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Factorization in Banach algebras

by
VLASTIMIL PTAK (Praha)

Abstract. Let 4 be a Banach algebra with bounded left approximate identity
and let 7 he a left Banach A-module. For each sequence y (n) € AF ™~ satisfying & certain
condition there exists an ae 4 and another sequence #{n)e AF  such that y(nm)
= gtz (n). .

Introduction. We present a simple proof of a generalization of the
Rudin-Cohen factorization theorem using the method of nondiscrete
mathematical mmduetion. This method is based on a simple abstract the-
orem about families of sets, the so-called induction theorem. The induction
theorem. ig closely related to the eclosed graph thecrem and is nothing
more than the abstract description of a elass of iterative constructions
in analysis. One of the advantages of this method consists in the fact
that the construction of the sequence of iterations iz dealt with by the
abstract theorem; this reduces the amount of work required to an inves-
tigation of the improvement of the degree of approximation which can
be achieved within a given digtance from a given point. In this manner,
by separating the hard analysis part from the construction this approach
not only yields considerable simplifications of proofs but also evidences
more clearly the substance of the problem.

1. Preliminaries. Given a positive number » and a set M in a metrie
space (B, d), we dofine U(M,r) = {y e B; d(y, M)<<r}. Let I be an
interval of the form {; 0 < ¢ < %,}, where {, is positive or oco. If A{f),
t€ T is a family of subscts of B, we define its limit 4 (0) as follows

4(0) = N{UA() -
Q<r g
A mapping o transforming T into itself is called a small function or a rate
of convergence on T it o(t) = t+ () + o(e(i)} -+ ... is finite for each t e T.

The method of nondiscrete mathematical induction is based on the
following simple result.
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(L.1) TurormM. Let Z(r), & T bo a fomily of subsets of & complele
‘metric space (H, d). Let w be a rate of convergence on T. If

Z(r) < U(Z(w('r)),r) for each re T,
then Z{r} < U(Z(0), o(r)} for each r e T.
The proof is an exercise; the principles of the method of nondnorcte
mathematical imduction are expoumled in the Gatlinburg Lecture [12].
Let A be a Banach algebra without a unit. We shall say that 4 pos-
sesses o left approvimate unit of norm B if A satisfies one of the following
two equivalent conditions

1) for every @ € A and every s > 0 there evists an ¢ € A such that |¢| < f
and
lea —a| < &;
(2) for every finite sequence ay, ..., a, e A and every &> 0 there emists
an e e A such that |6} < B and
lea,—a;l <e for 4=1,2,...,mn.
A proof of this equivalence is given in [2].
Let # be s Banach space which is a left d-module, |ax| < |a|im] for

% e 4, » e . We shall denote by F, the closure in F of AF. If condition (1)
or {2) is satisfied, it is easy to show that

(3) for every finile sequence ay,...,a,c A ond #,...,0, e¥F, and
every &> 0 there exisis an e e A, lel < B such that

lea,—a; <& for i=1,2,...,m,
lew; —m;l <&  for §=1,2,...,m

We shall need the following simple lemma, the proof of which may
be left to the reader:

(1.2) For every n €N and all compler a, b

la-Fb" < jaltn 4 e,

As usual, N denotes the set of all natural numbers.

We shall assing to each Banach algebra W and each Banach lefs
W-module E 2 new struetive (W, H)® = (W, B, 4°,0) which consists
of W, & linear space B, & mefric d” on B” such that (£°, d°) is a complete
metric space and a mapping o of W x E° into E°. This is done as follows.

Let o, be an arbitrary sequence of positive numbers. We shall denote
by E° the set of all functions z: N— WE~ such that

el = sup o, e (n)¥" << oo,

It follows from Lemima (1.2) that #° is a linear gpace; equipped with the
distance function d° = [z, —z,] it Dbecomes a eomplete metric space.
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For each a € W and each ¢ € B we define . = a0 2 by setiing u(n) = a 2(n).
Clearly, % ¢ B° and |laozl] < |alfiell. If 1 is & scalar, we define » = 1oz by
setting v(n) = A®2(n). Clearly, 1oz e B° and lAoz| = |A|llz]l. Also, losoz
= (Ja)oz. )

Let 4 be a Banach algebra without a unit. We shall denote by B
its unitization. The multiplicative linear funetional on B which has 4
as its kernel will be denoted by f. The mapping P defined by Pb = b —f(b)
iz a projection of B onto 4. The set of all invertible elements of B will
be denoted by G(B).

If Fis o Banach left Ad-module with |zy| < |ofly|for e 4 and y e 7,
then F is also a left B-module in an obvious manner; the above inequality
remaing valid for # e B as well. If 4 has a bounded approximate unit,
it is easy to see that (By)~ = (4dy)” foreach y e F.

(1.3) Let W be a Banach algebra; for each patr w,v € W and each n eN

Pyt = Z,Dn—k(v_%)uk—l_
1

Proof. By induction.
The following technical result will be used in the sequel.

(1.4) Suppose b, c,w, e are elements of e unital Banach olgebra B
and o & compler number which satisfy the following relations

Wl <3/, ¢=L+w) Y w=ale—1)b.

Then lo| <4 and ¢—1 = —ow = —oc(e—1)d.
If F is a Banoch space which is o left B-module, then, for each n e N
and each y € F, the following estimates hold

7

[{(Be) 17} 4] < Ja1 D) (41B)Y max [(e-—1)b ],

i<hsn
ey — ) | < (5 1B1)" 1y
Proof. The second estimate is immediate since
{(Bey® — B%) | < (ol + [B1") Iy} < [BI™(4" + L) [y
The firgt estimate is a consequence of Lemma (1.3} and the relation

¢—1 = —ow:

n

(be)* — B = > (boy"Fb(e— 1P = ——aZ(bo)”‘"be(e——l)b"

¥

w
aZ ) R I .1
L
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2. Power factorizations.

(2.1) TemorEM. Let A be a Banach algebra with a left approvimate
whit of norm B. Let F be o Banach space which is a left A-module. Let o,
be an arbitrary sequence of positive numbers. Let 4 (1), y(2), ... be & sequence
of elements of AF~ such that

lim e,y (n))¥* = 0

and let & > O be given.
Then there ewists a sequence z(n) e Ay{n)~

and an element o e A such
that .

for all neN,
le] < 8,

lz{n)—y(r)| < alfe®  for all meNN.

Proof. I. Let B be the unitization of 4 ; the letters f and P will have
the same meaning as in the preceding section. Construes (B, F)°. The letter
U will stand for the set {# e 4; |v| < B} Let B be the eomplete metric
space obtained by equipping the set 4 x (Boy)~ with the distance

1 1
Apr, Pa) = ———max{u—
: l—ow

B

if py = [y, 2], and Py = 5, 2,]; the closure (Boy)~ is taken in the mefric
d% the number I8 a constant to be chogen later, 0 < o < 1. (We thall

2841
2842

1
sl - —al

see that w =

ig a possible choice.) For each b € G(B) setb

P =[P(d

For each positive r<C1 seb

-1, boyle B.

Wir) = {P(b); beG(B), If(b7) <7 d(p@), p(1)) <

1w (lmf)}.
In particular, [0,y] =p(1}e W(1).
II. Fix » €N and consider the nth coordinate of acz—y it fa, z] €
W(r). We have

B =72t —y ()
=2+ 3 3] 07910 sty

() 2 ~ 1 (3) oy

icm
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whence
1

o)1 ) (1) e
= (M{[p 4+ — ") < le(n)irn{ b7+

B 4 | f(07N < lol +7 and sinee [a,2] e W(r) implies
—7), we have

la*z(n}—y(n}l <

Tt follows that [, 2] & W (0) implies acz = y.
I We intend to show there exists an o such that

jatz(ny—y(n)| <

Sinee b7 <
lo] < B(1

vlz(m)n(B+2r)™ 1.

Wi(r) = U(W(wr),r] for each 7> 0.
Having proved that, it will follow from the Imduction Theorem that
W) « U(W(O),l/(l—co)), thi§ means that there exists a p = [o, 2] €
W(0) with d(p,p(l)) <1/(1—w), in other words, aoz =y, [o| <P,
e —yll <e.

IV. Now let p(b) e W(r). We intend to show that the pair p(d")
corresponding to a slightly perturbed b” = be will satisfy

p) e W{wr)nTlp(b), ).

For this it suffices clearly to congbruct ¢ in such a manner that

{1) |PY —Pb7Y < (L—0)fr,

(2) f(e™) = o,

(3) b0y —boyll < (L—w)er.

‘We shall see that it is possible to satisfy these three conditions by
sonstrueting a ¢ for which

(4) ¥~*—b"'is a scalar multiple of e—1 for a suitable ee U.

Such a choice —if possible ~has the following consequences: assuming
B 1—-p! = a(e—1) for some scalar a, we have

—a = fla(e—1)) = f' =71 = f(e =D = (0 —1)f (b7
whenee '
PRt = Plale—1)) = ag,
b—b = —b (" —b0"N)b = —ab'(¢e—1)b,
a = (L—o)f(d7h).
- For shortness, set w = a(e—1)b. We have thus b'—b = - ¥ w, whence

b'(1+w) = b. Tt follows that a suitable choice of ¢ will be ¢ = (14+w)™?

provided [w|<l1. Now w =a(e—1)h = a(e—1}Pb+a(e—1)f(B) =
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=a{e—1)Pb-+ (1 —w)(e—1), whenee
lw| < lall(e—1)Ph{+{1—)(f+1).
Now choose o = (28-+1)/(26+2) so that (1—w)(f+1) = 1/2.
An ¢ ¢ U may be chosen g0 as to have
(8) laiite—1L)Pb] <1/4
so that |w]<<3/4 and |e| < 4
Now choose an m € N guch that
a; B [b] |y (n)|"" < (1 — ) ar

for all 5 > m. Having chosen m, choose ¢ e U which satisfies (5) and at
the same fime

m

2(411);)" max [{e—1)b g (n)] < min {g(l—w)er).
1 Ik, n<om 1=t<<m
According to Lemma (1.4) this implics beoy —boyl < (1 —w)re. The

proof is complete.

As @ corollary, let us prove a theorem obtained recently by G.R.
Allan and A.M. Sinclair [1].

(2.2) ToworeM. Let A be a Banach algebra with & bounded left approwi-
mate idemity bounded by B and let F be o left Banach A-module. Let o, be
a sequence of real numbers such that a, > 1 for oll n and Gy > 0 let 6>0
and let m e N.

If y lies in the closed linear span of the set AF~, then there are an o 6 A
and 2., 25, ... 0 B such that

(1} ¥ = a2y,

(2} lal<< B

(3) zr e dy™,

) ly—=<dfor h=1,2,...,m,

(8) Izl < oflyl for all jeNN.

Proof. Let y(n) be the sequence obtained by sefting y(n) = y for
all n e V. Since a, —+ oo, we have lima,'ly(n)|* = 0. According to The-
orem (2.1) there exists, for ezch s > 0, & sequence z(n) e Ay~ and an el-
ement & ¢ 4, o] << f such that y = y(n) = a*2(n) and |z(n)—y| < ofe”

-for all » e N. To satisfy (4) of the present theorem, it suffices to take &
such that «fe"< & for m =1,2, ..., m. To satisfy (5) of the present
theorem, it suffices to take ¢ such that & < (1— o™y |V" for all n e N,
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