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1 Introduction

The antiferromagnetic Potts model and the staggered six-vertex model [1–11] have recently
been shown [12] to be related to the D(2)

2 R-matrix [13–15]. Even more recently, an open
D

(2)
2 spin chain with a particular integrable boundary condition has been shown [16] to have

as its continuum limit a non-compact boundary conformal field theory, which possesses a
continuous spectrum of conformal dimensions; it is closely related to the SL(2,R)/U(1)
Euclidean black hole [17–21], see also [22–24].
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Here we express the D(2)
2 transfer matrices for the open spin chains considered in [12]

and [16] as products of A(1)
1 transfer matrices. We then use these relations, which we call

factorization identities, to solve the models by algebraic Bethe ansatz. In particular, we
construct the models’ Bethe states, which had not been known, that would be needed
to compute scalar products and correlation functions. Moreover, we prove previously-
proposed expressions for the models’ eigenvalues and Bethe equations [16, 25–28]. The
interesting degeneracies exhibited by these models are also explained.

In the course of this work, we also formulate and solve a new integrable XXZ-like open
spin chain, which depends on a continuous parameter. We interpret this parameter as
the rapidity of the boundary. We conjecture that this model, like the one in [16], has a
non-compact continuum limit.

This paper is structured as follows. In section 2, we give an exact formulation (2.11)–
(2.12) of the factorization [12] of the D(2)

2 R-matrix in terms of A(1)
1 R-matrices. Section 3

is devoted to the closed D
(2)
2 spin chain. We use the factorization of the R-matrix to

derive the factorization identity (3.9)–(3.10), which expresses the D(2)
2 transfer matrix as a

product of A(1)
1 transfer matrices. We then use this identity to solve the model by means of

algebraic Bethe ansatz. Since these computations are straightforward, they may serve as
a warm-up exercise for the parallel — but technically more complicated — computations
that follow.

The heart of this paper is section 4, where we consider open D
(2)
2 chains with two

different sets of integrable boundary conditions, corresponding to the two possible values
(namely, 0 and 1) of a certain parameter ε. We consider first the case ε = 1, which was
studied in [16]. The factorization identity (4.10)–(4.11), whose derivation is presented in
appendix A, involves a novel A(1)

1 transfer matrix (4.12). It is a special case of the more
general transfer matrix (4.15), which depends on an arbitrary parameter u0 that (as re-
marked above) we interpret as the rapidity of the boundary. We solve the general model
by algebraic Bethe ansatz, from which we then extract the solution for the case ε = 1. We
treat the case ε = 0, which was studied in [12], in a similar way. Its factorization iden-
tity (4.55)–(4.56), whose derivation is also presented in appendix A, involves a conventional
A

(1)
1 transfer matrix (4.57), corresponding to u0 = 0. In section 5, we point out a special

case of the model (4.15) with a local Hamiltonian for general values of u0. We conclude
with a brief discussion of our results in section 6.

2 Product-form R-matrices

We begin this section by reviewing in section 2.1 a well-known general recipe for construct-
ing an R-matrix by forming suitable tensor products of multiple copies of a more elementary
R-matrix. We actually need a (perhaps less familiar) generalization of this construction,
namely (2.6). Indeed, in section 2.2, we see that the recent factorization [12] of the D(2)

2
R-matrix in terms of A(1)

1 R-matrices is precisely of this type, up to a similarity transforma-
tion. The result (2.11)–(2.12) is the basis for all the factorization identities that we will de-
rive in this paper, which expressD(2)

2 transfer matrices as products of A(1)
1 transfer matrices.
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Figure 1. R(u).

=

Figure 2. YBE for R(u).

/

Figure 3. Unitarity.

2.1 Generalities

Consider a solution R(u) of the Yang-Baxter equation (YBE)

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) . (2.1)

As usual, R(u) is a d2 × d2 matrix that maps V ⊗ V 7→ V ⊗ V , where V is a d-dimensional
vector space. In (2.1), R12 = R ⊗ I , R23 = I ⊗ R ,R13 = P23R12P23, where here I is the
identity matrix on V (below, by abuse of notation, Imay denote the identity matrix on more
than one copy of V, depending on the context), and P is the permutation matrix on V ⊗V

P =
d∑

a,b=1
eab ⊗ eba , (2.2)

where eab are the d × d elementary matrices with elements (eab)ij = δa,iδb,j . As is well
known, the R-matrix can be usefully represented graphically by one pair of lines that
cross, as shown in figure 1; hence the YBE (2.1) is represented using three lines, as shown
in figure 2.

We assume that the R-matrix is regular

R(0) ∝ P , (2.3)

and unitary
R12(u)R21(−u) ∝ I , (2.4)

where R21 = P12R12 P12. We use the symbol ∝ to denote equality up to a scalar factor.
The latter can be represented graphically as in figure 3.

Another solution R(u) of the YBE, which maps (V ⊗V)⊗ (V ⊗V) 7→ (V ⊗V)⊗ (V ⊗V)
is given by the following product of four R-matrices

R12,34(u) = R14(u)R13(u)R24(u)R23(u) , (2.5)

which is a d4 × d4 matrix. This R-matrix can be represented graphically by two pairs
of lines that cross, as shown in figure 4. The corresponding YBE for R, represented in

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
0
8
9

Figure 4. R(u) in eq. (2.5).

=

Figure 5. YBE for R(u) in eq. (2.5).

Figure 6. R(u) in eq. (2.6).

=

i

Figure 7. YBE for R(u) in eq. (2.6).

figure 5, follows from the YBE for R shown in figure 2. A review of models constructed
with R-matrices of this type can be found in [29].

We will need a generalization of the construction (2.5), namely,

R12,34(u) = R43(−θ)R13(u)R14(u+ θ)R23(u− θ)R24(u)R34(θ) , (2.6)

where θ is an arbitrary constant, see figure 6. Indeed, using the regularity property (2.3),
the construction (2.6) reduces to (2.5) for θ = 0. The proof that (2.6) satisfies the YBE,
which requires unitarity (2.4) as well as the YBE (2.1), can also be performed graphically
(see figure 7), or by a straightforward but long explicit computation.

2.2 The D
(2)
2 R-matrix

The D(2)
2 R-matrix, following a hint from [30, 31], has recently been shown [12] to be of

product form, up to a similarity transformation. Indeed, let us write the D(2)
2 R-matrix

from [14] as in appendix A of [27], with spectral parameter u and anisotropy parameter η,
and denote it by R̃(u). Then

R̃12,34(u) ∝ B12B34 R12,34(u)B12B34 , (2.7)

where R(u) is given by (2.6), with R(u) given by the A(1)
1 (XXZ) R-matrix

R(u) =


sinh(−u

2 + η) 0 0 0
0 sinh(u2 ) e−

u
2 sinh(η) 0

0 e
u
2 sinh(η) sinh(u2 ) 0

0 0 0 sinh(−u
2 + η)

 , (2.8)
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and θ = iπ. Moreover, the similarity transformation is given by

B =



1 0 0 0
0 cosh( η2 )√

cosh η −
sinh( η2 )√

cosh η 0

0 − sinh( η2 )√
cosh η −

cosh( η2 )√
cosh η 0

0 0 0 1


, B2 = I . (2.9)

Following [5, 7], we define the matrix C by

C = i

cosh ηPR(iπ) , C2 = I . (2.10)

Using this notation, the result (2.6)–(2.7) for the D(2)
2 R-matrix takes the final form

R̃12,34(u) = B12B34 R12,34(u)B12B34 , (2.11)

where R(u) has been redefined (by a simple rescaling) as

R12,34(u) = 24C34R14(u)R13(u+ iπ)R24(u− iπ)R23(u)C34 . (2.12)

Note that we use a tilde to denote similarity-transformed quantities. Eqs. (2.11)–(2.12)
are an exact formulation, in our notation, of the factorization discovered in [12]. In the
isotropic limit η → 0, this result reduces to the fact (see e.g. [32]) that the D2 (i.e. SO(4))
R-matrix factorizes into a product of two A1 (i.e. SU(2)) R-matrices, up to a similarity
transformation.

For future reference, we note here some useful properties of the R-matrix (2.8) in
addition to (2.1)–(2.4): quasi-periodicity

R(u+ 2iπ) = −R(u) , (2.13)

PT-symmetry
Rt1t212 (u) = R21(u) (2.14)

(where ti denotes transposition in the ith vector space), and crossing-unitarity

Rt112(u)M1R
t2
12(−u+4η)M−1

1 =−sinh
(
u

2

)
sinh

(
u

2−2η
)
I , M = diag

(
eη ,e−η

)
. (2.15)

3 The closed D
(2)
2 spin chain

We begin with the simplest case, namely, the closed periodic D(2)
2 spin chain. In sec-

tion 3.1, we use the factorization of the R-matrix (2.11)–(2.12) to derive the factorization
identity (3.9)–(3.10) that expresses the D(2)

2 transfer matrix as a product of A(1)
1 transfer

matrices. In section 3.2, we use this identity to solve the model by means of algebraic
Bethe ansatz.
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3.1 Factorization identity

The monodromy matrix for a chain of length N is defined by

T̃0(u) = R̃0N (u) . . . R̃01(u) , (3.1)

where R̃(u) is the D(2)
2 R-matrix. In order to exploit the factorization (2.11)–(2.12), it is

convenient to replace each index j in (3.1) (which corresponds to a 4-dimensional vector
space) by a pair of indices j̄ , ¯̄j (each of which corresponds to a 2-dimensional vector space).
In this way, the monodromy matrix takes the form

T̃0(u) = T̃0̄¯̄0(u) = R̃0̄¯̄0,N̄ ¯̄N (u) . . . R̃0̄¯̄0,1̄¯̄1(u) . (3.2)

The relation (2.11) implies

T̃0̄¯̄0(u) = B0̄¯̄0 BT0̄¯̄0(u)BB0̄¯̄0 , (3.3)

where T0̄¯̄0(u) is defined in terms of R’s as in (3.2) except without tildes, and B is the
quantum-space operator

B = B1̄¯̄1 . . . BN̄ ¯̄N . (3.4)
Using (2.12), we obtain

T0̄¯̄0(u) = 24N CT0̄(u)T¯̄0(u− iπ)C , (3.5)

where T0̄(u) is defined by

T0̄(u) = R0̄ ¯̄N (u)R0̄N̄ (u+ iπ) . . . R0̄¯̄1(u)R0̄1̄(u+ iπ) , (3.6)

and C is the quantum-space operator

C = C1̄¯̄1 . . . CN̄ ¯̄N . (3.7)

Note that T0̄(u) is a monodromy matrix on 2N sites, with iπ shifts on alternating sites;
T¯̄0(u) is given by the same expression (3.6), except with 0̄ replaced by ¯̄0. Note also the
periodicity T0̄(u+ 2iπ) = T0̄(u) as a consequence of (2.13).

The transfer matrix for the closed periodic spin chain is obtained by tracing the mon-
odromy matrix over the auxiliary space

t̃(u) = tr0 T̃0(u) = tr0̄¯̄0 T̃0̄¯̄0(u) . (3.8)

Eq. (3.3) implies
t̃(u) = B t(u)B , (3.9)

where t(u) is defined in terms of T(u) as in (3.8) except without tildes. Using (3.5), we
immediately obtain the result

t(u) = 24N C t(u) t(u− iπ)C , (3.10)

where t(u) is an A(1)
1 closed-chain transfer matrix defined by

t(u) = tr0̄ T0̄(u) . (3.11)

The result (3.9)–(3.10), which we call a factorization identity, shows that, up to similarity
transformations, the D(2)

2 closed-chain transfer matrix is given by a product of A(1)
1 closed-

chain transfer matrices with twice as many sites.
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3.2 Algebraic Bethe ansatz

We now proceed to determine the eigenvectors and eigenvalues of the D(2)
2 closed-chain

transfer matrix t̃(u) using the factorization identity (3.9)–(3.10).
To this end, we recall (see e.g. [33]) that the A(1)

1 transfer matrix can be diagonalized
by algebraic Bethe ansatz. Indeed, consider the general inhomogeneous monodromy matrix
with length L

T0(u; {θl}) = R0L(u− θL) . . . R01(u− θ1) =
(
∗ B(u; {θl})
∗ ∗

)
, (3.12)

where R(u) is given by (2.8), and {θl} are arbitrary inhomogeneities. (The indices here
correspond to 2-dimensional vector spaces, i.e., the same as j̄ and ¯̄j in (3.6).) We denote
the corresponding closed-chain transfer matrix by

t(u; {θl}) = tr0 T0(u; {θl}) . (3.13)

The operator B(u; {θl}) in (3.12) serves as a creation operator on the reference state

|0〉 =
(

1
0

)⊗L
. (3.14)

The Bethe states defined by

|v1 · · · vm〉 =
m∏
k=1
B(vk; {θl}) |0〉 (3.15)

can be shown to obey the following off-shell equation

t(u; {θl}) |v1 · · · vm〉 = χ(u; {θl}) |v1 · · · vm〉+
m∑
j=1

χj |u, v1 · · · v̂j · · · vm〉 , (3.16)

where the variable with a hat is omitted, and χ(u; {θl}) is given by

χ(u;{θl}) = (−1)m
[
q(u+2η)
q(u)

L∏
l=1

sinh
(
η− 1

2(u−θl)
)

+ q(u−2η)
q(u)

L∏
l=1

sinh
(1

2(u−θl)
)]

,

(3.17)
with

q(u) =
m∏
k=1

sinh
(1

2(u− vk)
)
. (3.18)

Moreover, χj is given by

χj = (−1)m+1 sinh(η) e 1
2 (u−vj)

sinh(1
2(u− vj))

[
L∏
l=1

sinh
(
η − 1

2(vj − θl)
) m∏
k=1;k 6=j

sinh(1
2(vj − vk) + η)

sinh(1
2(vj − vk))

−
L∏
l=1

sinh
(1

2(vj − θl)
) m∏
k=1;k 6=j

sinh(1
2(vj − vk)− η)

sinh(1
2(vj − vk))

]
. (3.19)
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Our original monodromy matrix (3.6) corresponds to setting L = 2N in (3.12), and
choosing the inhomogeneities as follows

θl =

−iπ for l = odd
0 for l = even

. (3.20)

It follows that the Bethe states (3.15) with these inhomogeneities are eigenstates of our
original transfer matrix (3.11), with corresponding eigenvalues given by

χ(u) = (−1)m
(
i

2

)N [
sinhN (u− 2η)q(u+ 2η)

q(u) + sinhN (u)q(u− 2η)
q(u)

]
, (3.21)

provided that {vk} satisfy the Bethe equations
(

sinh(vj)
sinh(vj − 2η)

)N
=

m∏
k=1;k 6=j

sinh(1
2(vj − vk) + η)

sinh(1
2(vj − vk)− η)

. (3.22)

These equations take a symmetric form in terms of uj ≡ vj − η, namely,

(
sinh(uj + η)
sinh(uj − η)

)N
=

m∏
k=1;k 6=j

sinh(1
2(uj − uk) + η)

sinh(1
2(uj − uk)− η)

. (3.23)

Setting

Q(u) =
m∏
k=1

sinh
(1

2(u− uk)
)

= q(u+ η) , (3.24)

the expression for the eigenvalues (3.21) of the A(1)
1 closed-chain transfer matrix t(u) (3.11)

take the final form

χ(u) = (−1)m
(
i

2

)N [
sinhN (u− 2η)Q(u+ η)

Q(u− η) + sinhN (u)Q(u− 3η)
Q(u− η)

]
. (3.25)

Coming back to the D(2)
2 closed-chain transfer matrix t̃(u) (3.8), we conclude from the

factorization identity (3.9)–(3.10) that its Bethe states are given by

BC |v1 · · · vm〉 , (3.26)

where the vectors |v1 · · · vm〉 are given by (3.15), and B and C are given respectively by (3.4)
and (3.7), see [30] for an alternative approach. Moreover, the corresponding eigenvalues
Λ(u) are given by

Λ(u) = 24N χ(u)χ(u− iπ) , (3.27)

where χ(u) is given by (3.25), and the associated Bethe equations are given by (3.23).
The latter results are consistent with expressions obtained by Reshetikhin using analytical
Bethe ansatz [25].
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3.3 Z2 symmetry

The transfer matrix t(u) (3.11) has the property

C t(u)C = (−1)N t(u+ iπ) , (3.28)

where C (3.7) is defined in terms of C (2.10). The proof is short: the fact that the R-matrix
satisfies the identity

C23R13(u)R12(u+ iπ)C23 = R13(u+ iπ)R12(u) (3.29)

and the quasi-periodicity (2.13) imply that the monodromy matrix (3.6) satisfies the cor-
responding identity

CT0̄(u)C = (−1)N T0̄(u+ iπ) . (3.30)

By tracing over the auxiliary space 0̄, we obtain (3.28).
The property (3.28) implies that the D

(2)
2 transfer matrix t(u) (3.10) can also be

written in the form
t(u) = 24N t(u+ iπ) t(u) , (3.31)

and therefore it has the Z2 symmetry

C t(u)C = t(u) . (3.32)

The Z2 symmetry of the staggered six-vertex model was noted already in [7].

3.4 Degeneracies

For real values of η, each of the eigenvalues of t(u) (3.11) is either a singlet or a doublet
(2-fold degenerate). However, as the result of the Z2 symmetry, some of the degeneracies
of t(u) (3.10) become doubled, leading to doublets or quartets.

The key point is that the Z2 symmetry shifts the argument of the B-operator by iπ

CB(u)C = (−1)N B(u+ iπ) , (3.33)

as follows from (3.12) and (3.30). The Bethe states (3.15) therefore transform as follows

C |v1 · · · vm〉 = (−1)N m |v1 + iπ · · · vm + iπ〉 , (3.34)

since the reference state remains invariant C |0〉 = |0〉. In other words, under the Z2
symmetry, each of the Bethe roots vk (or, equivalently, uk) is shifted by iπ. If Q(u+ iπ) 6=
±Q(u), then the Bethe states corresponding to Q(u) and Q(u+ iπ) are mapped into each
other by the Z2 symmetry C. (The argument is the same as for the open chain, which is
presented in section 4.2.4.) It follows from (3.32) that the two Bethe states have the same
eigenvalue of t(u), which means that they are degenerate.

Our goal in the remainder of this paper is to obtain factorization identities analo-
gous to (3.9)–(3.10) for D(2)

2 open-chain transfer matrices, and use these relations to solve
the models.
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4 The open D
(2)
2 spin chain

We turn now to the open D(2)
2 spin chain. We will consider two different sets of integrable

boundary conditions, corresponding to the two possible values (namely, 0 and 1) of a
certain parameter ε. As before, our strategy will be to use factorization identities to solve
the models. After introducing the transfer matrix in section 4.1, we consider the case ε = 1
in section 4.2, followed by case ε = 0 in section 4.3.

4.1 Transfer matrix

In order to construct an integrable open-chain transfer matrix [34], we need not only an
R-matrix, but also a K-matrix, i.e., a solution of the corresponding boundary Yang-Baxter
equation [34–36]. For D(2)

n+1, such K-matrices have been found in [26, 37]. The K-matrices
in [37] depend on two discrete parameters: p (which can take n+1 different values, namely,
p = 0, 1, . . . , n) and ε (which can take two different values, namely, ε = 0, 1). We consider
here n = 1 (corresponding to D(2)

2 ); and, for concreteness, we set p = 0. (The case p = 1
is simply related to the case p = 0 by a p ↔ n − p duality symmetry [37, 38].) The right
K-matrix, which we denote here by K̃R(u), is then given by

K̃R(u) =


g(u) 0 0 0

0 k1(u) k2(u) 0
0 k2(u) k1(u) 0
0 0 0 g(u)

 , (4.1)

where

g(u) =
cosh(u− η + iπ

2 ε)
cosh(u+ η − iπ

2 ε)
,

k1(u) =
cosh(u) cosh(η + iπ

2 ε)
cosh(u+ η + iπ

2 ε)
,

k2(u) = −
sinh(u) sinh(η + iπ

2 ε)
cosh(u+ η + iπ

2 ε)
, (4.2)

with ε = 0, 1. For the left K-matrix, we take [37]

K̃L(u) = K̃R(−u+ 2η)M , M = M ⊗M , (4.3)

where M is defined in (2.15), so that the transfer matrix has quantum-group symmetry,
see section 4.2.3.

The D(2)
2 open-chain transfer matrix for a chain with N sites is given by [34]

t̃(u) = tr0
{
K̃L

0 (u) T̃0(u) K̃R
0 (u) ̂̃T0(u)

}
, (4.4)

where T̃0(u) is given by (3.1) and (3.2). Similarly, ̂̃T0(u) is given by

̂̃T0(u) = R̃10(u) . . . R̃N0(u) , (4.5)
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or equivalently ̂̃T0̄¯̄0(u) = R̃1̄¯̄1,0̄¯̄0(u) . . . R̃
N̄ ¯̄N,0̄¯̄0(u) , (4.6)

where we have replaced (as we did for T̃0(u) in section 3.1) each index j in (4.5) by a pair
of indices j̄ , ¯̄j. Eq. (2.11) then implies

̂̃T0̄¯̄0(u) = B0̄¯̄0 B T̂0̄¯̄0(u)BB0̄¯̄0 , (4.7)

where T̂0̄¯̄0(u) is defined in terms of R’s as in (4.6) except without tildes. Using (2.12), we
obtain

T̂0̄¯̄0(u) = 24N C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)C0̄¯̄0 , (4.8)

where T̂0̄(u) is defined by

T̂0̄(u) = R1̄0̄(u− iπ)R¯̄10̄(u) . . . RN̄ 0̄(u− iπ)R ¯̄N 0̄(u) , (4.9)

and T̂¯̄0(u) is given by the same expression (4.9), except with 0̄ replaced by ¯̄0.

4.2 The case ε = 1

For the case ε = 1, the transfer matrix t̃(u) (4.4) satisfies

t̃(u) = B t(u)B , (4.10)

where t(u) satisfies the remarkable factorization identity

t(u) = φ(u) t(u+ iπ) t(u) , φ(u) = 28N sinh u sinh(u− 2η)
sinh(u+ η) sinh(u− 3η) , (4.11)

where t(u) is an A(1)
1 open-chain transfer matrix defined by

t(u) = tr0̄

{
M0̄ T0̄(u) T̂0̄(u+ iπ)

}
, (4.12)

and T0̄(u) and T̂0̄(u) are defined in (3.6) and (4.9), respectively. The proof of this factor-
ization identity is presented in appendix A. Note the periodicity t(u + 2iπ) = t(u) as a
consequence of (2.13).

Notice the shift by iπ in the argument of T̂ (compared with T ) in the transfer ma-
trix (4.12). While this shift may appear innocuous, its effects are profound. To our
knowledge, open-chain transfer matrices with such shifts have not been considered before;
a priori, it is not even clear whether such transfer matrices commute for different values of
the spectral parameter.

We will interpret such a shift as the rapidity of the boundary; or equivalently, as a
boundary inhomogeneity. We will then proceed to diagonalize the transfer matrix.
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4.2.1 Transfer matrix with a moving boundary

As in the closed-chain case (see (3.12)), it is convenient to consider a slightly more general
problem, namely, a chain of length L with arbitrary inhomogeneities at each site. The
monodromy matrices are therefore given by

T0(u; {θl}) = R0L(u− θL) . . . R01(u− θ1) ,
T̂0(u; {θl}) = R10(u+ θ1) . . . RL0(u+ θL) , (4.13)

where R(u) is given by (2.8), and {θl} are arbitrary inhomogeneities, cf. (3.6) and (4.9).
These monodromy matrices satisfy the familiar fundamental relations

R00′(u− v)T0(u; {θl})T0′(v; {θl}) = T0′(v; {θl})T0(u; {θl})R00′(u− v) ,
R00′(u− v) T̂0′(u; {θl}) T̂0(v; {θl}) = T̂0(v; {θl}) T̂0′(u; {θl})R00′(u− v) ,
T0(u; {θl})R00′(u+ v) T̂0′(v; {θl}) = T̂0′(v; {θl})R00′(u+ v)T0(u; {θl}) . (4.14)

Moreover, we consider the transfer matrix

t(u; {θl}) = tr0
{
M0 U0(u; {θl})

}
, U0(u; {θl}) = T0(u; {θl}) T̂0(u+ u0; {θl}) , (4.15)

where the shift u0 in the argument of T̂ is arbitrary. The transfer matrix for our prob-
lem (4.12) is clearly a special case of (4.15).1

It is straightforward to show using (4.14) and
[
Ř(u) , Ř(v)

]
= 0 (where Ř(u) ≡ PR(u)),

that the double-row monodromy matrix U(u; {θl}) (4.15) obeys the following boundary
Yang-Baxter equation (BYBE)

R12(u− v)U1(u; {θl})R21(u+ v + u0)U2(v; {θl})
= U2(v; {θl})R12(u+ v + u0)U1(u; {θl})R21(u− v) . (4.16)

Note the shift by u0 in the R-matrix whose argument has the sum of rapidities. It implies
that if a “particle” approaches the boundary with rapidity u, then after reflection the

1Although not necessary here, we note that it is possible to further generalize the transfer matrix (4.15)
by introducing general K-matrices, namely

t(u; {θl}) = tr0

{
KL

0 (u)U0(u; {θl})
}
, U0(u; {θl}) = T0(u; {θl})KR

0 (u) T̂0(u+ u0; {θl}) ,

where KR(u) satisfies the BYBE (4.16), i.e.

R12(u− v)KR
1 (u)R21(u+ v + u0)KR

2 (v) = KR
2 (v)R12(u+ v + u0)KR

1 (u)R21(u− v) .

This equation has the solution KR(u) = I if
[
Ř(u) , Ř(v)

]
= 0. Moreover, in order to ensure the commuta-

tivity (4.17), KL(u) satisfies

R12(v − u)KL t1
1 (u)M−1

1 Rt12
12 (−u− v − u0 + 4η)M1 K

L t2
2 (v)

= KL t2
2 (v)M1 R12(−u− v − u0 + 4η)M−1

1 KL t1
1 (u)Rt12

12 (v − u) .

This equation has the solution KL(u) = KR(−u− u0 + 2η)M if KR(u) satisfies (4.16).
We also note that (4.16) can be mapped to the usual BYBE by performing the shifts u 7→ u− u0/2 and

v 7→ v − u0/2. Hence, the above KR(u) can be constructed from a solution of the usual BYBE by shifting
the rapidity by u0/2.
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particle has rapidity −u − u0. We can attribute this shift to a moving boundary, with
rapidity u0. Equivalently, this shift can be regarded as a boundary inhomogeneity, as
opposed to the bulk inhomogeneities {θl}.

Despite the presence of a shift in the BYBE, the transfer matrix nevertheless has the
crucial commutativity property

[t(u; {θl}) , t(v; {θl})] = 0 . (4.17)

Indeed, the commutativity proof in [34] can be readily generalized to accommodate this
shift, for arbitrary values of u0.

4.2.2 Algebraic Bethe ansatz

We now proceed to diagonalize the transfer matrix (4.15) by algebraic Bethe ansatz. Fol-
lowing [34], we set

U0(u; {θl}) =
(
∗ B(u; {θl})
∗ ∗

)
, (4.18)

and act with B(u; {θl}) on the reference state (3.14) to create the Bethe states

|v1 · · · vm〉 =
m∏
k=1
B(vk; {θl}) |0〉 , (4.19)

which obey the following off-shell equation

t(u; {θl}) |v1 · · · vm〉 = χ(u; {θl}) |v1 · · · vm〉+
m∑
j=1

χj |u, v1 · · · v̂j · · · vm〉 . (4.20)

Here, χ(u; {θl}) is given by

χ(u;{θl}) =
sinh(u+ u0

2 −2η)
sinh(u+ u0

2 −η)
q(u+2η)
q(u)

L∏
l=1

sinh
(1

2(u−θl)−η
)

sinh
(1

2(u+u0+θl)−η
)

+
sinh(u+ u0

2 )
sinh(u+ u0

2 −η)
q(u−2η)
q(u)

L∏
l=1

sinh
(1

2(u−θl)
)

sinh
(1

2(u+u0+θl)
)
, (4.21)

with

q(u) =
m∏
k=1

sinh
(1

2(u− vk)
)

sinh
(1

2(u+ u0 + vk)− η
)
, (4.22)
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and χj is given by

χj = −
sinh(η) sinh(u+ u0

2 − 2η)
sinh(1

2(u− vj)) sinh(1
2(u+ u0 + vj)− η)

sinh(vj + u0
2 )

sinh(vj + u0
2 − η)

×
[

L∏
l=1

sinh
(1

2(vj − θl)− η
)

sinh
(1

2(vj + u0 + θl)− η
)

×
m∏

k=1;k 6=j

sinh(1
2(vj − vk) + η) sinh(1

2(vj + vk + u0))
sinh(1

2(vj − vk)) sinh(1
2(vj + vk + u0)− η)

−
L∏
l=1

sinh
(1

2(vj − θl)
)

sinh
(1

2(vj + u0 + θl)
)

×
m∏

k=1;k 6=j

sinh(1
2(vj − vk)− η) sinh(1

2(vj + vk + u0)− 2η)
sinh(1

2(vj − vk)) sinh(1
2(vj + vk + u0)− η)

]
. (4.23)

Note that a nonzero value of u0 indeed profoundly affects the solution.
Our original monodromy matrices (3.6) and (4.9) correspond to setting L = 2N

in (4.13), and choosing the inhomogeneities {θl} as in (3.20). Moreover, our original trans-
fer matrix (4.12) corresponds to setting the shift u0 = iπ in (4.15). It follows that the
Bethe states (4.19) with these parameter values are eigenstates of our original transfer
matrix (4.12), with corresponding eigenvalues given by

χ(u) =
(
−1

4

)N [cosh(u−2η)
cosh(u−η)

q(u+2η)
q(u) sinh2N (u−2η)+ cosh(u)

cosh(u−η)
q(u−2η)
q(u) sinh2N (u)

]
(4.24)

with
q(u) =

m∏
k=1

sinh
(1

2(u− vk)
)

cosh
(1

2(u+ vk)− η
)
, (4.25)

provided that {vk} satisfy the Bethe equations(
sinh(vj)

sinh(vj − 2η)

)2N

=
m∏

k=1;k 6=j

sinh(1
2(vj − vk) + η) cosh(1

2(vj + vk))
sinh(1

2(vj − vk)− η) cosh(1
2(vj + vk)− 2η)

. (4.26)

These equations take a symmetric form in terms of uj ≡ vj − η, namely,(
sinh(uj + η)
sinh(uj − η)

)2N

=
m∏

k=1;k 6=j

sinh(1
2(uj − uk) + η) cosh(1

2(uj + uk) + η)
sinh(1

2(uj − uk)− η) cosh(1
2(uj + uk)− η)

. (4.27)

Setting

Q(u) =
m∏
k=1

sinh
(1

2(u− uk)
)

cosh
(1

2(u+ uk)
)

= q(u+ η) , (4.28)

the expression for the eigenvalues (4.24) of the A(1)
1 open-chain transfer matrix t(u) (4.12)

take the final form

χ(u) =
(
−1

4

)N [cosh(u−2η)
cosh(u−η)

Q(u+η)
Q(u−η) sinh2N (u−2η)+ cosh(u)

cosh(u−η)
Q(u−3η)
Q(u−η) sinh2N (u)

]
.

(4.29)
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Returning to the D(2)
2 open-chain transfer matrix t̃(u) (4.4) with ε = 1, we conclude from

the factorization identity (4.10)–(4.11) that its Bethe states are given by

B |v1 · · · vm〉 , (4.30)

where the vectors |v1 · · · vm〉 are given by (4.19), and B is given by (3.4), which is a new
result. Moreover, the corresponding eigenvalues Λ(u) are given by

Λ(u) = φ(u)χ(u)χ(u+ iπ) , (4.31)

where χ(u) is given by (4.29), and the associated Bethe equations are given by (4.27).
The latter results agree with the recent proposal in [16], which improved on an earlier
proposal [38].

4.2.3 Symmetries

We briefly discuss here the quantum group (QG) and Z2 symmetries of the transfer matrix,
which we will then use to understand the degeneracies of the spectrum.

Quantum group symmetry. The D(2)
2 open-chain transfer matrix t̃(u) (4.4) has the

QG symmetry Uq(B1) [27, 37][
∆N (H̃) , t̃(u)

]
= 0 ,

[
∆N (Ẽ±) , t̃(u)

]
= 0 , (4.32)

where the generators at one site are given by

H̃ = diag (1, 0, 0,−1) , Ẽ+ = 1√
2


0 1 1 0
0 0 0 −1
0 0 0 −1
0 0 0 0

 , Ẽ− = Ẽ+ t , (4.33)

and the two-site coproducts are given by

∆(H̃) = H̃⊗ I + I⊗ H̃ ,

∆(Ẽ±) = Ẽ± ⊗ eη H̃ + e−η H̃ ⊗ Ẽ± . (4.34)

Higher coproducts follow, as usual, from coassociativity (∆⊗ I) ∆ = (I⊗∆) ∆. These
generators satisfy[

∆(H̃) ,∆(Ẽ±)
]

= ±∆(Ẽ±) ,
[
∆(Ẽ+) ,∆(Ẽ−)

]
= sinh(2η∆(H̃))

sinh(2η) . (4.35)

Performing the (inverse) similarity transformation, we obtain

H = B H̃B = diag (1, 0, 0,−1) ,

E+ = B Ẽ+B = 1√
2 cosh η


0 e−

η
2 −e

η
2 0

0 0 0 −e−
η
2

0 0 0 e
η
2

0 0 0 0

 , E− = B Ẽ−B = E+ t , (4.36)
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and

∆(H) = H⊗ I + I⊗H ,

∆(E±) = E± ⊗ eηH + e−ηH ⊗ E± , (4.37)

with

[
∆(H) ,∆(E±)

]
= ±∆(E±) ,

[
∆(E+) ,∆(E−)

]
= sinh(2η∆(H))

sinh(2η) . (4.38)

Not only t(u) but also t(u) (4.12) has the QG symmetry

[∆N (H) , t(u)] = 0 ,
[
∆N (E±) , t(u)

]
= 0 , (4.39)

which is consistent with the factorization identity (4.11).

Z2 symmetry. The open-chain transfer matrix t(u) (4.12) has the property

C t(u)C = t(u+ iπ) , (4.40)

where C is given by (3.7), similarly to the closed-chain transfer matrix (3.28). Indeed, the
monodromy matrix identities (3.30) and

C T̂0̄(u)C = (−1)N T̂0̄(u+ iπ) (4.41)

imply
CT0̄(u) T̂0̄(u+ iπ)C = T0̄(u+ iπ) T̂0̄(u) . (4.42)

Multiplying both sides of (4.42) by M0̄ and tracing over the auxiliary space 0̄, we obtain
the desired result (4.40).

One consequence of the property (4.40) is that the D(2)
2 open-chain transfer matrix

t(u) has the Z2 symmetry
C t(u)C = t(u) . (4.43)

Indeed, we see from the factorization identity (4.11) that

C t(u)C = φ(u)C t(u+ iπ) t(u)C
= φ(u) t(u) t(u+ iπ) = t(u) , (4.44)

where we have passed to the second line using (4.40) and the 2iπ-periodicity of t(u); the
final equality follows from the commutativity property (4.17). The Z2 symmetry of the
open-chain transfer matrix (4.43) was first noted in [16].

The QG and Z2 generators commute

[C ,∆N (H)] = 0 ,
[
C ,∆N (E±)

]
= 0 . (4.45)
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4.2.4 Degeneracies

For real values of η, the degeneracies of the D
(2)
2 open-chain transfer matrix t(u) are

higher than expected from QG symmetry alone, as discussed in [27, 37, 38]. These higher
degeneracies can now be fully explained using the above Z2 symmetry.

Realizing from (4.15) and (4.18) that the double-row monodromy matrix is given
here by

U0(u) = T0(u) T̂0(u+ iπ) =
(
∗ B(u)
∗ ∗

)
, (4.46)

we see from (4.42) that the Z2 symmetry shifts the argument of the B-operator by iπ

CB(u)C = B(u+ iπ) , (4.47)

similarly to the closed-chain case (3.33). The Bethe states (4.19) therefore transform as
follows

C |v1 · · · vm〉 = |v1 + iπ · · · vm + iπ〉 . (4.48)

In other words, under the Z2 symmetry, each of the Bethe roots vk (or, equivalently, uk)
is shifted by iπ.

The property (4.40) implies that t(u) and t(u+ iπ) are related by a unitary transfor-
mation (at least for real values of η, since C is involutory and symmetric), and therefore
have the same spectrum. Hence, if χ(u) is an eigenvalue of t(u), then χ(u+ iπ) is also an
eigenvalue of t(u). Thus, if Q(u) satisfies the TQ-equation, then Q(u + iπ) also satisfies
the TQ-equation, as follows simply from performing the shift u 7→ u+ iπ in (4.29). Hence,
given a set of Bethe roots {uk}, there are only two possibilities for the corresponding
Q-function (4.28):

• Q(u + iπ) = Q(u), in which case the corresponding Bethe state is an eigenstate of
the Z2 symmetry C. The Bethe state is a highest-weight state of a representation
of the QG with odd dimension [27, 37, 38]; hence, the corresponding eigenvalue has
odd degeneracy.

• Q(u+iπ) 6= Q(u), in which case the Bethe states corresponding to Q(u) and Q(u+iπ)
are mapped into each other by the Z2 symmetry C. It follows from (4.43) that the two
Bethe states have the same eigenvalue of t(u), which means that they are degenerate.
The degeneracy of the corresponding eigenvalue is doubled, and is therefore even.

4.2.5 Hamiltonian

For an open-chain transfer matrix t(u) constructed with a regular R-matrix (2.3) and
with all inhomogeneity parameters {θl} set to zero (i.e., a homogeneous spin chain), a
local Hamiltonian can be obtained simply from t′(0) [34]. However, since the transfer
matrix (4.12) corresponds to a spin chain with inhomogeneities at alternate sites, t′(0) is not
local. Nevertheless, a local Hamiltonian can be obtained from d

du log t(u)
∣∣∣
u=0

= t−1(0) t′(0),
which is the familiar prescription for periodic homogeneous chains.
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For the A(1)
1 transfer matrix (4.12), we obtain

t−1(0) t′(0) = 1
sinh(2η)H+ c I , (4.49)

where, in terms of Temperley-Lieb operators [2]

e =


0 0 0 0
0 eη 1 0
0 1 e−η 0
0 0 0 0

 , (4.50)

the Hamiltonian H is given by

H = 2 cosh(η)
2N−1∑
j=1

ej −
2N−2∑
j=1

(ej ej+1 + ej+1 ej) , (4.51)

and c = − 4
sinh(4η)

(
N cosh2(2η) + sinh2(η)

)
.

This Hamiltonian coincides with the Hamiltonian obtained from the D
(2)
2 transfer

matrix t(u) [16]. This fact can be understood from the factorization identity (4.11). We
first observe that t

′(0) ∝ I, since the scalar prefactor φ(u) vanishes at u = 0, and also
t(iπ) t(0) ∝ I. Indeed,

t(0) =
(sinh(2η)

2

)2N−1
sinh(η) cosh(2η)W ,

t(iπ) =
(sinh(2η)

2

)2N−1
sinh(η) cosh(2η)W−1 , (4.52)

where W is defined by
W = C1̄¯̄1C¯̄12̄ . . . C ¯̄N−1 N̄ CN̄ ¯̄N . (4.53)

Hence, in order to obtain a nontrivial Hamiltonian from t(u), one must differentiate twice,
as already noted in [16]. The factorization identity (4.11) implies

t
′′(0) = 2φ′(0)

[
t′(iπ) t(0) + t(iπ) t′(0)

]
+ const . (4.54)

Since t′(iπ) t(0) = t(iπ) t′(0), we conclude that t′′(0) ∝ H+ const, with H given by (4.51).

4.3 The case ε = 0

We now consider the case ε = 0, which is similar to the previous case, except for one key
difference. The D(2)

2 transfer matrix t̃(u) (4.4) again satisfies

t̃(u) = B t(u)B , (4.55)

but t(u) now satisfies the factorization identity

t(u) = φ

(
u+ iπ

2

)
t(u+ iπ) t(u) , (4.56)
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where t(u) is an A(1)
1 open-chain transfer matrix defined by

t(u) = tr0̄

{
M0̄ T0̄(u) T̂0̄(u)

}
. (4.57)

As before, φ(u) is defined in (4.11), and T0̄(u) and T̂0̄(u) are defined in (3.6) and (4.9),
respectively. The proof of this factorization identity is also presented in appendix A.

Note that the transfer matrix (4.57), in contrast with the previous case (4.12), does not
have any shift in the argument of T̂ (compared with T ). Indeed, the transfer matrix (4.57)
is of the standard form [34]. This is the key difference, alluded to above, between the ε = 1
and ε = 0 cases.

4.3.1 Algebraic Bethe ansatz

We can immediately diagonalize the transfer matrix (4.57) using our previous results (4.18)–
(4.23): simply set (as before) L = 2N and choose the inhomogeneities {θl} as in (3.20),
but now set the shift u0 = 0. Hence, the Bethe states (4.19) with these parameter values
are eigenstates of the transfer matrix (4.57), with corresponding eigenvalues given by

χ(u) = 2−2N
[sinh(u− 2η)

sinh(u− η)
Q(u+ η)
Q(u− η) sinh2N (u− 2η) + sinh(u)

sinh(u− η)
Q(u− 3η)
Q(u− η) sinh2N (u)

]
,

(4.58)
with

Q(u) =
m∏
k=1

sinh
(1

2(u− uk)
)

sinh
(1

2(u+ uk)
)
, (4.59)

provided that uj ≡ vj − η satisfy the Bethe equations
(

sinh(uj + η)
sinh(uj − η)

)2N

=
m∏

k=1;k 6=j

sinh(1
2(uj − uk) + η) sinh(1

2(uj + uk) + η)
sinh(1

2(uj − uk)− η) sinh(1
2(uj + uk)− η)

. (4.60)

Returning to the D(2)
2 open-chain transfer matrix t̃(u) (4.4) with ε = 0, we conclude

from the factorization identity (4.55)–(4.56) that its Bethe states are given by

B |v1 · · · vm〉 , (4.61)

where the vectors |v1 · · · vm〉 are given by (4.19), and B is given by (3.4), which is a new
result. Moreover, the corresponding eigenvalues Λ(u) are given by

Λ(u) = φ

(
u+ iπ

2

)
χ(u)χ(u+ iπ) , (4.62)

where χ(u) is given by (4.58), and the associated Bethe equations are given by (4.60).
The Bethe equations agree with those obtained by coordinate Bethe ansatz in [26]; the
transfer-matrix eigenvalues and Bethe equations agree with those obtained by analytical
Bethe ansatz in [27, 28].

The symmetries and degeneracies for the ε = 0 case are the same as for ε = 1.
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4.3.2 Hamiltonian

From the A(1)
1 transfer matrix (4.57), we can generate two distinct local Hamiltonians, by

evaluating its logarithmic derivative at 0 and at iπ

t−1(0) t′(0) = 2
sinh(2η)H

(1) + c I ,

t−1(iπ) t′(iπ) = 2
sinh(2η)H

(2) + c I , (4.63)

where, in terms of the Temperley-Lieb operators (4.50), the Hamiltonians H(1) and H(2)

are given by

H(1) = − 1
cosh(η)e1 + cosh(η)

2N−1∑
j=1

ej −
2N−2∑

j=2; j=even
(ej ej+1 + ej+1 ej) ,

H(2) = − 1
cosh(η)e2N−1 + cosh(η)

2N−1∑
j=1

ej −
2N−3∑

j=1; j=odd
(ej ej+1 + ej+1 ej) , (4.64)

and c = 1
sinh(2η) (1− 2N cosh(2η)).

We can use the factorization identity (4.56) to relate these Hamiltonians to the Hamil-
tonianH coming from the D(2)

2 transfer matrix t(u). We obtain, up to an additive constant,

t
′(0) ∝ t(iπ) t′(0) + t(0) t′(iπ)
∝ t−1(0) t′(0) + t−1(iπ) t′(iπ) , (4.65)

since t(iπ) t(0) ∝ I. Hence, t
′(0) ∝ H + const, with H = H(1) + H(2), in agreement

with [12].

5 An XXZ-like open spin chain with general u0

The open spin chain with transfer matrix (4.15) has the exact Bethe ansatz solution (4.18)–
(4.23) for any values of u0 and {θl}. For such generic values, this model does not have a
local Hamiltonian. However, a local Hamiltonian can be obtained for general values of u0
if we choose the bulk inhomogeneities to be −u0 at alternate sites. Indeed, let us set

θl =

−u0 for l = odd
0 for l = even

, (5.1)

where u0 is arbitrary. We then obtain from (4.15)

t−1(0) t′(0) = 1
sinh(η)H+ c(u0) I , (5.2)

where the Hamiltonian H is given in terms of Temperley-Lieb operators (4.50) by

H =
2N−1∑
j=1

ej −
1
2 sinh

(
u0
2

){ 2N−2∑
j=2; j=even

(
1

sinh(u0
2 + η)ej ej+1 + 1

sinh(u0
2 − η)ej+1 ej

)

+
2N−3∑

j=1; j=odd

(
1

sinh(u0
2 − η)ej ej+1 + 1

sinh(u0
2 + η)ej+1 ej

)}
, (5.3)
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and the constant c(u0) is given by

c(u0) = −
sinh(u0

2 − 2η)
sinh(η) sinh(u0

2 − η)N + sinh(η)
sinh(u0

2 − η) sinh(u0
2 − 2η) . (5.4)

(We remark that t−1(−u0) t′(−u0) gives the same Hamiltonian (5.3) with the constant
c(−u0).) This Hamiltonian becomes proportional to (4.51) for u0 = iπ. For u0 → 0, the
model reduces to a QG-invariant open XXZ chain.

To obtain the above results, it is helpful to introduce a generalization of the matrix
C (2.10), namely,

C(u0) = − 1
sinh(u0

2 − η)PR(u0) , C(u0)C(−u0) = I , (5.5)

which reduces to C (2.10) for u0 = ±iπ. Then, similarly to (4.52), we find

t(0) = sinh2N (η) sinh2N−1
(
u0
2 − η

)
sinh

(
u0
2 − 2η

)
W(u0) ,

t(−u0) = sinh2N (η) sinh2N−1
(
u0
2 + η

)
sinh

(
u0
2 + 2η

)
W−1(u0) , (5.6)

where
W(u0) = C1̄¯̄1(u0)C¯̄12̄(u0) . . . C ¯̄N−1 N̄ (u0)C

N̄ ¯̄N (u0) . (5.7)

For the choice (5.1) of inhomogeneities, the Bethe states (4.19) are eigenstates of the
transfer matrix (4.15), with corresponding eigenvalues given by

χ(u) =
sinh(u+ u0

2 − 2η)
sinh(u+ u0

2 − η)
q(u+ 2η)
q(u)

[
sinh

(1
2(u+ u0)− η

)
sinh

(
u

2 − η
)]2N

+
sinh(u+ u0

2 )
sinh(u+ u0

2 − η)
q(u− 2η)
q(u)

[
sinh

(1
2(u+ u0)

)
sinh

(
u

2

)]2N
, (5.8)

with q(u) given by (4.22), provided that {vj} satisfy the Bethe equations

[
sinh(1

2(vj + u0)) sinh( vj2 )
sinh(1

2(vj + u0)− η) sinh(vj2 − η)

]2N

=
m∏

k=1;k 6=j

sinh(1
2(vj − vk) + η) sinh(1

2(vj + vk + u0))
sinh(1

2(vj − vk)− η) sinh(1
2(vj + vk + u0)− 2η)

. (5.9)

In terms of uj ≡ vj − η, these Bethe equations take a more symmetric form

[
sinh(1

2(uj + u0) + η
2 ) sinh(uj2 + η

2 )
sinh(1

2(uj + u0)− η
2 ) sinh(uj2 −

η
2 )

]2N

=
m∏

k=1;k 6=j

sinh(1
2(uj − uk) + η) sinh(1

2(uj + uk + u0) + η)
sinh(1

2(uj − uk)− η) sinh(1
2(uj + uk + u0)− η)

. (5.10)
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For u0 = iπ, these equations reduce to (4.27). Alternatively, in terms of uj ≡ vj − η + u0
2 ,

the Bethe equations (5.9) take the form

[
sinh(1

2(uj + u0
2 ) + η

2 ) sinh(1
2(uj − u0

2 ) + η
2 )

sinh(1
2(uj + u0

2 )− η
2 ) sinh(1

2(uj − u0
2 )− η

2 )

]2N

=
m∏

k=1;k 6=j

sinh(1
2(uj − uk) + η) sinh(1

2(uj + uk) + η)
sinh(1

2(uj − uk)− η) sinh(1
2(uj + uk)− η)

. (5.11)

We note that these Bethe equations are an “open-chain version” of the closed-chain Bethe
equations (3.4) in [10]. We also note that the transfer matrix has the QG symmetry (4.36)–
(4.39) for any value of u0.

We have considered here an integrable model based on the transfer matrix (4.15) with
an arbitrary value of u0. It should be possible to generalize this model by introducing
general K-matrices, as noted in footnote 1. However, this will generally result in the
breaking of QG symmetry.

6 Discussion

We have exploited the factorization of the D
(2)
2 R-matrix into a product of A(1)

1 R-
matrices (2.11)–(2.12) to derive corresponding factorization identities for the transfer ma-
trices of both closed and open spin chains, see (3.9)–(3.10), (4.10)–(4.11) and (4.55)–(4.56).
We have used these factorization identities to solve the models by algebraic Bethe ansatz.
In particular, we have constructed the Bethe states of these models, which heretofore had
not been known. These constructions should be useful for computing scalar products and
correlation functions. Moreover, we have proved previously-proposed expressions for the
models’ eigenvalues and Bethe equations. The interesting degeneracies exhibited by the
QG-invariant open chains for real values of η have now also been explained.

In the course of this work, we have uncovered a new integrable XXZ-like open spin
chain, with transfer matrix (4.15), which depends on a continuous parameter u0. We have
interpreted this parameter as the rapidity of the boundary. For inhomogeneities −iπ at
alternate sites (3.20), this model continuously interpolates between the cases ε = 0 (u0 = 0)
and ε = 1 (u0 = iπ). For inhomogeneities −u0 at alternate sites (5.1), this model has a
local Hamiltonian (5.3) for general values of u0. We conjecture that, for the parameters
η and u0 in suitable domains, the continuum limit of the latter model is a non-compact
boundary conformal field theory, as is the case for u0 = iπ [16], see also [6–11].
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A Factorization identities for open chains

We present here the derivations of the open-chain factorization identities (4.10)–(4.11)
and (4.55)–(4.56). The initial steps of the derivations are the same for both cases. We then
focus on the case ε = 1 in section A.1, followed by the case ε = 0 in section A.2.

We begin the derivation of the factorization identities by substituting into the formula
for the open-chain transfer matrix (4.4) the factorized expressions for the monodromy
matrices, namely, (3.3)–(3.5) for T̃0̄¯̄0(u), and (4.7)–(4.8) for ̂̃T0̄¯̄0(u). In this way, we obtain

t̃(u) = B t(u)B , (A.1)

where

t(u) = 28N tr0̄¯̄0

{
K̃L

0̄¯̄0(u)B0̄¯̄0

[
CT0̄(u)T¯̄0(u− iπ)C

]

×B0̄¯̄0 K̃
R
0̄¯̄0(u)B0̄¯̄0C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)C0̄¯̄0B0̄¯̄0

}
. (A.2)

Using the first identity in (3.30), we see that the product of terms within square brackets
in (A.2) is equal to T0̄(u+ iπ)T¯̄0(u) . The expression for t(u) in (A.2) therefore reduces to

t(u) = 28N tr0̄¯̄0

{
B0̄¯̄0 K̃

L
0̄¯̄0(u)B0̄¯̄0 T0̄(u+ iπ)T¯̄0(u)

×B0̄¯̄0 K̃
R
0̄¯̄0(u)B0̄¯̄0C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)C0̄¯̄0

}
. (A.3)

A.1 The case ε = 1

We now focus on the case ε = 1. The key step, having already expressed the R̃’s in terms
of R’s, is to also express the K̃’s in terms of R’s. Remarkably, the right K-matrix (4.1)
with ε = 1 satisfies the identity

B0̄¯̄0 K̃
R
0̄¯̄0(u)B0̄¯̄0 = 1

sinh(u+ η)P0̄¯̄0R0̄¯̄0(2u) . (A.4)

Eq. (A.3) therefore further simplifies to

t(u) = 28N

sinh(u+ η) tr0̄¯̄0

{
B0̄¯̄0 K̃

L
0̄¯̄0(u)B0̄¯̄0 T0̄(u+ iπ)T¯̄0(u)

× P0̄¯̄0R0̄¯̄0(2u)C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)C0̄¯̄0

}
. (A.5)

The product of terms on the second line of (A.5) can be simplified as follows:[
P0̄¯̄0R0̄¯̄0(2u)

]
C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)C0̄¯̄0

= R¯̄00̄(2u)
[
P0̄¯̄0C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u)

]
C0̄¯̄0

= R¯̄00̄(2u) T̂0̄(u) T̂¯̄0(u+ iπ)P0̄¯̄0

[
C0̄¯̄0C0̄¯̄0

]
= R¯̄00̄(2u) T̂0̄(u) T̂¯̄0(u+ iπ)P0̄¯̄0 , (A.6)
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where square brackets are used to indicate the terms to be transformed in the subsequent
step. In passing to the third line of (A.6), we have used the identity

P0̄¯̄0C0̄¯̄0 T̂¯̄0(u+ iπ) T̂0̄(u) = T̂0̄(u) T̂¯̄0(u+ iπ)P0̄¯̄0C0̄¯̄0 , (A.7)

which follows from the fact P C ∝ R(iπ) (see (2.10)) and the second relation in (4.14).
Eq. (A.5) therefore becomes

t(u) = 28N

sinh(u+ η) tr0̄¯̄0

{
B0̄¯̄0 K̃

L
0̄¯̄0(u)B0̄¯̄0

× T0̄(u+ iπ)
[
T¯̄0(u)R¯̄00̄(2u) T̂0̄(u)

]
T̂¯̄0(u+ iπ)P0̄¯̄0

}
. (A.8)

Using the third relation in (4.14), we arrive at

t(u) = 28N

sinh(u+ η) tr0̄¯̄0

{
P0̄¯̄0B0̄¯̄0 K̃

L
0̄¯̄0(u)B0̄¯̄0

× T0̄(u+ iπ) T̂0̄(u)R¯̄00̄(2u)T¯̄0(u) T̂¯̄0(u+ iπ)
}
. (A.9)

The left K-matrix (4.3) satisfies, as a consequence of the identity for the right K-
matrix (A.4), the following corresponding identity

P0̄¯̄0B0̄¯̄0 K̃
L
0̄¯̄0(u)B0̄¯̄0 = − 1

sinh(u− 3η)M0̄M¯̄0R0̄¯̄0(−2u+ 4η) . (A.10)

Hence, (A.9) becomes

t(u) = − 28N

sinh(u+ η) sinh(u− 3η) tr0̄¯̄0

{
M0̄R0̄¯̄0(−2u+ 4η)M−1

0̄

×
[
M0̄ T0̄(u+ iπ) T̂0̄(u)

]
R¯̄00̄(2u)

[
T¯̄0(u) T̂¯̄0(u+ iπ)M¯̄0

]}
. (A.11)

We next make use of the identity

tr0̄¯̄0

{
M0̄R0̄¯̄0(−2u+ 4η)M−1

0̄ F0̄aR¯̄00̄(2u)G¯̄0a

}
= − sinh u sinh(u− 2η) tr0̄¯̄0

{
F0̄aG¯̄0a

}
, (A.12)
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where F and G are arbitrary, whose proof is as follows:

− sinh u sinh(u− 2η) tr0̄¯̄0

{
F0̄aG¯̄0a

}
= − sinh u sinh(u− 2η) tr0̄¯̄0

{
F0̄aG

t¯̄0
¯̄0a

}
= tr0̄¯̄0

{
F0̄aG

t¯̄0
¯̄0a
R
t¯̄0
¯̄00̄

(2u)M0̄R
t¯̄0
0̄¯̄0

(−2u+ 4η)M−1
0̄

}
= tr0̄¯̄0

{
M0̄R

t¯̄0
0̄¯̄0

(−2u+ 4η)M−1
0̄ F0̄aG

t¯̄0
¯̄0a
R
t¯̄0
¯̄00̄

(2u)
}

= tr0̄¯̄0

{
M0̄R

t¯̄0
0̄¯̄0

(−2u+ 4η)M−1
0̄ F0̄a

[
R¯̄00̄(2u)G¯̄0a

]t¯̄0}
= tr0̄¯̄0

{[
M0̄R

t¯̄0
0̄¯̄0

(−2u+ 4η)M−1
0̄ F0̄a

]t¯̄0
R¯̄00̄(2u)G¯̄0a

}
= tr0̄¯̄0

{
M0̄R0̄¯̄0(−2u+ 4η)M−1

0̄ F0̄aR¯̄00̄(2u)G¯̄0a

}
. (A.13)

In passing to the third line, we have used the crossing-unitarity (2.15) and PT-
symmetry (2.14) of R(u). In the subsequent step, we have repeatedly used the cyclic
property of the trace.

Making use of the identity (A.12) in (A.11), we finally obtain

t(u) = φ(u) tr0̄¯̄0

{[
M0̄ T0̄(u+ iπ) T̂0̄(u)

] [
T¯̄0(u) T̂¯̄0(u+ iπ)M¯̄0

]}

= φ(u) tr0̄

{
M0̄ T0̄(u+ iπ) T̂0̄(u)

}
tr¯̄0

{
T¯̄0(u) T̂¯̄0(u+ iπ)M¯̄0

}
= φ(u) t(u+ iπ) t(u) , (A.14)

where φ(u) and t(u) are defined in (4.11) and (4.12), respectively. This concludes the proof
of the factorization identity (4.11).

A.2 The case ε = 0

Let us consider now the case ε = 0. Again, the key step is to express the K̃’s in terms of
R’s. For the right K-matrix (4.1), we find

B0̄¯̄0 K̃
R
0̄¯̄0(u)B0̄¯̄0 = i

cosh(u+ η)P0̄¯̄0R0̄¯̄0(2u+ iπ)C0̄¯̄0 . (A.15)

The left K-matrix (4.3) in turn satisfies

B0̄¯̄0 K̃
L
0̄¯̄0(u)B0̄¯̄0 = − i

cosh(u− 3η) C0̄¯̄0 P0̄¯̄0R0̄¯̄0(−2u+ 4η − iπ)M0̄M¯̄0 . (A.16)

Substituting these results into (A.3), we obtain

t(u) = 28N

cosh(u+ η) cosh(u− 3η) tr0̄¯̄0

{
P0̄¯̄0R0̄¯̄0(−2u+ 4η − iπ)M0̄M¯̄0

× T0̄(u+ iπ)T¯̄0(u)P0̄¯̄0R0̄¯̄0(2u+ iπ) T̂¯̄0(u+ iπ) T̂0̄(u)
}
. (A.17)
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The product of terms on the second line of (A.17) can be simplified as follows:[
T0̄(u+ iπ)T¯̄0(u)P0̄¯̄0

]
R0̄¯̄0(2u+ iπ) T̂¯̄0(u+ iπ) T̂0̄(u)

= P0̄¯̄0 T¯̄0(u+ iπ)
[
T0̄(u)R0̄¯̄0(2u+ iπ) T̂¯̄0(u+ iπ)

]
T̂0̄(u)

= P0̄¯̄0 T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)R0̄¯̄0(2u+ iπ)T0̄(u) T̂0̄(u) . (A.18)

In passing to the third line of (A.18), we have used the third relation in (4.14). Eq. (A.17)
therefore becomes

t(u) = 28N

cosh(u+ η) cosh(u− 3η) tr0̄¯̄0

{[
P0̄¯̄0R0̄¯̄0(−2u+ 4η − iπ)M0̄M¯̄0 P0̄¯̄0

]

× T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)R0̄¯̄0(2u+ iπ)T0̄(u) T̂0̄(u)
}

= 28N

cosh(u+ η) cosh(u− 3η) tr0̄¯̄0

{
R¯̄00̄(−2u+ 4η − iπ)M0̄M¯̄0

× T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)R0̄¯̄0(2u+ iπ)T0̄(u) T̂0̄(u)
}

= 28N

cosh(u+ η) cosh(u− 3η) tr0̄¯̄0

{
M¯̄0R¯̄00̄(−2u+ 4η − iπ)M−1

¯̄0

×
[
M¯̄0 T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)

]
R0̄¯̄0(2u+ iπ)

[
T0̄(u) T̂0̄(u)M0̄

]}
. (A.19)

In passing to the last line, we have used the fact [R12(u) ,M1M2] = 0.
Making use of the identity (A.12) in (A.19), we finally obtain

t(u) = φ

(
u+ iπ

2

)
tr0̄¯̄0

{[
M¯̄0 T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)

] [
T0̄(u) T̂0̄(u)M0̄

]}

= φ

(
u+ iπ

2

)
tr¯̄0

{
M¯̄0 T¯̄0(u+ iπ) T̂¯̄0(u+ iπ)

}
tr0̄

{
T0̄(u) T̂0̄(u)M0̄

}
= φ

(
u+ iπ

2

)
t(u+ iπ) t(u) , (A.20)

where φ(u) and t(u) are defined in (4.11) and (4.57), respectively. This concludes the proof
of the factorization identity (4.56).
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