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FACTORIZATION IN GENERALIZED POWER SERIES

ALESSANDRO BERARDUCCI

Abstract. The field of generalized power series with real coefficients and ex-
ponents in an ordered abelian divisible group G is a classical tool in the study
of real closed fields. We prove the existence of irreducible elements in the
ring R((G≤0)) consisting of the generalized power series with non-positive
exponents. The following candidate for such an irreducible series was given
by Conway (1976):

∑
n t−1/n + 1. Gonshor (1986) studied the question of

the existence of irreducible elements and obtained necessary conditions for a
series to be irreducible. We show that Conway’s series is indeed irreducible.
Our results are based on a new kind of valuation taking ordinal numbers as
values. If G = (R, +, 0,≤) we can give the following test for irreducibility
based only on the order type of the support of the series: if the order type
is either ω or of the form ωωα

and the series is not divisible by any mono-
mial, then it is irreducible. To handle the general case we use a suggestion of
M.-H. Mourgues, based on an idea of Gonshor, which allows us to reduce to the
special case G = R. In the final part of the paper we study the irreducibility
of series with finite support.

1. Introduction

1.1. Fields of generalized power series. Generalized power series with expo-
nents in an arbitrary abelian ordered group are a classical tool in the study of
valued fields and ordered fields [Hahn 07, MacLane 39, Kaplansky 42, Fuchs 63,
Ribenboim 68, Ribenboim 92].

Given a field K and an ordered abelian group G = (G, +, 0,≤), the field K((G))
of generalized power series consists of all formal sums a =

∑
γ aγtγ with coefficients

aγ in K, exponents γ ∈ G and well-ordered support

Sa = {γ ∈ G | aγ 6= 0}
in the induced order of G. Another notation for K((G)) is K((t))G, where the for-
mal variable t is displayed. We always use t for the formal variable. Addition of two
series is defined in the obvious way. The fact that the support is well ordered (i.e. it
contains no infinite descending chain) makes it possible to define the multiplication
of two series by the usual convolution product: (

∑
α aαtα)(

∑
β bβtβ) =

∑
γ cγtγ ,

where cγ =
∑

α+β=γ aαbβ . (One must check that only finitely many terms in this
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554 ALESSANDRO BERARDUCCI

summation are non-zero and that the set of γ with cγ 6= 0 is well ordered.) It can
be shown that every non-zero series has an inverse and therefore K((G)) is a field
[Hahn 07] (see [Neumann 49] for the case of division rings).

On K((G)) we have a natural valuation:

v : K((G)) → G

a 7→ least element of Sa

If K is an ordered field, then we can define an order on K((G)) by declaring an
element a ∈ K((G)) positive if its leading coefficient (i.e. the coefficient of tv(a)) is
a positive element of K.

It is a classical result that if K is real closed and G is divisible then K((G)) is
also real closed. Moreover any ordered field, hence any real closed field F , admits
a power series representation with real coefficients [Gleyzal 37]. More precisely, F
can be embedded as an ordered field in R((G)), where R is the ordered field of real
numbers and G is the group of archimedean classes of F . Indeed, [Krull 32] shows
that F possesses a “maximal” extension, and [Kaplansky 42, Theorem 6, Theorem
8] proves that the maximal extension is necessarily a power series field.

1.2. Integer parts of real closed fields. An integer part of an ordered field
F (usually assumed to be real closed) is an ordered subring Z having 1 as its least
positive element and such that for each a ∈ F there is b ∈ Z (necessarily unique)
such that b ≤ a < b + 1. Using generalized power series, [Mourgues-Ressayre 93]
proved that every real closed field F has an integer part. [Boughattas 93] showed
that real closeness is necessary. If F is a subfield of the reals R then its only in-
teger part is the ring of integers Z. However if F is non-archimedean it can have
non-isomorphic integer parts, or even not elementarily equivalent ones (each one
contains an isomorphic copy of the integers Z as a convex subring). Ressayre has
exploited integer parts to give a new proof of Wilkie’s theorem on the model com-
pleteness of the reals with exponentiation, and to give a complete axiomatization
of the elementary properties of the exponential function [Ressayre 93, Ressayre 95].
(See [Dries et al. 94] for a related proof not using integer parts.)

Integer parts of real closed fields happen to coincide with the models
of the axiom system known as open induction [Shepherdson 64], and a lot of
work has been done to study the properties of these discrete rings,
focusing in particular on the solution of diophantine equations (see [Wilkie 78,
Dries 80-1, Dries 80-2, Otero 90, Otero 93-1]) and on the behavior of primes
[Macintyre-Marker 89, Berarducci - Otero 96, Moniri 94, Biljacovic 96]. General-
ized power series were exploited in [Otero 93-2] to prove the joint embedding prop-
erty for normal models of open induction.

1.3. A problem of Conway and Gonshor: existence of irreducible ele-
ments in the ring R((G≤0)). Let us specialize the notion of integer part to the
ordered field R((G)), where G is a divisible ordered abelian group (hence a Q-
vector space). In this case it is easy to extract an integer part using the direct sum
decomposition:

R((G)) = R((G<0))⊕R ⊕R((G>0))

where R((G<0)) consists of the series with negative exponents and R((G>0)) con-
sists of those with positive exponents. We have:

R((G<0))⊕ Z is an integer part of R((G))
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FACTORIZATION IN GENERALIZED POWER SERIES 555

Any integer part is a discrete ring, so in particular it contains no infinitesi-
mal elements. The set of all infinitesimal elements of R((G)) is easily seen to be
R((G>0)), while R((G>0)) ⊕R is the set of all finite elements. All the elements
of R((G<0)) are infinite.

The ring R((G<0)) ⊕ Z is not the only integer part of R((G)), but it is the
only one which is truncation closed, namely it has the property that if a series∑

β bβtβ belongs to it, then also its truncations
∑

β<α bβtβ belong to it. Truncation
closedness plays a crucial role in the work of Ressayre and his collaborators.

The primes of Z remain prime in R((G<0)) ⊕ Z, and it is a natural question
whether R((G<0)) ⊕ Z contains irreducible elements not in Z. This is easily seen
to be equivalent to the question of whether the ring

R((G≤0)) := R((G<0))⊕R

has any irreducible element, and we will consider the problem in this latter form.
Since this ring is not noetherian the answer is not immediate. The units of R((G≤0))
are the elements of R, so the irreducible elements (if any) are those series a ∈
R((G≤0)) which do not admit a factorization a = bc with b, c /∈ R. The ring
R((G≤0)) is a standard part of R((G)) in the sense that every element of R((G))
is within infinitesimal distance from one and only one element of R((G≤0)). It is
not true in general that a standard part of a real closed field necessarily has some
irreducible element: Alex Wilkie noted that the Puiseux series with real coefficients
form a real closed subfield of R((Q)) which has a standard part (and also an integer
part) without irreducible elements. Such a standard part is given by the subring
R[Q≤0] of R((Q≤0)) consisting of the series with finite support. We thus have a
nice example of a ring without irreducibles. Note that our ring R((G≤0)) contains
a subring isomorphic to R[Q≤0] (by divisibility of G).

The above considerations give us some (weak) evidence in favor of the absence
of irreducibles. However [Conway 76] contains the following candidate for an irre-
ducible element of R((G≤0)) (Conway’s group G is a proper class because he works
inside the huge ring of “omnific integers”, which is an integer part of the real
closed field of “surreal numbers”):∑

n

t−1/n + 1

where n ranges over the positive integers. (Conway did not have the minus sign
in the exponents because of the change of variables x1 = t−1, but then one has to
consider anti-well-ordered supports.)

[Gonshor 86] obtains several partial results, some against the existence of irre-
ducibles in R((G≤0)), and some in favor. He points out the importance of the
special case G = (R, +, 0,≤) and shows how to reduce to it, in some cases, at
the expense of expanding the field of coefficients R. Gonshor’s book contains the
following quite different candidate for an irreducible series:

t−
√

2 + t−1 + 1

which was also considered in Conway’s lectures.
The choice of the exponents is motivated by the fact that if the support of an

irreducible series is finite, then its exponents must be linearly independent over
Q, as otherwise a change of variables will transform the series into an ordinary
polynomial of degree > 2 over the reals, which is of course reducible. (This is
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556 ALESSANDRO BERARDUCCI

the reason why the ring R[Q≤0] mentioned above has no irreducible elements.)
[Biljacovic 96] showed that t−

√
2 + t−1 + 1 is irreducible in the subring K[G≤0] of

K((G≤0)) consisting of all series with finite support. His results were preceded by
a related result of [Moniri 94] which showed its irreducibility in a smaller ring.

Despite all these partial results the problem of the existence of irreducibles in
K((G≤0)) remained open, even in the special case K = R and G = (R, +, 0,≤),
or in the case of the ring of the omnific integers.

1.4. Related work on open induction. Quite independently of the work on
omnific integers, similar problems about existence of irreducible elements arose in
the context of the models of open induction. In particular, [Macintyre-Marker 89]
asked: Is there a recursive model of open induction with infinite primes? The
emphasis here was on the recursivness of the model (which implies countability), so
the question is not the same as the one we consider in this paper (i.e. the existence of
irreducible elements in the uncountable ring K((G≤0))). However the two problems
are related: in both cases one is concerned with existence of irreducible elements
in integer parts of real closed fields. A recursive model of open induction with
infinite primes was constructed in [Berarducci - Otero 96] and independently by
[Moniri 94] (and subsequently [Biljacovic 96]) in the already mentioned papers.
Unlike the models constructed by Moniri and Biljacović, the one of Berarducci and
Otero is based on an effective version of a theorem of [Wilkie 78] and has the further
property of being “normal” (integrally closed in its fraction field). The resulting
ring is a recursive integer part of the field of Puiseux series which is not truncation
closed, so in this respect behaves differently from the rings considered in this paper.

1.5. Results. We prove that if K is a field of characteristic zero (not even assumed
to be orderable, e.g. the complex numbers) and G is an ordered abelian divisible
group, then:

K((G≤0)) does have irreducible elements.
We first show this under the assumption that G is the ordered additive group

(R, +, 0,≤) of real numbers. In an appendix we extend it to the general case using
a suggestion of M.-H. Mourgues based on an idea of Gonshor, which allows us to
reduce to the special case G = R at the expense of enlarging the field of coefficients
K. So it is important to work with a general K and not only with K = R.

We use the following criterion for irreducibility which depends only on the order
type of the support.

(Theorem 10.5) Suppose that a ∈ K((R≤0)) is not divisible by any
monomial tγ with γ < 0. If the order type of the support of a is ei-
ther ω or of the form ωωβ

, then both a and a + 1 are irreducible.
If G is archimedean, then it can be embedded in R. So the above theorem holds

for K((G≤0)) as well. In the non-archimedean case we can still prove the existence
of irreducibles as follows:

(Theorem 12.1) Let Q be an archimedean subgroup of G and suppose
that a ∈ K((Q<0)) ⊂ K((G≤0)) has support of order type ω or ωωα

(α
an ordinal) and a is not divisible by any monomial tγ with γ ∈ Q<0.
Then a + 1 is irreducible in K((G≤0)).

In particular Conways’s series
∑

n t−1/n+1 is irreducible (in the non-archimedean
case we do need to add 1, as otherwise the series is divisible by a monomial). We
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can allow G to be a proper class, but restricting to series whose support is a set.
So Conway’s series is irreducible even in the ring of omnific integers.

The ordinals which appear in our criterion are exactly the infinite ordinals which
cannot be obtained as a sum or product of two smaller ordinals: so what our
criterion says is that if the order type is irreducible the series is irreducible.

The criterion does not apply to the series t−
√

2 + t−1 +1. To handle it we instead
show:

(Theorem 11.2) Any irreducible element of K[R≤0] remains irreducible
in K((R≤0)).

We have not checked whether the above theorem holds for a general G instead
of R. Combined with Biljacović’s work, this shows that t−

√
2+t−1+1 is irreducible

in K((R≤0)).
Both results are based on a new kind of valuation which we now describe.

1.6. A new kind of valuation taking ordinal numbers as values. Let OR
be the class of all ordinal numbers. Consider the order type map

ot : K((G)) → OR

which assigns to each series the order type of its support. If G = R, then ot has
image contained in the countable ordinals. This map does not have good algebraic
properties; for instance, there is no way of predicting the order type of a product
bc given the order types of b and c (e.g. take c = b−1). However we will be able
to show that if we restrict this map to the subring K((G≤0)) ⊂ K((G)) (and we
assume G = R), then the order type of the product is “roughly” the product of the
order types, where however we need to consider not the usual product of ordinals
but a commutative variant of it known as “natural product” or “Hessemberg’s
product” [Hausdorff 27], which we write as �. The precise result is:

(Corollary 9.9) Let b, c ∈ K((R≤0)). Then ot(bc) = ot(b)�ot(c) provided
there are ordinals β and ξ with ot(b) = ωβ and ot(c) = ωξ.

The natural product satisfies the property ωn � ωm = ωn+m whenever n, m are
natural numbers. In general ωα � ωβ = ωα⊕β, where ⊕ is the “natural sum” of
ordinals.

The above theorem puts restrictions on the order types of the possible factors
of an element of K((G≤0)), and it will be the key ingredient for the proof of the
existence of irreducible elements (some extra work is however needed). The fact
that the theorem holds only for order types of the form ωα is not very restrictive,
due to the fact that every ordinal has a final segment of type ωα (and the final part
of a product of two series depends only on the final parts of the factors). Some
remarks are in order:

1. It is not difficult to prove ot(bc) ≤ ot(b) � ot(c). This holds without any
restriction on the order types of b, c (and we can even allow b, c to range over
the whole field K((G))).

2. It is not too difficult to prove the theorem for series with positive coefficients,
because in that case there cannot be “cancellations” in the product.

3. To prove ot(bc) = ot(b)� ot(c) (with the stated restrictions) we need to prove
that there are “few cancellations” in the product of two elements of K((G≤0))
(this is false in the field K((G)): take c = b−1).
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It is convenient to derive Corollary 9.9 from a more elegant, although essentially
equivalent statement asserting the existence of a suitable valuation. We need some
preliminaries.

As usual let G be an ordered divisible abelian group. Let J ⊂ K((G≤0)) be the
ideal generated by the set of monomials {tγ | γ ∈ G<0}. An element is in J iff it is
divisible by a monomial, so all the elements of J are trivially reducible. Note that J
is not maximal, since it is properly contained in the maximal ideal M⊆ K((G≤0))
consisting of all series without constant term. We clearly have

K((G≤0))/J ⊇ K((G≤0))/M = K

The elements of K((G≤0))/J can be thought of as germs of power series.
Two series (both not in J) have the same germ if they have a common final part.

We will define a map called ordinal-value

vJ : K((G≤0) → OR

which is similar to the order type map ot but only assumes values of the form ωα

or 0. If b has limit order type and does not belong to J , then vJ(b) is the order
type of a sufficiently small final segment of b. For the general case see Definition
5.2. The definition of vJ makes sense for an arbitrary G, but to prove that it has
good algebraic properties we specialize to the case G = R. In this case we only
need countable ordinals, and we can prove (Lemma 5.5 and Theorem 9.7):

1. vJ (b) = 0 iff b ∈ J ,
2. vJ (b + c) ≤ max{vJ(b), vJ (c)},
3. vJ (bc) = vJ(b)� vJ (c) (multiplicative property).

The proof of the multiplicative property is the most difficult result of this paper,
and the irreducibility results can be derived from it. It implies in particular that
the ideal J is prime. The multiplicative property is easily seen to be equivalent
to Corollary 9.9, which only speaks about ordinal types and does not mention vJ .
Since b ≡ c mod J implies vJ(b) = vJ (c), we can pass to the quotient and obtain a
map

vJ : K((G≤0)/J → OR

which satisfies 2, 3 and vJ (x) = 0 iff x = 0 (where x ∈ K((G≤0)/J). Thus vJ is an
non-archimedean absolute value on K((R≤0))/J except for the fact that usu-
ally absolute values are defined on fields, and K((R≤0))/J is only a domain. There
is however no problem in extending vJ to the fraction field of K((R≤0))/J (but
we will not need this): to do that we first observe that (OR,⊕,�,≤) is contained
in an ordered field, for instance the one defined in [Sikorski 48], or the larger real
closed field of surreal numbers [Conway 76, Note on page 28]. So if we define
vJ(b/c) = vJ(b)/vJ(c) we obtain an absolute value into the surreal numbers.

Remark 1.1. Using the fact that vJ has image contained in {ωα | α} ∪ {0}, we can
define a new map wJ : K((R≤0))/J → OR∪{−∞} which behaves like a polynomial
degree: ωwJ (b) = vJ (b) (with wJ (b) = −∞ if vJ (b) = 0). We have wJ (bc) =
wJ(b)⊕wJ (c) and wJ(b+c) ≤ max{wJ(b), wJ (c)}. We can obtain a Krull valuation
[Endler 72] by reversing the order.

Remark 1.2. K((R≤0))/J is not a valuation ring: there is a non-zero element x of
its fraction field such that neither x nor x−1 belongs to K((R≤0))/J , for instance
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x = (b + J)/(c + J) where b :=
∑

n t−1/n and c :=
∑

n t−1/n2
. This can be easily

established with the help of the valuation vJ .

2. Outline of the proof of the multiplicative property

of the ordinal-value

In this section we give a brief qualitative sketch of the proof of the multiplicative
property.

It is easy to show that vJ is submultiplicative: vJ(bc) ≤ vJ (b) � vJ (c). This
corresponds to the fact that the order type of a product bc is less than or equal to
the natural product of the order types of b and c.

The idea is to prove the multiplicative property vJ (bc) = vJ (b) � vJ(c) by in-
duction on the ordinals making use of the submultiplicative property. It is actually
more convenient to prove the multiplicative property for several factors:

vJ(bk0
0 · . . . · bkn

n ) =
k0⊙

vJ (b0)� . . .�
kn⊙

vJ (bn)

where bi ∈ K((R≤0)) and ki ∈ N. This is proved by induction on a suitable notion
of complexity of the formal expressions bk0

0 · . . . · bkn
n . In the sequel we write ≡ for

congruence modulo the ideal J .
I. Given γ ∈ G (later we specialize to G = R) and b ∈ K((G≤0)), we will define

(Definition 6.1) a new series b|γ ∈ K((G≤0)) in such a way that b|γ ≡ c|γ mod J
iff b, c coincide near γ (in the sense that if δ is sufficiently close to γ then the
coefficients of tδ in b, c coincide). The series b|γ is obtained by truncating b at γ
and multiplying the resulting series by the normalization factor t−γ . We call b|γ +J
the germ at γ of b. Assuming G = R, we will prove (Lemma 7.5) the following
convolution formula which shows that these germs at γ behave like generalized
coefficients:

(bc)|γ ≡
∑

β+ξ=γ

b|βc|ξ mod J(1)

Equation (1) holds for more general groups G, but we will not need this fact.
II. The multiplicative property says that vJ(bc) is as big as possible. The plan is

to show that vJ (bc) is “big” by showing that vJ((bc)|γ) is “big” for “many” values
of γ. We try to use the convolution formula to compute (bc)|γ .

III. If γ is chosen in a suitable way with respect to the support of b, we can
isolate the most significant terms in the right-hand-side of equation (1) and obtain
(Lemma 7.7):

(bc)|γ ≡ b|γc + bc|γ(2)
+ terms of small value

where “small” means smaller than the “expected” ordinal-value of b|γc, namely
vJ(b|γ)�vJ (c). Of course until we have proved the multiplicative property of vJ we
do not know whether the expected ordinal-value coincides with the actual ordinal-
value. Equation (2) says that in some sense b 7→ b|γ behaves like a derivation. We
do not enter into the details of how γ is to be chosen; let us just remark that it is
chosen inside a set X(b) depending on b, so we introduce an asymmetry between b
and c.

IV. Special cases. If we knew that vJ(bc|γ) < vJ (b|γc) we could deduce vJ((bc)|γ)
= vJ (b|γc) and try an inductive argument in the form: if for many γ’s b|γc has its

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



560 ALESSANDRO BERARDUCCI

expected ordinal-value, then bc has its expected ordinal-value. Another favorable
case is when b = c. In this case we obtain:

(b2)|γ ≡ 2b|γb

+ terms of small value

V. In the general case we can assume that b has “principal value” (Definition
6.4) smaller than or equal to that of c. (This is a technical assumption that can
always be ensured by interchanging the roles of b, c.) The crucial idea of the whole
proof is to multiply both sides of equation (2) by c, obtaining:

c(bc)|γ ≡ b|γc2 + bcc|γ

+ terms of small value

where now “small” means “smaller than the expected value of b|γc2”, namely ≤
vJ(b|γ) � vJ (c) � vJ (c). Apparently we have only introduced a complication, but
the advantage is that now the expression bc appears on both sides of ≡. For the
sake of proving that bc has big ordinal-value we can as well suppose the contrary.
Then the second term on the right-hand-side becomes small and we obtain:

c(bc)|γ ≡ b|γc2

+ terms of small value

A similar argument yields for every positive integer k the equation:

c(bkc)|γ ≡ b|γbk−1c2(3)
+ terms of small value

VI. To carry out an inductive proof based on equation (3) we define a notion of
complexity such that the expression b|γbk−1c2 is “simpler” than bkc. This seems
almost paradoxical already in the case k = 1, but remember that b and c do not
play a symmetrical role in our arguments since b was assumed to have “smaller
or equal principal value”. We have to arrange things so that in passing from bkc
to b|γbk−1c2, the complication introduced by the substitution c 7→ c2 is more than
compensated by the “simplification” bk 7→ b|γbk−1 (it is reasonable to consider the
term b|γ simpler than b, because it has smaller ordinal value provided γ is sufficiently
small). This suggests that b should count more than c. The actual definition of
complexity (Definition 9.3) is however rather complicated, due to the apparently
conflicting requirements that b has principal value smaller than or equal to that of
c.

VII. Once the correct definition of complexity has been given, we show that

vJ(bk0
0 · . . . · bkn

n ) =
k0⊙

vJ (b0)� . . .�
kn⊙

vJ (bn)

by induction on the complexity. To this aim we write bk0
0 · . . . · bkn

n = bkc by
suitably selecting one particular bi to play the role of b in equation (3). Assuming
inductively that the displayed term in the right-hand-side of equation (3) has its
expected ordinal-value, we infer from the equation the ordinal-value of c(bkc)|γ and
by varying γ we deduce the ordinal-value of c(bkc). Using the submultiplicative
property of vJ , we can now divide by the extra factor c which has been introduced
during the proof and obtain the ordinal-value of the original expression bkc, thus
completing the induction.

We now come to the precise definitions and the technical details.
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3. Natural sum and product of ordinals

We denote by OR the class of all ordinals and by LIM the class of all limit
ordinals. The ordinal sum α + β, ordinal product α · β and ordinal exponentiation
αβ are defined by induction on their second argument and are continuous in their
second argument: α + 0 = α, α + (β + 1) = (α + β) + 1 and α + λ = supξ<λ α + ξ

for λ ∈ LIM ; similarly for α · β and αβ . The product α · β will also be written as
αβ.

Definition 3.1. An ordinal ρ is additive principal if it cannot be written as
the ordinal sum of two ordinals strictly smaller than ρ. Let H be the class of all
additive principal ordinals.

Fact 3.2. 1. ρ ∈ H iff for every α, β < ρ, α + β < ρ,
2. ρ ∈ H iff either ρ = 0 or there is α such that ρ = ωα

If an ordinal is not additive principal it can be written as a sum of two smaller
ordinals. Since this process must end, every ordinal is a finite sum of additive
principal ordinals. Thus we have:

Fact 3.3. (Cantor normal form) For every ordinal α 6= 0, there are uniquely de-
termined ordinals α1 ≥ . . . ≥ αn such that α = ωα1 + . . . + ωαn . The right-hand
side is the Cantor normal form of α, and we call ωαn the principal part of α.

The exponents αi appearing in the Cantor normal form of α are not necessarily
strictly smaller than α, for instance there are many ordinals satisfying α = ωα. (ω1

has this property, and also many countable ordinals.) A fact that we will repeatedly
use is that every sufficiently small final segment of a non-zero ordinal α has order
type equal to the principal part of α.

Definition 3.4. The natural sum ⊕ and natural product � of two ordinals are
commutative variants of the ordinal sum + and ordinal product · (see [Hausdorff 27,
p. 68] or [Pohlers 80]). To define the natural sum of two non-zero ordinals we
consider the Cantor normal forms α = ωα1 + . . .+ωαn and β = ωαn+1 + . . .+ωαn+m,
and we set α⊕β = ωαπ(1) + . . .+ωαπ(n+m), where π is a permutation of the integers
1, . . . , n + m such that απ(1) ≥ . . . ≥ απ(n+m). If α = 0 we set α⊕ β = β ⊕ α = β.
The natural product is first defined on H by: ωα � ωβ = ωα⊕β and γ � 0 =
0� γ = 0. We then extend � to all the ordinals using the Cantor normal form and
distributivity: γ � (α⊕ β) = (α⊕ β)� γ = (α� γ)⊕ (β � γ).

Clearly α ·β ≤ α�β and α+β ≤ α⊕β. We now prove that ⊕ and � are strictly
increasing:

Lemma 3.5. 1. If α < β, then α⊕ γ < β ⊕ γ.
2. If α < β , then α� γ < β � γ provided γ 6= 0.

Proof. 1. Consider two Cantor normal forms α = ωα1 + . . . + ωαn and β = ωβ1 +
. . . + ωβm . Then α < β iff and only if either α1 < β1 or α1 = β1 and ωα2 +
. . . + ωαn < ωβ2 + . . . + ωβm . In other words, to compare two ordinals we compare
lexicographically the exponents in their Cantor normal forms. Point 1 easily follows.

2. Since � distributes over ⊕ and the latter is strictly increasing, in order to
show that � is strictly increasing we can reduce to the following case: if ωα < ωβ,
then ωα � ωγ < ωβ � ωγ . By definition of � this means ωα⊕γ < ωβ⊕γ. Now use
the fact that both ⊕ and x 7→ ωx are strictly increasing.
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Definition 3.6. MP is the class of all the multiplicative principal ordinals,
namely the class of all α ∈ OR such that α > 0 and for every β, γ < α we have
βγ < α.

For the following results see [Pohlers 80].

Fact 3.7. Suppose β, γ < α. If α ∈ H, then β⊕γ < α. If α ∈ MP, then β�γ < α.

Fact 3.8. ρ ∈ MP if and only if ρ = 1 or ρ is of the form ωωα

.

4. Well-ordered subsets of an ordered group

We are interested in the order types of the well-ordered subsets of an ordered
group, and their behavior under unions and the group operation. Let G = (G, +,
0, <) be an ordered abelian group. In the special case G = R the order types of the
well-ordered subsets of G are exactly the countable ordinals. In the sequel B, C, . . .
denote well-ordered subsets of G. We write B ≤ γ if all elements of B are ≤ γ.
Thus sup B = γ iff B ≤ γ and ∀β < γ, B 6≤ β. Since we do not (yet) assume that
G is complete, the supremum might not exist.

Lemma 4.1. ot(B ∪ C) ≤ ot(B) ⊕ ot(C).

Proof. We can assume B, C disjoint; otherwise we can make them disjoint by replac-
ing B with a smaller set without changing the union B∪C. We proceed by induction
on ot(B ∪C). If ot(B ∪C) = 0 there is nothing to prove. If ot(B ∪C) = α + 1, let
a ∈ B∪C be the last element of B∪C. Without loss of generality suppose a ∈ C and
let C ′ = C\{a}. Then a /∈ B and therefore ot(B∪C) = ot(B∪C ′)+1. By induction
ot(B ∪C ′) ≤ ot(B)⊕ ot(C ′). So ot(B ∪ C) ≤ ot(B) ⊕ ot(C ′) + 1 = ot(B)⊕ ot(C).

Limit case. Suppose ot(B ∪ C) = λ ∈ LIM . For β < λ let Hβ be the initial
segment of B ∪ C of order type β, and let Bβ = B ∩ Hβ and Cβ = C ∩ Hβ.
By induction β = ot(Bβ ∪ Cβ) ≤ ot(Bβ) ⊕ ot(Cβ) ≤ ot(B) ⊕ ot(C). Hence λ =
supβ<λ β ≤ ot(B)⊕ ot(C).

Lemma 4.2. If B has limit order type and B ≤ 0, then for every proper initial
segment H of B there is γ < 0 such that H ≤ γ.

Proof. Let γ ∈ B, γ /∈ H . Since ot(B) ∈ LIM , γ < 0.

Lemma 4.3. If sup B = sup C = 0 and B, C have additive principal order type
> 1, then ot(B ∪C) = max{ot(B), ot(C)}.
Proof. Let ρ = max{ot(B), ot(C)}. It suffices to show that every proper initial
segment of B ∪ C has order type < ρ. By the previous result, any such segment
is contained in the union of a proper initial segment B′ of B and a proper initial
segment C ′ of C. Now ot(B′ ∪ C ′) ≤ ot(B′)⊕ ot(C ′) < ρ (as ρ ∈ H).

Definition 4.4. B + C = {x + y | x ∈ B, y ∈ C}.
Lemma 4.5. ot(B + C) ≤ ot(B)� ot(C).

Proof. By induction on ot(B) � ot(C).
Special case. Suppose that ot(B) and ot(C) are additive principal. It is enough

to show that if H is a proper initial segment of B + C, then H has order type
< ot(B) � ot(C). Let β ∈ B and γ ∈ C be such that β + γ /∈ H . Let B′ be
the set of elements of B which are < β, and let C′ be the set of elements of C
which are < γ. Then H ⊆ (B′ + C) ∪ (B + C′). By induction ot(B′ + C) ≤
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ot(B′) � ot(C) and ot(B + C ′) ≤ ot(B) � ot(C ′). Since the order type of the
union of two sets is bounded by the natural sum of the respective order types,
ot(H) ≤ (ot(B′)�ot(C))⊕ (ot(B)�ot(C ′)). The two terms of this natural sum are
< ot(B)� ot(C), so their natural sum is also < ot(B)� (C) since this latter ordinal
is additive principal (as the additive principal ordinals are closed under natural
product).

General case. Let ot(B) = ωβ1 + · · ·+ ωβn be the Cantor normal form of ot(B)
and let ot(C) = ωγ1 + · · · + ωγk be the Cantor normal form of C. We can write
B =

⋃n
i=1 Bi with ot(Bi) = ωβi and C =

⋃k
j=1 Cj with ot(Cj) = ωγj . Then B+C =⋃

i,j Bi + Cj and by the special case and induction ot(Bi + Cj) ≤ ot(Bi)� ot(Cj).
The order type of the union of finitely many sets is bounded by the natural sum
of the respective order types. So ot(B + C) is bounded by the natural sum of the
various ot(Bi)� ot(Cj), and this natural sum coincides with ot(B)� ot(C).

For later purposes we need:

Lemma 4.6. If λ is a limit ordinal, then λ coincides with the order type of the set
I ⊆ λ of all successor ordinals β < λ.

Proof. Since λ ∈ LIM , we can consider the successor function s : λ → λ, x 7→
x + 1. Since s is strictly increasing, the image of s has the same order type as its
domain.

Lemma 4.7. Let λ be a limit ordinal and let {Bi | i < λ} be a family of well-
ordered subsets of G with the property that if i < j < λ, then Bj has an element
bigger than all elements of Bi. Suppose that for each i < λ every non-empty final
segment of Bi has order type ≥ ρ. If

⋃
i<λ Bi is well ordered, then it has order type

≥ ρ · λ.

Proof. Let I be the set of all successor ordinals less than λ. Then ot(I) = λ by
Lemma 4.6. The ordinal ρ · ot(I) can be realized as the order type with respect to
the lexicographic ordering of the set I × ρ consisting of all pairs (i, β) with i ∈ I
and β < ρ (to compare two such pairs we compare the first components, and if
they are equal we compare the second ones). For i ∈ I let Ti be the subset of Bi

consisting of all the elements x ∈ Bi with x ≥ Bj for all j < i. Since each i ∈ I
has an immediate predecessor j < λ, Ti is a non-empty final segment of Bi and
therefore it has order type ≥ ρ. To finish the proof, consider the strictly increasing
map from I × ρ into

⋃
i<λ Bi sending (i, β) into the β-th element of Ti.

5. The ordinal-value of a generalized power series

Definition 5.1. Let J ⊂ K((G≤0)) be the ideal generated by all the monomials
tγ with γ < 0. We call the elements of the quotient ring K((G≤0))/J germs of
power series.

Clearly J consists of all the series with negative support bounded away from
zero: b ∈ J iff ∃γ ∈ G such that Sb ≤ γ < 0. Two series b, c ∈ K((G≤0)) have the
same germ iff for every γ ≤ 0 sufficiently close to zero, the coefficients of tγ in b
and c coincide. In particular, for γ sufficiently close to zero, γ ∈ Sb iff γ ∈ Sc.

Definition 5.2. Given b ∈ K((G≤0)), we define its order type ot(b) ∈ OR as
the order type of the support Sb of b. Let J + K be the additive subgroup of
K((G≤0)) generated by the ideal J and the additive subgroup K. We write as
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usual c ≡ b mod J + K for b− c ∈ J +K. We define the ordinal-value (or value)
vJ : K((G≤0)) → OR as follows.

1. vJ (b) = 0 iff b ∈ J .
2. vJ (b) = 1 iff b is congruent to a non-zero element of K modulo J .
3. vJ (b) = min{ot(c) | c ≡ b mod J + K} in the remaining cases.

A more geometrical definition of vJ can be obtained as follows. For ε ∈ G>0 let
(−ε, 0) be the interval {x ∈ G | − ε < x < 0} and let Bε be the intersection of
the support Sb of b with (−ε, 0). If there is some ε with Bε = ∅, then vJ (b) is 1
or 0 depending on whether 0 is in the support of b or not. If instead for every ε
the set Bε is non-empty, then there must be some ε such that for every smaller ε′

the sets Bε and Bε′ have the same order type. We then say that Bε is a stable
interval for b. The order type of any stable interval is the ordinal-value of b, and
it coincides with the principal part of the Cantor normal form of ot(b) provided
ot(b) is a limit ordinal and the supremum of Sb is 0. Note that we consider the
open interval (−ε, 0) rather than the half-open one (−ε, 0] which would seem more
natural. This ensures the validity of the following remark and corresponds to the
fact that in clause 3 we work modulo J + K rather than modulo J .

Remark 5.3. The map vJ : K((G≤0)) → OR has image contained in H.

Remark 5.4. Given b, c ∈ K((G)), the support of b + c is included in the union
Sb ∪ Sc of the respective supports, and the support of bc is contained in Sb + Sc.
By Lemma 4.1 and Lemma 4.4 we obtain:

1. ot(b + c) ≤ ot(b)⊕ ot(c),
2. ot(bc) ≤ ot(b)� ot(c).

We are now ready to prove the submultiplicative property of vJ . Part 2 of the
following lemma will later be superseded by the proof of the multiplicative property.

Lemma 5.5. 1. vJ (b + c) ≤ max{vJ(b), vJ (c)}, with equality holding if vJ (b) 6=
vJ(c).

2. vJ (bc) ≤ vJ(b)� vJ (c) (submultiplicative property).

Proof. 1. We assume vJ(b) > 1, vJ(c) > 1. In the remaining cases the proof is
trivial. There are b′ ≡ b mod J+K and c′ ≡ c mod J+K such that vJ(b) = ot(b′) =
vJ(b′) and vJ (c) = ot(c′) = vJ(c′). The support of b′ + c′ is contained in the union
of the supports of b′ and c′. Hence by Lemma 4.3 ot(b′ + c′) ≤ max{ot(b′), ot(c′)}.
Since b + c ≡ b′ + c′ mod J + K, if vJ(b + c) > 1 then vJ(b + c) ≤ ot(b′ + c′). So in
any case vJ (b + c) ≤ max{vJ(b), vJ(c)}.

To finish the proof of 1, assume further that vJ(c) < vJ(b). Let H be the set of
elements in the support of b′ which do not lie in the support of c′. The support of
b′ + c′ contains H , so ot(b′ + c′) ≥ ot(H).

We claim that ot(H) = ot(b′). If this is not so, then the support of b′ is the
union of two sets of order type strictly smaller than ot(b′) (H and the support of
c′). This contradicts ot(b′) = vJ (b) ∈ H, and the claim is proved.

It follows that ot(b′ + c′) ≥ ot(b′), and by Lemma 4.3 ot(b′ + c′) = ot(b′) ∈ H.
Hence ot(b′ + c′) = vJ (b′ + c′). The congruence b + c ≡ b′ + c′ mod J + K implies
vJ(b + c) > 1, and therefore vJ (b + c) = vJ(b′ + c′) = ot(b′ + c′) = ot(b′) = vJ(b),
as desired.
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2. We use the fact that the support of bc is included in Sb+Sc. In the special case
when vJ (b) = ot(b) and vJ (c) = ot(c) the result to be proved follows immediately
from Lemma 4.5.

In the general case we reason as follows. We can assume vJ(b) > 1, vJ(c) > 1,
as otherwise the result follows easily from the definitions. Thus, as before, there
are b′ ≡ b mod J + K, c′ ≡ c mod J + K such that vJ(b) = ot(b′) = vJ(b′), vJ (c) =
ot(c′) = vJ (c′). By the special case, vJ (b′c′) ≤ vJ(b′)� vJ (c′). It remains to show
that vJ (bc) ≤ vJ (b′)�vJ (c′). We write b = b′+j+r and c = c′+j1+r1, with j, j1 ∈ J
and r, r1 ∈ K. Then bc ≡ b′c′ + rc′ + r1b

′ mod J + K. We can assume vJ(bc) > 1,
as otherwise there is nothing to prove. Thus vJ (bc) = vJ(b′c′+ rc′ + r1b

′). By part
1, vJ (bc) ≤ max{vJ(b′c′), vJ (c′), vJ (b′)} ≤ max{vJ(b′) � vJ(c′), vJ (c′), vJ (b′)} =
vJ(b′)� vJ (c′).

6. Principal and residual ordinal-values

Definition 6.1. Given b =
∑

β bβtβ ∈ K((G)) and γ ∈ G, we define:

1. b|γ =
∑

β≤γ bβtβ .
2. b|γ = t−γb|γ .

We call b|γ the truncation of b at γ and we call the equivalence class of b|γ modulo
J the germ of b at γ.

The supports of b|γ and b|γ differ only by a translation. The supremum of the
support of b|γ is ≤ γ. The supremum of the support of b|γ is ≤ 0. So in particular
b|γ ∈ K((G≤0)).

Remark 6.2. b|γ ≡ c|γ mod J iff for every δ sufficiently close to γ the coefficients of
tδ in b and c coincide.

Remark 6.3. b|γ /∈ J if and only if γ is in the topological closure of the support of b
with respect to the order topology of G. So in particular b|γ /∈ J only for γ ranging
through a well ordered set.

The proof of the multiplicative property vJ (bc) = vJ (b) � vJ (c) is simpler if
vJ(b) and vJ (c) (or at least one of the two) are multiplicative principal ordinals. I
recommend to the reader to make this simplifying assumption on a first reading. To
deal with the general case we will define the “principal value” of a series b, in such a
way that the principal value is always multiplicative principal and coincides with the
ordinal value when the latter is multiplicative principal. Roughly speaking, the idea
is that any series can be thought of as a series of multiplicative principal ordinal
value, provided we allow the coefficients themselves to be series. For instance,
a series of ordinal value ω3 (which is not multiplicative principal) can be also
understood as a series of ordinal value ω (which is multiplicative principal) whose
coefficients are series of ordinal value ω2. To be quite honest, this simple idea does
not actually work so neatly, and it is somehow hidden in the technicalities that
follow. However, as a motivation, it may be useful to keep it in mind.

Definition 6.4. Given b ∈ K((G≤0)) with vJ (b) > 1, we know that vJ (b) has the
form ωβ for some ordinal β > 0. From the Cantor normal form of β it follows that
vJ(b) can be written uniquely as a product ρ1ρ2 . . . ρn, where ρ1 ≥ ρ2 ≥ . . . ≥ ρn >
1 are multiplicative principal ordinals. We define:

1. vp
J (b) = ρn = the principal value of b,
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2. vr
J (b) = ρ1ρ2 . . . ρn−1 = the residual value of b,

with the convention that the residual value is 1 if vJ(b) ∈ MP (i.e. if n = 1).

So if vJ(b) = ω3, then vp
J(b) = ω and vr

J (b) = ω2.

Remark 6.5. The product ρ1ρ2 . . . ρn coincides with the natural product ρ1 � ρ2 �
. . .� ρn. More generally if ρ ∈ MP, α ∈ H and ρ ≥ α, then ρα = ρ� α.

For every b ∈ K((G≤0)) of value > 1 we have the decomposition:

vJ (b) = vr
J (b)vp

J(b)(4)

with vr
J(b) ∈ H and vp

J(b) ∈ MP.

Definition 6.6. Given b ∈ K((G≤0)) with vJ(b) > 1, define

X(b) = {γ < 0 | vJ(b|γ) = vr
J(b)}.

Informally we think of b as a “hyper-series” of ordinal value vp
J(b) whose coeffi-

cients are series of ordinal value vr
J(b). The support of this hyper-series is X(b). It

may be challenging to find the correct algebraic framework for these hyper-series.
Note that if vJ (b) is multiplicative principal, then X(b) is the set of all γ < 0

with vJ(b|γ) = 1, namely the set of all isolated points of the support of b.

Remark 6.7. If γ ∈ X(b), then either vJ (b|γ) = 1 or vp
J (b|γ) = ρn−1 ≥ vp

J(b).

For the following result we specialize to the case G = (R, +, 0,≤).

Lemma 6.8. Let b ∈ K((R≤0)). If vJ(b) > 1, then every sufficiently small non-
empty final segment of X(b) has order type equal to vp

J (b) and supremum = 0.

Proof. Let ρ = vr
J (b) and let (−ε, 0)∩Sb be a stable interval for b. We first prove that

supX(b) = 0. We have vJ (b) = ρvp
J (b) = supα<vp

J (b) ρα. Using the completeness
of R, we consider for each α < vp

J(b) the supremum γα ∈ R of the first ρ(α + 1)
elements of (−ε, 0) ∩ Sb. Since ρ ∈ H and ρ(α + 1) = ρα + ρ, the principal part
(see Fact 3.3) of ρ(α + 1) is ρ. Therefore every sufficiently small final segment of
the support of b|γα has order type ≥ ρ (it can be ρ or ρ + 1). It follows that b|γα

has ordinal value ρ, namely γα ∈ X(b). Since supα γα = 0 we have supX(b) = 0.
This also shows that (−ε, 0) ∩X(b) has limit order type λ. By replacing ε with

a smaller ε′, we can also assume that λ ∈ H. Since α 7→ γα is a strictly increasing
map from vp

J (b) into (−ε, 0) ∩X(b), we have λ ≥ vp
J(b).

To finish the proof it suffices to show the opposite inequality. We write (−ε, 0)∩Sb

as the union (−ε, 0)∩⋃
γ∈X(b) Sb|γ . Now (−ε, 0)∩Sb has order type vJ (b) = ρvp

J(b),
while by Lemma 4.7 the union has order type ≥ ρλ. Thus vp

J(b) ≥ λ.

Lemma 6.9. Let b, c ∈ K((R≤0)). If ρ ∈ H and vJ (c|γ) ≥ ρ for every γ ∈ X(b)
sufficiently close to zero, then vJ (c) ≥ ρvp

J(b).

Proof. We can assume vJ (b) > 1. By Lemma 6.8 the set X(b) has a final segment
of order type vp

J (b). Since the intersection of (−∞, 0) with the support of c is the
union of the supports of the various c|γ , an application of Lemma 4.7 gives ρvp

J (b) as
a lower bound for the order type of every non-empty final segment of Sc ∩ (−∞, 0),
from which we deduce the same lower bound for vJ (c).
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7. Convolution product

Given a subset B of G, we denote by B its closure with respect to the order topol-
ogy of G. For simplicity, in this section we specialize to the case G = (R, +, 0,≤),
although the arguments go through under more general hypothesis.

Lemma 7.1. If B, C are well ordered subsets of R, then B + C = B + C.

Proof. The non-trivial inclusion is ⊆. Let γ be in the closure of B +C. Then there
is a sequence βn + ξn converging to γ with βn ∈ B, ξn ∈ C (n < ω). Since B, C are
well-ordered, by taking a subsequence we can assume βn ≤ βn+1 and ξn ≤ ξn+1 for
every n. This implies that the sequences (βn) and (ξn) are bounded, and therefore
there exist the suprema β = supn βn ∈ B and ξ = supn ξn ∈ C. Hence γ = β + ξ,
and we are done.

Remark 7.2. The lemma does not hold without the assumption that B, C are well
ordered.

Remark 7.3. The lemma fails if R is replaced by the rationals Q.

Given two well-ordered subsets B, C of R and γ ∈ R, it is easy to see that the
intersection of the straight line Lγ = {(x, y) | x + y = γ} with the set of points
B × C ⊆ R2 is finite. We have:

Lemma 7.4. Let B, C be closed and well-ordered subsets of R. Given γ ∈ R, let
δ ≤ γ be sufficiently close to γ. Then for every point (β′, ξ′) ∈ B × C on the line
Lδ there is exactly one point (β, ξ) ∈ B × C on the line Lγ with β′ ≤ β, ξ′ ≤ ξ.
(See Figure 1, where we have displayed the finitely many points of B ×C which lie
on the lines Lγ and Lδ.)
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Figure 1

Proof. Uniqueness: As already remarked, Lγ has only finitely many points in B×C.
If β1 + ξ1 = γ, . . . , βn + ξn = γ are all the solutions of x + y = γ in B ×C, then it
suffices to take γ − δ smaller than the differences between any two βi.

Existence: For a contradiction suppose that there is a sequence (γn | n) converg-
ing to γ from below and for each n a point (βn, ξn) ∈ B × C on the line Lγn such
that there is no point (β, ξ) ∈ B×C on Lγ with βn ≤ β, ξn ≤ ξ. Since B, C are well
ordered, by taking a subsequence we can assume that for each n, βn ≤ βn+1 and
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ξn ≤ ξn+1. Then the suprema β = supn βn and ξ = supn ξn exist and (β, ξ) ∈ B×C
(as B, C are closed), a contradiction.

Lemma 7.5. Let b, c ∈ K((R≤0)) and γ ∈ R≤0.
1. There are only finitely many pairs (β, ξ) ∈ R≤0 × R≤0 with β + ξ = γ and

b|βc|ξ 6≡ 0 mod J .
2. (bc)|γ ≡ ∑

β+ξ=γ b|βc|ξ mod J (convolution formula).

Proof. 1. If b|βc|ξ 6≡ 0 mod J , then β belongs to the closure B of the support B of
b and ξ belongs to the closure C of the support C of c. Point 1 follows from the
fact that B and C are well ordered.

2. By Lemma 7.1 and Remark 6.3 we can assume γ ∈ B + C; otherwise both
sides are ≡ 0 mod J . Let [φ] = 0 if φ = false, [φ] = 1 if φ = true. Lemma 7.4 can
be rephrased as: ∑

(β,ξ)∈B×C

[β + ξ = γ][β′ ≤ β][ξ′ ≤ ξ] = 1(5)

provided β′ + ξ′ = δ with δ ≤ γ sufficiently close to γ. The convolution formula
says that γ is not in the closure of the support of

d = (bc)|γ −
∑

(β,ξ)∈B×C

[β + ξ = γ]b|βc|ξ

So let us take δ ≤ γ sufficiently close to γ and let us show that the coefficient of
tδ in d is zero. Let b =

∑
β bβtβ and c =

∑
γ cξt

ξ.
The coefficient of tδ in (bc)|γ is∑

β′,ξ′
[β′ + ξ′ = δ]bβ′cξ′

The coefficient of tδ in
∑

(β,ξ)∈B×C [β + ξ = γ]b|βc|ξ is equal to∑
(β,ξ)∈B×C

[β + ξ = γ](
∑
β′,ξ′

[β′ + ξ′ = δ][β′ ≤ β][ξ′ ≤ ξ]bβ′cξ′)

Taking the difference, we see that the coefficient of tδ in d is given by∑
β′,ξ′

[β′ + ξ′ = δ](1−
∑

(β,ξ)∈B×C

[β + ξ = γ][β′ ≤ β][ξ′ ≤ ξ])bβ′cξ′

and it is therefore equal to zero by equation (5).

Remark 7.6. By induction one can extend the lemma to more than two factors.
For instance, (abc)|γ ≡ ∑

α,β,ξ[α + β + ξ = γ]a|αb|βc|ξ mod J

Lemma 7.7. Let b, c ∈ K((R≤0)) be such that vp
J (b) ≤ vp

J (c). Let ≡ be the con-
gruence relation modulo J . Then for γ ∈ R<0 sufficiently close to zero:

(bc)|γ ≡ b|γc + bc|γ

+ terms of value < vr
J (b)� vJ (c)

Proof. By the submultiplicative property it suffices to show that if β, ξ ∈ R<0 are
sufficiently close to zero, then vJ (b|β)� vJ (c|ξ) < vr

J (b)� vJ (c). There are ordinals
α1 < vp

J (b), α2 < vp
J (c) such that vJ (b|β) ≤ vr

J (b)α1 and vJ(c|ξ) ≤ vr
J(c)α2. Since
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vp
J(c) ∈ MP, we have α1 � α2 < vp

J (c). Hence vJ (b|β) � vJ (c|ξ) ≤ vr
J(b)α1 �

vr
J(c)α2 < vr

J(b)� vr
J (c)� vp

J(c) = vr
J (b)� vJ(c).

8. The main lemma

Definition 8.1. For α ∈ OR and k < ω, let
⊙k

α = α� . . .�α with k occurrences
of α.

Lemma 8.2. Let b, c ∈ K((R≤0)) be such that vp
J (b) ≤ vp

J(c) and let k > 0.
Suppose that for every γ ∈ X(b) sufficiently close to zero we have

vJ(b|γbk−1c2) =
k−1⊙

vJ(b)� vJ(b|γ)� vJ (c)� vJ (c)

Then:

vJ(bkc) =
k⊙

vJ (b)� vJ (c)

Proof. We write ≡ for congruence modulo the ideal J . Let γ ∈ X(b) be sufficiently
close to zero. Reasoning as in Lemma 7.7 we have

(bkc)|γ ≡ kbk−1b|γc + bkc|γ

+ terms of value <
k−1⊙

vJ(b)� vr
J(b)� vJ (c)

The crucial idea is to multiply the above equation by c, obtaining

c(bkc)|γ ≡ kbk−1b|γc2 + bkcc|γ

+ terms of value <

k−1⊙
vJ (b)� vr

J (b)� vJ(c)� vJ (c)(6)

Suppose for a contradiction that vJ (bkc) <
⊙k vJ(b)� vJ (c). We claim that the

terms of small value of the above equation include also bkcc|γ , namely:

vJ (bkcc|γ) <
k−1⊙

vJ(b)� vr
J (b)� vJ (c)� vJ (c)

To prove the claim we write
⊙k

vJ (b)�vJ (c) = [
⊙k−1

vJ (b)�vr
J (b)�vJ (c)]vp

J (b)
(using vp

J(b) ≤ vp
J(c)). Since ordinal multiplication is continuous in the second

argument (unlike the natural product) and since vJ (bkc) <
⊙k

vJ (b)� vJ(c), there
must be some α1 < vp

J (b) ≤ vp
J(c) such that

vJ(bkc) ≤ [
k−1⊙

vJ (b)� vr
J(b)� vJ(c)]α1.

On the other hand, if γ is sufficiently small, then vJ (c|γ) ≤ vr
J(c)α2 for some

α2 < vp
J(c). Since vp

J(c) ∈ MP, α1 � α2 < vp
J(c). Thus we obtain

vJ(bkcc|γ) ≤ vJ (bkc)� vJ (c|γ)

≤ [
k−1⊙

vJ (b)� vr
J(b)� vJ (c)]α1 � vr

J (c)α2

< [
k−1⊙

vJ (b)� vr
J(b)� vJ (c)]� vr

J(c)� vp
J (c)

=
k−1⊙

vJ (b)� vr
J(b)� vJ (c)� vJ(c)
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The claim is thus proved, and from equation (6) we obtain

c(bkc)|γ ≡ kbk−1b|γc2

+ terms of value <

k−1⊙
vJ (b)� vr

J(b)� vJ(c)� vJ (c)

By our hypothesis vJ (b|γbk−1c2) =
⊙k−1

vJ(b)� vJ (b|γ)� vJ(c) � vJ(c). Since
γ ∈ X(b), vJ (b|γ) = vr

J(b). It then follows that

vJ(c(bkc)|γ) =
k−1⊙

vJ (b)� vr
J (b)� vJ(c)� vJ (c)

By the submultiplicative property, we can now divide by c and conclude that

vJ ((bkc)|γ) ≥
k−1⊙

vJ (b)� vr
J(b)� vJ (c)

Since the above inequality holds for every γ ∈ X(b) sufficiently close to zero, we
obtain by Lemma 6.9:

vJ (bkc) ≥
k−1⊙

vJ(b)� vr
J (b)� vJ (c)� vp

J (b)

=
k⊙

vJ(b)� vJ (c)

The opposite inequality also holds (by the submultiplicative property), and we
are done.

9. Induction

Definition 9.1. A formal expression is an element of the free commutative
monoid generated by {x ∈ K((R≤0)) | vJ (x) > 1}.

Given b0, . . . , bn ∈ {x ∈ K((R≤0)) | vJ (x) > 1} and integers k0, . . . , kn ≥ 1, we
may consider the product bk0

0 · . . . · bkn
n either as an element of K((R≤0)) or as a

formal expression. We will introduce a complexity measure on formal expressions
such that under the hypothesis of Lemma 8.2 plus some additional assumptions the
complexity of b|γbk−1c2 is smaller than that of bkc.

Definition 9.2. Given ordinals α0, . . . , αm, let [α0, . . . , αm] = ωα0 ⊕ . . . ⊕ ωαm .
Note that [α0, . . . , αm] decreases if any αi is replaced by any finite number of
smaller ordinals.

Definition 9.3. Let ≺ be a fixed well ordering on K((R≤0)) (actually a linear
ordering suffices). Given a formal expression w = bk0

0 · . . . · bkn
n with all the bj ’s

distinct, let Y be the set of all the elements of {b0, . . . , bn} of minimal principal
value and let Z ⊆ Y be the set of all the elements of Y of maximal ordinal-value.
If bi is the ≺-least element of Z, then bi will be called the selected factor of w
and the integer ki will be called the selected exponent. We then say that bj

(j ∈ {0, . . . , n}) is a relevant factor if its ordinal-value is bigger than or equal to
the ordinal-value of the selected factor. The complexity of the formal expression
w is defined as the ordinal

ω[α0, . . . , αm] + k

where k is the selected exponent and α0, . . . , αm (m ≤ n) is the sequence of the
ordinal-values of the relevant factors.
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Any formal expression can be reduced to a formal expression in which the bj ’s are
distinct by replacing bk1bk2 with bk1+k2 . The definition of complexity thus extends
to all the formal expressions.

Remark 9.4. We have already noticed (Remark 6.7) that if γ ∈ X(b), then either
vJ(b|γ) = 1 or vp

J (b|γ) ≥ vp
J(b). If γ is sufficiently close to zero we also have

vJ(b|γ) < vJ (b).

Lemma 9.5. Let

w1 = bk0
0 · . . . · bkn

n

be a formal expression. Suppose without loss of generality that b0 is the selected
factor and the elements bi are distinct. If γ ∈ X(b0) is sufficiently close to zero,
then the complexity of w1 is strictly greater than that of

w2 = b
|γ
0 bk0−1

0 b2k1
1 · . . . · b2kn

n

We agree that if k0 − 1 = 0 we omit the factor bk0−1
0 and if vJ(b|γ0 ) = 1 we omit

b
|γ
0 (the possibility vJ(b|γ0 ) = 0 is excluded since γ ∈ X(b0)). Note that we are not

claiming that the displayed factors of w2 are all distinct.

Proof. Let ω[α0, . . . , αm] + k be the complexity of w1 (hence k = k0).
Case 1. Suppose k > 1. By the previous remark b

|γ
0 is neither the selected factor

nor a relevant factor of w2. Hence the selected factor of w2 is b0 and the complexity
of w2 is ω[α0, . . . , αm] + (k − 1).

Case 2. Suppose k = 1. Then w2 = b
|γ
0 b2k1

1 · . . . · b2kn
n . Now, regardless of which

is the selected factor of w2, the complexity of w2 is of the form ω[β0, . . . , βr] + p,
where p ∈ ω and [β0, . . . , βr] < [α0, . . . , αm]. Indeed, [β0, . . . , βr] is obtained from
[α0, . . . , αm] by dropping α0 and replacing it by a finite number of ordinals strictly
less than α0 (because vJ(b|γ0 ) < vJ(b0) and, for every j 6= 0, if vJ (bj) ≥ vJ(b0), then
vJ(bj) was already present in the list α0, . . . , αm). The desired result follows.

Lemma 9.6. Given elements b0, . . . , bn ∈ K((R≤0)), we have:

vJ (bk0
0 · . . . · bkn

n ) =
k0⊙

vJ(b0)� . . .�
kn⊙

vJ(bn).

Proof. We can assume b0, . . . , bn distinct, as otherwise we group together the equal
factors bi by increasing the exponents. If some bi belongs to J both sides are 0.
If some bi have value 1 we can delete it from both sides. So we can assume that
all the elements bi have value > 1. Without loss of generality b0 is the selected
factor. It then follows that for γ ∈ X(b0) sufficiently close to 0, the complexity
of b

|γ
0 bk0−1

0 b2k1
1 · . . . · b2kn

n is strictly smaller than that of bk0
0 · . . . · bkn

n . By in-
duction, vJ (b|γ0 bk0−1

0 b2k1
1 . . . b2kn

n ) =
⊙k0−1

vJ(b0) � vJ (b|γ0 ) � ⊙2k1 vJ (b1) � . . . �⊙2kn vJ (bn). Let c = bk1
1 · . . . · bkn

n . Reasoning as in Case 2 of the proof of Lemma
9.5, the complexity of c is less than that of bk0

0 bk1
1 · . . . · bkn

n . Hence by induction
vJ(c) =

⊙k1 vJ(b1)� . . .�⊙kn vJ(bn). Putting everything together, we find that
vJ(b|γ0 bk0−1

0 c2) =
⊙k0−1 vJ (b0) � vJ(b|γ0 ) � vJ (c) � vJ (c). Thus by Lemma 8.2

vJ(bk0
0 c) =

⊙k0 vJ(b0)� vJ (c), and we are done.

Theorem 9.7. For b, c ∈ K((R≤0)), vJ (bc) = vJ(b)� vJ (c).

Proof. Immediate from the previous lemma.
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Corollary 9.8. J is a prime ideal of K((R≤0)).

Proof. J is the set of all x with vJ(x) = 0. Now vJ(xy) = 0 iff vJ (x) � vJ (y) = 0
iff vJ(x) = 0 or vJ (y) = 0.

Corollary 9.9. Let b, c ∈ K((R≤0)). Then ot(bc) = ot(b) � ot(c) provided there
are ordinals β and ξ with ot(b) = ωβ and ot(c) = ωξ.

Proof. After multiplying by suitable monomials we can reduce to the case b, c /∈ J .
Then ot(b) = vJ (b) = ωβ and ot(c) = vJ (c) = ωξ. By the definition of vJ and
Remark 5.4, ωβ⊕ξ ≥ ot(bc) ≥ vJ (bc). By Theorem 9.7 vJ (bc) = ωβ⊕ξ, and we are
done.

10. Irreducible elements of K((R≤0))

Lemma 10.1. Given 0 6= b ∈ K((R≤0)), the set of ordinals {vJ(b|x) | x ∈ R≤0}
has a maximum.

Proof. Let α be the supremum of {vJ(b|x) | x ∈ R≤0}. If the supremum is not
achieved, then α is a limit ordinal. Moreover α is countable because it is the
supremum of a countable family of countable ordinals (any well-ordered subset of
R is countable). Hence there exists an ω-sequence α0 < α1 < α2 < . . . such
that α = supn αn. Let xn be such that αn = vJ (b|xn). Since the xn range over
a well-ordered set (the closure of the support of b), we can assume by choosing a
subsequence that x0 ≤ x1 ≤ x2 ≤ . . . . Let x = supn xn. Every non-empty final
segment of the support of b|x has order type ≥ αn for every n. Thus vJ (b|x) = α.

Definition 10.2. Given 0 6= b ∈ K((R≤0)), let α = max{vJ (b|x) | x ∈ R≤0}. We
say that x ∈ R≤0 is the critical point of b if x is the smallest real number such
that vJ(b|x) = α. This is well defined by the previous lemma and the fact that
{y | vJ (b|y) 6= 0} is well ordered (is included in the closure of the support of b).

Remark 10.3. If x is the critical point of b, vJ (b|x) ≥ vJ (b).

Lemma 10.4. Let b, c be non-zero elements of K((R≤0)) with critical points x, y
respectively. Then vJ((bc)|x+y) = vJ (b|x)� vJ(c|y).

Proof. We write ≡ for congruence modulo J . By Theorem 9.7, by the choice of x, y
and by Lemma 7.5 we have (bc)|x+y ≡ b|xc|y+ terms of value < vJ (b|x) � vJ(c|y).
The desired result follows.

Theorem 10.5. Suppose that a ∈ K((R≤0)) is not divisible by any monomial tγ

with γ < 0. If the order type of the support of a is either ω or of the form ωωβ

,
then both a and a + 1 are irreducible in K((R≤0)).

Proof. The hypothesis implies 1 < ot(a) = vJ(a) = vJ(a + 1) ∈ MP. We show
that a is irreducible. The argument for a + 1 is the same. Suppose a = bc with
b, c not invertible in K((R≤0)). Then vJ (a) = vJ(b) � vJ (c). Since vJ (a) ∈ MP,
either vJ (b) or vJ (c) must be 1. Suppose vJ(b) = 1. Then vJ (c) = vJ(a) = ρ ∈
MP. Let x, y ∈ R≤0 be the critical points of b, c respectively. Then vJ(a|x+y) =
vJ(b|x) � vJ(c|y) ≥ vJ (b) � vJ(c) = vJ (a). Since vJ (a) = ot(a), for every u < 0
we have vJ(a|u) < vJ (a). Hence x + y = 0, and therefore x = y = 0. On the
other hand, since vJ(b) = 1, the support of b contains 0 as an isolated point. The
support of b must contain some other points, because b is not a unit. So x < 0, a
contradiction.
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As already remarked in the introduction, R can be replaced by G provided G
is archimedean (since then G embeds in R).

11. Series with finite support

Definition 11.1. K[G], the ring of G-polynomials, is defined as the subring of
K((G)) consisting of all the series with finite support. We then define K[G≤0] as
K[G] ∩K((G≤0)).

When G = R we can prove:

Theorem 11.2. Let a be an irreducible element of K[R≤0]. Then a is irreducible
in K((R≤0)).

Proof. Suppose a = bc is a non-trivial factorization in K((R≤0)). Since a has
finite support, vJ (a) ≤ 1. Moreover, since a is irreducible in K[R≤0] we must have
vJ(a) = 1; otherwise a would be divisible by some monomial tγ with γ < 0. Thus
vJ(a) = vJ (b)� vJ (c) = 1, and therefore vJ(b) = vJ (c) = 1. Let x, y be the critical
points of b, c respectively. Suppose for a contradiction that b /∈ K[R≤0]. Then
vJ(b|x) > 1 and x < 0. Hence vJ (a|x+y) = vJ(b|x)� vJ(c|y) > 1, contradicting the
fact that a has finite support.

By Biljacović’s work this implies that t−
√

2 + t−1 +1 is irreducible in K((R≤0)),
as well as any other series with finite support whose exponents are not linearly
dependent over Q.

12. Appendix: reduction to the case G = R
(based on ideas of Gonshor and Mourgues)

We prove the existence of irreducible elements in the ring K((G≤0)), where K
is any field of characteristic zero (not even assumed to be orderable) and G =
(G, +, 0,≤) is any abelian divisible ordered group. In the special case when G = R
(or more generally G is archimedean) this follows from Theorem 10.5.

In his book Gonshor sketches an argument to reduce the general case to the case
G = R. He first proves that in order for a series to be irreducible, the elements
of its support—excluding zero—must belong to the same archimedean class, i.e.
given two non-zero elements of the support, say β and ξ, there is a natural number
n with n|β| > |ξ| and n|ξ| > |β|. He then argues from this fact that the interesting
case is G = R. At the meeting “Model theory of fields” (Durham, July 22–Aug.
1, 1996) I gave a talk about the special case G = R, and I had the opportunity
to speak with M.-H. Mourgues, who explained me how to turn Gonshor’s idea into
a complete proof using the fact that every element of G lies in the set-theoretic
difference of two convex subgroups µ ⊂ Fin of G with archimedean quotient Fin/µ.
The argument which follows is a result of that conversation.

Theorem 12.1. 1. The series
∑

n t−1/n + 1 is irreducible in K((G≤0)).
2. More generally, let Q be an archimedean subgroup of G and suppose that

a ∈ K((Q<0)) ⊂ K((G≤0)) has support of order type ω or ωωα

(α an ordinal)
and a is not divisible by any monomial tγ with γ ∈ Q<0. Then a + 1 is
irreducible in K((G≤0)).

Proof. We know by Theorem 10.5 that a and a+1 are irreducible in K((Q≤0)). Fix
a positive element of Q and call it 1. Let Fin ⊆ G be the intersection of all convex
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subgroups of G containing 1 (hence containing Q). We will be done if we show that
a + 1 is irreducible in K((Fin≤0)). In fact if we have a non-trivial factorization
a + 1 = bc in K(G≤0), then v(a + 1) = v(b) + v(c), hence v(a + 1) < v(b) < 0 and
v(a + 1) < v(c) < 0 (v is the natural valuation into G, not the ordinal value). So
by convexity of Fin the supports of b, c are included in Fin≤0.

The problem has been reduced to showing that a+1 is irreducible in K((Fin≤0)).
Let µ ⊆ Fin be the union of all the convex subgroups of G not containing 1 (hence
Q ∩ µ = {0}). Then Q is contained in the set-theoretic difference Fin \ µ. The
quotient Fin/µ is archimedean, because it contains no non-trivial convex subgroups.
Since µ is convex Fin/µ has a natural induced order. In a divisible abelian group
every subgroup is a direct factor. Thus we have:

Fin = H ⊕ µ

where H ' Fin/µ is archimedean and it can be chosen so that Q ⊆ H because
Q∩µ = {0} and G is divisible. (See [Baer 40] or [Fuchs 70, vol. 1, Theorem 21.2].)
The ordering on H⊕µ (induced by G) is lexicographic: h+m < h′+m′ if and only
if either h < h′ in H or h = h′ and m < m′ in µ. It follows that the non-positive
elements of Fin are given by:

Fin≤0 = (H<0 ⊕ µ) ∪ µ≤0

This induces a canonical identification

K((Fin≤0)) = K((µ))((H<0)) ⊕K((µ≤0))

⊂ K((µ))((H≤0))

Indeed, a series
∑

β bβtβ ∈ K((Fin≤0)) can be also thought of as a series∑
ξ∈H cξt

ξ where cξ ∈ K((µ)) is given by
∑

β∈M(ξ) bβtβ−ξ with M(ξ) := {β | β−ξ ∈
µ}.

Since µ is a subgroup of G, F := K((µ)) is a field and we have

K((Q≤0)) ⊆ F ((H≤0))

By hypothesis a ∈ K((Q≤0)) has order type ω or ωωα

and a is not divisible by
any monomial tγ with γ < 0. This remains true even if we allow γ to range over
H , since H is archimedean. So both assumptions on a remain true if we see a as
an element of F ((H≤0)). By Theorem 10.5 (and the archimedean property of H)
a and a + 1 are irreducible in the ring F ((H≤0)) = K((µ))((H≤0)).

It does not yet follow that a + 1 is irreducible in the smaller ring K((Fin≤0)) =
K((µ))((H<0)) ⊕ K((µ≤0)), because the units of the two rings are different: the
units of F ((H≤0)) are the elements of F = K((µ)), while those of K((Fin≤0))
are the elements of K. What we can conclude however is that if a + 1 = bc is a
non-trivial factorization in K((Fin≤0)) (where “non-trivial” means b, c /∈ K), then
either b or c is a unit of F ((H≤0)), namely it belongs to F = K((µ)). Assume,
without loss of generality, that b ∈ K((µ)). Then actually b ∈ K((µ≤0)). We have:

(a + 1)b−1 = ab−1 + b−1 = c ∈ K((Fin≤0))

Since K((µ)) is a field, b−1 ∈ K((µ)). Since the units of K((µ)) are the elements
of K and b ∈ K((µ≤0)) was assumed not in K, it follows that the support of
b−1 contains some strictly positive element. We reach a contradiction by showing
that also the support of ab−1 + b−1 contains some strictly positive element. To
see this it suffices to observe that the support of ab−1 is disjoint from that of b−1,
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since the former is contained in Q<0 + µ while the latter is contained in µ (and
Q ∩ µ = {0}).

Remark 12.2. In the above theorem G can be allowed to be a proper class. So
Conway’s series

∑
n t−1/n + 1 is irreducible even in the ring of omnific integers.

13. Concluding remarks

• We left open the question of whether the irreducible elements of K((G≤0))
generate prime ideals.

• Conway’s book asks whether in K((G≤0)) (actually in the ring of omnific
integers) any two factorizations have a common refinement. This would guar-
antee that factorizations are unique when they exist.

• A related question, which arose during a conversation with Franz-Victor and
Salma Kuhlmann, is whether K((G≤0))/J is a unique factorization domain.
The existence of the ordinal value map vJ immediately ensures that there are
no infinite ascending chains of principal ideals, so every element is a product
of irreducible elements.

• Although for the sake of proving the existence of irreducible elements one can
reduce to the case G = R, it is still of interest to determine whether the
ordinal-value map vJ : K((G≤0)) → (OR,�) has the multiplicative property
even in the case when G is an arbitrary ordered abelian divisible group. This
would imply in particular that the ideal J ⊆ K((G≤0)) is prime. In our proofs
the assumption G = R was only used in two places: in the results of section
7—namely the proof of the “convolution formula”—and in Lemma 6.8.

• It may be of interest to develop a general theory of “surreal valuations” (val-
uations inside the field of surreal numbers).

• Does every exponential integer part (in the sense of Ressayre) of a real closed
exponential field contain unboundedly many irreducible elements? A positive
answer would give a completely new proof of the infinity of primes even for
the standard integers. For a positive answer one could try to show that our
criterion for irreducibility necessarily applies in the presence of exponentia-
tion. For a negative answer one should find an analogue of the fact that the
real closed field of the Puiseux series with real coefficients has an integer part
without infinite irreducible elements. A general discussion of real closed ex-
ponential fields can be found in the papers of Ressayre and in the papers of
S. Kuhlmann and F.-V. Kuhlmann cited in the bibliography.

• In connection with the previous question it would be interesting to axiomatize
—as already observed by Ressayre—the class of all exponential integer parts
of real closed fields. One can certainly add to the axioms of open induction
some obvious axioms for exponentiation, but it is unclear whether further
axioms are needed.

• Which are the diophantine equations solvable in the ring of omnific interger?
And those solvable in the smallest ordered ring containing (OR,⊕,�,≤)?

• What is the first order theory of K((G≤0))? Does it change with G? If so,
then what is the theory of the whole class of such structures? Does it have
the joint embedding property? (By the work of [Otero 93-2] the theory open
induction plus the normality axiom scheme does.)

• Besides K((G≤0)), it may be interesting to study the ring K((G≥0)).
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• Up to what extent does the ordinal value depend on the power series repre-
sentation, rather than on the ring structure of K((G≤0))? Can we extend the
notion of ordinal value to more general rings?
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