
MATHEMATICS OF COMPUTATION
VOLUME 36, NUMBER 154
APRIL 1981

Factorization of the Eighth Fermât Number

By Richard P. Brent and John M. Pollard

Abstract. We describe a Monte Carlo factorization algorithm which was used to factorize the

Fermât number F% = 2256 + 1. Previously Fs was known to be composite, but its factors

were unknown.

1. Introduction. Brent [1] recently proposed an improvement to Pollard's Monte

Carlo factorization algorithm [4]. Both algorithms can usually find a prime factor/»

of a large integer in 0(pl/2) operations.

In this paper we describe a modification of Brent's algorithm which is useful

when the factors are known to lie in a certain congruence class. To test its

effectiveness, the algorithm was applied to the Fermât numbers Fk = 22 + 1,

5 < k < 13. The least factors of all but F8 were known [2], and Fg was known to be

composite. The algorithm rediscovered the known factors and also found the

previously unknown factor 1,238,926,361,552,897 of Fg.*

2. The Factorization Algorithm and a Conjecture. To factor a number N, we

consider a sequence defined by a recurrence relation

xt " /(*,-i) (mod N)> i = 1,2, ... ,

where / is a polynomial of degree at least 2, with some suitable x0. One variant of

Brent's algorithm computes GCD(x¡ — x¡, N) for /' = 0, 1, 3, 7, 15, . . . and j =

i + 1, . . ., 2/ + 1 until either x¡ = x, (mod N) (in which case a different / or x0

must be tried) or a nontrivial GCD (and hence a factor of TV) is found. As in [1], [4]

we can reduce the cost of a GCD computation essentially to that of a multiplica-

tion mod N, and this is assumed below.

If nothing is known about the factors, we normally choose a quadratic poly-

nomial x2 + c (c =£ 0, -2). However, it is conjectured in [4] that the expected

number of steps for Pollard's algorithm can be reduced by a factor V/m — 1 if the

factors p are known to satisfy p = 1 (mod m) and we use a polynomial of the form

xm + c. This conjecture is equally applicable to the algorithms of [1].

We sketch the informal argument leading to the conjecture. Suppose we are

given a function g(x) on a set U of p elements and define a sequence of elements

by x¡ = g(x¡_x), i =1,2,.... Suppose that the elements of the set S =

{x0, . . ., xn_x) are distinct. For a random function g, the probability that the next
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* The epigram "I am now entirely persuaded to employ the method, a handy trick, on gigantic

composite numbers" may appeal to readers who wish to memorize this factor.
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element xn is in S is just n/p (from which the formulae of [1], [4] are derived). We

require the corresponding probability when g is chosen at random out of a subset

of the functions on our set, namely those producing a graph in which, for each /', a

fraction q¡ of nodes have in-degree i: here the q¡ are any given nonnegative

numbers with 2, •?, = 2, iq¡ = 1. (For the application to factorization, the argu-

ment could be simplified, but as presented it applies to wider classes of functions

such as those of [5], at least in the first approximation.)

Let T be the set of elements y G U \ S with g(y) G S. To estimate the expected

size of T, we argue that the probability of any node appearing in 5 is proportional

to the node's in-degree i. Thus T has the expected size

»2«fc('-i)-»2*('-0a-«*r.
i i

where V is the variance of the in-degree. If x„ £ S, we shall have xn+x G S if and

only if xn G T, an event with probability nV/(p - n) =¿ n/(p/V) (since we are

concerned with the situation n = 0(px/2),p large).

For a random mapping, the in-degree has a Poisson distribution with mean and

variance 1, and the two arguments agree. For the application to factorization, we

take g(x) = fix) (modp), fix) = xm + c (mod N). Since p = 1 (mod m), the

in-degree is m for a fraction l/m of the nodes, and zero for the remainder

(neglecting one node, c), so the variance of the in-degree is essentially V = m — 1.

This motivates the conjecture.

Our conjecture must clearly be applied with discretion. Consider, for example,

the function g(x) = x + 1 or x + 2 (modp) according as x is a quadratic residue

or a nonresidue ofp: since the cycle is of order/? (in fact 2p/3 + 0(px/1 log2p)) it

benefits us little to compute V st \.

3. Behavior of the Polynomial xm + 1. To illustrate our conjecture, we give some

numerical results for the polynomial g(x) = xm + 1 (modp), m = 2k, for 1 < k <

10. For each k, we give in Table 1 the mean values of t(p)/\Tp/ (m — 1) and

c(p)/\l p/ (m — 1) for the 104 smallest primes/? > 106 satisfyingp = 1 (mod m);

here t(p) and c(p) denote, respectively, the length of the tail (nonperiodic part) and

of the cycle (periodic part) of the sequence (x¡), starting with x0 = 1. The conjec-

tured expectations are (ir/is)x/2 as 0.627.

Table 1

Behavior of polynomials xm + 1 for 104 primes withp = 1 (mod m), m = 2k

k mean l(p)/\/p/ (m — 1) mean c(p)/\Jp/ (m - 1)
~T~ 0.619 0.618

2 0.627 0.619

3 0.625 0.620

4 0.625 0.626

5 0.629 0.619

6 0.628 0.617

7 0.629 0.622

8 0.630 0.618

9 0.625 0.625

10 0.619 0.625
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A more obvious conjecture replaces our Vm — 1 by Vm ; this results from the

idea that the recurrence relation corresponding to g(x) = xm + 1 (modp) operates

on a set of (p — l)/m residues when/? = 1 (mod m). The difference is important

when m = 2, as in the standard form of Brent's and Pollard's algorithms. The

empirical results of Brent [1] (for m = 2 and all odd primes p < 108) and Table 1

discredit this conjecture.

4. Application to Factorization of Fermât Numbers. The factors pk of a Fermât

number Fk = 22 + I (k> \) satisfy p* = 1 (mod 2*+2), so to factorize Fk we took

fix) = x2* + 1 (mod Fk) and xQ = 3 in the algorithm of Section 2 (x0 = 0 or 1 is

not satisfactory here). By the conjecture of Section 2, compared to Brent's algo-

rithm [1, Section 5], the expected number of steps is reduced by a factor

(2*+2 — 1)1/2, but the number of multiplications (mod Fk) per step is increased

from 2 to k + 3. Thus, from [1, Eq. (6.2)], the expected number of multiplications

(mod Fk) to find the least prime factor pk of Fk is

(1) Ek = (k + 3)(itpk/%)i/2(3/ln 4 + 1)/ (2*+2 - 1),/2,

and for k = 8 this is 0.682p*1/2. For the algorithm of [4] (with a quadratic

polynomial), the corresponding number is 4(it/2)5/2pl/2/3 a; 4.\23pkx/1, larger by a

factor of six.

We did not employ the modification of [1, Section 7] which is not worthwhile

unless m is small. Some improvements might have been achieved in other ways, but

we preferred to keep the method as simple as possible.

In Table 2, pk is the least prime factor of Fk, Mk is the number of multiplications

(mod Fk) required to find it (by the algorithm just described), and Ek is given by

(1). The computation for F-, took 6 hours 50 minutes on a Univac 1100/82

computer, comparable to the time required by the continued fraction algorithm [3];

that for F|3 took 3 hours 20 minutes on the same machine. The factorization of F%

took 2 hours on a Univac 1100/42 computer (a slightly slower machine). The other

computations took only a few seconds.

Table 2
mk

Least prime factors pk of Fermât numbers Fk = 2   + 1

k_Pk_Mk_Mk/Ek

5 641 16 0.45

6 274,177 855 1.46

7 59,649,589,127,497,217 2.67 X 10* 1.24

8 1,238,926,361,552,897 2.29 X 107 0.95

9 2,424,833 420 0.51

10 45,592,577 1,521 0.56

11 319,489 112 0.65

12 114,689 30 0.38

13 2,710,954,639,361 38,896 0.13

The application of more than 100 trials of Rabin's probabilistic algorithm lead us

to suspect that the cofactor <78 = Fg//>8 = 93,461,639,715,357,977,769,163,

558,199,606,896,584,051,237,541,638,188,580,280,321 was prime. Professor H. C.
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Williams kindly proved the primality of q9, using the methods of [7] and the partial

factorizations

q, - 1 = 2" • 3 • 5 • 7 • 13 • rx,

qs + 1 = 2 • r2,

q\ + 1 = 2 • 17 - 21649 • 31081 • 2347789 • r4,

il + <78 + ! = 3 • r3<

il - a% + 1 = 37 - 1459 • 266401 • r6,

where rx, r2, r3, r4, r6 are composite but have no factors less than 5 X 107. (D. H.

Lehmer found that their factors exceed 2 X 109, but this is more than is required

for the proof of primality of qg.) Thus, the factorization of Fk is now complete for

k < 8 (Fk is prime for 1 < k < 4, composite with two prime factors for 5 < k <

8).
We are currently applying a slight modification of the algorithm in an attempt to

factorize qg = F9/p9, a number of 148 decimal digits which is known to be

composite, and Fl4. The algorithm could also be used to factorize Mersenne

numbers Mk = 2k — 1 (k prime), whose prime factors p satisfy p = 1 (mod 2k).
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Note Added in Proof. A simpler proof of the primality of qB is possible, using the

factorization /-, = 31618624099079 • r'x, where r\ is a 43-digit prime. The factoriza-

tion of rx was obtained by the method of [1].
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