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Abstract. We propose constructive criteria of divisibility
and associativity of matrices over commutative elementary divisor
ring without zero divisors. On this base, the explicit form for all
non-associated divisors which have prescribed canonical diagonal
forms (c.d.f.) is indicated. A relation between c.d.f. for matrix
and c.d.f. for its divisors is established. The uniqueness theorem
is proved.

One of the most important problems in the matrix theory is the prob-
lem of factorization of a matrices over rings, classification and investiga-
tion of the structure of its divisors. Due to practical application, the main
consideration was given to matrices over complex number field. In partic-
ular, the article of P. Kazimirskij [1,2] and its followers (V. Petrychkovych
[3], V. Zelisko [4,5], V. Shchedryk [5,6] and many others), P. Lancaster,
I.Gohberg, L. Rodman [7], A. Malyshev [8], Langer H. [9] deal with the
given issue. The valuable problem contribution of these authors concern
the existence and description of regular divisors of a matrix polynomials.
Research activity in this area has been continued until now. The recent
papers of T. Laffei [10,11], I. Krupnyk [12] and other deal primarily with
the conditions of a matrix polynomials decomposition into the product
of linear multipliers. Later, the investigation of a matrix polynomials,
was extended to some other classes of rings, in particular, the polynomial
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ring in n variables [13], the ring of integer [14], principal ideal rings [15],
dedekind rings [16].

1. The structure of matrices divisors

Let A be a matrix over a commutative elementary divisor ring R [17]
without zero divisors. Matrices A and A1 are called right associate (left

associate, written A
l
∼ A1) if A1 = AU (A1 = UA) for some invertible

matrix U . Let B be a left divisor of the matrix A, i.e., A = BC. It is
obvious that all matrices which are right associate to the matrix B are
also left divisors of the matrix A. Hence, it is natural to describe the left
divisors of the matrix A up to right associates. In this paper we have
proposed the solution of this problem. As corollary we have obtained
the description of monic divisors of matrix polynomials and solution to
unilateral matrix equations over fields.

Let A,B be n × n matrices over R. There are invertible matrices
PA, PB, QA, QB such that

PAAQA = diag("1, . . . , "k, 0, . . . , 0) = Ψ,

PBBQB = diag('1, . . . , 't, 0, . . . , 0) = Φ,

where "k ∕= 0, 't ∕= 0, "i∣"i+1, 'j ∣'j+1, i = 1, . . . , k − 1, j = 1, . . . , t − 1.
The matrices Ψ,Φ are called canonical diagonal forms (c.d.f.) of the
matrices A and B, respectively. Consider the sets of matrices

GΦ = {H ∈ GLn(R)∣HΦ = ΦK for some K ∈ GLn(R)},

L(Ψ,Φ) = {L ∈ GLn(R)∣LΨ = ΦS for some S ∈ Mn(R)}.

A trivial verification shows that these sets have the following properties:

Proposition 1. The set GΦ is a multiplicative group.

Proposition 2. GΦL(Ψ,Φ) = L(Ψ,Φ).

Proposition 3. If H ∈ GΨ then L(Ψ,Φ)H = L(Ψ,Φ).

The following results show that these sets play the main role in de-
scription of matrix divisors.

Theorem 1. The matrix B is a left divisor of the matrix A , i.e.,
A = BC if and only if PBP

−
1

A ∈ L(Ψ,Φ).
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Proof. Necessity. Note that A = P−1
A ΨQ−1

A , B = P−1
B ΦQ−1

B we have

PBA = PB(BC) = (PBB)C = (ΦQ−1
B )C = Φ(Q−1

B C).

On the other hand,

PBA = (PBP
−1
A )(PAA) = (PBP

−1
A )ΨQ−1

A .

Hence,

(PBP
−1
A )Ψ = ΦS,

where S = Q−1
B CQA. This means that PBP

−
1

A ∈ L(Ψ,Φ).

Sufficiency. Since

PBA = PB(P
−1
A ΨQ−1

A ) = (PBP
−1
A )ΨQ−1

A = ΦSQ−1
A ,

we have

A = P−1
B ΦSQ−1

A = (P−1
B ΦQ−1

B )(QBSQ
−1
A ) = BC,

where C = QBSQ
−1
A .

Corollary 1. All left divisors of the matrix A = P−1
A ΨQ−1

A with c.d.f.
Φ have the form (LPA)

−1ΦQ, where L ∈ L(Ψ,Φ), Q ∈ GLn(R).

Corollary 2. The matrices A = P−1
A ΦQ−1

A , B = P−1
B ΦQ−1

B are right
associate if and only if PBP

−1
A ∈ GΦ, i.e., PB = HPA, where H ∈

GΦ.

Corollary 3. If PAAQA = P ′

AAQ
′

A = Ψ, then P ′

A = HPA, where
H ∈ GΨ.

Let us denote by W(Ψ,Φ) the set of representatives of the left con-
jugate class of the set L(Ψ,Φ) by the group GΦ. Corollaries 1 and 2 can
be summarized in the following statement:

Theorem 2. The set (W(Ψ,Φ)PA)
−1Φ consists of all left up to right

associate divisors of the matrix A which have c.d.f. Φ.

Theorem 3. Let PAAQA = P ′

AAQ
′

A = Ψ and B ∈ (W(Ψ,Φ)P ′

A)
−1Φ.

Then the set (W(Ψ,Φ)PA)
−1Φ contain a matrix which are right associate

to the matrix B.
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Proof. Let B = (WP ′

A)
−1Φ, where W ∈ W(Ψ,Φ). By Corollary 3

P ′

A = SPA, where S ∈ GΨ. Therefore B = (WSPA)
−1Φ. According to

Proposition 3 the matrix WS belong to the set L(Ψ,Φ). Consequently,
WS ∈ GΦW1, where W1 ∈ W(Ψ,Φ). It follows that there exist matrix
H ∈ GΦ, such that WS = HW1. Hence

B = (WP ′

A)
−1Φ = (WSPA)

−1Φ = (HW1PA)
−1Φ =

= (W1PA)
−1H−1Φ = (W1PA)

−1ΦK−1 = B1K
−1,

where B1 ∈ (W(Ψ,Φ)PA)
−1Φ,K−1 ∈ GLn(R).

Let �ij(L) denote the greatest common divisor of matrix entries

∥
∥
∥
∥
∥
∥

li1 . . . lij
. . . . . . . . .
ln1 . . . lnj

∥
∥
∥
∥
∥
∥

,

which are submatrix of the matrix L =
∥
∥ lij

∥
∥n

1
.

Lemma 1. detL = �ii(L)li, li ∈ R, i = 1, . . . , n.

Proof. Since �ii(L) is a divisor of all minors of maximal order of the
matrix

∥
∥
∥
∥
∥
∥

li1 . . . lin
. . . . . . . . .
ln1 . . . lnn

∥
∥
∥
∥
∥
∥

,

i = 1, . . . , n, the proof is immediate.

Corollary 4. If L is an invertible matrix then �ii(L) ∈ U(R), i =
1, . . . , n.

Now, let us establish the relation between c.d.f. of the matrices A
and B. It is well known, that Φ divides Ψ provided R is a principal ideal
ring [18] or an adequate ring [19]. The following theorem asserts that this
statement is still true provided R is an elementary divisor ring.

Theorem 4. The matrix A = P−1
A ΨQ−1

A , where Ψ = diag("1, . . . , "k, 0, . . . , 0),
has a divisor B with c.d.f. Φ = diag('1, . . . , 't, 0, . . . , 0), if and only if
Φ divide Ψ.
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Proof. Necessity. Let A = BC. By Theorem 1, LΨ = ΦS, where L =
PBP

−1
A =

∥
∥ lij

∥
∥n

1
, S =

∥
∥ sij

∥
∥n

1
. Therefore

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

"1l11 . . . "kl1k 0 . . . 0
...

...
...

...
"1lt1 . . . "kltk 0 . . . 0

"1lt+1.1 . . . "klt+1.k 0 . . . 0
...

...
...

...
"1ln1 . . . "klnk 0 . . . 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

'1s11 . . . '1s1n
...

...
'tst1 . . . 'tstn
0 . . . 0
...

...
0 . . . 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1)

It follows that ∥
∥
∥
∥
∥
∥

lt+1.1 . . . lt+1.k

. . . . . . . . .
ln1 . . . lnk

∥
∥
∥
∥
∥
∥

= 0.

Applying Corollary 4 we conclude that the element lt+1.k lies below the
main diagonal, i.e., t + 1 > k. Hence, t ≥ k. From (1) we conclude
that 'i∣"jlij , i = 1, . . . , t, j = 1, . . . , k. Consequently, 'i

('i,"j)
∣

"j
('i,"j)

lij . It

follows that 'i

('i,"j)
∣lij , i.e., lij = fijl

′

ij , where fij =
'i

('i,"j)
. Therefore the

matrix L has the form

L =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

'1

('1,"1)
l′11 . . . '1

('1,"k)
l′1k l1.k+1 . . . l1n

...
...

...
...

't

('t,"1)
l′t1 . . . 't

('t,"k)
l′tk lt.k+1 . . . ltn

0 . . . 0 lt+1.k+1 . . . lt+1.n
...

...
...

...
0 . . . 0 ln.k+1 . . . lnn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (2)

According to

fi+r.j−l = fij

(
'i+r,

'i+r

'i
"j
)

('i+r, "j−l)
, l < j,

we have fij ∣�ij(L). By Corollary 4, fii =
'i

('i,"i)
∈ U(R), i = 1, . . . , k. It

follows that 'i∣"i, i = 1, . . . , k, hence, Φ∣Ψ.

Sufficiency is obvious.

Therefore decomposition procedure of the matrix A falls naturally
into two steps. At first we decompose the c.d.f. of the matrix A into
two factors: Ψ = ΦΔ, where Φ = diag('1, . . . , 't, 0 . . . , 0), 'i∣'i+1, i =
1, . . . , t − 1. Secondly, we seek divisors of the matrix A with prescribed
c.d.f. Φ.
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Corollary 5. The set L(Ψ,Φ) consists of all invertible matrices of the
form

L =

∥
∥
∥
∥
∥
∥

L1 ∗
L2 ∗
0 ∗

∥
∥
∥
∥
∥
∥

, (3)

where

L1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

l11 l12 . . . l1.k−1 l1k
'2

('2,"1)
l21 l22 . . . l2.k−1 l2k

. . . . . . . . . . . . . . .
'k

('k,"1)
lk1

'k

('k,"2)
lk2 . . . 'k

('k,"k−1)
lk.k−1 lkk

∥
∥
∥
∥
∥
∥
∥
∥
∥

, (4)

L2 =

∥
∥
∥
∥
∥
∥
∥

'k+1

('k+1,"1)
lk+1.1 . . .

'k+1

('k+1,"k)
lk+1.k

. . . . . . . . .
't

('t,"1)
lt1 . . . 't

('t,"k)
ltk

∥
∥
∥
∥
∥
∥
∥

,

lij ∈ R.

Proof. On account of the proof of Theorem 4 any matrix L from L(Ψ,Φ)
has form (2). Since 'i

('i,"i+j)
∈ U(R), j = 0, . . . , k − i, we see that the

elements li.i+j have no restrictions. Hence, the matrix L has form (3).
Conversely, suppose that the matrix L has form (3). An easy compu-

tation shows that LΨ = ΦS, where

S =

∥
∥
∥
∥
∥
∥

M1 0

M2 0

0 0

∥
∥
∥
∥
∥
∥

,

M1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

"1
'1
l11

"2
'1
l12 . . .

"k−1

'1
l1.k−1

"k
'1
l1k

"1
('2,"1)

l21
"2
'2
l22 . . .

"k−1

'2
l2.k−1

"k
'2
l2k

. . . . . . . . . . . . . . .
"1

('k,"1)
lk1 . . . . . .

"k−1

('k,"k−1)
lk.k−1

"k
'k

lkk

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

M2 =

∥
∥
∥
∥
∥
∥
∥

"1
('k+1,"1)

lk+1.1 . . . "k
('k+1,"k)

lk+1.k

. . . . . . . . .
"1

('t,"1)
lt1 . . . "k

('t,"k)
ltk

∥
∥
∥
∥
∥
∥
∥

.

Corollary 6. The group GΦ consists of all invertible matrices of the
form

H =

∥
∥
∥
∥

H1 ∗
0 N

∥
∥
∥
∥
,



V. Shchedryk 85

where

H1 =

∥
∥
∥
∥
∥
∥
∥
∥

ℎ11 ℎ12 . . . ℎ1.t−1 ℎ1t
'2

'1
ℎ21 ℎ22 . . . ℎ2.t−1 ℎ2t
. . . . . . . . . . . . . . .

't

'1
ℎt1

't

'2
ℎt2 . . . 't

't−1
ℎt.t−1 ℎtt

∥
∥
∥
∥
∥
∥
∥
∥

,

N ∈ GLn−t(R).

We can now rephrase Theorem 1 as follows.

Theorem 5. The matrix B = P−1
B ΦQ−1

B is the left divisor of the matrix
A = P−1

A ΨQ−1
A if and only if the matrix PBP

−1
A has form (3).

Theorem 6. The matrix A has a unique up to associate divisor with
c.d.f.
Φ = diag('1, . . . , 't, 0, . . . , 0) if and only if one of following three cases
holds:

1) k = t = n =⇒ ('n, "j) = 'j, j = 1, . . . , n− 1 ;
2) k < n, t = n =⇒ 'k+1 = 'k+2 = . . . = 'n, and ('n, "j) = 'j,

j = 1, . . . , k;
3) k, t < n =⇒ k = t, and ('k, "j) = 'j, j = 1, . . . , k − 1.

Proof. We follow the notations of Corollaries 5 and 6. According to
Theorem 2 the matrix A has a unique up to associate divisor with c.d.f.
Φ if and only if W(Ψ,Φ) = {E}, i.e., L(Ψ,Φ) = GΦ.

Let k = t = n. The equality of these sets is equivalent to L1 = H1.
Therefore ('i, "j) = 'j , i = 2, . . . , n, j = 1, . . . , n− 1, i > j. Specifically,
('n, "j) = 'j , j = 1, . . . , n− 1.

Conversely, if
(
'n

'j
,
"j
'j

)

= 1, j = 1, . . . , n− 1, we have
(

'i

'j
,
"j
'j

)

= 1,

i = j + 1, . . . , n, so that

('i, "j) = 'j

(
'i

'j
,
"j
'j

)

= 'j .

Case 2. The equality of the sets L(Ψ,Φ) and GΦ is equivalent to

H1 =

∥
∥
∥
∥

L1 ∗
L2 ∗

∥
∥
∥
∥
.

This is equivalent to

'i

'j
= 1, i = k + 2, k + 3, . . . , n, j = k + 1, k + 2, . . . , n− 1, i > j. (5)

and
('i, "j) = 'j , i = 2, . . . , n, j = 1, . . . , k, i > j. (6)
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Specifically,
'k+2

'k+1
=

'k+3

'k+2
= ⋅ ⋅ ⋅ =

'n

'n−1
= 1.

Hence,

'k+1 = 'k+2 = . . . = 'n. (7)

Having noticed
'p

'q
=

'p

'p−1

'p−1

'p−2
⋅ ⋅ ⋅

'q+1

'q
,

where p > q, we conclude that equalities (5) and (7) are equivalent. In
the same manner as above we can see that ii) and (6) are equivalent.

Now consider Case 3. Thus we get

∥
∥
∥
∥
∥
∥

L1 ∗
L2 ∗
0 ∗

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥

H1 ∗
0 N

∥
∥
∥
∥
.

The sizes of zero submatrices are (n− t)× k and (n− t)× t hence, k = t.
It follows that the matrix L2 is empty. Furthermore the analysis similar
to above shows that ('k, "j) = 'j , j = 1, . . . , k − 1.

This result generalizes the known results of Z. Borevich [15], V. Zelisko
[4] and V. Petrychkovych [3].

2. Finding the set W(Ψ,Φ)

This part of our paper is devoted to the study of set W(Ψ,Φ), where A
is a nonsingular matrix.

Let us denote by K(f) the set of representatives of the conjugate
classes of R/Rf, f ∈ R. Let V(Ψ,Φ) denote the set of lower unitriangular
matrices of the form

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 . . . 0 0
'2

('2,"1)
k21 1 . . . 0 0

. . . . . . . . . . . . . . .
'n

('n,"1)
kn1

'n

('n,"2)
kn2 . . . 'n

('n,"n−1)
kn.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

where kij ∈ K
(
('i,"j)

'j

)

, i = 2, . . . , n, j = 1, . . . , n−1, i > j. For the first

time in the case R = ℂ[x] these matrices were introduced by Kazimirskij
P.S. [1,2].

Proposition 4. V(Ψ,Φ) ⊆ W(Ψ,Φ).
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Proof. Let V, V1 be matrices from V(Ψ,Φ) with the elements fijvij ,
fijuij , respectively, where fij = 'i

('i,"j)
, i > j, and let HV = V1, where

H ∈ GΦ. The assertion follows if we prove that V = V1 . It is obvious
that the matrix H is also a lower unitriangular matrix with the elements
'i

'j
ℎij , i > j. We have H = V1V

−1. Putting n = 2, we get

f21u21 − f21v21 =
'2

'1
ℎ21.

Notice that
'2

'1
= f21

('2, "1)

'1
,

thus

u21 − v21 =
('2, "1)

'1
ℎ21.

Hence,

u21 ≡ v21

(

mod
('2, "1)

'1

)

.

This means that u21 = v21, so V = V1.

Suppose that the assumption holds for the matrices of order n − 1,
we will prove it for n. The equality HV = V1 implies that the equalities

H ′V ′ =

∥
∥
∥
∥
∥
∥
∥
∥

1 0
'2

'1
ℎ21 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
'n−1

'1
ℎn−1.1

'n−1

'2
ℎn−1.2 . . . 'n−1

'n−2
ℎn−1.n−2 1

∥
∥
∥
∥
∥
∥
∥
∥

×

×

∥
∥
∥
∥
∥
∥
∥
∥

1 0
f21v21 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

fn−1.1vn−1.1 fn−1.2vn−1.2 . . . fn−1.n−2vn−1.n−2 1

∥
∥
∥
∥
∥
∥
∥
∥

=

=

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0
f21u21 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

fn−1.1un−1.1 fn−1.2un−1.2 . . . fn−1.n−2un−1.n−2 1

∥
∥
∥
∥
∥
∥
∥
∥

= V ′

1 ,

and

H ′′V ′′ =

∥
∥
∥
∥
∥
∥
∥
∥

1 0
'3

'2
ℎ21 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
'n

'2
ℎn2

'n

'3
ℎn3 . . . 'n

'n−1
ℎn.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥

×
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×

∥
∥
∥
∥
∥
∥
∥
∥

1 0
f32v32 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

fn2vn2 fn3vn3 . . . fn.n−1vn.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥

=

=

∥
∥
∥
∥
∥
∥
∥
∥

1 0
f32u32 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

fn2un2 fn3un3 . . . fn.n−1un.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥

= V ′′

1

hold. Since H ′ ∈ Gdiag('1,...,'n−1) and V ′, V ′

1 ∈ V(diag("1, . . . , "n−1),
diag('1, . . . , 'n−1)), by the induction hypothesis, V ′ = V ′

1 . Analogously,
H ′′ ∈ Gdiag('2,...,'n) and V ′′, V ′′

1 ∈ V(diag("2, . . . , "n), diag('2, . . . , 'n))
implies V ′′ = V ′′

1 . It follows that the matrices V, V1 differ from each other
by the entry (n, 1) at most. Hence,

V1V
−1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0
0 1
...

. . .

0 0 1
sn1 0 . . . 0 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

where sn1 = fn1(un1 − vn1). Thus,

un1 ≡ vn1

(

mod
('n, "1)

'1

)

.

This means that un1 = vn1. Consequently, V = V1 and the proof is
complete.

Let 2 ≤ j1 < j2 ⋅ ⋅ ⋅ < jg ≤ n the set of all indices such that 'i ∕= 'i−1,
i = j1, j2, . . . , jg.

Theorem 7. The sets V(Ψ,Φ) and W(Ψ,Φ) coincide if and only if
any divisor of the element 'i

'i−1
has a common divisor with the element

'i

('i,"i−1)
, i = j1, j2, . . . , jg.

In order to prove this theorem we establish a series of facts which
present interest in their own right.

Lemma 2. Let S be an n×m matrix and Φi = diag
(

'i

'1
, . . . , 'i

'i−1
, 1, . . . , 1
︸ ︷︷ ︸

n−i+1

)

,

i = 2, . . . , n. If H ∈ GΦ then ΦiHS
l
∼ ΦiS, i = 2, . . . , n.
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Proof. Since the j-th column of the matrix H has the form

ℎj =

∥
∥
∥
∥
ℎ1j ⋅ ⋅ ⋅ ℎjj

'j+1

'j
ℎj+1.j ⋅ ⋅ ⋅

'n

'j
ℎnj

∥
∥
∥
∥

T

, j = 1, . . . , n− 1,

we obtain

Φiℎj =

∥
∥
∥
∥

'i

'1
ℎ1j ⋅ ⋅ ⋅

'i

'j−1
ℎj−1.j

'i

'j
ℎjj

'i

'j
ℎj+1.j ⋅ ⋅ ⋅

⋅ ⋅ ⋅
'i

'j
ℎij

'i+1

'j
ℎi+1.j ⋅ ⋅ ⋅

'n

'j
ℎnj

∥
∥
∥
∥

T

=

=
'i

'j

∥
∥
∥
∥

'j

'1
ℎ1j ⋅ ⋅ ⋅

'j

'j−1
ℎj−1.j ℎjj ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ℎij
'i+1

'i
ℎi+1.j ⋅ ⋅ ⋅

'n

'i
ℎnj

∥
∥
∥
∥

T

,

i = 2, . . . , n, i > j. It follows that

ΦiH = KiΦi, (8)

where the matrix Ki is the quotient of dividing ΦiH by Φi. Since detΦi ∕=
0 and H ∈ GLn(R), (8) shows that Ki ∈ GLn(R), therefore ΦiHS =

KiΦiS. Consequently, one has ΦiS
l
∼ ΦiHS, i = 2, . . . , n.

Lemma 3. Let L be an n× n invertible matrix of form (4). Then
(

'i

('i, "i−1)
, lij , li+1.j , . . . , lnj

)

= 1, i = 2, . . . , n, j = i, i+ 1, . . . , n.

Proof. Suppose, contrary to our claim, that
(

'i

('i, "i−1)
, lij , li+1.j , . . . , lnj

)

= �ij ∕= 1.

Let us consider the submatrix

Lij =

∥
∥
∥
∥
∥
∥
∥

'i

('i,"1)
li1 . . . 'i

('i,"i−1)
li.i−1 lij

. . . . . . . . . . . .
'n

('n,"1)
ln1 . . . 'n

('n,"i−1)
ln.i−1 lnj

∥
∥
∥
∥
∥
∥
∥

of the matrix L. Since 'i

('i,"i−1)

∣
∣
∣

'k

('k,"s)
, k = i, i+1, . . . , n, s = 1, . . . , i−1,

we have �ij ∣Lij . By Lemma 1, �ij ∣ detL. This contradicts to the fact that
L is an invertible matrix.
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Lemma 4. Let S be a lower unitriangular matrix from L(Ψ,Φ). Then
there is a matrix H ∈ GΦ such that HS ∈ V(Ψ,Φ).

Proof. Let S,H0 be lower unitriangular matrices with elements 'i

('i,"j)
sij ,

'i

'j
ℎij , respectively, where ℎij are parameters, i = 2, . . . , n, j = 1, . . . , n−

1, i > j. If n = 2, then

H0S =

∥
∥
∥
∥

1 0
'2

'1
ℎ21 1

∥
∥
∥
∥

∥
∥
∥
∥

1 0
'2

('2,"1)
s21 1

∥
∥
∥
∥
=

=

∥
∥
∥
∥
∥

1 0
'2

('2,"1)

(
('2,"1)

'1
ℎ21 + s21

)

1

∥
∥
∥
∥
∥
= S1.

Let s21 ≡ k21

(

mod ('2,"1)
'1

)

, where k21 ∈ K
(
('2,"1)

'1

)

. It follows that

k21 = s21 +
('2,"1)

'1
r21 for some r21 ∈ R. Setting ℎ21 = r21, we obtain

S1 ∈ V(Ψ,Φ).
Suppose that the assumption holds for the matrices of the order n−1,

we will prove it for n. The matrix H0S is also a lower unitriangular matrix
with the elements dij , i > j. We have

dnj =

∥
∥
∥
∥

'n

'1
ℎn1 ⋅ ⋅ ⋅

'n

'n−1
ℎn.n−1 1

∥
∥
∥
∥
×

×

∥
∥
∥
∥
∥
∥

0 . . . 0
︸ ︷︷ ︸

j−1

1
'j+1

('j+1, "j)
sj+1.j . . .

'n

('n, "j)
snj

∥
∥
∥
∥
∥
∥

T

=

=
'n

'j
ℎnj +

'n

('j+1, "j)
ℎn.j+1sj+1.j + ⋅ ⋅ ⋅

+
'n

('n−1, "j)
ℎn.n−1sn−1.j +

'n

('n, "j)
snj =

=
'n

('n, "j)

(
('n, "j)

'j
ℎnj +

('n, "j)

('j+1, "j)
ℎn.j+1sj+1.j + ⋅ ⋅ ⋅

+
('n, "j)

('n−1, "j)
ℎn.n−1sn−1.j + snj

)

,

j = 1, . . . , n−1. Let j = n−1 and sn.n−1 ≡ kn.n−1

(

mod ('n,"n−1)
'n−1

)

, where

kn.n−1 ∈ K
(
('n,"n−1)

'n−1

)

. This gives kn.n−1 = sn.n−1 +
('n,"n−1)

'n−1
rn.n−1 for
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some rn.n−1 ∈ R. We put ℎn.n−1 = rn.n−1. Set j = n− 2 and

sn.n−2 +
('n, "n−2)

('n−1, "n−2)
rn.n−1sn−1.n−2 ≡ kn.n−2

(

mod
('n, "n−2)

'n−2

)

,

for some kn.n−2 ∈ K
(
('n,"n−2)

'n−2

)

. Then there exists rn.n−2 ∈ R such that

kn.n−2 = sn.n−2 +
('n, "n−2)

('n−1, "n−2)
rn.n−1sn−1.n−2 +

('n, "n−2)

'n−2
rn.n−2.

We set ℎn.n−2 = rn.n−2. We continue in this fashion obtaining the lower
unitriangular matrix

H1 =

∥
∥
∥
∥

En−1 0

ℎ 1

∥
∥
∥
∥
,

where En−1 is the identity (n− 1)× (n− 1) matrix,

ℎ =

∥
∥
∥
∥

'n

'1
rn1 . . .

'n

'n−1
rn.n−1

∥
∥
∥
∥
,

such that

H1S =

∥
∥
∥
∥

S′
0

g 1

∥
∥
∥
∥
,

where S′ is a lower unitriangular matrix from L(diag("1, . . . , "n−1),
diag('1, . . . , 'n−1)),

g =

∥
∥
∥
∥

'n

('n, "1)
kn1 . . .

'n

('n, "n−1)
kn.n−1

∥
∥
∥
∥
,

knj ∈ K
(
('n,"j)

'j

)

, j = 1, . . . , n − 1. Thus, by the induction hypothesis,

there exists H ′ ∈ Gdiag('1,...,'n−1) such that H ′S′ ∈ V(diag("1, . . . , "n−1),
diag('1, . . . , 'n−1)). Hence, (H ′⊕1)H1S ∈ V(Ψ,Φ), and this is precisely
the assertion of the Lemma.

We proceed to the proof of Theorem 7.

Proof. Necessity. Let �i be a non-trivial divisor of 'i

'i−1
, i1 ≤ i ≤ ig.

Suppose, contrary to our claim, that
(

'i

('i,"i−1)
, �i

)

= 1. Then there exist

u, v ∈ R such that u 'i

('i,"i−1)
+ v�i = 1. Consider the matrix

Li = Ei−2 ⊕

∥
∥
∥
∥

v −u
'i

('i,"i−1)
�i

∥
∥
∥
∥
⊕ En−i.
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It is obvious that Li ∈ L(Ψ,Φ). Denote by Si the matrix consisting of
last n− i+ 1 columns of the matrix Li. It is easy to check that

diag

(
'i

'1
, ⋅ ⋅ ⋅ ,

'i

'i−1
, 1, . . . , 1

)

Si = ΦiSi
l
∼

∥
∥
∥
∥

0

�i ⊕ En−i

∥
∥
∥
∥
.

On the other hand, if M ∈ V(Ψ,Φ), then

ΦiMi
l
∼

∥
∥
∥
∥

0

En−i+1

∥
∥
∥
∥
,

where Mi is a matrix, which consists of the last n − i + 1 columns of a
matrix M . We conclude from Lemma 2 that V(Ψ,Φ) does not contain
the representative of the conjugate class GΦLi. This contradicts the fact
that V(Ψ,Φ) = W(Ψ,Φ).

Sufficiency. Let
(

'i

('i,"i−1)
b, d

)

= 1 and
(

'i

'i−1
b, d

)

= �i for same

b, d ∈ R, 2 ≤ i ≤ n. Since �i∣
'i

'i−1
and �i∣d, by the assertion assumption

of the theorem,
(

'i

('i,"i−1)
b, d

)

∕= 1, a contradiction. Hence, the equality
(

'i

('i,"i−1)
b, d

)

= 1 implies that
(

'i

'i−1
b, d

)

= 1, i = 2, . . . , n.

Let L be an invertible matrix of form (4). In order to prove this
statement we only need to show that there exist a matrix H ∈ GΦ such
that HL ∈ V(Ψ,Φ). The proof will be divided into 2 steps. At the
first step we will find a matrix H1 ∈ GΦ such that H1L has a lower
unitriangular form.

In the case n = 2 the invertibility of the matrix

L =

∥
∥
∥
∥

l11 l12
'2

('2,"1)
l21 l22

∥
∥
∥
∥

implies that (
'2

('2, "1)
l12, l22

)

= 1.

By the above reasoning
(
'2

'1
l12, l22

)

= 1.

Therefore,
'2

'1
l12u1 + l22u2 = 1

for some u1, u2 ∈ R. Clearly, we have
∥
∥
∥
∥

l22 −l12
'2

'1
u1 u2

∥
∥
∥
∥

∥
∥
∥
∥

l11 l12
'2

('2,"1)
l21 l22

∥
∥
∥
∥
=

∥
∥
∥
∥

e 0
'2

('2,"1)
s21 1

∥
∥
∥
∥
,
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where e ∈ U(R). Hence

H1 =

∥
∥
∥
∥

e−1l22 −e−1l21
'2

'1
u1 u2

∥
∥
∥
∥

is the desired matrix.
Suppose that the assumption holds for the matrices of order n − 1,

we will prove it for n. Step by step, using Lemma 3 and the result which
has been proved above, we obtain

(
'n

'1
l1n, ⋅ ⋅ ⋅ ,

'n

'n−1
ln−1.n, lnn

)

=

=

(
'n

'n−1

(
'n−1

'1
l1n, ⋅ ⋅ ⋅ ,

'n−1

'n−2
ln−2.n, ln−1.n

)

, lnn

)

=

=

(
'n−1

'1
l1n, ⋅ ⋅ ⋅ ,

'n−1

'n−2
ln−2.n, ln−1.n, lnn

)

=

=

(
'n−1

'n−2

(
'n−2

'1
l1n, ⋅ ⋅ ⋅ , ln−2.n

)

, (ln−1.n, lnn)

)

=

= . . . =

(
'2

'1
l1n, (l2n, . . . , lnn)

)

= (l1n, . . . , lnn) = 1.

Then there exist u1, . . . , un such that

'n

'1
l1nu1 + . . .+

'n

'n−1
ln−1.nun−1 + lnnun = 1.

This implies that
(
'n

'1
u1, ⋅ ⋅ ⋅ ,

'n

'n−1
un−1, un

)

= 1.

It is known (see, for example [18] p.13) that there exists an invertible
matrix of the form

H0 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

u11 u12 . . . u1.n−1 u1n
0 u22 . . . u2.n−1 u2n
. . . . . . . . . . . . . . .
0 . . . 0 un−1.n−1 un−1.n

'n

'1
u1

'n

'2
u2 . . . 'n

'n−1
un−1 un

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∈ GΦ.

Let H0L =
∥
∥ tij

∥
∥n

1
. Then tnn = 1. So

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 . . . 0 −t1n
. . .

...
0 1 −tn−1.n

0 0 . . . 0 1

∥
∥
∥
∥
∥
∥
∥
∥
∥

H0L = H ′

0H0L =

∥
∥
∥
∥

L′
0

g 1

∥
∥
∥
∥
.
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Since H ′

0H0 ∈ GΦ, the above equality shows that H ′

0H0L ∈ L(Ψ,Φ), by
Property 2. Therefore
L′ ∈ L(diag("1, . . . , "n−1), diag('1, . . . , 'n−1)). By the induction hypoth-
esis, there exists a matrix H ′ ∈ Gdiag('1,...,'n−1) such that the matrix H ′L′

has lower unitriangular form. Hence the matrix H1 = (H ′ ⊕ 1)H ′

0H0 is
the desired matrix, i.e., H1L ∈ L(Ψ,Φ) and has a lower unitriangular
form.

By Lemma 4, H2H1L ∈ V(Ψ,Φ) for some matrix H2 ∈ GΦ. The
proof is complete.

Combining Theorem 2 and 7 we obtain.

Theorem 8. The set (V(Ψ,Φ)PA)
−1Φ consists of all left up to right

associate divisors of the matrix A which have c.d.f. Φ if and only if any
divisor of element 'i

'i−1
has common divisor with the element 'i

('i,"i−1)
,

i = j1, j2, . . . , jg.

Let now R be a principal ideal ring and A = P−1
A ΨQ−1

A , where Ψ =
diag("1, . . . , "n), is a nonsingular matrix over R. Let Φ = diag('1, . . . , 'n)∣Ψ,
'i∣'i+1, i = 1, . . . , n − 1. Decompose the elements 'i

'i−1
, "i−1

'i−1
, i =

j1, j2, . . . , jg, into product of the irreducible factors:

'i

'i−1
= gki1i1 ⋅ ⋅ ⋅ gkilil ,

"i−1

'i−1
= gqi1i1 ⋅ ⋅ ⋅ gqilil ℎ

pi1
i1 ⋅ ⋅ ⋅ℎpirir . (9)

Theorem 9. The set (V(Ψ,Φ)PA)
−1Φ consists of all left up to right

associate divisors of the matrix A which have c.d.f. Φ if and only if
kij > qij, i = j1, j2, . . . , jg, j = 1, . . . , l.

Proof. Observing that

'i

('i, "i−1)
=

'i/'i−1
(
'i/'i−1

, "i−1/'i−1

) , i = j1, j2, . . . , jg,

and having Theorem 8 we prove this assertion.

3. Application

Let us apply these results to factorization of a matrix polynomials and
solution of unilateral matrix equations. Consider a nonsingular matrix
polynomial

A(x) = Asx
s +As−1x

s−1 + ⋅ ⋅ ⋅+A0,
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Ai ∈ Mn(P ), i = 0, . . . , s, P is a field. We recall that a matrix poly-
nomial A(x) is monic if As = E. A matrix polynomial A(x) is right-
regularizable if there exists invertible matrix U(x) such that A(x)U(x)
is a monic polynomial. Necessary and sufficient conditions for right-
regularization of the matrix polynomial A(x) are proposed in [2,5,20].
Since A(x) is the matrix over elementary divisor ring R = P [x], there
exist PA(x), QA(x) such that

PA(x)A(x)QA(x) = diag("1(x), . . . , "n(x)) = Ψ(x).

Let Φ(x) = diag('1(x), . . . , 'n(x)), 'i(x)∣'i+1(x), i = 1, . . . , n − 1, be

a divisor of the matrix Ψ(x). Write the polynomials 'i(x)
'i−1(x)

, "i−1(x)
'i−1(x)

,

i = 2, . . . , n, in form (9). In order to describe divisors of the matrix A(x)
with c.d.f. Φ(x) we can use Theorem 9. To describe monic divisors of
the matrix polynomial A(x) we employ the following result.

Theorem 10. Let deg detΦ(x) = nr. All left monic divisors of degree r
of the matrix polynomial A(x) with c.d.f. Φ(x) can be obtained by right-
regularization of matrices from (V(Ψ(x),Φ(x))PA(x))

−1Φ(x) if and only
if kij > qij, i = j1, j2, . . . , jg, j = 1, . . . , l.

Consider the matrix polynomial equation

XsAs +Xs−1As−1 + ⋅ ⋅ ⋅+A0 = 0. (10)

It is well known that the matrix B is the root of equation (10) if and only
if the matrix polynomial Ex− B is the left divisor of the corresponding
matrix polynomial A(x) = Asx

s + As−1x
s−1 + ⋅ ⋅ ⋅ + A0. Therefore, we

can apply Theorem 10 to the solutions of unilateral matrix equation (10).
Consider some examples that illustrate the presented factorization

theory.
Example 1. Let R = {a+ b1x+ b2x

2+ ⋅ ⋅ ⋅ ∣ a ∈ ℤ, bi ∈ ℚ, i ∈
ℕ} [21]. Let us find all left up to right associate divisors of the matrix
A = diag(5, 5x3) = Ψ which have c.d.f. Φ = diag(1, 5x).

It is easy to check that any divisor of the element '2

'1
= 5x has common

divisor with the element '2

('2,"1)
= 5x

(5x,5) = x. Thus the set of desire
divisors has the form

{∥
∥
∥
∥

1 0
xk 1

∥
∥
∥
∥

−1

Φ

}

=

{∥
∥
∥
∥

1 0
−xk 5x

∥
∥
∥
∥

}

,

where k ∈ K
(
('2,"1)

'1

)

= K(5) = {0, 1, 2, 3, 4}.

Example 2. Let us solve the equation

X2 = 0, (11)
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where X is a 3× 3 matrix.
The matrix polynomial Ex2 = Ψ(x) corresponds to this matrix equa-

tion. The possible c.d.f. of the left monic divisors of Ex2 are the matrices

Φ1(x) = Ex,Φ2(x) = diag(1, x, x2).

By Theorem 6 the matrix Φ1(x) = Ex determines the unique solution
X1 = 0. Consider the matrix

V (x) =

∥
∥
∥
∥
∥
∥

1 0 0
a 1 0

bx+ c d 1

∥
∥
∥
∥
∥
∥

∈ V(Ψ(x),Φ2(x)),

where a, b, c, d ∈ P . By Proposition 4 and Theorem 2 we conclude that
V(Ψ(x),Φ2(x))

−1Φ2(x) is the set of left divisors of the matrix Ex2. Using
the results of papers [2,5,20] we can find the invertible matrix U(x) such
that

V(Ψ(x),Φ2(x))
−1Φ2(x)U(x) =

= Ex− b−1

∥
∥
∥
∥
∥
∥

c d 1
−ac −ad −a

(da− c)c (da− c)d da− c

∥
∥
∥
∥
∥
∥

.

It follows that

X2 =

⎧

⎨

⎩
f

∥
∥
∥
∥
∥
∥

c d 1
−ac −ad −a

(da− c)c (da− c)d da− c

∥
∥
∥
∥
∥
∥

⎫

⎬

⎭
,

where a, c, d ∈ P, f ∈ P ∗, is the set of solutions of equation (11). Since

'3(x)

'2(x)
= x,

"2(x)

'2(x)
= x,

the conditions of Theorem 10 do not hold. This means that the set
V(Ψ(x),Φ2(x))

−1Φ2(x) does not contain all left up to right associate
divisors of the matrix Ex2 with c.d.f. Φ2(x).

Using the results of paper [22] we get that the set of all solutions of
equation (11) consists of

X1,X2,X3 =

⎧

⎨

⎩
f

∥
∥
∥
∥
∥
∥

−c −1 0
c2 c 0
ac a 0

∥
∥
∥
∥
∥
∥

⎫

⎬

⎭
,X4 =

⎧

⎨

⎩
f

∥
∥
∥
∥
∥
∥

0 0 0
−d −c −1
cd c2 c

∥
∥
∥
∥
∥
∥

⎫

⎬

⎭
,

X5 =

⎧

⎨

⎩

∥
∥
∥
∥
∥
∥

0 0 0
g 0 0
a 0 0

∥
∥
∥
∥
∥
∥

⎫

⎬

⎭
,X6 =

⎧

⎨

⎩

∥
∥
∥
∥
∥
∥

0 0 0
0 0 0
s t 0

∥
∥
∥
∥
∥
∥

⎫

⎬

⎭
,
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where a, c, d ∈ P, f, g ∈ P ∗, s, t are not equal to zero simultaneously.

Remark. Let P be a commutative ring. It is easy to check that the ma-
trices from X1,X2, . . . ,X6 are also solutions of equation (11). Moreover,
if f is the element of the center of a non commutative ring P , then the
matrices from these sets are solutions of equation (11) as well.
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