularity. In contrast, the beam

function contains double logarithms ln2 t similar to a final-

state parton shower, where the z integration yields a kernel

ðln tÞ=t that produces a double logarithm ln2 t via the t
evolution.

The above comparison is very rough. For example, the

influence of soft radiation on both the shower and on the

isolated factorization theorem was not compared and is

likely to be important. Furthermore, the goal of the shower

is to provide a universal method for populating fully ex-

clusive final states, while the beam function applies for a

more inclusive situation with a particular measurement.

Note that just the presence of mixing in the initial-state
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parton shower and absence of mixing in the beam-function

evolution does not imply an inconsistency. For example, it

is well-known that the final-state parton shower reproduces

the correct double logarithms for eþe� event shapes [68],

even though there is no parton mixing in the evolution of

the corresponding hard, jet, and soft functions. In the future

it would be interesting to test in detail the correspondence

between the double logarithms generated by the initial-

state parton shower and those predicted by our factoriza-

tion theorem for the isolated Drell-Yan process.

E. Relation to fixed-order calculation

The factorization theorem for the cross section in

Eq. (19) and the factorization for the beam function in

Eq. (34) together allow us to describe in more detail how

various Feynman diagrams that would appear in a fixed-

order calculation contribute to the cross section in our

kinematic region. Various examples are shown in Fig. 6.

In Fig. 6(a), we have the tree-level q �q annihilation

producing a � or Z, which involves the tree-level Oð�0
sÞ

hard function, beam functions, and soft function, denoted

FIG. 6 (color online). Factorization for isolated Drell-Yan in pictures. The left-hand side of each equality are graphs in QCD, while

the right-hand side shows the sum of the corresponding SCET diagrams. Dashed lines are collinear quarks, and springs with a line

through them are collinear gluons. The double lines denote soft Wilson lines, and the gluons attached to them are soft.
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by a superscript (0) in the figure. In Fig. 6(b), initial-state

gluons couple to a quark loop (e.g. a top quark), which

subsequently annihilates into a �, Z, or Higgs. The quarks
in this loop are far off shell, so they can be integrated out

and appear as one-loop corrections, Hð1Þ
gg , to the hard coef-

ficient in the factorization theorem. Other possibilities for

this graph are power suppressed.

The situation for the vertex correction in Fig. 6(c) is

more involved. If the gluon in the loop is hard, all particles

in the loop are far off shell and can be integrated out, giving

the one-loop hard function Hð1Þ
q �q shown as the first term on

the right-hand side. In the second term, the gluon is col-

linear to the incoming quark beam and gives a virtual one-

loop contribution to the quark beam function, Bð1Þ
q . The

third term is the analog of the second, but now with the

gluon collinear to the incoming antiquark. Finally in the

fourth term, the gluon is soft, communicating between the

incoming collinear beams. Here, the eikonal approxima-

tion holds for describing the quark propagators. The gen-

eralization of this to all orders in �s leads to the fact that

the soft function is a matrix element of Wilson lines.

Although a single loop graph contributes in several differ-

ent places in the factorization theorem, all of these con-

tributions have a precise separation in SCET. We will use

this separation in Sec. IV to prove the isolated Drell-Yan

factorization theorem.

An interesting contribution occurs in Fig. 6(d), where a

gluon is radiated into the final state. Because of the kine-

matic restrictions in isolated Drell-Yan, this gluon can only

be collinear to the incoming quark, collinear to the incom-

ing antiquark, or soft, and these three possibilities are

represented by the diagrams on the right-hand side of the

equality. In the first case, we have a real-emission correc-

tion to the quark beam function, Bð1Þ
q . In the second case,

the intermediate quark is far off shell and can be integrated

out, and the gluon collinear to the antiquark arises from a

collinear Wilson line contribution in Bð1Þ
�q . The third case

gives a real-emission correction to the soft function, Sð1Þq �q .

The full-theory graph in Fig. 6(d) has a t-channel singu-
larity. An important fact about the isolated Drell-Yan fac-

torization theorem is that it fully captures the dominant

parts of this singularity, and allows a simple framework for

a resummation of higher order �s corrections enhanced by

large double logarithms due to this singularity. For thresh-

old Drell-Yan, the kinematic restrictions are stronger and

only allow the third graph with soft initial-state radiation.

In inclusive Drell-Yan, the gluon is treated as hard, and the

graph in Fig. 6(d) only corrects Hincl
q �q , without providing a

framework for summing the large double logarithms that

appear when we make a global measurement of the radia-

tion in each hemisphere defined by the beams.

The situation is a bit simpler for Figs. 6(e) and 6(f). In

Fig. 6(e), the incoming collinear gluon from the PDF pair-

produces a quark and antiquark both collinear to this beam

direction, and the quark enters the hard interaction.

Therefore, this is a one-loop correction to the quark

beam function, Bð1Þ
q , proportional to the gluon PDF fg.

The beam functions again allow us to resum the possibly

large logarithms due to this t-channel singularity. Other
possibilities for the final-state antiquark in Fig. 6(e) lead to

power-suppressed contributions. Similarly, the s-channel
graph in Fig. 6(f), which has the same initial and final

states as Fig. 6(e), has no leading-power contribution

and only contributes to Eq. (19) in the power-suppressed

terms. The same is also true for Drell-Yan in the

threshold region. Only inclusive Drell-Yan receives a

leading-order hard contribution from the s-channel graph,
which is then treated as of the same size as the t-channel
graphs.

F. Renormalization group evolution

In this subsection, we discuss and compare the structure

of large logarithms in the cross sections for inclusive,

threshold, and isolated Drell-Yan. These large logarithms

may be summed using the renormalization group evolution

of the individual functions appearing in the factorization

theorems. In fact, the structure of large logarithms in the

differential Bþ
a;b cross section allows us to infer the neces-

sity of the beam functions in the isolated factorization

theorem. This procedure provides a method of determining

whether beam functions enter for other observables or

processes than those studied here. The consistency of the

RGE was used to provide a similar consistency check in

Ref. [69] when deriving a new factorization theorem for

the invariant-mass distribution of jets initiated by a massive

quark in eþe� collisions. In that case, the RGE consistency

provided important constraints on the structure of the

factorization theorem at scales below the heavy-quark

mass.

In inclusive Drell-Yan, the hard functions Hincl
ij are sen-

sitive to the scale �H ’ Q of the hard interaction, and the

proton mass defines a low scale �� ’ 1 GeV * �QCD

(which is still large enough so perturbation theory can be

applied for the PDF evolution). The measurement of q2 and
Y in this case does not introduce additional scales, and thus

does not influence the structure of the logarithms. Thus, we

have the hierarchy�� � �H, and the large logarithms are

L ¼ lnð��=�HÞ. Here, only single-logarithmic series,

ð�sLÞk, are generated at higher orders in perturbation

theory. The logarithms are factorized as lnð�=�HÞ þ
lnð��=�Þ in the factorization theorem in Eq. (9) and

may then be resummed. The general form of the running

is pictured in Fig. 7(a). The logarithms lnð��=�Þ are

summed by evolving the PDFs fið�a; �Þ and fjð�b; �Þ
from �� up to the common scale �. The inclusive hard

function, Hinclðxa=�a; xb=�b; q
2; �Þ, is evolved from �H

down to�, summing the logarithms lnð�=�HÞ. The choice
of � is arbitrary. Taking � ’ �H corresponds to only

running the PDFs up, while for � ’ �� only Hincl runs
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down. The equivalence of these two choices implies that

Hincl must be convoluted with the two PDFs and exhibit a

factorized structure for logarithms in the a and b variables.

For threshold Drell-Yan, the kinematic restrictions only

allow soft radiation in the final state. This induces addi-

tional large logarithms lnð1� �Þ. These can be written in

terms of a ratio of scales lnð�S=�HÞ, where the soft scale
�S ’ Qð1� �Þ is another important scale in the analysis.

The logarithms L ¼ lnð�S=�HÞ appear as double-

logarithmic series ð�sL
2Þk in the cross section. In the

threshold factorization theorem in Eq. (12), these double

logarithms can be summed by evolving the PDFs and the

threshold soft and hard functions, Sthr and H, to a common

scale �, as shown in Fig. 7(b). Since �a;b ! 1, the loga-

rithms lnð1� �aÞ and lnð1� �bÞ are also large. The RGE

for the PDFs must be expanded, and the result sums a

double-logarithmic series of ln2ð1� �Þ terms. The thresh-

old soft function sums double logarithms ln2ð�=�SÞ be-
tween �S and �, while the threshold hard function sums

double logarithms ln2ð�=�HÞ between �H and �. The

evolution equations are

�
d

d�
Hðq2; �Þ ¼ �Hðq2; �ÞHðq2; �Þ;

�
d

d�
fið�;�Þ ¼

Z d�0

�0 P
expanded
ii

�
�

�0 ; �
�

fið�0; �Þ;

�
d

d�
Sthrðk;�Þ ¼

Z

dk0s�Sthr
ðk� k0; �ÞSthrðk0; �Þ:

(40)

The consistency of the RGE at the scale � shown in

Fig. 7(b) implies that the double logarithms in fi, fj, and

Sthr combine in such a way that the RGE of the convolution

fifj � Sthr is identical to that ofH, and hence only depends

on q2.
For isolated Drell-Yan, the kinematic restrictions allow

both soft and collinear initial-state radiation, and induce an

invariant-mass scale for each beam function, �2
B ’

xaEcmB
þ
a and �2

B ’ xbEcmB
þ
b , and a soft scale �S ’

Bþ
a;b. For simplicity, we use a common scale �B for both

beam functions in our discussion here. (Since the evolution

of the two beam functions is independent, one can just as

easily implement two independent beam scales.) As we

saw in Sec. II A, at partonic center-of-mass energies of a

hundred GeV to a few TeV there is a large hierarchy

between the different scales, �� � �S � �B � �H,

and correspondingly large double and single logarithms

of the ratios of these scales. The RGE running for this case

is shown in Fig. 7(c). Here, the PDFs are not restricted to

their endpoints, so their evolution is given by Eq. (35),

which involves the unexpanded and nondiagonal Pijð�=�0Þ
and sums single logarithms, ð�sLÞk. For each fj this evo-

lution joins at � ¼ �B with the Wilson coefficients I ij in

the beam-function factorization Bi ¼ I ij � fj of Eq. (34).

The I ij cancel the �-dependent evolution of fj, and turn it

into the t-dependent evolution of Bi, which sums a double-

logarithmic series. The objects meeting at the common

scale� in Fig. 7(c) are the hard function, which is identical

to the threshold case in Eq. (40), and the beam and soft

functions,

�
d

d�
Biðt; x; �Þ ¼

Z

dt0�i
Bðt� t0; �ÞBiðt0; x; �Þ;

�
d

d�
Sihemiðkþa ; kþb ; �Þ ¼

Z

dk0adk
0
bSihemiðk0a; k0b; �Þ

� �Sihemi
ðkþa � k0a; k

þ
b � k0b; �Þ:

(41)

The consistency of the RGE at � now implies that the

double-logarithmic running in the different variables for

Bi, Bj, and Sihemi cancels such that the convolution BiBj �
Sihemi has an RGE identical to H, which only depends on

q2. (A detailed discussion of this consistency can be found

in Ref. [70] for the analogous case of two jet functions and

FIG. 7 (color online). RGE running for different Drell-Yan scenarios. Case (a) corresponds to the inclusive case.

Case (b) corresponds to the threshold case, where the kinematics forces all hadrons in the final state to be soft. Case

(c) corresponds to the isolated case. Here, the PDFs freeze out at the intermediate beam scale �B, above which they are replaced

by beam functions.
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the final-state hemisphere soft function, JJ � Shemi, and in

Ref. [50] for the case discussed here.) It is important that

this cancellation would not be possible if we tried to re-

place Bi by fi in the isolated factorization theorem. Given

the type of double logarithms in the cross section, the

single logarithms summed by the PDFs at generic x cannot
combine with the double logarithms in Sihemi to give a

result in agreement with the double logarithms in H.

Thus, the structure of double logarithms necessitates the

presence of beam functions in the isolated factorization

theorem.

By the same argument we can conclude that for all

processes involving a threshold-type hard function H
with double logarithms, and with xa;b away from one, the

description of the initial-state radiation will require beam

functions Bi. This includes all situations where H is the

square of Wilson coefficients of SCET operators, H ¼
P

kjCkj2 (for example when the energetic partons in

the hard collision all have distinct collinear directions).

In particular, the theoretical description of any threshold

process with x ! 1 can be extended to a factorization

theorem for the respective isolated case with x away

from one. This is achieved by adding variables Bþ
a;b, re-

placing the PDFs by beam functions, and replacing the

threshold soft function by an appropriate soft function for

the isolated case.

Thus, beam functions are quite prevalent for cross

sections that one may wish to study at the LHC. In situ-

ations where the hadronic final state is constrained

with variables that are more complicated than Bþ
a;b, one

generically expects to find different beam functions and

different soft functions encoding these constraints. This

extension is analogous to how the choice of jet algorithm

modifies the definition of the jet and soft functions for

central jets produced by the hard collision [17]. Even

with this generalization, the beam and soft functions

will both sum double-logarithmic series, and we expect

that the factorization relating the beam function to the

PDFs will carry through, just with different coefficients

I ij.

G. Extension to final-state jets

In Fig. 2, where we show the types of hadronic final

states for inclusive, endpoint, and isolated Drell-Yan, we

also included analogs where the lepton pair is replaced by

two jets. Figure 2(d) shows the threshold dijet production

process studied in Ref. [8], which is the generalization of

the Drell-Yan threshold process in Fig. 2(b). Figure 2(e)

shows the isolated dijet production process, which is the

generalization of isolated Drell-Yan in Fig. 2(c). The goal

of this subsection is to give a rough idea of how the isolated

factorization theorem will look when it is extended to

include final-state jets. Recall that our proof of factoriza-

tion is only for the Drell-Yan case. We stress that the

factorization formula for the isolated dijet case discussed

here expresses our expectations and has not been rigor-

ously derived.

Final-state jets are identified by a jet algorithm as more-

or-less isolated groups of energetic particles within a cone4

of some radius R ¼ ½ð��Þ2 þ ð�	Þ2�1=2. For a dijet event,
the jet algorithm allows us to define the total jet momenta

P
�
1 and P

�
2 .

5 Given these, we let y1 and y2 be the rapidities
of the two jets relative to the beam axis and define �y ¼
y1 � y2. The invariant masses of the jets are denoted as

M2
1;2 ¼ P2

1;2. Two analogs for the q2-variable of Drell-Yan

are

M2
JJ ¼ ðP1 þ P2Þ2;

m2
JJ ¼ 2P1 � P2 ¼ M2

JJ �M2
1 �M2

2;
(42)

where M2
JJ is the total invariant mass of the two jets, and

m2
JJ is their total invariant mass minus their individual

invariant masses. The corresponding analogs of the Drell-

Yan �-variable are then

�J ¼
M2

JJ

E2
cm

; ��J ¼
m2

JJ

E2
cm

: (43)

Identifying the two jets already restricts the hadronic

final state, which means there is no analog of the inclusive

Drell-Yan factorization theorem. In the threshold case, we

take the limit �J ! 1, which ensures that the final state

consists of two back-to-back jets plus soft radiation and no

additional energetic jets, as shown in Fig. 2(d). The limit

��J ! 1 is even more restrictive, since it also forces the

two jets to have very small invariant masses, essentially

behaving like massless particles for the factorization

theorem.

The threshold factorization for m2
JJ was considered in

Ref. [8],6,7

4Here � and 	 denote the azimuthal angle and pseudorapidity.
Although our notation corresponds to a cone algorithm, at the
level of our discussion we may equally well substitute a kT
algorithm.

5We take P
�
1;2 to be the momenta of the two hardest jets found

by the jet algorithm. We will see below that the final-state
restrictions considered here eliminate the possibility of having
other hard central jets.

6To the best of our knowledge a proof of the decoupling of
Glauber gluons does not exist for threshold dijet production in
hadronic collisions, so there is no complete proof of Eq. (44).

7When replacing m2
JJ by M2

JJ in Eq. (44), the main difference
is that now �i ¼ 2k0i =MJJ . In this case, the threshold limit �J !
1 alone does not constrain the jet invariant masses, M2

i , to be
small. SinceM2

i 
 R2M2
JJ, they are constrained to be small by jet

algorithms with R2 � 1. This induces complications in deriving
an all-orders factorization theorem, but still suffices to imply that
the factorization formula in Eq. (44) with the replacement
m2

JJ ! M2
JJ will sum the next-to-leading logarithms [8].
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d�

dm2
JJdð�yÞ

¼ 1

E2
cm

HILðm2
JJ;�yÞ

Z

d�ad�bd�1d�2fð�aÞfð�bÞJthrðmJJ; �1; RÞJthrðmJJ; �2; RÞ

� SLI2jthr½mJJð1� ��J � ð1� �aÞ � ð1� �bÞ � �1 � �2Þ;�y�
�

1þO

�
�QCD

mJJ

; R; 1���J

��

; (44)

where one sums over the color basis IL, and for simplicity

the dependence on flavor labels and � of the various

functions have been suppressed.8 The first argument of

the soft function SLI2jthr is the energy it radiates outside the

jet cones. The jet function Jthr depends on �i ¼ 2k0i =mJJ þ
M2

i =m
2
JJ, where k0i is the energy of particles it radiates

outside its cone. The threshold limit ��J ! 1 forces

�a;b ! 1 and �1;2 ! 0, so we have PDFs, jet functions,

and soft functions that all correspond to the threshold limit

and contain double logarithms.9 When these functions are

convoluted they consistently reproduce the double loga-

rithms encoded in the renormalization group evolution of

HIL, which is shown in Fig. 8(a). Compared to threshold

Drell-Yan as described in Sec. II F, there are extra convo-

lutions for the jets and a more sophisticated soft function

that is a matrix in color space.

To extend the isolated Drell-Yan factorization theorem

to the dijet case, we need to define analogs of the Bþ
a;b

variables in Sec. II A that can constrain the final state in an

appropriate manner. We first define lightlike vectors along

each jet direction, n
�
1 ¼ ð1; ~n1Þ and n

�
2 ¼ ð1; ~n2Þ with

~n1;2 ¼ ~P1;2=j ~P1;2j, and corresponding lightlike vectors in

the opposite directions, �n
�
1;2 ¼ ð1;� ~n1;2Þ. Next, the final-

state particles are divided into four categories fa; b; 1; 2g
as follows. We define R1 and R2 as all particles that

have been grouped into jets 1 and 2 by the jet

algorithm. The remaining particles not grouped into either

of R1;2 are divided into the two hemispheres a and b
as before, which defines Ra;b. We then define plus mo-

menta

Pþ
1 ¼

X

k2R1

n1 � pk; Pþ
2 ¼

X

k2R2

n2 � pk;

Bþ
a ¼

X

k2Ra

na � pk; Bþ
b ¼

X

k2Rb

nb � pk:
(45)

This definition of Bþ
a;b is identical to Eq. (2). Since the jet

algorithm is used for the grouping, these variables

are infrared safe. The union of the four categories covers

all of phase space, so the measurement of all the

momenta in Eq. (45) defines a global observable sensitive

to all radiation in the event. Just as in our Drell-Yan

discussion, the definition of the variables Bþ
a;b ensures

that radiation outside the reach of the detector can safely

be ignored.

For the isolated dijet limit we demand that Pþ
1;2=MJJ �

1 and Bþ
a;b=MJJ � 1. In addition, we constrain y1 and y2

such that the jets lie in the central region sufficiently

separated from the beam directions. The condition on

Pþ
1;2 ensures that the jet regions R1;2 only contain

energetic radiation along the direction of their jet plus

soft radiation. The condition on Bþ
a;b has a similar effect

as for isolated Drell-Yan. It ensures that there is only soft

and no energetic radiation in the central region apart from

the two jets. Thus, we have exactly two isolated central

jets.

Since each category fa; b; 1; 2g predominantly contains

all the corresponding collinear particles, this division of

phase space mainly affects how the soft radiation is asso-

ciated to each jet. In analogy to isolated Drell-Yan,

we divide the total soft momentum as k ¼ ka þ kb þ k1 þ
k2, where each ki is the total momentum of soft particles

in Ri, and we define kþi ¼ ni � ki. The corresponding

isolated dijet soft function, SLI
\2jðkþa ; kþb ; kþ1 ; kþ2 ; y1; y2Þ,

depends on all four directions n1, n2, na, nb and hence

on the rapidities y1 and y2. It now contains both incoming

and outgoing soft Wilson lines and is a matrix in color

space, where we can use the same color basis fLIg as in the
threshold case. The soft function itself of course differs

from the threshold case.

The total jet momenta can now be written as

P
�
1 ¼ !1

n
�
1

2
þ qþ1

�n
�
1

2
þ q

�
? þ k

�
1 ; (46)

and similarly for P
�
2 . The first three terms on the right-hand

side are the contributions from the energetic radiation in

the jet, with!1;2 
MJJ and q
þ
1 , q? � MJJ. Expanding in

the small components of the beam and jet momenta, the

hard momentum components in the beams and jets have to

satisfy

!a

n
�
a

2
þ!b

n
�
b

2
¼ !1

n
�
1

2
þ!2

n
�
2

2
: (47)

Thus, in this limit the two jets are massless and back-to-

back in the transverse plane, but need not be back-to-back

in three dimensions. In terms of y1;2 and M2
JJ ¼ !a!b ¼

!1!2n1 � n2=2, we then have

9We follow the SCET definition of soft functions as matrix
elements of eikonal Wilson lines without subtractions, so S2jthr
has double logarithms. In SCET the jet functions have
subtractions.

8We also made a redefinition so that the PDFs f depend on
light-cone momentum fractions rather than fixed energy as in
Ref. [8], absorbing the difference into the hard functions HIL.
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!a ¼ MJJe
ðy1þy2Þ=2  xaEcm;

!b ¼ MJJe
�ðy1þy2Þ=2  xbEcm;

!1;2 ¼ MJJ

cosh y1;2
coshð�y=2Þ :

(48)

The collinear radiation in the jets is described by jet

functions that depend on the invariant-mass variables

!1q
þ
1 and !2q

þ
2 . By momentum conservation we have

qþ1;2 ¼ Pþ
1;2 � kþ1;2, so the jet functions are convoluted

with the soft function through kþ1;2. The subtraction of

kþ1;2 is necessary to remove the plus momentum of soft

particles in the jet, since the momentum distribution of

these particles is properly described by the soft function

not by the jet function. Just as for isolated Drell-Yan, the

collinear initial-state radiation in the beams is described by

beam functions, which depend on the invariant-mass vari-

able ta ¼ !aðBþ
a � kþa Þ and momentum fraction xa, and

similarly for hemisphere b. Since the jets are well-

separated from the beams, removing the particles in R1;2

from the hemispheres Ra;b mainly affects the soft radia-

tion and not the energetic partons collinear to the beams.

Therefore up to power corrections, we expect the same

inclusive beam functions as before.

From the above discussion it is natural to suppose that

the factorization theorem for isolated dijet production will

be

d�

dM2
JJdy1dy2dB

þ
a dB

þ
b dP

þ
1 dP

þ
2

¼ HILðM2
JJ; y1; y2Þ

Z

dkþa dk
þ
b dk

þ
1 dk

þ
2 J\½!1ðPþ

1 � kþ1 Þ�J\½!2ðPþ
2 � kþ2 Þ�

� B½!aðBþ
a � kþa Þ; xa�B½!bðBþ

b � kþb Þ; xb�SLI\2jðkþa ; kþb ; kþ1 ; kþ2 ; y1; y2Þ

�
�

1þO

�
�QCD

MJJ

;
!a;bB

þ
a;b

M2
JJ

;
!1;2P

þ
1;2

M2
JJ

��

; (49)

where we again suppressed flavor labels and � depen-

dence. The hard function HILðMJJ; yiÞ is precisely the

threshold hard function, and we sum over the same color

basis fILg. The subscript \ on the soft and jet functions

denotes the fact that their plus momenta depend on the

regions Ri, which in turn depend on yi.
The consistency of the RGE for the isolated dijet facto-

rization theorem, shown in Fig. 8(b), again provides im-

portant constraints on its structure. Each of the functions

J\, B, and S
LI
\2j includes a series of double logarithms, and

when these functions are convoluted over the kþi variables

at a common scale�, these different series have to collapse

to precisely the double-logarithmic series of the hard func-

tion HIL. The RGE for the hard function HIL is a matrix

equation in color space, but has no convolutions of kine-

matic variables. We expect that this equivalence will occur

in the same manner as it does for the isolated Drell-Yan

case.

Key missing ingredients in providing a rigorous deriva-

tion of Eq. (49) include (i) providing a mathematically

rigorous treatment of the separation of jets and beams in

the factorization, and (ii) determining the role of Glauber

degrees of freedom, that in principle may couple the final-

state jets and spoil factorization. It should be evident that if

such a proof becomes available, it will be straightforward

to generalize the above discussion to the case where we

produce N isolated jets rather than just two.

III. THE BEAM FUNCTION

In this section, we discuss the properties of the beam

function in more detail. We present its definition and

relation to the standard PDF, as well as its renormalization

FIG. 8 (color online). RGE running for dijet production for (a) the threshold situation and (b) the isolated situation.
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group evolution. We will display explicit results for the quark beam function at one loop (leaving a detailed derivation to a

dedicated publication [50]). The comparison of effects in the beam functions and PDFs are illustrated with plots.

The quark, antiquark, and gluon beam functions are defined in SCET as

Bqð!bþ; !=P�; �Þ ¼ 
ð!Þ
!

Z dy�

4�
eib

þy�=2
�

pnðP�Þ
								
��n

�

y�
n

2

�

�ð!� �P nÞ
6 �n
2
�nð0Þ

								
pnðP�Þ




;

B �qð!bþ; !=P�; �Þ ¼ 
ð!Þ
!

Z dy�

4�
eib

þy�=2
�

pnðP�Þ
								
trspin

�6 �n
2
�n

�

y�
n

2

�

�ð!� �P nÞ ��nð0Þ
�								

pnðP�Þ



;

Bgð!bþ; !=P�; �Þ ¼ �
ð!Þ
Z dy�

4�
eib

þy�=2
�

pnðP�Þ
								
Bc

n?�

�

y�
n

2

�

�ð!� �P nÞB�c
n?ð0Þ

								
pnðP�Þ




:

(50)

We will briefly explain the relevant notation. (A more

detailed overview of SCET and the definitions of the

objects in Eq. (50) are given in Sec. IVA.) As before, n� ¼
ð1; ~nÞ and �n� ¼ ð1;� ~nÞ are lightlike vectors, n2 ¼ �n2 ¼ 0,
n � �n ¼ 2, where ~n is a unit three-vector in the direction of

the proton. The proton states jpnðP�Þi have lightlike mo-

mentum P� ¼ P�n�=2, and the matrix elements are al-

ways implicitly averaged over the proton spin. The SCET

fields for collinear quarks and gluons, �nðyÞ and B
�
n?ðyÞ,

are composite fields containing Wilson lines of collinear

gluons [see Eq. (70)]. Matrix elements with these fields

include so-called zero-bin subtractions [71], which effec-

tively divide by a matrix element of Wilson lines [72]. At

lowest order in the strong coupling, the fields describe an

energetic quark or gluon moving in the n direction with

momentum p�n�=2þ k� with k � p�. The momentum

operator �P n picks out the large light-cone component p�

of all particles annihilated by �n orB
�
n?. Thus, when these

fields annihilate the incoming colliding parton, the � func-

tion in Eq. (50) sets ! equal to the p� of that parton.

Therefore, x ¼ !=P� is the fraction of the proton’s light-

cone momentum that is carried by the parton into the hard

collision. At the time of the collision, this parton is prop-

agating in an initial-state jet rather than the proton, which

is encoded by the dependence of the beam functions on the

variable bþ ¼ �kþ. Here, kþ ¼ n � k is the small compo-

nent of the incoming collinear parton’s momentum. The

variable t ¼ !bþ 
�p2 measures the parton’s virtuality,

where t > 0, because the parton is spacelike. As we already
saw in Eq. (19), the beam functions are convoluted with the

soft function through bþ.
The beam-function definitions in Eq. (50) can be com-

pared with those of the standard quark, antiquark, and

gluon PDFs in SCET [73],

fqð!0=P�; �Þ ¼ 
ð!0Þ
�

pnðP�Þ
								
��nð0Þ�ð!0 � �P nÞ

6 �n
2
�nð0Þ

								
pnðP�Þ




;

f �qð!0=P�; �Þ ¼ 
ð!0Þ
�

pnðP�Þ
								
trspin

�6 �n
2
�nð0Þ�ð!0 � �P nÞ ��nð0Þ

�								
pnðP�Þ




;

fgð!0=P�; �Þ ¼ �
ð!0Þ!0hpnðP�ÞjBc
n?�ð0Þ�ð!0 � �P nÞB�c

n?ð0ÞjpnðP�Þi:

(51)

The fi depend on the analogous light-cone momentum

fraction � ¼ !0=P�. As discussed in the beginning of

Sec. II C, � can be interpreted as the momentum fraction

of the hard parton when it is taken out of the proton and due

to perturbative corrections generally differs from x ¼
!=P� appearing in the beam functions. A more common

and equivalent definition of the PDFs is in terms of QCD

fields. For example, for the quark PDF,

fqð!0=P�;�Þ ¼ 
ð!0Þ
Z dyþ

4�
e�i!0yþ=2

�

pnðP�Þ
								
�c

�

yþ
�n

2

�

� 6 �n
2
W �n

�

yþ
�n

2
;0

�

c ð0Þ
								
pnðP�Þ




: (52)

Equation (51) is essentially the Fourier transform of

Eq. (52), where the SCET fields are written in momentum

space with respect to !0, while the QCD fields are sepa-

rated along the �n direction between 0 and yþ �n=2. The
lightlike Wilson line W �nðyþ �n=2; 0Þ is required to render

the product of the quark fields at different space-time

points gauge invariant, and the corresponding Wilson lines

in Eq. (51) are those hidden in the definitions of �n and

B
�
n?.
In the beam functions in Eq. (50), the fields are in

addition separated along the n direction, with a large

separation y� � yþ corresponding to the small momen-

tum bþ � !. This y� separation is formulated with a

gauge-invariant multipole expansion of fields in SCET.

The possible gauge transformations in the effective theory

are divided into global, collinear, and soft, and it is the

coupling to soft gluons and the corresponding soft gauge

transformations that are relevant for making the y� sepa-
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ration gauge invariant. The collinear fields in Eq. (50) are

the ones that occur after making a field redefinition to

decouple soft gluons into the soft function, and the result-

ing collinear fields no longer transform under soft gauge

transformations. Hence, the SCET definitions in Eq. (50)

are gauge invariant.

Note that formulating equivalent definitions of the beam

functions directly in QCD is more challenging. It seems to

require QCD fields that are simultaneously separated in the

n and �n directions, and a priori it is not clear how to obtain

an unambiguous gauge-invariant expression in this case,

because Wilson lines connecting the fields along different

paths are not equivalent. For the beam functions, which one

might think of as bþ-dependent PDFs, this problem is

solved in SCET, because the effective theory distinguishes

the large and small momentum components with the multi-

pole expansion, resolving the ambiguity.

For t ¼ !bþ � �2
QCD, or equivalently y

� � !=�2
QCD,

the beam functions can be related to the PDFs by perform-

ing an operator product expansion in �2
QCD=t � 1. This

leads to the factorized form

Biðt; x; �Þ ¼
X

j

Z 1

x

d�

�
I ij

�

t;
x

�
;�

�

fjð�;�Þ

�
�

1þO

�
�2

QCD

t

��

; (53)

where j ¼ fg; u; �u; d; . . .g and I ij is a perturbatively calcu-

lable Wilson coefficient. The physical interpretation of this

equation was discussed in Sec. II C. For Bg, the equivalent

of the matching expression in Eq. (53) was derived in

Ref. [30] for the Igg term using a moment-space OPE to

match SCETI onto SCETII. Ref. [30] considered this

matching at the level of the matrix element defining Bg,

without the accompanying physical picture advocated here

that implies that beam functions will occur in a wide

variety of interesting processes. The mixing contributions

were missed in their analysis, but the extension of their

proof to the general case is straightforward [50].

The coefficients I ijðt; x=�;�Þ can be determined per-

turbatively by computing both sides of Eq. (53) with the

proton states in the definitions of Bi and fj replaced by

quark and gluon states. The tree-level diagram for the

quark beam function is shown in Fig. 9(a) and for the

PDF in Fig. 9(b). They give

Btree
q=qðt; x; �Þ ¼ �ðtÞ�ð1� xÞ; ftreeq=qð�;�Þ ¼ �ð1� �Þ;

(54)

from which we deduce I tree
qq ðt; x=�;�Þ ¼ �ðtÞ�ð1� x=�Þ.

In general, we have

Itree
ij

�

t;
x

�
;�

�

¼ �ij�ðtÞ�
�

1� x

�

�

; (55)

so the tree-level beam functions reduce to the PDFs

Btree
i ðt; x; �Þ ¼ �ðtÞfiðx;�Þ: (56)

The one-loop coefficients for the quark beam function

are determined from the diagrams in Fig. 10 together with

the corresponding diagrams for the PDFs. The beam func-

tions and PDFs are renormalized using dimensional regu-

larization with MS. From the first four diagrams in Fig. 10

we find the one-loop correction to the quark-quark coeffi-

cient (here z ¼ x=�)

I
1loop
qq ðt; z; �Þ ¼ �sð�ÞCF

2�

ðzÞ

�
2

�2

�

ðt=�2Þ lnðt=�2Þ

t=�2

�

þ
�ð1� zÞ þ 1

�2

�

ðt=�2Þ
t=�2

�

þ

��


ð1� zÞ 1þ z2

1� z

�

þ
� 3

2
�ð1� zÞ

�

þ �ðtÞ
��


ð1� zÞ lnð1� zÞ
1� z

�

þ
ð1þ z2Þ � �2

6
�ð1� zÞ þ 
ð1� zÞ

�

1� z� 1þ z2

1� z
lnz

���

: (57)

The last two diagrams in Fig. 10 determine the one-loop contribution of the gluon PDF to the quark beam function,

I
1loop
qg ðt; z; �Þ ¼ �sð�ÞTF

2�

ðzÞ
ð1� zÞ

��
1

�2

�

ðt=�2Þ
t=�2

�

þ
þ �ðtÞ ln1� z

z

�

½z2 þ ð1� zÞ2� þ �ðtÞ2zð1� zÞ
�

: (58)

FIG. 9. Tree-level diagrams for the quark beam function (a)

and quark PDF (b).
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At two loops, Iq �qðt; z; �Þ will start to contribute as well.

The plus distributions are defined as

½
ðxÞgðxÞ�þ ¼ lim
!0

d

dx
½
ðx� ÞGðxÞ� with

GðxÞ ¼
Z x

1
dx0gðx0Þ; (59)

satisfying the boundary condition
R
1
0 dx½
ðxÞgðxÞ�þ ¼ 0.

In particular,

Z 1

x

dz

z
½
ð1� zÞgð1� zÞ�þf

�
x

z

�

¼
Z 1

x
dz gð1� zÞ

�
1

z
f

�
x

z

�

� fðxÞ
�

þ fðxÞGð1� xÞ;

1

�2

Z tmax

�1
dt

�

ðt=�2Þlnnðt=�2Þ

t=�2

�

þ
¼ 1

nþ 1
lnnþ1

tmax

�2
:

(60)

The infrared (IR) divergences in the diagrams in Fig. 10

precisely cancel those in the PDF calculation as they must,

so the matching coefficients in Eqs. (57) and (58) are IR

finite and independent of the IR regulator. The ultraviolet

(UV) divergences in the diagrams determine the one-loop

RGE and anomalous dimension of the quark beam func-

tion, which in MS are

�
d

d�
Bqðt; x; �Þ ¼

Z

dt0�q
Bðt� t0; �ÞBqðt0; x; �Þ;

�q
Bðt; �Þ ¼ �2�cusp½�sð�Þ� 1

�2

�

ðt=�2Þ
t=�2

�

þ

þ �sð�Þ
4�

6CF�ðtÞ: (61)

Here, �cusp½�sð�Þ� is the cusp anomalous dimension [74],

and the coefficient of the plus function is equal to �cusp to

all orders in perturbation theory. The noncusp term of the

anomalous dimension is equal to that for the quark jet

function at one loop, and in Ref. [50] we prove that the

anomalous dimensions for the quark beam and jet func-

tions are identical to all orders in �s. As stated before, the

RGE in Eq. (61) does not change x. Also, the mixing

graphs in Figs. 10(e) and 10(f) have no UV divergences

and hence the gluon beam function does not mix into

the quark beam functions under renormalization. Equa-

tion (61) leads to the physical picture discussed in

Sec. II C. The RGE has a solution [70,75,76], which can

be written as [67]

Bqðt; x;�Þ ¼
Z

dt0Bqðt� t0; x;�0ÞUBðt0;�0;�Þ;

UBðt;�0;�Þ ¼ eKB
e��E	B

�ð1þ	BÞ

�
	B

�2
0

�

ðt=�2

0Þ�
ðt=�2

0Þ1�	B

�

þ
þ�ðtÞ

�

;

(62)

with the plus distribution defined according to Eq. (59).

Furthermore, KB  KBð�0; �Þ and 	B  	Bð�0; �Þ are

KBð�0; �Þ ¼
Z �sð�Þ

�sð�0Þ

d�s

�ð�sÞ

�
�

4�cuspð�sÞ
Z �s

�sð�0Þ

d�0
s

�ð�0
sÞ
þ �q

Bð�sÞ
�

;

	Bð�0; �Þ ¼ �2
Z �sð�Þ

�sð�0Þ

d�s

�ð�sÞ
�cuspð�sÞ; (63)

where �ð�sÞ is the QCD � function and �q
Bð�sÞ is the

coefficient of �ðtÞ in �q
Bðt; �Þ in Eq. (61).

Using the above results for the quark beam function, we

can see explicitly that when we integrate over 0 � t � tmax

to get the beam-function ~Bqðtmax; x; �Þ in Eq. (23), the

result contains double and single logarithms of tmax=�
2,

FIG. 10. One-loop diagrams for the quark beam function.

Graphs (a) and (b) correspond to real gluon emission, while

(c) and (d) are virtual corrections. Graphs (e) and (f) determine

the contribution of the gluon PDF to the quark beam function.
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~Bqðtmax; x; �Þ ¼ 
ðtmaxÞfqðx;�Þ þ 
ðtmaxÞ
�sð�Þ
2�

�

CF

�

ln2
tmax

�2
� 3

2
ln
tmax

�2

�

fqðx;�Þ

þ ln
tmax

�2

Z 1

x

dz

z

�

CF

�


ð1� zÞ 1þ z2

1� z

�

þ
fq

�
x

z
;�

�

þ TF½z2 þ ð1� zÞ2�fg
�
x

z
;�

��

þ � � �
�

: (64)

The ellipses denote x-dependent terms that have no

lnðtmax=�
2Þ. Equation (64) shows that the natural scale

for the beam function is � ¼ �B 
 tmax. The logarithms

of tmax=�
2 are summed by solving the beam function’s

RGE in Eq. (61). From Eq. (64) we can see how the

matching coefficients I ij convert the PDF running into

the beam function running at one loop. Expanding

Eq. (61) to Oð�sÞ, the integrated beam function satisfies

�
d

d�
~Bqðt; x; �Þ ¼ �sð�ÞCF

�

�
3

2
� 2 ln

t

�2

�

~Btree
q ðt; x; �Þ

þ � � � : (65)

Taking the derivative of Eq. (64) with respect to�, the first

term in curly brackets proportional to fqðx; �Þ reproduces
the overall factor in Eq. (65), while the terms in the second

line precisely cancel the � dependence of the tree-level

term fqðx;�Þ. Thus, even though at tree level ~Bqðt; x; �Þ ¼
�ðtÞfqðx;�Þ, the running of ~Bq does not depend on x.

To illustrate the difference between the beam functions

and the PDFs, we may compare the PDFs and
~Bqðtmax; x; �Þ for fixed tmax as a function of x. For tmax,

following the discussion in Sec. II A, we take

tmax ¼ !Bþ
max ¼ Q2e�2ycut ¼ ðxEcmÞ2e�2ycut ; (66)

where the hard scale is taken as Q2 ¼ ðxEcmÞ2. By default

we use Ecm ¼ 7 TeV and ycut ¼ 2. For the parton distri-

butions we use the NLO results of MSTW2008 [77].

The effect of the large logarithms contained in the beam

function is illustrated in Fig. 11, where we show the

u-quark beam-function x ~Buðtmax; x; �HÞ at NLO for two

different values of tmax, along with the u-quark PDF

xfuðx;�HÞ, which is equal to the beam function at tree

level. All solid central curves are evaluated at the common

hard scale � ¼ Q ¼ xEcm, and the surrounding bands

correspond to varying the scale by a factor of 2. The lower

green curve and band show the PDF (tree-level beam

function). Including the one-loop matching corrections

the beam functions are given for ycut ¼ 1 by the middle

blue band and for ycut ¼ 2 by the upper orange band.

Clearly, with this scale choice, the beam functions receive

large �s corrections with a dramatically increased scale

dependence compared to the PDF, which is caused by the

large logarithms of tmax=�
2 in Eq. (64).

To eliminate the large logarithms in the matching, we

have to compute the beam functions at the scale�2
B ’ tmax,

which we show in Fig. 12. Let us first consider the up-quark

beam function ~Bu shown in the top row. The top left panel

shows x ~Buðtmax; x; �BÞ. The green (light) band shows the

PDF xfuðx;�HÞ evaluated at the hard scale �H ¼ xEcm,

varying the scale by a factor of 2 (which for the top left

panel is identical to the corresponding band in Fig. 11).

The one-loop beam function evaluated at �2
B ’ tmax is

shown by the orange (medium) bands. Here, the maximum

scale variation for �2
B 2 ½tmax=2; 2tmax� is not obtained at

the edges of this region, but is closely approximated by

taking �B ¼ f0:7; 2:0g ffiffiffiffiffiffiffiffi
tmax

p
. The solid line shows the cor-

responding central value at �B ¼ 1:4
ffiffiffiffiffiffiffiffi
tmax

p
. For compari-

son, the dotted line shows the tree-level result, i.e. the PDF

at the scale �B. The top right panel shows the same curves

as the top left panel, but normalized to the tree-level beam

function. The plot shows that the beam function can be

reliably calculated at � ¼ �B. Using �2
B ’ tmax, the shift

from the dotted to solid line is now of reasonable size, and

the scale uncertainties are now similar in size to those of

the PDFs. We also see that evaluating the PDF at the beam

scale rather than the hard scale has a significant effect. The

difference between evaluating the PDF at �H and �B is a

þ30% (� 20%) correction at large (small) x, while the �s

corrections from the beam function at �B are only 
10%.

(The beam function curves increase for x * 0:4 due to the

threshold term ½lnð1� zÞ=ð1� zÞ�þ in Iqq, but this region

only has a small total contribution as can be seen on the left

panel.) Since the residual �B dependence is only canceled

by other contributions in the factorization theorem, these

plots do not determine the overall size of the �s correc-

FIG. 11 (color online). The u-quark PDF (lower green band)

and u-quark beam functions for ycut ¼ 1 (middle blue band) and

ycut ¼ 2 upper orange band. All functions are evaluated at the

same hard scale, with the bands showing the scale variation by

factors of two.
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tions, nor their uncertainty. These questions are addressed

by plots of the full cross section in Sec. VI.

In the central and bottom panels of Fig. 12 we show

analogous plots for the down-quark beam function, ~Bd, and

the antiup-quark, ~B �u. While the absolute size of the func-

tions for different flavors in the left panels are quite differ-

ent, the relative corrections shown in the right panel are

very similar.

Figure 12 also contains dashed lines, which show how

the solid lines are modified if we remove the gluon con-

tribution Iqg from the one-loop beam function. The gluon

contribution to the quark beam functions becomes notice-

able at x < 0:1, increasing to about �5% at x ¼ 0:01,
while for the antiquark beam function it is important in

the entire x range. This is expected, since the antiquark

PDF is much smaller, so the gluon PDF can have a bigger

FIG. 12 (color online). The u (top row), d (middle row), and �u (bottom row) beam functions at the beam scale �2
B ’ tmax for

Ecm ¼ 7 TeV and tmax with ycut ¼ 2 [see Eq. (66)]. The panels on the left show the functions times x. The right panels show the

relative differences compared to the respective tree-level (LO) beam functions given by the dotted lines on the left. The bands show the

scale uncertainties as explained in the text.
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impact. The gluon contribution is always negative and

partially compensates the quark matching correction.

Even at x ¼ 0:01 there is no indication that treating the

logarithms ln x in fixed-order perturbation theory causes

any problems. The contribution from the ln z term in

Eq. (57) is of similar size as other contributions and within

the perturbative uncertainties. It has roughly the same size

as the gluon contribution.

IV. ISOLATED FACTORIZATION THEOREM

In this section, we derive the isolated factorization theo-

rem in Eq. (19). Our analysis is based on factorization in

SCET, which rigorously and systematically separates hard,

soft and collinear contributions [26,27,73]. We make use of

a setup with SCETI and SCETII [78], carrying out the

factorization in two stages at the scales Q2 and !a;bB
þ
a;b

respectively. We have an SCETI analysis to factorize

initial-state jets from soft radiation. The initial-state jets

described by beam functions in SCETI are then matched

onto initial-state PDFs with lower off-shellness for the

collinear particles in SCETII. In this section, we carry out

the SCETI computation, while the matching onto SCETII

was discussed in Sec. III. Our analysis below uses similar

tools as used in the derivation of the factorization theorem

for hemisphere invariant masses for eþe� ! dijets in

Ref. [69], but differs significantly due to the kinematics,

and the fact that we have initial-state rather than final-state

jets and a further matching onto SCETII. The soft dynamics

of eþe� ! dijets was studied earlier in SCET in

Refs. [79,80]. We start with a brief overview of the neces-

sary SCET ingredients in Sec. IVA and describe the rele-

vant kinematics in Sec. IVB. We derive the factorization

theorem for isolated pp ! XL in Sec. IVC, including

arguments to rule out contributions from so-called

Glauber degrees of freedom. Finally in Sec. IVD, we apply

the factorization theorem to pp ! X‘þ‘� and quote final

results for the beam thrust cross section with one-loop

corrections and logarithmic resummation.

A. SCET

Soft-collinear effective theory is an effective field theory

of QCD that describes the interactions of collinear and soft

particles [24–27]. Collinear particles are characterized by

having large energy and small invariant mass. To separate

the large and small momentum components, it is conve-

nient to use light-cone coordinates. We define two light-

cone vectors

n� ¼ ð1; ~nÞ; �n� ¼ ð1;� ~nÞ; (67)

with n2 ¼ �n2 ¼ 0, n � �n ¼ 2, and ~n is a unit three-vector.

Any four-momentum p can then be decomposed as

p� ¼ �n � pn�

2
þ n � p �n�

2
þ p

�
n?: (68)

Choosing ~n close to the direction of a collinear particle, its

momentum p scales as ðn � p; �n � p; pn?Þ 
 �n � pð�2; 1; �Þ,
with � � 1 a small parameter. For example, for a jet of

collinear particles in the ~n direction with total momentum

pX, �n � pX ’ 2EX corresponds to the large energy of the jet,

while n � pX ’ p2
X=EX � EX, so �2 ’ p2

X=E
2
X � 1.

To construct the fields of the effective theory, the mo-

mentum is written as

p� ¼ ~p� þ k� ¼ �n � ~pn�

2
þ ~p

�
n? þ k�; (69)

where �n � ~p
Q and ~pn? 
 �Q are the large momentum

components, where Q is the scale of the hard interaction,

while k
 �2Q is a small residual momentum. The effec-

tive theory expansion is in powers of the small parameter

�.
The SCET fields for n-collinear quarks and gluons,

�n;~pðxÞ and An;~pðxÞ, are labeled by the collinear direction

n and their large momentum ~p. They are written in position
space with respect to the residual momentum and in mo-

mentum space with respect to the large momentum com-

ponents. Frequently, we will only keep the label n denoting

the collinear direction, while the momentum labels are

summed over and suppressed. Derivatives acting on the

fields pick out the residual momentum dependence, i@� 

k
 �2Q. The large label momentum is obtained from the

momentum operator P
�
n , e.g. P

�
n �n;~p ¼ ~p��n;~p. If there

are several fields, P n returns the sum of the label momenta

of all n-collinear fields. For convenience, we define �P n ¼
�n � P n, which picks out the large minus component.

Collinear operators are constructed out of products of

fields and Wilson lines that are invariant under collinear

gauge transformations [25,26]. The smallest building

blocks are collinearly gauge-invariant quark and gluon

fields, defined as

�n;!ðxÞ ¼ ½�ð!� �P nÞWy
n ðxÞ�nðxÞ�;

B
�
n;!?ðxÞ ¼

1

g
½�ð!þ �P nÞWy

n ðxÞiD�
n?WnðxÞ�;

(70)

where

iD
�
n? ¼ P

�
n? þ gA

�
n? (71)

is the collinear covariant derivative and

WnðxÞ ¼
�
X

perms

exp

��g
�P n

�n � AnðxÞ
��

: (72)

The label operators in Eqs. (70) and (72) only act inside the

square brackets. Here,WnðxÞ is a Wilson line of n-collinear
gluons in label momentum space. It sums up arbitrary

emissions of n-collinear gluons from an n-collinear quark
or gluon, which are Oð1Þ in the power counting. Since

WnðxÞ is localized with respect to the residual position x,
we can treat �n;!ðxÞ and B

�
n;!ðxÞ as local quark and gluon

fields. The label momentum ! is treated as a continuous

variable, which is why we use a �-function operator in
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Eq. (70). It is set equal to the sum of the minus label

momenta of all fields that the � function acts on, including

those in the Wilson lines, while the label momenta of the

individual fields are summed over.

In general, the effective theory can contain several col-

linear sectors, each containing collinear fields along a

different collinear direction. To have a well-defined power

expansion in this case, the different collinear directions ni
have to be well-separated [73],

ni � nj � �2 for i � j; (73)

which is simply the requirement that different collinear

sectors are distinct and do not overlap. For pp ! X‘þ‘�,
we need two collinear sectors, na and nb, along the direc-

tions of the two beams. We use a bar to denote the con-

jugate lightlike vector, so ni � �ni ¼ 2. As the beams

are back-to-back, we have na 
 �nb, so na � nb 
 2 and

Eq. (73) is easily satisfied.

Particles that exchange large momentum of OðQÞ be-
tween collinear particles moving in different directions

have to be off shell by an amount of Oðni � njQ2Þ. These
modes can be integrated out of the theory at the hard scale

Q by matching full QCD onto SCET, which yields the hard

function. The effective theory below the scaleQ then splits

into several distinct collinear sectors, where particles in the

same collinear sector can still interact with each other,

while at leading order in the power-counting particles

from different collinear sectors can only interact by the

exchange of soft particles. This means that before and after

the hard interaction takes place, the jets described by the

different collinear sectors evolve independently from each

other with only soft but no hard interactions between them.

The soft degrees of freedom, responsible for the radia-

tion between collinear jets, are described in the effective

theory by soft10 quark and gluon fields, qsðxÞ and AsðxÞ,
which only have residual soft momentum dependence

i@� 
 �2Q. They couple to the collinear sectors via the

soft covariant derivative

iD
�
s ¼ i@� þ gA

�
s (74)

acting on the collinear fields. At leading order in �,
n-collinear particles only couple to the n � As component

of soft gluons, so the leading-order n-collinear Lagrangian
only depends on n �Ds. For n-collinear quarks [25,26]

Ln ¼ ��n

�

in �Ds þ gn � An þ i 6Dn?Wn

1
�P n

Wy
n i 6Dn?

� 6 �n
2
�n:

(75)

The leading-order n-collinear Lagrangian for gluons is

given in Ref. [27].

The coupling of soft gluons to collinear particles can be

removed at leading order by defining new collinear fields

[27]

�ð0Þ
n;!ðxÞ ¼ Yy

n ðxÞ�n;!ðxÞ;
B

�ð0Þ
n;!?ðxÞ ¼ Yy

n ðxÞB�
n;!?ðxÞYnðxÞ ¼ B

�d
n;!?ðxÞYdc

n ðxÞTc;

(76)

where YnðxÞ and YnðxÞ are soft Wilson lines in the funda-

mental and adjoint representations,

YnðxÞ ¼ P exp

�

ig
Z 0

�1
ds n � Asðxþ snÞ

�

;

TcYcd
n ðxÞ ¼ YnðxÞTdYy

n ðxÞ:
(77)

The symbol P in Eq. (77) denotes the path ordering of the

color generators along the integration path. The integral

limits in Eq. (77) with the reference point at �1 are the

natural choice for incoming particles [81]. The final results

are always independent of the choice of reference point,

and with the above choice the interpolating fields for the

incoming proton states do not introduce additional Wilson

lines [82].

After the field redefinition in Eq. (76), the leading-order

SCET Lagrangian separates into the sum of independent

ni-collinear and soft Lagrangians,

L SCET ¼
X

ni

Lð0Þ
ni þLs þ � � � ; (78)

with no interactions between any of the collinear and soft

sectors. The ellipses denote terms that are subleading in the

power counting. This decoupling is what will allow us to

factorize the cross section into separate beam and soft

functions. The field redefinition in Eq. (76) introduces

soft Wilson lines in the operators, which because of

Eq. (78) can be factored out of the matrix element and

will make up the soft function.

B. Kinematics

Before deriving the factorization theorem, we discuss

the relevant kinematics, as illustrated in Fig. 13. As already

mentioned, we introduce a separate set of collinear fields

for each of the beams, with the light-cone vectors na and nb
aligned with the beam directions. To derive the factoriza-

tion theorem we work in the center-of-mass frame of the

hadronic collision, so the momenta of the incoming pro-

tons are (neglecting the proton mass)

P
�
a ¼ Ecm

n
�
a

2
; P

�
b ¼ Ecm

n
�
b

2
; (79)

with ~na ¼ � ~nb. In particular, nb ¼ �na and na � nb ¼ 2.
We will mostly keep the dependence on the two beam

directions explicit, but one should keep in mind that na
and nb are related.

10In some situations it is necessary to distinguish two types of
soft sectors, referred to as soft and ultrasoft in the SCET
literature. In this paper we only need what are usually called
ultrasoft particles, so we will simply refer to these as soft.

STEWART, TACKMANN, AND WAALEWIJN PHYSICAL REVIEW D 81, 094035 (2010)

094035-24



The collinear fields in the na and nb directions describe
the interactions within each of the beams before and after

the collision, and are also responsible for initiating the hard

interaction. We define the momenta of the spacelike off-

shell partons that go into the hard interaction as

p
�
a ¼ xaEcm

n
�
a

2
� bþa

�n
�
a

2
� b

�
a?;

p
�
b ¼ xbEcm

n
�
b

2
� bþb

�n
�
b

2
� b

�
b?;

(80)

where xa and xb are the light-cone momentum fractions at

which the beam functions will be evaluated. The power-

counting parameters for the collinear sectors are

�2
a 


bþa
xaEcm

; �2
b 


bþb
xbEcm

; (81)

where the relevant momenta are those of the off-shell

partons in Eq. (80), because these are the momenta carried

by the na- and nb-collinear fields.
We write the momentum of the incoming partons that

are taken out of the proton as

�aEcm

n
�
a

2
þOð�QCDÞ; �bEcm

n
�
b

2
þOð�QCDÞ; (82)

which defines the light-cone momentum fractions �a;b at

which the PDFs are evaluated. The typical? -momenta of

partons in the proton are Oð�QCDÞ, while the small plus

components are Oð�2
QCD=EcmÞ. These momenta are much

smaller than any soft or residual momenta in SCETI and

are expanded, which precisely corresponds to the OPE for

the beam functions in Eq. (34) when matching them onto

SCETII.

The momentum of the final-state remnant of the proton

is thus given by

r
�
a ¼ ð1� �aÞEcm

n
�
a

2
; (83)

while the remnant of the initial-state jet radiated into the

final state by the beam function has momentum

b
�
a ¼ ð�a � xaÞEcm

n
�
a

2
þ bþa

�n
�
a

2
þ b

�
a?; (84)

and similarly for the nb direction. The total na-collinear
momentum in the final state is the sum of Eqs. (83) and

(84), or equivalently, the difference between the proton

momentum and Eq. (80),

b
�
a þ r

�
a ¼ P

�
a � p

�
a ¼ ð1� xaÞEcm

n
�
a

2
þ bþa

�n
�
a

2
þ b

�
a?:

(85)

In addition to the collinear momenta, we define k
�
s as the

total four-momentum of the soft radiation in the final state.

Hence, the total hadronic momentum in the final state is

given by

p
�
X ¼ ðP�

a � p
�
a Þ þ ðP�

b � p
�
b Þ þ k

�
s ; (86)

and we can write total momentum conservation P
�
a þ

P
�
b ¼ p

�
X þ q� as

p
�
a þ p

�
b ¼ q� þ k

�
s ; (87)

where q� is the total leptonic momentum.

The collinear and soft momenta, b
�
a , b

�
b , k

�
s are not

experimentally measurable quantities. Instead, the experi-

ments can only measure hadronic quantities, such as the

hemisphere momenta Bþ
a ¼ na � Ba and Bþ

b ¼ nb � Bb in-

troduced in Sec. II A. Splitting the total soft momentum

into its contributions from each hemisphere, k
�
s ¼ k

�
a þ

k
�
b as shown in Fig. 3, we then have

B
�
a ¼ b

�
a þ r

�
a þ k

�
a ; B

�
b ¼ b

�
b þ r

�
b þ k

�
b ; (88)

and defining kþa ¼ na � ka, kþb ¼ nb � kb, we get

Bþ
a ¼ na � Ba ¼ bþa þ kþa ;

Bþ
b ¼ nb � Bb ¼ bþb þ kþb :

(89)

In particular, the remnant momenta r
�
a;b do not contribute

to Bþ
a;b. A physical argument for this was discussed in

Sec. II A.

Next, we decompose the total leptonic momentum as

q� ¼ q�
n
�
a

2
þ qþ

n
�
b

2
þ q

�
?; (90)

FIG. 13 (color online). Definition of the different collinear momenta related to the incoming beams. The soft radiation is not shown.
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where q
�
? contains the two components of q� transverse to

the beam direction. Taking the z-axis along the ~na beam

direction, we have

q� ¼ q0 � qz; q
�
? ¼ ð0; ~qT ; 0Þ; (91)

where ~qT ¼ ðqx; qyÞ is a two-vector in the transverse

x-y-plane. The total leptonic invariant mass and rapidity

are

q2 ¼ qþq� þ q2? ¼ qþq� � ~q2T ; Y ¼ 1

2
ln
q�

qþ
;

(92)

with

q� ¼ e�Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ~q2T

q

;

d4q ¼ 1

2
dqþdq�d2 ~qT ¼ 1

2
dq2dYd2 ~qT :

(93)

As we will see in the next subsection, the derivation of

the factorization theorem requires us to be insensitive to

the transverse components ~qT such that we can freely

integrate over them. Therefore, we have to expand the

kinematics in the limit ~qT ¼ 0. This expansion is justified

because from Eq. (87) we have

q
�
? ¼ �p

�
X? ¼ �b

�
a? � b

�
b? � k

�
s? 
 �Q: (94)

A parametrically large q
�
? 
Qwould require a separate jet

at large pT 
Q to balance the transverse momentum,

which is not allowed in our setup. After integrating over

the lepton phase space this expansion incurs power correc-

tions of order q2? 
 �2Q2. The kinematics of the hard

matrix element in the factorization theorem is then given

by the tree-level partonic kinematics, with the partonic

momentum conservation

xaEcm

n
�
a

2
þ xbEcm

n
�
b

2
¼ q ¼ q�

n
�
a

2
þ qþ

n
�
b

2
; (95)

which implies

xaEcm ¼ q� ¼
ffiffiffiffiffi

q2
q

eY ; xbEcm ¼ qþ ¼
ffiffiffiffiffi

q2
q

e�Y ;

q2 ¼ qþq� ¼ xaxbE
2
cm; Y ¼ 1

2
ln
q�

qþ
¼ 1

2
ln
xa
xb

:

(96)

Equations (94) and (95) imply that parametrically the

leptons are back-to-back in the transverse plane. Since

qþ and q� can differ substantially, the leptons do not

need to be back-to-back in three dimensions.

C. Derivation of isolated factorization theorem

We now proceed to derive the isolated factorization

theorem for generic processes pp ! XL, where the had-

ronic final state X has a restriction on the hemisphere

momenta Bþ
a;b. The derivation is carried out using SCET

without Glauber degrees of freedom. The proof that

Glauber effects are not required is given at the end of

this subsection.

1. Cross section in QCD

We will generically refer to properties of L as ‘‘lep-

tonic’’, even though L can contain any nonstrongly inter-

acting particles. We only consider processes where the

hard interaction couples the strong and electroweak sectors

through one two-particle QCD current. (This includes, for

example, Drell-Yan or Higgs production through gluon

fusion with the Higgs decaying nonhadronically, but does

not include electroweak Higgs production via vector-boson

fusion.) Then, at leading order in the electroweak interac-

tions, we can factorize the full-theory matrix element into

its leptonic and hadronic parts

M ðpp ! XLÞ ¼
X

J

LJhXjJjppi: (97)

The sum runs over all relevant color-singlet two-particle

QCD currents J, and LJ contains the corresponding elec-

troweak matrix element, including the electroweak propa-

gator coupling to J. For example, for Drell-Yan with

L ¼ ‘þ‘�, the relevant currents are

J
�
Vf ¼ �qf�

�qf; J
�
Af ¼ �qf�

��5qf; (98)

so in this case the sum over J in Eq. (97) includes the sums

over the two Dirac structures, the vector index �, and the

quark flavor f ¼ fu; d; . . .g. The corresponding L
�
Vf and

L
�
Af are given below in Eq. (137).

The cross section for some hadronic observable O in the

center-of-mass frame of the collision, averaged over proton

spins, is

d�

dq2dYdO
¼ 1

2E2
cm

Z d2 ~qT
2ð2�Þ4

Z

d�Lð2�Þ4�4ðq� pLÞ

� 1

4

X

spins

X

X

jMðpp ! XLÞj2�½O� fOðXÞ�

� ð2�Þ4�4ðPa þ Pb � q� pXÞ: (99)

Here, Pa;b are the incoming proton momenta, pX and pL

are the total hadronic and leptonic momenta, d�L denotes

the leptonic phase space, and the phase-space integrations

for the hadronic final states are included in the sum over X.
The last � function is overall momentum conservation. The

function fOðXÞ inside the second � function returns the

value of the hadronic observable O for a given hadronic

state X, so the � function picks out all final states that

contribute to a certain value of O. The �4ðq� pLÞ under
the leptonic phase-space integral defines the measured q as

the total leptonic momentum. Expanding this � function

for ~qT ¼ 0, the leptonic part does not depend on ~qT at
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leading order, and using Eq. (97), we can rewrite Eq. (99)

as

d�

dq2dYdO
¼ 1

2E2
cm

X

J;J0
LJJ0ðq2; YÞWJJ0ðq2; Y; OÞ: (100)

The leptonic tensor is defined as

LJJ0ðq2;YÞ ¼
Z

d�LL
y
JLJ0ð2�Þ4�4

�

q�
na
2
þqþ

nb
2
�pL

�

;

(101)

where q� ¼
ffiffiffiffiffi

q2
p

e�Y . The hadronic tensor contains the

square of the hadronic matrix element

WJJ0ðq2; Y; OÞ ¼
Z d2 ~qT

2ð2�Þ4
X

X

hppjJyð0ÞjXihXjJ0ð0Þjppi

� ð2�Þ4�4ðPa þ Pb � q� pXÞ
� �½O� fOðXÞ�; (102)

where as in Sec. III we keep the average over proton spins

implicit in the matrix element. SinceWJJ0 is integrated over

~qT , it can only depend on q
2 and Y, as well as the hadronic

observable O.

We are interested in the hadronic observables Bþ
a ¼

na � Ba and Bþ
b ¼ nb � Bb. The hemisphere hadronic mo-

menta B
�
a;bðXÞ can be obtained from the states jXi using the

hemisphere momentum operators p̂
�
a;b

p̂
�
a jXi ¼ B

�
a ðXÞjXi; p̂

�
b jXi ¼ B

�
b ðXÞjXi: (103)

A field-theoretic definition of p̂
�
a;b in terms of the energy-

momentum tensor of the field theory was given in

Ref. [17]. The hadronic tensor for O  fBþ
a ; B

þ
b g is

WJJ0ðq2; Y; Bþ
a ; B

þ
b Þ ¼

Z d2 ~qT
2ð2�Þ4

Z

d4xe�iq�xX

X

hppjJyðxÞjXihXjJ0ð0Þjppi�½Bþ
a � na � BaðXÞ��½Bþ

b � nb � BbðXÞ�

¼
Z dxþdx�

ð4�Þ2 e�iðqþx�þq�xþÞ=2
�

pp

								
Jy

�

x�
na
2
þ xþ

nb
2

�

�ðBþ
a � na � p̂aÞ�ðBþ

b � nb � p̂bÞJ0ð0Þ
								
pp




:

(104)

In the first line we used momentum conservation to shift

the position of Jy, and in the second line we performed the

integral over ~qT , which sets ~xT to zero. We also used

Eq. (103) to eliminate the explicit dependence on X, al-
lowing us to carry out the sum over all states X. The
restriction on the states X is now implicit through the

operator � functions inside the matrix element.

2. Matching QCD onto SCET

In the next step, we match the QCD currents J onto

SCET currents by integrating out fluctuations at the hard

scale Q. At leading order in the power counting, the

matching takes the form

JðxÞ ¼
X

n1;n2

Z

d!1d!2e
�ið~b1þ~b2Þ�x

�
�
X

q

C
��
Jq �qð~b1; ~b2ÞO��

q �q ð~b1; ~b2; xÞ

þ C
��
Jggð~b1; ~b2ÞOgg��ð~b1; ~b2; xÞ

�

; (105)

where �, � are spinor indices, �, � are vector indices, and

the sum over q runs over all quark flavors fu; d; . . .g. The
Wilson coefficients and operators depend on the large label

momenta

~b
�
1 ¼ !1

n
�
1

2
; ~b

�
2 ¼ !2

n
�
2

2
: (106)

They will eventually be set to either q�n�a =2 or qþn
�
b =2 by

momentum conservation, but at this point are unspecified,

and the sums and integrals over n1, n2 and !1, !2 in

Eq. (105) run over all sets of distinct collinear directions

and large label momenta. On the right-hand side of

Eq. (105), the full x dependence of the current is separated
into the x dependence appearing in the overall phase factor
with large label momenta and the residual x dependence of
the SCET operators.

The SCEToperatorsO��
q �q ðxÞ andO��

gg ðxÞ are constructed
out of the collinear fields in Eq. (70). At leading order in

the power counting they contain one field for each collinear

direction. Since the QCD currents are color singlets, the

leading operators that can contribute are

O��
q �q ð~b1; ~b2; xÞ ¼ ���j

n1;�!1
ðxÞ��j

n2;!2
ðxÞ;

O
��
gg ð~b1; ~b2; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
!1!2

p
B

�c
n1;�!1?ðxÞB

�c
n2;�!2?ðxÞ;

(107)

where j and c are color indices in the fundamental and

adjoint representations. We included appropriate minus

signs on the labels, such that we always have !1;2 > 0

for incoming particles. Here, �  �q is a quark field of

FACTORIZATION AT THE LHC: FROM PARTON . . . PHYSICAL REVIEW D 81, 094035 (2010)

094035-27



flavor q, which for simplicity we keep implicit in our

notation. Note that the entire spin and flavor structure of

the current J is hidden in the label J on the matching

coefficients in Eq. (105). The gluon operator is symmetric

under interchanging both � $ � and ~b1 $ ~b2, so its

matching coefficient must have the same symmetry,

C
��
Jggð~b2; ~b1Þ ¼ C

��
Jggð~b1; ~b2Þ: (108)

We define the conjugate quark operator and matching

coefficient with the usual factors of �0, i.e.,

O
y��
q �q ð~b1; ~b2Þ ¼ ��

�j
n2;!2

ðxÞ��j
n1;�!1

ðxÞ;
�C��
Jq �qð~b1; ~b2Þ ¼ ½�0Cy

Jq �qð~b1; ~b2Þ�0���:
(109)

The matching coefficients are obtained by computing

the renormalized matrix elements h0j . . . jq �qi and

h0j . . . jggi on both sides of Eq. (105) and comparing the

results. In pure dimensional regularization for UV and IR

divergences all loop graphs in SCET are scaleless and

vanish, which means the UV and IR divergences in the

bare matrix elements precisely cancel each other. The

renormalized matrix elements of the right-hand side of

Eq. (105) are then given by their tree-level expressions

plus pure 1= IR divergences, which cancel against those

of the full-theory matrix elements h0jJjq �qi and h0jJjggi of
the left-hand side. Hence, the matching coefficients in MS
are given in terms of the IR-finite parts of the renormalized

full-theory matrix elements computed in pure dimensional

regularization.

3. Soft-collinear factorization

The field redefinitions in Eq. (76) introduce soft Wilson

lines into the operators in Eq. (107),

O��
q �q ðxÞ ¼ ��ð0Þ�j

n1;�!1
ðxÞT½Yy

n1ðxÞYn2
ðxÞ�jk�ð0Þ�k

n2;!2
ðxÞ;

O
��
gg ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
!1!2

p
B

ð0Þ�c
n1;�!1?ðxÞT½Y

y
n1ðxÞYn2

ðxÞ�cd

�Bð0Þ�d
n2;�!2?ðxÞ: (110)

The time ordering is required to ensure the proper ordering

of the soft-gluon fields inside the Wilson lines. It only

affects the ordering of the field operators, while the order-

ing of the color generators is still determined by the

(anti)path ordering of the Wilson lines. In the remainder,

we use these redefined fields and drop the (0) superscript

for convenience.

Since the momentum operator is linear in the

Lagrangian, Eq. (78) allows us to write the hemisphere

momentum operators as the sum of independent operators

acting in the separate collinear and soft sectors,

p̂a ¼ p̂a;na
þ p̂a;nb

þ p̂a;s;

p̂b ¼ p̂b;na
þ p̂b;nb

þ p̂b;s:
(111)

The na (nb) collinear sector cannot contribute momentum

in the nb (na) hemisphere. Thus, p̂a;nb ¼ p̂b;na ¼ 0, while

p̂a;na
¼ p̂na

and p̂b;nb
¼ p̂nb

reduce to the total momentum

operators for each of the collinear sectors. For the soft

sector, the distinction between the two hemisphere opera-

tors is important. We can now write

�ðBþ
a � na � p̂aÞ ¼

Z

dbþa dk
þ
a �ðBþ

a � bþa � kþa Þ

� �ðbþa � na � p̂na
Þ�ðkþa � na � p̂a;sÞ;

�ðBþ
b � nb � p̂bÞ ¼

Z

dbþb dk
þ
b �ðBþ

b � bþb � kþb Þ

� �ðbþb � nb � p̂nb
Þ�ðkþb � nb � p̂b;sÞ:

(112)

Using Eq. (105) in the hadronic tensor in Eq. (104), the

forward matrix element of the product of currents turns

into the forward matrix element of the product of the

operators in Eq. (110). Since the Lagrangian in Eq. (78)

contains no interactions between the collinear and soft

sectors after the field redefinition, we can use Eq. (112)

to factorize the resulting matrix element into a product of

independent na-collinear, nb-collinear, and soft matrix

elements.

We first look at the contribution fromOq �q. The x integral

of the forward matrix element of Oq �q becomes

Z dxþdx�

ð4�Þ2 e�iðqþx�þq�xþÞ=2eið~b1þ~b2Þ�xhpnapnb jO
y��
q �q ðxÞ�ðBþ

a � na � p̂aÞ�ðBþ
b � nb � p̂bÞO�0�0

q �q ð0Þjpnapnbi

¼
Z dxþdx�

ð4�Þ2 e�iðqþx�þq�xþÞ=2
Z

dbþa db
þ
b dk

þ
a dk

þ
b �ðBþ

a � bþa � kþa Þ�ðBþ
b � bþb � kþb Þ

�
Z

d!ad!be
ið!ax

þþ!bx
�Þ=2f�n2na

�ð!2 �!aÞ�n0
2
na
�ð!0

2 �!aÞ�n1nb
�ð!1 �!bÞ�n0

1
nb
�ð!0

1 �!bÞ

� 
ð!aÞhpna j ��
�k
na ðxÞ�ðbþa � na � p̂naÞ�ð!a � �P naÞ�

�0k0
na ð0Þjpnai

� 
ð!bÞhpnb
j��j

nb ðxÞ�ðbþb � nb � p̂nb
Þ�ð!b � �P nb

Þ ���0j0
nb ð0Þjpnb

i
� h0j �T½Yy

naðxÞYnbðxÞ�kj�ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½Yy
nbð0ÞYnað0Þ�j

0k0 j0i þ ða $ bÞg: (113)

STEWART, TACKMANN, AND WAALEWIJN PHYSICAL REVIEW D 81, 094035 (2010)

094035-28



Here, jpna
i and jpnb

i are the proton states with momenta

P
�
a;b ¼ Ecmn

�
a;b=2 as in Eq. (79). The two terms in brackets

in Eq. (113) arise from the different ways of matching up

the fields with the external proton states. The restriction to

have positive labels ! requires the fields in Oq �q to be

matched with the incoming proton states and the fields in

Oy
q �q with the outgoing proton states. In principle, there are

two more ways to match the fields and external states,

yielding matrix elements with the structure hpj��jpi and
hpj �� �� jpi, which vanish due to quark flavor number con-

servation in QCD. For the same reason, in the full product

ðPqO
y
q �qÞð

P

q0Oq0 �q0Þ only the flavor-diagonal term with q ¼
q0 survives.

We abbreviate the collinear and soft matrix elements in

the last three lines of Eq. (113) as M!a
ðx�Þ, M!b

ðxþÞ,
Msðxþ; x�Þ. The collinear matrix elements only depend

on one light-cone coordinate because the label momenta

!a;b are defined to be continuous. We could have also

started with discrete label momenta, ~!a;b, and then convert

to continuous labels by absorbing the residual k�na depen-

dence as follows:

X

~!a

ei ~!ax
þ=2M ~!a

ðxþ; x�Þ

¼
X

~!a

Z

dk�a e
ið ~!aþk�na Þxþ=2M ~!aþk�na

ðx�Þ

¼
Z

d!ae
i!ax

þ=2M!a
ðx�Þ; (114)

and analogously for M!b
ðxþÞ. In the second step we used

that by reparametrization invariance the Fourier-

transformed matrix element can only depend on the linear

combination ~!a þ k�na ¼ !a.

As an aside, note that in the well-studied case where the

collinear matrix elements are between vacuum states, giv-

ing rise to jet functions, the distinction between discrete

and continuous labels is not as relevant. In that case, the

SCET Feynman rules imply that the collinear matrix ele-

ments do not depend on the residual k� (and k?) compo-

nents, and therefore the label momenta can be treated in

either way. In our case, momentum conservation with the

external state forces the collinear matrix elements to de-

pend on k�. Therefore, the only way to eliminate the

residual k� dependence is to absorb it into continuous !
labels. One can easily see this already at tree level.

Replacing the proton states by quark states with momen-

tum p ¼ ~pþ pr, we get

Z dxþdx�

ð4�Þ2 e�iðk�xþþkþx�Þ=2

� hqðpÞj ��nðxþ; x�Þ� ~!; �P n
�nð0ÞjqðpÞi

¼ �uu� ~!;~p��ðk� � p�
r Þ�ðkþ � pþ

r Þ; (115)

and the label and residual minus momenta are combined

using � ~!;~p��ðk� � p�
r Þ ¼ �ð!� p�Þ. Our continuous !

is physical and corresponds to the momentum fraction of

the quark in the proton.

Returning to our discussion, to perform the x integral in
Eq. (113), we take the residual Fourier transforms of the

matrix elements,

M!a
ðx�Þ ¼

Z dkþ

2�
eik

þx�=2 ~M!a
ðkþÞ;

M!b
ðxþÞ ¼

Z dk�

2�
eik

�xþ=2 ~M!b
ðk�Þ;

Msðx�; xþÞ ¼
Z dkþs dk

�
s

ð2�Þ2 eiðk
þ
s x

þþk�s xþÞ=2 ~Msðkþs ; k�s Þ:

(116)

Just as x�, the residual momenta k� and k�s here are all

defined with respect to the common n ¼ na. The x integral
in Eq. (113) now becomes

Z dxþdx�

ð4�Þ2 eið!a�q�Þxþ=2eið!b�qþÞx�=2M!a
ðx�ÞM!b

ðxþÞMsðxþ; x�Þ

¼
Z dkþ

2�

dk�

2�

dkþs dk
�
s

ð2�Þ2
~M!a

ðkþÞ ~M!b
ðk�Þ ~Msðkþs ; k�s Þ�ð!a � q� þ k� þ k�s Þ�ð!b � qþ þ kþ þ kþs Þ

¼ �ð!a � q�Þ�ð!b � qþÞM!a
ð0ÞM!b

ð0ÞMsð0Þ: (117)

In the last step we expanded q� � k� � k�s ¼
q�½1þOð�2Þ�. The remaining residual integrations are

then simply the Fourier transforms of the matrix elements

at x ¼ 0.
Note that without the integration over ~qT in the hadronic

tensor Eq. (104), the currents would depend on x?, which
would require us to include perpendicular components

ba;b? in the label momenta, and the soft matrix element

would depend on x?, too. (The residual k? dependence in

the collinear matrix elements can again be absorbed into

continuous ba;b?.) The corresponding x? integration in

Eq. (117) would yield an additional � function �2ð ~ba? þ
~bb? þ ~qT � ~ks?Þ. Integrating over ~qT effectively elimi-

nates this � function, which would otherwise force us to

introduce an explicit dependence on ba;b? in the beam

functions. If one considers the qT spectrum of the dileptons

for q2T � q2, our analysis here provides a starting point but
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requires further study. One cannot just use pT in place of B
þ
a;b with our arguments to impose an analogous restriction on the

final state, because at Oð�2
sÞ one can have two jets at high ~pT that still have small total ~pT .

The na-collinear matrix element now reduces to the quark beam functions defined in Eq. (50),

M!a
ð0Þ ¼ 
ð!aÞhpna

j ���k
na ð0Þ�ðbþa � na � p̂na

Þ�ð!a � �P na
Þ��0k0

na ð0Þjpna
i

¼ n6 �0�
a

4

�k0k

Nc


ð!aÞ
�

pna

								
��na

ð0Þ�ðbþa � na � p̂naÞ�ð!a � �P naÞ
6 �n
2
a�nað0Þ

								
pna




¼ n6 �0�
a

4

�k0k

Nc


ð!aÞ
Z dy�

4�
eib

þ
a y

�=2
�

pna

								
e�ip̂þ

na
y�=2eip̂

þ
na
y�=2 ��na

ð0Þe�ip̂þ
na
y�=2�ð!a � �P na

Þ 6 �n
2
a�na

ð0Þ
								
pna




¼ n6 �0�
a

4

�k0k

Nc

!aBqð!ab
þ
a ; !a=P

�
a Þ: (118)

We abbreviated p̂þ
na

¼ na � p̂na
, and in the last step we used eip̂

þ
n y

�=2 ��nð0Þe�ip̂þ
n y

�=2 ¼ ��nðy�n=2Þ and p̂þ
n jpni ¼ 0.

Similarly, for the antiquark beam function we have

M!b
ð0Þ ¼ 
ð!bÞhpnb j�

�j
nb ðxÞ�ðbþb � nb � p̂bÞ�ð!b � �P nbÞ ��

�0j0
nb ð0Þjpnbi ¼

n6 ��0
b

4

�jj0

Nc

!bB �qð!bb
þ
b ; !b=P

�
b Þ: (119)

Since the collinear matrix elements are color diagonal, the soft matrix element reduces to an overall color-singlet trace,

which defines the q �q incoming hemisphere soft function,

Sq
�q

ihemiðkþa ; kþb Þ ¼
1

Nc

trh0j �T½Yy
nað0ÞYnb

ð0Þ��ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½Yy
nbð0ÞYna

ð0Þ�j0i: (120)

The trace is over color and the factor of 1=Nc is included by convention, such that at tree level we have Sq
�q;tree

ihemi ðkþa ; kþb Þ ¼
�ðkþa Þ�ðkþb Þ. The soft matrix element in the second term of Eq. (113) with a $ b interchanged is equal to the above one

due to charge conjugation invariance of QCD. Under charge conjugation, the Wilson lines transform as C�1Yij
n C ¼

T½Yyji
n �. The explicit time ordering is required because the fields in Yn are time-ordered by default, and charge conjugation

only changes the ordering of the color generators but not of the field operators. For us this is not relevant, because the

ordering of the fields is determined by the overall (anti-)time ordering in the matrix element. Thus, for the soft matrix

element with a $ b interchanged, we find

trh0j �T½Yy
nbYna

��ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½Yy
naYnb

�j0i

¼C trh0j �T½YT
nb
YyT
na ��ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½YT

na
YyT
nb �j0i ¼ Sq

�q
ihemiðkþa ; kþb Þ; (121)

where the transpose refers to the color indices. In the last step we used tr½ATBTCTDT� ¼ tr½BADC� and the fact

that the fields in Yy
nb and Yna

are spacelike separated and thus commute. Under parity, we have P�1Yna
P ¼ Ynb

and

P�1na � p̂a;sP ¼ nb � p̂b;s. Therefore, CP invariance implies that Sq
�q

ihemi is symmetric in its arguments,

Sq �qihemiðkþa ; kþb Þ ¼
CP 1

Nc

trh0j �T½Yy
naYnb

��ðkþa � nb � p̂b;sÞ�ðkþb � na � p̂a;sÞT½Yy
nbYna

�j0i ¼ Sq �qihemiðkþb ; kþa Þ: (122)

Having worked out the different terms in Eq. (113), we are ready to include the remaining pieces from Eqs. (105) and

(104). The q �q contribution to the hadronic tensor becomes
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WJJ0q �qðq2; Y; Bþ
a ; B

þ
b Þ ¼

Z

d!ad!b�ð!a � q�Þ�ð!b � qþÞ
X

n1;n2;n
0
1
;n0

2

Z

d!1d!2d!
0
1d!

0
2
�C
��
Jq �qð~b1; ~b2ÞC�0�0

J0q �qð~b01; ~b02Þ

�
�

�n2na�ð!2 �!aÞ�n0
2
na�ð!0

2 �!aÞ�n1nb�ð!1 �!bÞ�n0
1
nb�ð!0

1 �!bÞ
n6 �0�
a

4

n6 ��0
nb

4

1

Nc

�
Z

dkþa dk
þ
b q

2Bq½xaEcmðBþ
a � kþa Þ; xa�B �q½xbEcmðBþ

b � kþb Þ; xb�Sq �qihemiðkþa ; kþb Þ þ ða $ bÞ
�

¼ HJJ0q �qð~ba; ~bbÞ
Z

dkþa dk
þ
b q

2Bq½xaEcmðBþ
a � kþa Þ; xa�B �q½xbEcmðBþ

b � kþb Þ; xb�

� Sq
�q

ihemiðkþa ; kþb Þ þ ðq $ �qÞ: (123)

All label sums and integrations from Eq. (105) eliminate the label �’s from Eq. (113). In the second step we defined

~b
�
a ¼ xaEcm

n
�
a

2
; ~b

�
b ¼ xbEcm

n
�
b

2
; xa  !a

Ecm

¼ q�

Ecm

¼
ffiffiffiffiffi

q2
p

eY

Ecm

; xb 
!b

Ecm

¼ qþ

Ecm

¼
ffiffiffiffiffi

q2
p

e�Y

Ecm

; (124)

as in Eq. (96), and introduced the hard functions

HJJ0q �qð~ba; ~bbÞ ¼
1

Nc

1

4
trspins

�
n6 a

2
�CJq �qð~bb; ~baÞ

n6 b

2
CJ0q �qð~bb; ~baÞ

�

; HJJ0 �qqð~ba; ~bbÞ ¼ HJJ0q �qð~bb; ~baÞ: (125)

Equation (123) is the final factorized result for the Oq �q contribution to the hadronic tensor.

Repeating the same steps for Ogg, we obtain for the forward matrix element

Z dxþdx�

ð4�Þ2 e�iðqþx�þq�xþÞ=2eið~b1þ~b2Þ�xhpna
pnb

jOy��
gg ðxÞ�ðBþ

a � na � p̂a;sÞ�ðBþ
b � nb � p̂b;sÞO�0�0

gg ð0Þjpna
pnb

i

¼
Z

d!ad!b�ð!a � q�Þ�ð!b � qþÞ
Z

dbþa db
þ
b dk

þ
a dk

þ
b �ðBþ

a � bþa � kþa Þ�ðBþ
b � bþb � kþb Þ

� ½�n1na�ð!1 �!aÞ�n2nb�ð!2 �!bÞ þ ða $ bÞ�½�n0
1
na�ð!0

1 �!aÞ�n0
2
nb�ð!0

2 �!bÞ þ ða $ bÞ�

�!a
ð!aÞhpna
jB�c

na?ð0Þ�ðb
þ
a � na � p̂na

Þ�ð!a � �P na
ÞB�0c0

na?ð0Þjpna
i

�!b
ð!bÞhpnb jB�d
nb?ð0Þ�ðb

þ
b � nb � p̂nbÞ�ð!b � �P nbÞB�0d0

nb?ð0Þjpnbi
� h0j �T½Yy

nað0ÞYnb
ð0Þ�cd�ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½Yy

nbð0ÞYna
ð0Þ�d0c0 j0i; (126)

where we already performed the integral over x. The four terms in the third line correspond to the four different ways to

match up the gluon fields with the incoming proton states. The collinear matrix elements reduce to the gluon beam function

defined in Eq. (50),

!a
ð!aÞhpna
jB�c

na?ð0Þ�ðb
þ
a � na � p̂na

Þ�ð!a � �P na
ÞB�0c0

na?ð0Þjpna
i ¼ g

��0

?
2

�cc0

N2
c � 1

!aBgð!ab
þ
a ; !a=P

�
a Þ: (127)

Including the color traces from the beam functions, the soft matrix element defines the gluonic incoming hemisphere soft

function,

Sggihemiðkþa ; kþb Þ ¼
1

N2
c � 1

h0j trcolorf �T½Yy
nað0ÞYnb

ð0Þ��ðkþa � na � p̂a;sÞ�ðkþb � nb � p̂b;sÞT½Yy
nbð0ÞYna

ð0Þ�gj0i; (128)

where the normalization is again convention. Putting everything together, the gluon contribution to the hadronic tensor

becomes

WJJ0ggðq2; Y; Bþ
a ; B

þ
b Þ ¼ HJJ0ggð~ba; ~bbÞ

Z

dkþa dk
þ
b q

2Bg½xaEcmðBþ
a � kþa Þ; xa�Bg½xbEcmðBþ

b � kþb Þ; xb�Sggihemiðkþa ; kþb Þ;

(129)

with the hard function
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HJJ0ggð~ba; ~bbÞ ¼
1

N2
c � 1

1

2
ðg?��0g?��0 þ g?��0g?��0ÞCy��

Jgg ð~ba; ~bbÞC�0�0

J0ggð~ba; ~bbÞ: (130)

Here we have used the symmetry of the Wilson coefficients

in Eq. (108) to simplify the four terms that arise from

interchanging a $ b in Eq. (126).

To obtain the full result for the hadronic tensor all we

have to do now is to add up the contributions from the

different quark flavors and the gluon,

WJJ0ðq2; Y; Bþ
a ; B

þ
b Þ ¼

X

q

WJJ0q �qðq2; Y; Bþ
a ; B

þ
b Þ

þWJJ0ggðq2; Y; Bþ
a ; B

þ
b Þ: (131)

Inserting this back into Eq. (100), the final result for the

factorized cross section becomes

d�

dq2dYdBþ
a dB

þ
b

¼
X

ij

Hijðq2; YÞ
Z

dkþa dk
þ
b q

2

� Bi½xaEcmðBþ
a � kþa Þ; xa�

� Bj½xbEcmðBþ
b � kþb Þ; xb�

� Sijihemiðkþa ; kþb Þ; (132)

with xa;bEcm ¼
ffiffiffiffiffi

q2
p

e�Y as in Eqs. (96) and (124) and the

hard function

Hijðq2; YÞ ¼
1

2E2
cm

X

J;J0
LJJ0ðq2; YÞ

�HJJ0ij

�

xaEcm

na
2
; xbEcm

nb
2

�

: (133)

The sum in Eq. (132) runs over parton species ij ¼
fgg; u �u; �uu; d �d; . . .g, where Bi is the beam function for

parton i in beam a and Bj for parton j in beam b. Equa-

tion (132) is the final factorization theorem for the isolated

pp ! XL and p �p ! XL processes. In Sec. IVD below we

will apply it to the case of Drell-Yan, which will yield

Eq. (19).

The beam functions in Eq. (132) are universal and take

into account collinear radiation for isolated processes with

x away from one. Since the soft function only depends on

the color representation, but not on the specific quark

flavor, there are only two independent soft functions

Sq
�q

ihemi and Sggihemi. In the sum over ij in Eq. (132), there

are no mixed terms with ij corresponding to beam func-

tions of two different quark flavors. Likewise, there are no

mixed terms with quark and gluon beam functions. For

example, a graph like Fig. 6(e) is part of the ij ¼ q �q term

in the sum. Thus, cross terms between quark and gluon

PDFs only appear via the contributions of different PDFs to

a given beam function, as shown in Eq. (34).

The only process dependence in Eq. (132) arises through

the hard functions Hijðq2; YÞ, and one can study any de-

sired leptonic observables by inserting the appropriate

projections in the leptonic phase-space integrations inside

LJJ0ðq2; YÞ. Since the hard function HJJ0ij corresponds to

the partonic matrix element hijjJyj0ih0jJ0jiji and LJJ0 is

given by the square of the relevant electroweak matrix

elements Ly
JLJ0 , Hijðq2; YÞ can be determined from calcu-

lations of the partonic cross section ij ! L. Furthermore,

Hijðq2; YÞ is identical to the hard function in threshold

factorization theorems and hence in many cases is known

from existing computations.

4. Cancellation of glauber gluons

In the above derivation we have implicitly assumed that

contributions from Glauber gluons cancel in the final cross

section, so that we do not need Glauber interactions in the

effective theory. To complete the proof of factorization, we

now argue that this is indeed the case.

In principle, Glauber interactions add an additional term

LG to the SCET Lagrangian

L SCET ¼ Lna
ð�na

; AsÞ þLnb
ð�nb

; AsÞ þLsðAsÞ
þLGðAG; �na ; �nb ; AsÞ: (134)

Glauber interactions in SCET have been considered in

Refs. [83,84], but we will not require an explicit construc-

tion of LG here. Our arguments will be based on the one

hand, on the consistency with processes where it has been

proven that Glauber interactions cancel, and on the other

hand on systematic scale separation in the language of

effective field theory. The scale separation is valid inde-

pendently of whether it leads to a factorization into simple

matrix elements, or whether it leads to a nonfactorizable

matrix element with complicated dynamics.

The possible danger of the Glauber modes comes from

the fact that they couple the two collinear sectors na and nb
with momentum scaling Qð�2; 1; �Þ and Qð1; �2; �Þ. With

LG, there will still be interactions between soft and col-

linear modes present in the Lagrangian even after the field

redefinition, so we cannot a priori factorize the full matrix

element into independent soft and collinear matrix ele-

ments. Therefore, we have to revisit each step in our

derivation with LG in mind.

Our argument will be divided into three steps: (i) above

the scale �B, (ii) at the scale �B, and (iii) below the scale

�B. For (i) and (ii) we have to consider Glauber modes

with momentum scaling Qð�2; �2; �Þ, which we call G1

modes. Since they have virtuality 
�2
B they are integrated

out at this scale. Any residual effects of Glauber interac-

tions below �B could occur from modes with momentum
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scaling Qð�4; �4; �2Þ, which we call G2. These modes are

illustrated in Fig. 14.

Above the hard scale�H ’ Q, we have full QCD and no

distinction between different modes is required, so in step

(i) we are concerned with contributions of G1 in the region

�H >�>�B. At the scale �H, we integrate out hard

modes with virtualities Q2 or higher by matching the

QCD currents onto SCET currents. For our process, the

leading operators are given in Eq. (107), which contain

only one field per collinear direction. For the theory in

Eq. (134), all other possible operators are power sup-

pressed. The matching onto these currents is valid at an

operator level and can be performed with quark and gluon

states. It is independent of the hadronic matrix element we

are going to take later on. The key point is that the exact

same matching calculation and resulting Wilson coeffi-

cients C occur for threshold Drell-Yan and eþe� !
2 jets. For these cases it is known [1,85] that G1 modes

do not affect the matching of the hard functionH 
 jC2j at
�H or the running ofH in the region�H >�>�B shown

in Figs. 7(b) or 7(c). The hard function H gives a complete

description of the physics down to the scale �B whether or

not the modes in the SCET matrix elements factorize

further. In Fig. 14, this corresponds to taking the scale� ¼
�B. Therefore, the G1 modes can give neither large

lnð�B=�HÞ terms nor finite contributions above �B.

In step (ii), we integrate out modes with virtualities

Q2�2 at the scale �B, which may involve matrix elements

with G1 modes exchanged. This matching affects the

na-collinear, nb-collinear, and G1 modes, whose momen-

tum scaling below �B changes to Qð�4; 1; �2Þ,
Qð1; �4; �2Þ, and Qð�4; �4; �2Þ, respectively. Here we con-
sider the theory right above �B including G1 modes, leav-

ing the discussion of the theory just below �B and G2

modes to step (iii). Thus, we have to consider the matrix

element of the composite operator

½ ��na
�nb

�ðxþ; x�Þ�ðBþ
a � na � p̂aÞ�ðBþ

b � nb � p̂bÞ
� �ð!a � �P naÞ�ð!b � �P nbÞ½ ��nb

�na�ð0Þ; (135)

where we suppressed all spin and color indices for sim-

plicity, and these collinear fields still couple to soft fields in

their Lagrangians. Since �B is a perturbative scale, we can

carry out the matching onto the theory below �B at the

operator level and do not yet have to consider proton states.

Since the Glauber gluons are spacelike, they cannot cross

the final-state cut indicated by the � functions and only

appear in virtual subdiagrams. We can therefore make a

correspondence with the calculation in step (i) as follows.

For any given final state with collinear and soft particles,

the SCET computation for (ii) is identical to the SCET

computation carried out for the matching in step (i) but

using this particular choice of external states.11 Since that

SCET computation cannot induce any dependence on G1

in step (i), there can also be no contributions from G1 for

the forward matrix-element computation here. The result

of the step (ii) matching is thus given by a Wilson coeffi-

cient times an operator of the form

Z

dkþa dk
þ
b Cðxþ; x�; Bþ

a � kþa ; B
þ
b � kþb Þ

� ��0
na
ð0Þ �T½Yy

naYnb
��0

nb
ð0Þ�ðkþa � na � p̂aÞ

� �ðkþb � nb � p̂bÞ�ð!a � �P na
Þ�ð!b � �P nb

Þ
� ��0

nb
ð0ÞT½Yy

nbYna
��0

na
ð0Þ; (136)

where the primed collinear fields have scaling Qð�4; 1; �2Þ
and Qð1; �4; �2Þ, and the soft fields in the Y Wilson lines

have scaling Qð�2; �2; �2Þ.
For step (iii) below �B, we have to consider the

hppj � � � jppi matrix element of Eq. (136) and possible

contributions from G2 Glauber gluons, which can now

also connect to spectator lines in the proton (which are

primed collinear modes). The G2 gluons may spoil the

factorization of the two collinear sectors. To argue that

this is not the case, we rely heavily on the original proof of

the cancellation of Glauber gluons for inclusive Drell-Yan

in Ref. [28]. By construction, for our observables the kþa;b
variables in Eq. (136) are of OðQ�2Þ and thus only get

contributions from the soft gluons. Hence, we are fully

inclusive in the Hilbert space of the primed collinear fields.

Therefore, the G2 modes as well as possible ‘‘ultrasoft’’

Qð�4; �4; �4Þ gluons cancel in the sum over states, just as in

the inclusive case. This discussion for the cancellation of

G2 modes is identical to Ref. [29], where arguments were

presented for the cancellation of G2 gluons up to the scale

induced by the measurement on the final state, which in our

case is �B.

Physically, one could imagine that Glauber modes kick

the spectators in the proton remnant such that they can

contribute to Bþ
a;b. The above arguments show that this is

FIG. 14 (color online). RGE running including potential

Glauber modes.

11In practice one would never make such a complicated choice,
but if one does, it must give the same result as picking a minimal
state for the matching.
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not the case, so that our treatment of the proton and its

remnant in the derivation of the factorization is correct.

Note that the above arguments do not suffice to show

that Glauber interactions cancel when there are additional

hard central jets in the final state.

D. Final results for Drell-Yan

In this subsection, we present the final results for the

isolated Drell-Yan cross section. Our discussion is split

into four parts: the leptonic tensor, the hard function, the

soft function, and the final cross section for beam thrust.

1. The leptonic tensor

To give an explicit example, we now apply the final

factorization result in Eq. (132) to the Drell-Yan process

with L ¼ ‘þ‘�. The relevant QCD currents are the vector

and axial-vector currents J
�
hf with h ¼ fV; Ag, already

given in Eq. (98). The corresponding leptonic contributions

are

L
�
Vfðp1; p2Þ ¼

4��em

q2

�

�Qf �uðp2Þ��vðp1Þ

þ vf

1�m2
Z=q

2
�uðp2Þ��ðv‘ � a‘�5Þvðp1Þ

�

;

L
�
Afðp1; p2Þ ¼

4��em

q2
�af

1�m2
Z=q

2

� �uðp2Þ��ðv‘ � a‘�5Þvðp1Þ; (137)

where in this subsection p1 ¼ p‘þ and p2 ¼ p‘� are the

lepton momenta, Qf is the quark charge (in units of jej),
and v‘;f, a‘;f are the standard vector and axial couplings of

the leptons and quarks of flavor f to the Z boson. We will

include the width of the Z later in Eq. (147).

The leptonic phase-space integral is

Z d4p1d
4p2

ð2�Þ2 �ðp2
1Þ�ðp2

2Þ�4

�

q�
na
2
þ qþ

nb
2
� p1 � p2

�

¼ 1

32�2

Z d�yd’

1þ cosh�y
; (138)

where ’ is the azimuthal angle of the leptons in the

transverse plane and �y is the rapidity difference of the

two leptons:

yi ¼
1

2
ln
nb � pi

na � pi

; �y ¼ y1 � y2: (139)

Since we expanded ~qT ¼ 0, the leptons are back-to-back in
the transverse plane, which implies that at the order we are

working

pþ
1

p�
2

¼ pþ
2

p�
1

¼ qþ

q�
; Y ¼ 1

2
ðy1 þ y2Þ;

~p1T ¼ � ~p2T ; ~p2
1T ¼ ~p2

2T ¼ q2

2ð1þ cosh�yÞ :
(140)

Thus, the leptonic kinematics is described by the four

independent variables fq2; Y;�y; ’g, with fY;�yg being

equivalent to fy1; y2g. For simplicity, we assume that we

do not distinguish the two leptons, as one would, for

example, by measuring their rapidities yi or transverse

momenta piT . We can then integrate over 0 � ’ � 2�
and �1< �y <1 in Eq. (138), giving an overall factor

of 4�. The leptonic tensor, Eq. (101), now becomes

L
��
hh0ff0ðq2; YÞ ¼

1

32�2

Z d�yd’

1þ cosh�y

X

spins

L
y�
hf ðp1; p2Þ

� L�
h0f0ðp1; p2Þ

¼ 8��2
em

3q2

�
q�q�

q2
� g��

�

Lhh0ff0ðq2Þ; (141)

where

LVVff0ðq2Þ ¼ QfQf0 �
ðQfvf0 þ vfQf0Þv‘

1�m2
Z=q

2

þ vfvf0ðv2
‘ þ a2‘Þ

ð1�m2
Z=q

2Þ2 ;

LAAff0ðq2Þ ¼
afaf0ðv2

‘ þ a2‘Þ
ð1�m2

Z=q
2Þ2 ;

LAVff0ðq2Þ ¼
�af

1�m2
Z=q

2

�

�Qf0v‘ þ
vf0ðv2

‘ þ a2‘Þ
1�m2

Z=q
2

�

¼ LVAf0fðq2Þ: (142)

2. The hard function

Using parity and charge conjugation invariance of QCD,

the matching coefficients for the vector and axial-vector

QCD currents can be written as

C
���
Vfq �qð~ba; ~bbÞ ¼ CVfqðq2Þð��

?Þ��;

C
���
Afq �qð~ba; ~bbÞ ¼ CAfqðq2Þð��

?�5Þ��;
C
���
Afggð~ba; ~bbÞ ¼ CAgðq2Þð~ba þ ~bbÞ�i����

~b�a ~b
�
b :

(143)

By Lorentz invariance (or reparametrization invariance of

na;b and �na;b [86]), the scalar coefficients can only depend

on ~ba � ~bb ¼ xaxbE
2
cm ¼ q2. In principle, parity and charge

conjugation would also allow the Dirac structures

ð~ba � ~bbÞ���� and ð~ba � ~bbÞ�ð�5Þ��. However, as the

vector and axial-vector currents are chiral even and the

matching from QCD conserves chirality for massless

quarks, these cannot be generated. For the gluon operator,

the symmetry of the Wilson coefficient [see Eq. (108)]

requires it to be proportional to q� ¼ ~b
�
a þ ~b

�
b . Current

conservation for the vector current requires q�C
�
Vfq �q ¼ 0,

which eliminates this term. Thus, as expected, the only

contribution for the gluon operator is due to the axial

anomaly, coming from the diagram in Fig. 6(b). Since we

neglect the lepton masses, q�L
�
Af ¼ 0, and thusCAfgg does
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not survive the contraction of the leptonic and hadronic tensors for L ¼ ‘þ‘�. Hence, the gluon beam functions do not

contribute to Drell-Yan, and the gluon PDF only appears through its contribution to the quark beam functions. Inserting

Eq. (143) into the general expression for the hard function in Eq. (125), we obtain

H
��
hh0ff0q �qð~ba; ~bbÞ ¼ � 1

2Nc

�

g�� � 1

2
ðn�a n�b þ n�an

�
b Þ
�

C�
hfqðq2ÞCh0f0qðq2Þ ðfor hh0 ¼ fVV; AAgÞ;

H
��
hh0ff0q �qð~ba; ~bbÞ ¼

1

4Nc

i��
��n

�
an

�
bC

�
hfqðq2ÞCh0f0qðq2Þ ðfor hh0 ¼ fVA; AVgÞ:

(144)

At one loop, the vector and axial-vector coefficients are

equal and diagonal in flavor and the SCET matching

computation was performed in Refs. [80,87], in agreement

with the one-loop form factors

CVfqðq2Þ ¼ CAfqðq2Þ ¼ �fqCðq2Þ;

Cðq2; �Þ ¼ 1þ �sð�ÞCF

4�

�

�ln2
��q2 � i0

�2

�

þ 3 ln

��q2 � i0

�2

�

� 8þ �2

6

�

: (145)

The vector current coefficient at two loops was obtained in

Refs. [12,88] from the known two-loop quark form factor

[89–92]. Starting at three loops, it can have a contribution

that is not diagonal in flavor, i.e., is not proportional to �fq.

The axial-vector coefficient can also receive additional

diagonal and nondiagonal contributions starting at two

loops from the axial anomaly [93–95]. The anomaly con-

tributions cancel in the final result in the sum over f as long

as one sums over massless quark doublets. Therefore, they

will cancel when the hard matching scale is much larger

than the top-quark mass, in which case the top quark can be

treated as massless. On the other hand, they have to be

taken into account when the matching scale is below the

top-quark mass, in which case the top quark is integrated

out during the matching step and its mass cannot be

neglected.

Combining Eqs. (144) and (145) with Eqs. (141) and

(142), the coefficients Hijðq2; YÞ in Eq. (133) become

1

2E2
cm

8��2
em

3q2
1

Nc

X

ff0
½LVVff0ðq2ÞC�

Vfqðq2ÞCVf0qðq2Þ

þ LAAff0ðq2ÞC�
Afqðq2ÞCAf0qðq2Þ�  �0Hq �qðq2; �Þ;

(146)

where at one loop

�0 ¼
4��2

em

3NcE
2
cmq

2
; Hq �qðq2; �Þ ¼ H �qqðq2; �Þ ¼

�

Q2
q þ

ðv2
q þ a2qÞðv2

‘ þ a2‘Þ � 2Qqvqv‘ð1�m2
Z=q

2Þ
ð1�m2

Z=q
2Þ2 þm2

Z�
2
Z=q

4

�

jCðq2; �Þj2;

(147)

with jCðq2; �Þj2 given by Eq. (145), and where we also

included the nonzero width of the Z. The RGE for the hard

function Hq �qðq2; �Þ is

�
dHq �qðq2; �Þ

d�
¼ �Hðq2; �ÞHq �qðq2; �Þ;

�Hðq2; �Þ ¼ 2�cusp½�sð�Þ� lnq
2

�2
þ �H½�sð�Þ�;

(148)

where �cusp is the universal cusp anomalous dimension

[74], and the one-loop noncusp term is �H½�sð�Þ� ¼
�3�sð�ÞCF=� [87]. The solution of Eq. (148) has the

standard form

Hq �qðq2; �Þ ¼ Hq �qðq2; �0ÞUHðq2; �0; �Þ;

UHðq2; �0; �Þ ¼ eKHð�0;�Þ
�
q2

�2
0

�
	Hð�0;�Þ

;
(149)

where KHð�0; �Þ and 	Hð�0; �Þ are analogous to

Eq. (63),

KHð�0; �Þ ¼
Z �sð�Þ

�sð�0Þ

d�s

�ð�sÞ

�

�4�cuspð�sÞ
Z �s

�sð�0Þ

d�0
s

�ð�0
sÞ

þ �Hð�sÞ
�

;

	Hð�0; �Þ ¼ 2
Z �sð�Þ

�sð�0Þ

d�s

�ð�sÞ
�cuspð�sÞ: (150)

Together, Eqs. (149) and (150) sum the large logarithms

occurring in isolated Drell-Yan between the scales �H and

�B. Electroweak corrections to the hard function

Hq �qðq2; �Þ can be included using the results of

Refs. [14,96,97].

3. The q �q soft function

The incoming hemisphere soft function contains incom-

ing Wilson lines stretching from�1 to 0 along na and nb.
Under time reversal, each incomingWilson line transforms

into a corresponding outgoing Wilson line stretching from

0 to 1 along the opposite direction,
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T�1YnaT ¼ �P exp

�

�ig
Z 1

0
ds nb � AsðsnbÞ

�

¼ ~Ynb ;

(151)

where �P denotes anti-path ordering. Since T itself does not

affect the original ordering of the field operators, time

ordering turns into anti-time ordering and vice versa. In

addition Tna � p̂a;sT
�1 ¼ nb � p̂b;s. Therefore, time-

reversal invariance implies

Sq
�q

ihemiðkþa ; kþb Þ¼
T 1

Nc

trh0jT½ ~Yy
nb
~Yna��ðkþa � nb � p̂b;sÞ

� �ðkþb � na � p̂a;sÞ �T½ ~Yy
na
~Ynb�j0i�

¼ 1

Nc

trh0jT½ ~Yy
na
~Ynb

��ðkþa � na � p̂a;sÞ

� �ðkþb � nb � p̂b;sÞ �T½ ~Yy
nb
~Yna

�j0i: (152)

In the second step, the complex conjugation has no effect

since the matrix element is real, and we used parity to

switch nb;a back to na;b. For comparison, the hemisphere

soft function with outgoing Wilson appearing in the

double-differential hemisphere invariant-mass distribution

in eþe� ! 2 jets [69,70,98–101] is

Sq
�q

hemiðkþa ; kþb Þ ¼
1

Nc

trh0j �T½ ~Yy
na
~Ynb

��ðkþa � na � p̂a;sÞ

� �ðkþb � nb � p̂b;sÞT½ ~Yy
nb
~Yna

�j0i: (153)

This is almost the same as Eq. (152), the only difference

being the opposite time ordering. Thus, Sihemi and Shemi are

equal at one loop, where the time ordering is still irrelevant.

Beyond one loop, Sihemi and Shemi may in general be differ-

ent. However, since the beam and jet functions have the

same anomalous dimension, the combined anomalous di-

mension of the hard and beam functions in isolated Drell-

Yan agrees with that of the hard and jet functions for the

eþe� hemisphere invariant-mass distribution. The consis-

tency of the RGE in both cases then requires that Sihemi and

Shemi have the same anomalous dimension to all orders in

perturbation theory. In addition, the purely virtual contri-

butions, obtained by inserting the vacuum state, are the

same in both cases,

Sq
�q;virtual

ihemi ðkþa ; kþb Þ ¼
1

Nc

�ðkþa Þ�ðkþb Þ trjh0jT½ ~Yy
na
~Ynb

�j0ij2

¼ Sq
�q;virtual

hemi ðkþa ; kþb Þ: (154)

Hence, Sihemi and Shemi can only differ by finite real-

emission corrections at each order in perturbation theory.

Using the one-loop results for Sq
�q

hemi from Refs. [70,100],

we have

Sq
�q

ihemiðkþa ; kþb Þ ¼ �ðkþa Þ�ðkþb Þ þ �ðkþa ÞS1loopðkþb Þ
þ S1loopðkþa Þ�ðkþb Þ;

S1loopðkþÞ ¼ �sð�ÞCF

4�

�

� 8

�

�

ðkþ=�Þ lnðkþ=�Þ

kþ=�

�

þ

þ �2

6
�ðkþÞ

�

: (155)

The plus distribution is defined in Eq. (59). The one-loop

soft function for beam thrust in Eq. (26) then becomes

SBðkþ; �Þ ¼ �ðkþÞ þ 2S1loopðkþÞ.

4. Final cross section for beam thrust

The differential cross section for beam thrust in Eq. (32)

including the RGE running is

d�

dq2dYd�B
¼ �0

X

ij

Hijðq2; �HÞUHðq2; �H; �SÞ

�
Z

dtadtbQSB

�

Q�B � ta þ tb
Q

;�S

�

�
Z

dt0aBiðta � t0a; xa; �BÞUBðt0a; �B; �SÞ

�
Z

dt0bBjðtb � t0b; xb; �BÞUBðt0b; �B; �SÞ:

(156)

For simplicity, we evolve the hard and beam functions

from their respective hard and beam scales, �H and �B,

down to the common scale � ¼ �S of the soft function. In

this way, we do not need to consider the running of the soft

function separately. Different choices for � are all equiva-

lent, as we discussed in Sec. II F. At LL, we include the

one-loop cusp anomalous dimension in the evolution ker-

nels UH and UB, and at NLL we include the two-loop cusp

and one-loop noncusp anomalous dimensions. In both

cases we use the LO results as initial conditions.

We also consider the fixed-order �s expansion. To our

knowledge d�=dq2dYd�B has not been considered in per-

turbation theory in full QCD even at one loop. To obtain an

expression for d�=dq2dYd�B at NLO in �s and leading

order in the power counting, we drop the evolution factors

UH and UB and expand all functions to NLO at a common

scale �. From the above NLO results for the hard and soft

functions and the NLO results for the beam functions from

Sec. III, we find

d�

dq2dYd�B
¼ �0

X

i;j

�

Q2
i þ

ðv2
i þ a2i Þðv2

‘ þ a2‘Þ � 2Qiviv‘ð1�m2
Z=q

2Þ
ð1�m2

Z=q
2Þ2 þm2

Z�
2
Z=q

4

�

�
Z d�a

�a

d�b

�b

Cij

�
xa
�a

;
xb
�b

; q2; �B; �

�

fi=að�a; �Þfj=bð�b; �Þ: (157)
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Here, fi=að�a; �Þ and fj=bð�b; �Þ are the PDFs for parton i in proton a and parton j in (anti-)proton b. At tree level, the
nonzero coefficients are

Ctree
q �q ðza; zb; q2; �B; �Þ ¼ Ctree

�qq ðza; zb; q2; �B; �Þ ¼ �ð�BÞ�ð1� zaÞ�ð1� zbÞ: (158)

At one loop, we obtain

C
1loop
q �q ðza; zb; q2; �B; �Þ ¼ �sð�ÞCF

2�
�ð1� zaÞ
ðzbÞ

��

�2

�

ð�BÞ ln�B

�B

�

þ
� 3

2

�

ð�BÞ
�B

�

þ
� �ð�BÞ

�

4� �2

2

��

�ð1� zbÞ

þ
��


ð�BÞ
�B

�

þ
þ �ð�BÞ ln

q2

�2

��


ð1� zbÞ
1þ z2b
1� zb

�

þ

þ �ð�BÞ
��


ð1� zbÞ lnð1� zbÞ
1� zb

�

þ
ð1þ z2bÞ þ 
ð1� zbÞ

�

1� zb �
1þ z2b
1� zb

lnzb

���

þ ðza $ zbÞ;

C
1loop
�qq ðza; zb; q2; �B; �Þ ¼ C

1loop
q �q ðza; zb; q2; �B; �Þ;

C
1loop
qg ðza; zb; q2; �B; �Þ ¼ �sð�ÞTF

2�
�ð1� zaÞ
ðzbÞ
ð1� zbÞ

���

ð�BÞ
�B

�

þ
þ �ð�BÞ ln

q2

�2

�

½z2b þ ð1� zbÞ2�

þ �ð�BÞ
�

ln
1� zb
zb

½z2b þ ð1� zbÞ2� þ 2zbð1� zbÞ
��

;

C
1loop
�qg ðza; zb; q2; �B; �Þ ¼ C

1loop
qg ðza; zb; q2; �B; �Þ;

C
1loop
gq ðza; zb; q2; �B; �Þ ¼ C

1loop
g �q ðza; zb; q2; �B; �Þ ¼ C

1loop
qg ðzb; za; q2; �B; �Þ: (159)

The coefficient Cgg only starts to contribute at two loops.

The single logarithms of q2=�2 are multiplied by the QCD

splitting kernels and are resummed by the PDFs. Thus, in

fixed-order perturbation theory the PDFs should be eval-

uated at the hard scale � ¼ Q, such that there are no large

logarithms when integrating over 0 � �B & 1. However, if
the integration is restricted to �B � �cutB � 1, the plus

distributions in �B produce large logarithms ln2�cutB and

ln�cutB , which make a fixed-order expansion unreliable.

These are precisely the logarithms that are resummed by

the combined RGE of hard, jet, and soft functions in

Eq. (156).

V. ISOLATED DRELL-YAN CROSS SECTION

In this section we illustrate our results with plots of the

isolated Drell-Yan cross section. Rather than considering

the cross section as a function of two variables, Bþ
a and Bþ

b ,

we use the beam thrust �B defined in Sec. II B. We consider

both the differential cross-section d�=dQdYd�B as a func-

tion of �B, see Eq. (32), as well as the cross section

integrated over 0 � �B � expð�2ycutB Þ as a function of

ycutB , see Eqs. (31) and (33). We fix Q ¼
ffiffiffiffiffi

q2
p

to a few

representative values. We also restrict our discussion to

back-to-back leptons, Y ¼ 0, since measuring �B mainly

affects the normalization and not the shape of the rapidity

distribution.

For our cross-section predictions, we always use the

NLO PDFs from MSTW2008 [77], with the corresponding

�sðmZÞ ¼ 0:1202 and two-loop five-flavor running for

�sð�Þ.
We show results for the cross section both in the fixed-

order expansion at LO and NLO [see Eq. (157)] and in the

resummed expansions at LL and NLL [see Eq. (156)]. For

the resummed results we always choose the hard, beam,

and soft scales as �H ¼ �, �B ¼ �
ffiffiffiffiffiffi
�B

p
, �S ¼ ��B, and

for the fixed-order results we use a common fixed scale �.

The central values correspond to � ¼ Q, and the bands

show the scale variation obtained by varying � ¼ 2Q and

� ¼ Q=2. Since our purpose here is to illustrate the main

features of the factorized cross section with beam func-

tions, we will limit ourselves to the LL and NLL results

without also including additional fixed-order corrections to

the hard, beam, and soft functions. A complete analysis

combining both NLO corrections and NNLL resummation,

and a more detailed analysis of scale uncertainties, is left

for future work.

In Fig. 15, we show results for pp collisions at the

LHC with Ecm ¼ 7 TeV and two different values Q ¼
100 GeV and Q ¼ 1 TeV. For Y ¼ 0 this corresponds to

xa ¼ xb ¼ 0:014 and xa ¼ xb ¼ 0:14 respectively, repre-

senting two typical values for the isolated factorization

theorem. In Fig. 16, we show results for p �p collisions at

the Tevatron for Q ¼ 500 GeV corresponding to xa ¼
xb ¼ 0:26.
The top row in Fig. 15 depicts the LHC cross section as a

function of �B at several different orders. At tree level,

there is only a � function and no radiation. The green
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(light) curve and band show the NLO-expanded cross

section, which grows for decreasing �B, showing that the

radiation is peaked in the forward direction. As �B ! 0 it

exhibits the expected singular behavior, and this IR singu-

larity is canceled in the integrated cross section by a

corresponding � function at �B ¼ 0. The blue (dark) and

orange (medium) curves are the resummed results at LL

and NLL, respectively. As expected, the resummation has a

large effect at small �B and effectively regulates the IR

singularity in the NLO result. The curves are not plotted for

�B � 0:007 in the left panel and �B � 0:001 in the right

panel, because at this point the soft scale drops below

1 GeV. Near this cutoff, the soft function becomes non-

perturbative and so our purely perturbative results should

FIG. 15 (color online). Cross sections for beam thrust at the LHC with Ecm ¼ 7 TeV at Y ¼ 0 and Q ¼ 100 GeV (left column) and

Q ¼ 1 TeV (right column). Top row: The cross-section differential in �B at NLO, LL, and NLL. Middle and bottom rows: The cross

section integrated up to �B � expð�2ycutB Þ at LO, NLO, LL, and NLL.
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not be taken too seriously. Nevertheless, it is interesting to

see that the resummed results show a characteristic turn-

over that one would also expect from nonperturbative

corrections. These nonperturbative corrections scale as

�QCD=ðQ�BÞ and hence become less relevant than the

perturbative corrections for �B * 0:02 and �B * 0:002 in

the left and right panels, respectively.

In the middle row of Fig. 15, we compare our results

expanded to fixed-order at LO (gray horizontal band) and

NLO (green band with solid central line) as a function of

ycutB . Since we plot the integrated cross section, the tree-

level � function gives a constant contribution in ycutB . As

expected, the NLO corrections to the LO result become

very large as we move away from ycutB ¼ 0 because of the

large double logarithms in the fixed-order expressions.

Hence, a fixed-order expansion is not reliable here. The

green dashed line illustrates what happens if we take the

NLO result given by the solid line but exclude the contri-

bution of the gluon PDF to the quark beam function. The

gluon contribution has a bigger effect at smallerQ, because

it corresponds to smaller x. Overall, it reduces the inte-

grated cross section, which is the same effect we already

observed in the integrated beam function in Sec. III. The

plots in the bottom row of Fig. 15 show the LL, NLL, and

NLO results, which are the integrated versions of the

curves in the top row. Here, larger ycutB towards the left of

the plot corresponds to smaller �B. A large ycutB implies a

stronger constraint on the final state and hence a smaller

cross section. In this region, the logarithmic resummation

is necessary and suppresses the cross section. For ycutB ! 0

the LL and NLL approach the LO result as they must.

Figure 16 shows the corresponding plots for the

Tevatron. The left panel and right panel are equivalent to

the top row and bottom row of Fig. 15, respectively,

showing the differential and integrated cross sections.

The plots show similar features overall, though the overall

scale uncertainties are slightly larger here, because the

PDFs are evaluated at a larger x. In the Tevatron case,

even though we are at larger x compared to the right panels

in Fig. 15, the cross section is larger due to the presence of

valence antiquarks (note the different units in the two

plots).

VI. CONCLUSIONS

Experimental measurements at the LHC or Tevatron are

typically characterized by two conditions. First, the domi-

nant part of the cross section arises from parton momentum

fractions x away from one, and second, to probe the hard

scattering the measurements impose restrictions on the

final state to identify and isolate hard leptons or jets.

Factorization is required to separate the perturbatively

calculable pieces from the nonperturbative parton distribu-

tion functions, and is a key ingredient for the resummation

of large logarithms that occur due to phase-space restric-

tions. The most well-known factorization theorem for in-

clusive Drell-Yan applies for generic momentum fractions,

but the hadronic final state is completely summed over,

only subject to overall momentum conservation. This re-

quires an inclusive experimental measurement, with only

mild restrictions on the final state. On the other hand,

threshold factorization theorems for Drell-Yan or dijet

production take into account phase-space restrictions and

resum resulting large logarithms, but they are only valid in

the limit x ! 1. Thus each of these cases satisfies only one
of the above experimental conditions.

In this paper we have studied factorization for generic x
and with explicit restrictions on the hadronic final state. We

considered the simplest situation, namely, Drell-Yan pro-

duction pp ! X‘þ‘� at generic x with a restriction on X
that vetoes hard central jets, which we call isolated Drell-

Yan. The restriction on the hadronic final state is imple-

mented by dividing the total hadronic momentum into two

hemispheres and requiring the components Bþ
a and Bþ

b of

the resulting hemisphere momenta to be small. For this

FIG. 16 (color online). The cross section for beam thrust at the Tevatron at Y ¼ 0 and Q ¼ 500 GeV. Left panel: The cross-section
differential in �B at NLO, LL, and NLL. Right panel: The cross section integrated up to �B � expð�2ycutB Þ at LO, NLO, LL, and NLL.
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situation, we prove a factorization theorem for the cross-

section differential in the hadronic variables Bþ
a and Bþ

b (as

well as the leptonic phase-space variables). It allows us to

systematically resum large double logarithms of Bþ
a;b=Q

arising from the phase-space restrictions. The factorization

theorem also applies to other isolated processes of the form

pp ! XL, like H ! �� or H ! 4‘.
The main conclusion from our analysis is that PDFs

alone are insufficient to properly describe the initial state

in the collision. The restriction on the hadronic final state

effectively probes the proton prior to the hard interaction

by constraining the virtuality of the colliding hard parton.

At that point, the parton cannot be confined to the proton

anymore and must properly be described as part of an

incoming initial-state jet. This description is given by

quark and gluon beam functions, which replace the PDFs

in the factorization theorem. In addition to the parton’s

momentum fraction, the beam functions depend on the

virtuality of the colliding parton and live at an intermediate

beam scale �B of the order of this virtuality. At the scale

� ¼ �B, the beam functions can be matched onto PDFs

evaluated at this � times perturbatively calculable correc-

tions. In this way, our factorization theorem unambigu-

ously determines the proper scale at which the PDFs must

be evaluated. This scale �B is much smaller than the hard

scale of the partonic collision. As a result, the evolution of

the initial state below �B is governed by the PDFs, while

above �B it is governed by the beam function, whose

evolution depends on the parton’s virtuality rather than

momentum fraction. Other differences compared to the

PDF evolution are that the beam-function evolution sums

double logarithms and does not involve parton mixing.

In a Monte Carlo setting the corresponding physical

effects should be described by the initial-state parton

shower. Our factorization theorem thus provides a way to

explicitly check whether the initial-state parton shower

resums the correct double logarithms, which is left for

future work. We believe that experimental measurements

of the isolated Drell-Yan spectrum will provide a direct

method for testing the initial-state shower in Monte Carlo.

This spectrum combined with the results reported here, is

therefore useful for tuning the Monte Carlo with early LHC

data.

Even though our derivation is only rigorous for the

specific case of isolated Drell-Yan, we argued that the

necessity for beam functions is more general, essentially

applying to any process where the hadronic final state is

restricted in a similar way. For example, the consistency of

the renormalization group evolution implies that the de-

scription for any threshold process can be extended to a

respective isolated case by supplementing it with corre-

sponding variables Bþ
a;b, replacing the PDFs by beam

functions, and replacing the threshold soft function by an

appropriate isolated soft function.

We briefly discussed the extension of isolated Drell-Yan

to isolated dijet production. We also pointed out that if the

hadronic final state is constrained by different global var-

iables, one can expect to find different beam functions to

encode these constraints, which will then sum double

logarithms in these variables.

Ultimately, we hope that this type of factorization theo-

rem with beam functions will bridge the gap between

experimentally realistic cuts for LHC measurements and

systematically improvable theoretical results that go be-

yond fixed-order calculations.
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[48] M. Bengtsson, T. Sjöstrand, and M. van Zijl, Z. Phys. C

32, 67 (1986).

[49] L. V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rep.

100, 1 (1983).

[50] I.W. Stewart, F. J. Tackmann, and W. J. Waalewijn,

arXiv:1002.2213.

[51] G. T. Bodwin, Phys. Rev. D 31, 2616 (1985).

[52] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys.

B261, 104 (1985).

[53] G. Altarelli, R. K. Ellis, and G. Martinelli, Nucl. Phys.

B157, 461 (1979).

[54] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl.

Phys. B359, 343 (1991).

[55] R. V. Harlander and W.B. Kilgore, Phys. Rev. Lett. 88,

201801 (2002).

[56] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello,

Phys. Rev. Lett. 91, 182002 (2003).

[57] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello,

Phys. Rev. D 69, 094008 (2004).

[58] L. Magnea, Nucl. Phys. B349, 703 (1991).

[59] G. P. Korchemsky and G. Marchesini, Nucl. Phys. B406,

225 (1993).

[60] S. Catani, M. L. Mangano, P. Nason, and L. Trentadue,

Nucl. Phys. B478, 273 (1996).

[61] A. V. Belitsky, Phys. Lett. B 442, 307 (1998).

[62] S. Moch and A. Vogt, Phys. Lett. B 631, 48 (2005).

[63] G. P. Korchemsky, arXiv:hep-ph/9610207.

[64] C. F. Berger, T. Kucs, and G. Sterman, Phys. Rev. D 68,

014012 (2003).

[65] G. Sterman, Phys. Rev. D 17, 2789 (1978).

[66] A. H. Hoang and I.W. Stewart, Phys. Lett. B 660, 483

(2008).

[67] Z. Ligeti, I.W. Stewart, and F. J. Tackmann, Phys. Rev. D

78, 114014 (2008).

[68] S. Catani, L. Trentadue, G. Turnock, and B. R. Webber,

Nucl. Phys. B407, 3 (1993).

[69] S. Fleming, A.H. Hoang, S. Mantry, and I.W. Stewart,

Phys. Rev. D 77, 074010 (2008).

[70] S. Fleming, A.H. Hoang, S. Mantry, and I.W. Stewart,

Phys. Rev. D 77, 114003 (2008).

[71] A. V. Manohar and I.W. Stewart, Phys. Rev. D 76, 074002

(2007).

[72] C. Lee and G. Sterman, Phys. Rev. D 75, 014022

(2007).

[73] C.W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and

I.W. Stewart, Phys. Rev. D 66, 014017 (2002).

[74] G. P. Korchemsky and A.V. Radyushkin, Nucl. Phys.

B283, 342 (1987).

[75] C. Balzereit, T. Mannel, and W. Kilian, Phys. Rev. D 58,

114029 (1998).

[76] M. Neubert, Eur. Phys. J. C 40, 165 (2005).

[77] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 63, 189 (2009).

[78] C.W. Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. D 67,

071502(R) (2003).

[79] C.W. Bauer, A.V. Manohar, and M.B. Wise, Phys. Rev.

Lett. 91, 122001 (2003).

[80] C.W. Bauer, C. Lee, A.V. Manohar, and M. B. Wise,

Phys. Rev. D 70, 034014 (2004).

[81] J. Chay, C. Kim, Y.G. Kim, and J.-P. Lee, Phys. Rev. D 71,

056001 (2005).

FACTORIZATION AT THE LHC: FROM PARTON . . . PHYSICAL REVIEW D 81, 094035 (2010)

094035-41



[82] C.M. Arnesen, J. Kundu, and I.W. Stewart, Phys. Rev. D

72, 114002 (2005).

[83] A. Idilbi and A. Majumder, Phys. Rev. D 80, 054022

(2009).

[84] J. F. Donoghue and D. Wyler, arXiv:0908.4559.

[85] J. C. Collins and G. Sterman, Nucl. Phys. B185, 172

(1981).

[86] A. V. Manohar, T. Mehen, D. Pirjol, and I.W. Stewart,

Phys. Lett. B 539, 59 (2002).

[87] A. V. Manohar, Phys. Rev. D 68, 114019 (2003).

[88] T. Becher, M. Neubert, and B.D. Pecjak, J. High Energy

Phys. 01 (2007) 076.

[89] G. Kramer and B. Lampe, Z. Phys. C 34, 497 (1987); 42,

504(E) (1989).

[90] T. Matsuura and W. L. van Neerven, Z. Phys. C 38, 623

(1988).

[91] T. Matsuura, S. C. van der Marck, and W. L. van Neerven,

Nucl. Phys. B319, 570 (1989).

[92] T. Gehrmann, T. Huber, and D. Maitre, Phys. Lett. B 622,

295 (2005).

[93] B. A. Kniehl and J. H. Kuhn, Phys. Lett. B 224, 229

(1989).

[94] B. A. Kniehl and J. H. Kuhn, Nucl. Phys. B329, 547

(1990).

[95] W. Bernreuther et al., Nucl. Phys. B723, 91 (2005).

[96] J.-y. Chiu, F. Golf, R. Kelley, and A.V. Manohar, Phys.

Rev. D 77, 053004 (2008).

[97] J.-y. Chiu, A. Fuhrer, R. Kelley, and A.V. Manohar, Phys.

Rev. D 80, 094013 (2009).

[98] G. P. Korchemsky and G. Sterman, Nucl. Phys. B555, 335

(1999).

[99] G. P. Korchemsky and S. Tafat, J. High Energy Phys. 10

(2000) 010.

[100] M.D. Schwartz, Phys. Rev. D 77, 014026 (2008).

[101] A. H. Hoang and S. Kluth, arXiv:0806.3852.

STEWART, TACKMANN, AND WAALEWIJN PHYSICAL REVIEW D 81, 094035 (2010)

094035-42


