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FACTORIZATION OF PROBABILITY MEASURES
AND ABSOLUTELY MEASURABLE SETS

DAVID BLACKWELL AND ASHOK MAITRA

ABSTRACT. We find necessary and sufficient conditions for a separable metric

space Y to possess the property that for any measurable space (X, A) and

probability measure P on X X Y, P can be factored.

1. Introduction. We characterize separable metric spaces Y which have the

following property: for any measurable space (X, A) and any probability measure P

on the product space (XxY,Ax B(Y)), where S(Z) will denote the Borel c-field of

a metric space Z, P can be factored: P — QxT, where Q. is a probability measure

on (X, A) and T: X x B(Y) —* [0,1] is an ^-measurable transition function such

that ■

P(AxB)= I T(B\x)dQ(x)
JA

for every A G A and B G B(Y).

The factorability of P is of obvious interest to the Bayesian statistician. For,

imagine that (Y, B(Y)) is the parameter space and that (X, A) is the sample space.

A prior on (Y, B(Y)) together with a model (that is, a S(F)-measurable transition

function T: Yx A —► [0,1]) determine a probability measure P on (XxY, AxB(Y)).

The Bayesian bases his inference on the posterior distribution of the parameter

given the sample, so he needs to factor P as above.

The main result of the paper is as follows.

THEOREM. Let Y be a separable metric space. Then the following conditions

on Y are equivalent.

(a) Y is absolutely measurable, i.e., if Y is a metric completion of Y and A is a

probability measure on the Borel o-field ofY, then Y is X-measurable.

(b) For any measurable space (X, A) and any probability measure P on (X x

Y,Ax B(Y)), P can be factored.
(c) For any Polish space X and any probability measure P on (X xY,B (X) x

B(Y)), P can be factored.

The above result gives a new characterization of absolutely measurable sets.

Using the theory of compact measures developed by Marczewski [3], one can deduce

the implication (a)—»(b) from a result of Jirina [1] and the implication (b)—>(a) from

a result of Pachl [4]. The implication (c)—>(a) is new. Our proofs, however, are

direct and elementary in nature and do not use the somewhat elaborate machinery

of compact measures.

The proofs will be given in §3. §2 explains the notation to be used.
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2. Notation. If (X, A) is a measurable space, M(X, A) will denote the set of

probability measures on (X,A). If (Z, C) is another measurable space, a function

T: X x C —► [0,1] is said to be a (X, A) — (Z, C) transition function if, for each

x G X, T(-\x) is a probability measure on (Z, C), and for each C G C, T(C\-) is an A-

measurable function on X. The set of (X, A) — (Z, C) transition functions is denoted

by M(Z, C\X, A). If X, Z are metric spaces, we write M(X) for M(X, B(X)) and

M(Z\X) for M(Z, B(Z)\X, B(X)).
We denote by 2^ the set of infinite sequences of 0's and l's and by S the set of

finite sequences of 0's and l's of positive length. For each s G S, L(s) will denote

the set of elements of 2N that begin with s. The sets L(s), s G S, form a base for a

topology on 2N. Endowed with this topology, 2N is a homeomorph of the Cantor

ternary set.

If Z is a metric space and A G M(Z), A* and A, denote, respectively, the outer

measure and inner measure induced by A.

3. Proofs. We begin with two lemmas, both of which are well known, and only

the second will be proved here.

LEMMA 1. Suppose f: S -> [0,1] satisfies (i) /(0) + /(1) = 1, and (ii) f(s0) +
/(si) = f(s) for each s G S. Then there is a unique p G M(2N) such that

fi(L(s)) — f(s) for each s G S.

LEMMA 2. Suppose X is a Polish space and let Vn, n > 1, be a base for the

topology of X. Let <p: X ^ 2N be defined by: <p(x) = (Iv1(x),Iy2(x),...), where

Ivi denotes the indicator function of the set Vt. Then <p is a Borel isomorphism of

X and f(X), and <p(X) is Borel in 2N (indeed, a Gs in 2N).

PROOF. Since the sets Vn separate points of X, the function <p is one-one. It

is easy to see that the inverse image of an open set under ip is a Fa set in X and

the forward image of an open set under <p is open in <p(X). In other words, tp-1 is

continuous. So by a well-known result [2, Corollary 3, p. 436], there is a Gs subset

G of 2N and a continuous function g: G —> X such that <p(X) Ç G and g = <p~r

on <p(X). Consequently, <p(X) = {3 G G:ip(Q(¡)) = 3}. Hence, if W„, n > 1, is a

base for the topology of G, then

G\<p{X)=   lJ[ß"1^"1^«))n(G\^)]'
n>l

so that G \ <p(X) is a Fa set in G. It follows that <p(X) is a G¿ in G, so a Gs in 2N.

The second sentence of the proof already establishes that <p is a Borel isomorphism

ofXand£>(X).

We now turn to the proof of the Theorem. The implication (a)—>(b) is proved

first for Y a Borel subset of 2^, then for Y a Borel subset of a Polish space, and

finally for Y an absolutely measurable set.

Let, then, F be a Borel subset of 2N. Suppose P is a probability measure on

(X x Y,A x B(Y)). We define P1 on (I x 2N,A x B(2N)) by setting P'(E) =
P(ED(X x Y)) for E€ Ax B(2N), so P' is a probability measure. For each s G S,

fix a version P'(L(s)\A*) of the conditional probability under P' of the set X x L(s)

given A*, where A* is the o-field on X x 2N of events of the form A x 2N with

A G A. For each x G X and s G S set

t)(s,x) = P'(L(s)\A*)(x).
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It is easy to verify using the properties of conditional probabilities that there is a

set H G A with P'(H x2JV)=0 such that whenever x £ H, h(0, x) + h(l, x) = 1

and h(sO, x) + h(sl,x) = h(s,x) for s G S. Redefine h (s, x) to be P'(X x L(s)) for

x G H and s G S. Then, for each x G X, the function h(-, x) satisfies the hypotheses

of Lemma 1, so that there is a unique probability measure T'(|x) on 3(2^) such

that T'(L(s)|x) = h(s,x) for all s G 5. Since h(s, •) is ¿i-measurable on X, so

is T'(L(s)|-) for each s G S, whence, by a routine measure-theoretic argument,

T'(B\-) is ^-measurable for every B G 5(2^). Denoting by Q the marginal of P'

on X, we have for each s G S and A G A,

P'(A x L(s)) = f P'(L(s)\A*)(x)dQ(x)

r
= /  h(0, x) dQ(x)    (as h(B, ■) = P'(L(s)\A*)(-) a.s. (Q))

Ja

T'(L(s)\x)dQ(x),LA

so again by a routine measure-theoretic argument

P'(AxB)= Í T'(B\x)dQ(x)

for each B G B(2N). Since P'(X x Y) = 1, it is easily seen that there is set H' G A

such that Q(H') = 0 and T'(Y\x) = 1 for all x G X \ H'. Finally, define for any

BGB(Y),

TYRIrï- Jr(ßlX) ifxGX\/í',
1   lj"     PfXxß)    ifxGtf'.

Then T G M(Y,B(Y)\X, A) and P = Q x T.
Consider next the case where Y is a Borel subset of a Polish space Z. If Vn, n > 1,

is a base for the toplogy of Z, we define ip: Z —* 2N by <p(z) = (Ivt (z),Iy2 (z), ■ ■ •)•

By Lemma 2, <p is a Borel isomorphism of Z and <p(Z), and ^(¿T) is Borel in 2^.

If we now restrict <p to Y, then (i) i£>(F) is a Borel subset of 2^, and (ii) <p sets up

a Borel isomorphism of Y and p(Y). The probability measure P G M(X xY, A x

B(Y)) can now be taken over to (X x p(Y), A x B(tp(Y))), factored by virtue of

the previous argument, and the factorization brought back to (X x Y, Ax B(Y)),

again using the function ip.

Lastly, let Y be absolutely measurable and let P G M(X x Y, A x B(Y)). Denote

by p the marginal of P on Y. As Y is absolutely measurable, there is Y* Ç Y

such that Y* is a Borel subset of a Polish space and p(Y*) — 1. It follows that

P(X x Y*) = 1. Restrict P to (X x Y*, A x B(Y*)), call it P'. By the previous

paragraph, P' can be factored: P' = Q x V, where Q G M(X, A) and V G

M(Y*,B(Y*)\X,A). Set T(B\x) = T'(£n Y*|x) for B G B(Y), x G X. Then
T G M (Y, B(Y)\X, A) and P = Q x T, completing the proof of (a)^(b). (b)^(c)

is trivial.

To prove (c)—>(a), assume Y is a separable metric space, and let X be a metric

completion of Y. Suppose A G M(X). If X*(Y) — 0, Y is A-measurable. So

assume X*(Y) > 0, and further, by normalizing A if necessary, assume without

loss of generality that A*(F) = 1.  Let C be the smallest rr-field on X containing
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B(X) U {Y}. Extend A to a measure p on C by setting

p((Ei n F) U (E2 n (X \ Y))) = X(Ei),        Ei,E2G B(X).

We define a probability measure P on (X x X, B(X) x C) by

P(AxB)= [ IA(t))dp(t,),        AgB(X),BgC,
Jb

so that P(A x B)= p(A D ß).

Observe that the trace C D F of the cr-field C on F is just S(F), so the trace of

B(X)xC onXxF is B(X)xB(Y). Furthermore, p(F) = 1 and hence P(XxF) = 1.

Let P' denote the restriction of P to (XxF, B(X) xB(Y)), so that P' G M(XxF).

By the hypothesis of (c), we can factor P': P' = Q x V, where Q G M(X) and

V G M(F|X). We define T(C\x) = T'(C D Y\x) for C G C, x G X. It is now easy
to verify that T G M(X, C\X, B(X)) and that P= QxT.

Next observe that for A G B(X), B G C,

('*) n(A r\B) = P(AxB)= f T(B\x) dQ(x).
Ja

Setting B = X in (*), we get p(A) = Q(A), so ¡2 = A. Setting A = B in (*), we

have

X(A)= f T(,4|x)dA(x).
Ja

Since 0 < T(A\x) < 1, this implies for each A G B(X) that T(¿|x) = 1 a.s. (A) on

A. So, if {Gn, n > 1} is a countable generating class for S(X), then there is a set

K G B(X) with X(K) = 0 such that whenever x G X \ K

T(Gn|x) = l   ifxGGn    and   T(X\G„|x) = l    ifx^G„.

It follows immediately that for x $. K, T({x}|x) — 1. By construction of T, we

have T(F|x) = 1 for all x G X. It follows that X \ K c F, so that A,(F) = 1, and

hence F is A-measurable. This completes the proof.
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