FACTORIZATION OF PROBABILITY MEASURES AND ABSOLUTELY MEASURABLE SETS

DAVID BLACKWELL AND ASHOK MAITRA

ABSTRACT. We find necessary and sufficient conditions for a separable metric space Y to possess the property that for any measurable space (X, \mathcal{A}) and probability measure P on $X \times Y$, P can be factored.

1. Introduction. We characterize separable metric spaces Y which have the following property: for any measurable space (X, \mathcal{A}) and any probability measure P on the product space $(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$, where $\mathcal{B}(Z)$ will denote the Borel σ -field of a metric space Z, P can be factored: $P = \mathcal{Q} \times T$, where \mathcal{Q} is a probability measure on (X, \mathcal{A}) and T: $X \times \mathcal{B}(Y) \to [0, 1]$ is an \mathcal{A} -measurable transition function such that

$$P(A \times B) = \int_{A} T(B|x) \, dQ(x)$$

for every $A \in \mathcal{A}$ and $B \in \mathcal{B}(Y)$.

The factorability of P is of obvious interest to the Bayesian statistician. For, imagine that $(Y, \mathcal{B}(Y))$ is the parameter space and that (X, \mathcal{A}) is the sample space. A prior on $(Y, \mathcal{B}(Y))$ together with a model (that is, a $\mathcal{B}(Y)$ -measurable transition function $T: Y \times \mathcal{A} \to [0, 1]$) determine a probability measure P on $(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$. The Bayesian bases his inference on the posterior distribution of the parameter given the sample, so he needs to factor P as above.

The main result of the paper is as follows.

THEOREM. Let Y be a separable metric space. Then the following conditions on Y are equivalent.

(a) Y is absolutely measurable, i.e., if \tilde{Y} is a metric completion of Y and λ is a probability measure on the Borel σ -field of \tilde{Y} , then Y is λ -measurable.

(b) For any measurable space (X, A) and any probability measure P on $(X \times Y, A \times B(Y))$, P can be factored.

(c) For any Polish space X and any probability measure P on $(X \times Y, \mathcal{B}(X) \times \mathcal{B}(Y))$, P can be factored.

The above result gives a new characterization of absolutely measurable sets. Using the theory of compact measures developed by Marczewski [3], one can deduce the implication $(a) \rightarrow (b)$ from a result of Jirina [1] and the implication $(b) \rightarrow (a)$ from a result of Pachl [4]. The implication $(c) \rightarrow (a)$ is new. Our proofs, however, are direct and elementary in nature and do not use the somewhat elaborate machinery of compact measures.

The proofs will be given in $\S3$. $\S2$ explains the notation to be used.

©1984 American Mathematical Society 0002-9939/84 \$1.00 + \$.25 per page

Received by the editors July 5, 1983 and, in revised form, October 24, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28A05, 60A10, 60A05; Secondary 28A50.

Key words and phrases. Probability measure, product space, transition function, factorization, absolutely measurable set, prior distribution, posterior distribution.

2. Notation. If (X, \mathcal{A}) is a measurable space, $M(X, \mathcal{A})$ will denote the set of probability measures on (X, \mathcal{A}) . If (Z, \mathcal{C}) is another measurable space, a function $T: X \times \mathcal{C} \to [0, 1]$ is said to be a $(X, \mathcal{A}) - (Z, \mathcal{C})$ transition function if, for each $x \in X, T(\cdot|x)$ is a probability measure on (Z, \mathcal{C}) , and for each $C \in \mathcal{C}, T(C|\cdot)$ is an \mathcal{A} -measurable function on X. The set of $(X, \mathcal{A}) - (Z, \mathcal{C})$ transition functions is denoted by $M(Z, \mathcal{C}|X, \mathcal{A})$. If X, Z are metric spaces, we write M(X) for $M(X, \mathcal{B}(X))$ and M(Z|X) for $M(Z, \mathcal{B}(Z)|X, \mathcal{B}(X))$.

We denote by 2^N the set of infinite sequences of 0's and 1's and by S the set of finite sequences of 0's and 1's of positive length. For each $\mathfrak{s} \in S$, $L(\mathfrak{s})$ will denote the set of elements of 2^N that begin with \mathfrak{s} . The sets $L(\mathfrak{s}), \mathfrak{s} \in S$, form a base for a topology on 2^N . Endowed with this topology, 2^N is a homeomorph of the Cantor ternary set.

If Z is a metric space and $\lambda \in M(Z)$, λ^* and λ_* denote, respectively, the outer measure and inner measure induced by λ .

3. Proofs. We begin with two lemmas, both of which are well known, and only the second will be proved here.

LEMMA 1. Suppose $f: S \to [0,1]$ satisfies (i) f(0) + f(1) = 1, and (ii) $f(\mathfrak{s}0) + f(\mathfrak{s}1) = f(\mathfrak{s})$ for each $\mathfrak{s} \in S$. Then there is a unique $\mu \in M(2^N)$ such that $\mu(L(\mathfrak{s})) = f(\mathfrak{s})$ for each $\mathfrak{s} \in S$.

LEMMA 2. Suppose X is a Polish space and let V_n , $n \ge 1$, be a base for the topology of X. Let $\varphi: X \to 2^N$ be defined by: $\varphi(x) = (I_{V_1}(x), I_{V_2}(x), \ldots)$, where I_{V_i} denotes the indicator function of the set V_i . Then φ is a Borel isomorphism of X and $\varphi(X)$, and $\varphi(X)$ is Borel in 2^N (indeed, a G_{δ} in 2^N).

PROOF. Since the sets V_n separate points of X, the function φ is one-one. It is easy to see that the inverse image of an open set under φ is a F_{σ} set in X and the forward image of an open set under φ is open in $\varphi(X)$. In other words, φ^{-1} is continuous. So by a well-known result [2, Corollary 3, p. 436], there is a G_{δ} subset G of 2^N and a continuous function $\mathfrak{g}: G \to X$ such that $\varphi(X) \subseteq G$ and $\mathfrak{g} = \varphi^{-1}$ on $\varphi(X)$. Consequently, $\varphi(X) = \{\mathfrak{z} \in G: \varphi(\mathfrak{g}(\mathfrak{z})) = \mathfrak{z}\}$. Hence, if $W_n, n \geq 1$, is a base for the topology of G, then

$$G \setminus \varphi(X) = \bigcup_{\mathfrak{n} \ge 1} [\mathfrak{g}^{-1}(\varphi^{-1}(W_{\mathfrak{n}})) \cap (G \setminus W_{\mathfrak{n}})],$$

so that $G \setminus \varphi(X)$ is a F_{σ} set in G. It follows that $\varphi(X)$ is a G_{δ} in G, so a G_{δ} in 2^N . The second sentence of the proof already establishes that φ is a Borel isomorphism of X and $\varphi(X)$.

We now turn to the proof of the Theorem. The implication $(a) \rightarrow (b)$ is proved first for Y a Borel subset of 2^N , then for Y a Borel subset of a Polish space, and finally for Y an absolutely measurable set.

Let, then, Y be a Borel subset of 2^N . Suppose P is a probability measure on $(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$. We define P' on $(\mathcal{X} \times 2^N, \mathcal{A} \times \mathcal{B}(2^N))$ by setting $P'(E) = P(E \cap (X \times Y))$ for $E \in \mathcal{A} \times \mathcal{B}(2^N)$, so P' is a probability measure. For each $\mathfrak{s} \in S$, fix a version $P'(L(\mathfrak{s})|\mathcal{A}^*)$ of the conditional probability under P' of the set $X \times L(\mathfrak{s})$ given \mathcal{A}^* , where \mathcal{A}^* is the σ -field on $X \times 2^N$ of events of the form $\mathcal{A} \times 2^N$ with $\mathcal{A} \in \mathcal{A}$. For each $\mathfrak{s} \in S$ set

$$\mathfrak{h}(\mathfrak{s}, x) = P'(L(\mathfrak{s})|\mathcal{A}^*)(x).$$

It is easy to verify using the properties of conditional probabilities that there is a set $H \in \mathcal{A}$ with $P'(H \times 2^N) = 0$ such that whenever $x \notin H$, $\mathfrak{h}(0, x) + \mathfrak{h}(1, x) = 1$ and $\mathfrak{h}(\mathfrak{s}0, x) + \mathfrak{h}(\mathfrak{s}1, x) = \mathfrak{h}(\mathfrak{s}, x)$ for $\mathfrak{s} \in S$. Redefine $\mathfrak{h}(\mathfrak{s}, x)$ to be $P'(X \times L(\mathfrak{s}))$ for $x \in H$ and $\mathfrak{s} \in S$. Then, for each $x \in X$, the function $\mathfrak{h}(\cdot, x)$ satisfies the hypotheses of Lemma 1, so that there is a unique probability measure $T'(\cdot|x)$ on $\mathcal{B}(2^N)$ such that $T'(L(\mathfrak{s})|x) = \mathfrak{h}(\mathfrak{s}, x)$ for all $\mathfrak{s} \in S$. Since $\mathfrak{h}(\mathfrak{s}, \cdot)$ is \mathcal{A} -measurable on X, so is $T'(L(\mathfrak{s})|\cdot)$ for each $\mathfrak{s} \in S$, whence, by a routine measure-theoretic argument, $T'(B|\cdot)$ is \mathcal{A} -measurable for every $B \in \mathcal{B}(2^N)$. Denoting by \mathcal{Q} the marginal of P' on X, we have for each $\mathfrak{s} \in S$ and $A \in \mathcal{A}$,

$$\begin{split} P'(A \times L(\mathfrak{s})) &= \int_{A} P'(L(\mathfrak{s})|\mathcal{A}^{*})(x) \, d\mathcal{Q}(x) \\ &= \int_{A} \mathfrak{h}(\mathfrak{s}, x) \, d\mathcal{Q}(x) \quad (\text{as } \mathfrak{h}(\mathfrak{s}, \cdot) = P'(L(\mathfrak{s})|\mathcal{A}^{*})(\cdot) \text{ a.s. } (\mathcal{Q})) \\ &= \int_{A} T'(L(\mathfrak{s})|x) \, d\mathcal{Q}(x), \end{split}$$

so again by a routine measure-theoretic argument

$$P'(A imes B) = \int_A T'(B|x) \, d\mathcal{Q}(x)$$

for each $B \in \mathcal{B}(2^N)$. Since $P'(X \times Y) = 1$, it is easily seen that there is set $H' \in \mathcal{A}$ such that $\mathcal{Q}(H') = 0$ and T'(Y|x) = 1 for all $x \in X \setminus H'$. Finally, define for any $B \in \mathcal{B}(Y)$,

$$T(B|x) = egin{cases} T'(B|x) & ext{if } x \in X \setminus H', \ P(X imes B) & ext{if } x \in H'. \end{cases}$$

Then $T \in M(Y, \mathcal{B}(Y)|X, \mathcal{A})$ and $P = \mathcal{Q} \times T$.

Consider next the case where Y is a Borel subset of a Polish space Z. If V_n , $n \ge 1$, is a base for the toplogy of Z, we define $\varphi: Z \to 2^N$ by $\varphi(z) = (I_{V_1}(z), I_{V_2}(z), \ldots)$. By Lemma 2, φ is a Borel isomorphism of Z and $\varphi(Z)$, and $\varphi(Z)$ is Borel in 2^N . If we now restrict φ to Y, then (i) $\varphi(Y)$ is a Borel subset of 2^N , and (ii) φ sets up a Borel isomorphism of Y and $\varphi(Y)$. The probability measure $P \in M(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$ can now be taken over to $(X \times \varphi(Y), \mathcal{A} \times \mathcal{B}(\varphi(Y)))$, factored by virtue of the previous argument, and the factorization brought back to $(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$, again using the function φ .

Lastly, let Y be absolutely measurable and let $P \in M(X \times Y, \mathcal{A} \times \mathcal{B}(Y))$. Denote by μ the marginal of P on Y. As Y is absolutely measurable, there is $Y^* \subseteq Y$ such that Y^* is a Borel subset of a Polish space and $\mu(Y^*) = 1$. It follows that $P(X \times Y^*) = 1$. Restrict P to $(X \times Y^*, \mathcal{A} \times \mathcal{B}(Y^*))$, call it P'. By the previous paragraph, P' can be factored: $P' = \mathcal{Q} \times T'$, where $\mathcal{Q} \in M(X, \mathcal{A})$ and $T' \in$ $M(Y^*, \mathcal{B}(Y^*)|X, \mathcal{A})$. Set $T(B|x) = T'(B \cap Y^*|x)$ for $B \in \mathcal{B}(Y), x \in X$. Then $T \in M(Y, \mathcal{B}(Y)|X, \mathcal{A})$ and $P = \mathcal{Q} \times T$, completing the proof of (a) \rightarrow (b). (b) \rightarrow (c) is trivial.

To prove $(c) \rightarrow (a)$, assume Y is a separable metric space, and let X be a metric completion of Y. Suppose $\lambda \in M(X)$. If $\lambda^*(Y) = 0$, Y is λ -measurable. So assume $\lambda^*(Y) > 0$, and further, by normalizing λ if necessary, assume without loss of generality that $\lambda^*(Y) = 1$. Let C be the smallest σ -field on X containing $\mathcal{B}(X) \cup \{Y\}$. Extend λ to a measure μ on \mathcal{C} by setting

$$u((E_1 \cap Y) \cup (E_2 \cap (X \setminus Y))) = \lambda(E_1), \qquad E_1, E_2 \in \mathcal{B}(X).$$

We define a probability measure P on $(X \times X, \mathcal{B}(X) \times \mathcal{C})$ by

$$P(A \times B) = \int_{B} I_{A}(\mathfrak{y}) d\mu(\mathfrak{y}), \qquad A \in \mathcal{B}(X), \ B \in \mathcal{C},$$

so that $P(A \times B) = \mu(A \cap B)$.

Observe that the trace $\mathcal{C} \cap Y$ of the σ -field \mathcal{C} on Y is just $\mathcal{B}(Y)$, so the trace of $\mathcal{B}(X) \times \mathcal{C}$ on $X \times Y$ is $\mathcal{B}(X) \times \mathcal{B}(Y)$. Furthermore, $\mu(Y) = 1$ and hence $P(X \times Y) = 1$. Let P' denote the restriction of P to $(X \times Y, \mathcal{B}(X) \times \mathcal{B}(Y))$, so that $P' \in \mathcal{M}(X \times Y)$. By the hypothesis of (c), we can factor $P': P' = \mathcal{Q} \times T'$, where $\mathcal{Q} \in \mathcal{M}(X)$ and $T' \in \mathcal{M}(Y|X)$. We define $T(C|x) = T'(C \cap Y|x)$ for $C \in \mathcal{C}$, $x \in X$. It is now easy to verify that $T \in \mathcal{M}(X, \mathcal{C}|X, \mathcal{B}(X))$ and that $P = \mathcal{Q} \times T$.

Next observe that for $A \in \mathcal{B}(X), B \in \mathcal{C}$,

$$\stackrel{\cdot}{(*)} \qquad \qquad \mu(A \cap B) = P(A \times B) = \int_A^{\cdot} T(B|x) \, d\mathcal{Q}(x).$$

Setting B = X in (*), we get $\mu(A) = \mathcal{Q}(A)$, so $\mathcal{Q} = \lambda$. Setting A = B in (*), we have

$$\lambda(A) = \int_A T(A|x) \, d\lambda(x).$$

Since $0 \leq T(A|x) \leq 1$, this implies for each $A \in \mathcal{B}(X)$ that T(A|x) = 1 a.s. (λ) on A. So, if $\{G_n, n \geq 1\}$ is a countable generating class for $\mathcal{B}(X)$, then there is a set $K \in \mathcal{B}(X)$ with $\lambda(K) = 0$ such that whenever $x \in X \setminus K$

$$T(G_{\mathfrak{n}}|x) = 1$$
 if $x \in G_{\mathfrak{n}}$ and $T(X \setminus G_{\mathfrak{n}}|x) = 1$ if $x \notin G_{\mathfrak{n}}$.

It follows immediately that for $x \notin K$, $T(\{x\}|x) = 1$. By construction of T, we have T(Y|x) = 1 for all $x \in X$. It follows that $X \setminus K \subset Y$, so that $\lambda_*(Y) = 1$, and hence Y is λ -measurable. This completes the proof.

References

- 1. M. Jirina, Conditional probabilities on σ -algebras with countable basis, Czechoslovak. Math. J. 4 (1954), 372–380; English transl., Selected Transl. Math. Statist. Prob., Vol. 2, Amer. Math. Soc., Providence, R.I., 1962, pp. 79–86.
- K. Kuratowski, Topology, Vol. 1, 5th ed., PWN, Warsaw; Academic Press, New York; "Mir", Moscow, 1966.
- 3. E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124.
- 4. Jan K. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978), 157-168.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

STATISTICS-MATHEMATICS DIVISION, INDIAN STATISTICAL INSTITUTE, CALCUTTA-700035, INDIA

 $\mathbf{254}$