Factorization of the Eighth Fermat Number

By Richard P. Brent and John M. Pollard

Abstract

We describe a Monte Carlo factorization algorithm which was used to factorize the Fermat number $F_{8}=2^{256}+1$. Previously F_{8} was known to be composite, but its factors were unknown.

1. Introduction. Brent [1] recently proposed an improvement to Pollard's Monte Carlo factorization algorithm [4]. Both algorithms can usually find a prime factor p of a large integer in $O\left(p^{1 / 2}\right)$ operations.

In this paper we describe a modification of Brent's algorithm which is useful when the factors are known to lie in a certain congruence class. To test its effectiveness, the algorithm was applied to the Fermat numbers $F_{k}=2^{2^{k}}+1$, $5 \leqslant k \leqslant 13$. The least factors of all but F_{8} were known [2], and F_{8} was known to be composite. The algorithm rediscovered the known factors and also found the previously unknown factor $1,238,926,361,552,897$ of F_{8}.*
2. The Factorization Algorithm and a Conjecture. To factor a number N, we consider a sequence defined by a recurrence relation

$$
x_{i}=f\left(x_{i-1}\right)(\bmod N), \quad i=1,2, \ldots,
$$

where f is a polynomial of degree at least 2 , with some suitable x_{0}. One variant of Brent's algorithm computes $\operatorname{GCD}\left(x_{i}-x_{j}, N\right)$ for $i=0,1,3,7,15, \ldots$ and $j=$ $i+1, \ldots, 2 i+1$ until either $x_{i}=x_{j}(\bmod N)\left(\right.$ in which case a different f or x_{0} must be tried) or a nontrivial GCD (and hence a factor of N) is found. As in [1], [4] we can reduce the cost of a GCD computation essentially to that of a multiplication $\bmod N$, and this is assumed below.

If nothing is known about the factors, we normally choose a quadratic polynomial $x^{2}+c(c \neq 0,-2)$. However, it is conjectured in [4] that the expected number of steps for Pollard's algorithm can be reduced by a factor $\sqrt{m-1}$ if the factors p are known to satisfy $p=1(\bmod m)$ and we use a polynomial of the form $x^{m}+c$. This conjecture is equally applicable to the algorithms of [1].

We sketch the informal argument leading to the conjecture. Suppose we are given a function $g(x)$ on a set U of p elements and define a sequence of elements by $x_{i}=g\left(x_{i-1}\right), i=1,2, \ldots$ Suppose that the elements of the set $S=$ $\left\{x_{0}, \ldots, x_{n-1}\right\}$ are distinct. For a random function g, the probability that the next

[^0]element x_{n} is in S is just n / p (from which the formulae of [1], [4] are derived). We require the corresponding probability when g is chosen at random out of a subset of the functions on our set, namely those producing a graph in which, for each i, a fraction q_{i} of nodes have in-degree i : here the q_{i} are any given nonnegative numbers with $\Sigma_{i} q_{i}=\Sigma_{i} i q_{i}=1$. (For the application to factorization, the argument could be simplified, but as presented it applies to wider classes of functions such as those of [5], at least in the first approximation.)

Let T be the set of elements $y \in U \backslash S$ with $g(y) \in S$. To estimate the expected size of T, we argue that the probability of any node appearing in S is proportional to the node's in-degree i. Thus T has the expected size

$$
n \sum_{i} i q_{i}(i-1)=n \sum_{i} q_{i}(i-1)^{2}=n V
$$

where V is the variance of the in-degree. If $x_{n} \notin S$, we shall have $x_{n+1} \in S$ if and only if $x_{n} \in T$, an event with probability $n V /(p-n) \simeq n /(p / V)$ (since we are concerned with the situation $n=O\left(p^{1 / 2}\right), p$ large $)$.

For a random mapping, the in-degree has a Poisson distribution with mean and variance 1 , and the two arguments agree. For the application to factorization, we take $g(x)=f(x)(\bmod p), f(x)=x^{m}+c(\bmod N)$. Since $p=1(\bmod m)$, the in-degree is m for a fraction $1 / m$ of the nodes, and zero for the remainder (neglecting one node, c), so the variance of the in-degree is essentially $V=m-1$. This motivates the conjecture.

Our conjecture must clearly be applied with discretion. Consider, for example, the function $g(x)=x+1$ or $x+2(\bmod p)$ according as x is a quadratic residue or a nonresidue of p : since the cycle is of order p (in fact $2 p / 3+O\left(p^{1 / 2} \log ^{2} p\right)$) it benefits us little to compute $V \simeq \frac{1}{2}$.
3. Behavior of the Polynomial $x^{m}+1$. To illustrate our conjecture, we give some numerical results for the polynomial $g(x)=x^{m}+1(\bmod p), m=2^{k}$, for $1<k \leqslant$ 10. For each k, we give in Table 1 the mean values of $t(p) / \sqrt{p /(m-1)}$ and $c(p) / \sqrt{p /(m-1)}$ for the 10^{4} smallest primes $p>10^{6}$ satisfying $p=1(\bmod m)$; here $t(p)$ and $c(p)$ denote, respectively, the length of the tail (nonperiodic part) and of the cycle (periodic part) of the sequence (x_{i}), starting with $x_{0}=1$. The conjectured expectations are $(\pi / 8)^{1 / 2} \simeq 0.627$.

Table 1
Behavior of polynomials $x^{m}+1$ for 10^{4} primes with $p=1(\bmod m), m=2^{k}$

k	mean $t(p) / \sqrt{p /(m-1)}$	mean $c(p) / \sqrt{p /(m-1)}$
1	0.619	0.618
2	0.627	0.619
3	0.625	0.620
4	0.625	0.626
5	0.629	0.619
6	0.628	0.617
7	0.629	0.622
8	0.630	0.618
9	0.625	0.625
10	0.619	0.625

A more obvious conjecture replaces our $\sqrt{m-1}$ by \sqrt{m}; this results from the idea that the recurrence relation corresponding to $g(x)=x^{m}+1(\bmod p)$ operates on a set of $(p-1) / m$ residues when $p=1(\bmod m)$. The difference is important when $m=2$, as in the standard form of Brent's and Pollard's algorithms. The empirical results of Brent [1] (for $m=2$ and all odd primes $p<10^{8}$) and Table 1 discredit this conjecture.
4. Application to Factorization of Fermat Numbers. The factors p_{k} of a Fermat number $F_{k}=2^{2^{k}}+1(k>1)$ satisfy $p_{k}=1\left(\bmod 2^{k+2}\right)$, so to factorize F_{k} we took $f(x)=x^{2^{k+2}}+1\left(\bmod F_{k}\right)$ and $x_{0}=3$ in the algorithm of Section $2\left(x_{0}=0\right.$ or 1 is not satisfactory here). By the conjecture of Section 2, compared to Brent's algorithm [1, Section 5], the expected number of steps is reduced by a factor $\left(2^{k+2}-1\right)^{1 / 2}$, but the number of multiplications $\left(\bmod F_{k}\right)$ per step is increased from 2 to $k+3$. Thus, from [1, Eq. (6.2)], the expected number of multiplications $\left(\bmod F_{k}\right)$ to find the least prime factor p_{k} of F_{k} is

$$
\begin{equation*}
E_{k}=(k+3)\left(\pi p_{k} / 8\right)^{1 / 2}(3 / \ln 4+1) /\left(2^{k+2}-1\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and for $k=8$ this is $0.682 p_{k}^{1 / 2}$. For the algorithm of [4] (with a quadratic polynomial), the corresponding number is $4(\pi / 2)^{5 / 2} p_{k}^{1 / 2} / 3 \simeq 4.123 p_{k}^{1 / 2}$, larger by a factor of six.

We did not employ the modification of [1, Section 7] which is not worthwhile unless m is small. Some improvements might have been achieved in other ways, but we preferred to keep the method as simple as possible.

In Table 2, p_{k} is the least prime factor of F_{k}, M_{k} is the number of multiplications $\left(\bmod F_{k}\right)$ required to find it (by the algorithm just described), and E_{k} is given by (1). The computation for F_{7} took 6 hours 50 minutes on a Univac 1100/82 computer, comparable to the time required by the continued fraction algorithm [3]; that for F_{13} took 3 hours 20 minutes on the same machine. The factorization of F_{8} took 2 hours on a Univac 1100/42 computer (a slightly slower machine). The other computations took only a few seconds.

Table 2
Least prime factors p_{k} of Fermat numbers $F_{k}=2^{2^{k}}+1$

k	p_{k}	M_{k}	M_{k} / E_{k}
5	641	16	0.45
6	274,177	855	1.46
7	$59,649,589,127,497,217$	2.67×10^{8}	1.24
8	$1,238,926,361,552,897$	2.29×10^{7}	0.95
9	$2,424,833$	420	0.51
10	$45,592,577$	1,521	0.56
11	319,489	112	0.65
12	114,689	30	0.38
13	$2,710,954,639,361$	38,896	0.13

The application of more than 100 trials of Rabin's probabilistic algorithm lead us to suspect that the cofactor $q_{8}=F_{8} / p_{8}=93,461,639,715,357,977,769,163$, $558,199,606,896,584,051,237,541,638,188,580,280,321$ was prime. Professor H. C.

Williams kindly proved the primality of q_{8}, using the methods of [7] and the partial factorizations

$$
\begin{aligned}
& q_{8}-1=2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot r_{1} \\
& q_{8}+1=2 \cdot r_{2} \\
& q_{8}^{2}+1=2 \cdot 17 \cdot 21649 \cdot 31081 \cdot 2347789 \cdot r_{4} \\
& q_{8}^{2}+q_{8}+1=3 \cdot r_{3} \\
& q_{8}^{2}-q_{8}+1=37 \cdot 1459 \cdot 266401 \cdot r_{6}
\end{aligned}
$$

where $r_{1}, r_{2}, r_{3}, r_{4}, r_{6}$ are composite but have no factors less than 5×10^{7}. (D. H. Lehmer found that their factors exceed 2×10^{9}, but this is more than is required for the proof of primality of q_{8}.) Thus, the factorization of F_{k} is now complete for $k<8$ (F_{k} is prime for $1<k<4$, composite with two prime factors for $5<k<$ 8).

We are currently applying a slight modification of the algorithm in an attempt to factorize $q_{9}=F_{9} / p_{9}$, a number of 148 decimal digits which is known to be composite, and F_{14}. The algorithm could also be used to factorize Mersenne numbers $M_{k}=2^{k}-1(k$ prime $)$, whose prime factors p satisfy $p=1(\bmod 2 k)$.

Acknowledgement. We thank H. C. Williams for proving the primality of q_{8}, D. H. Lehmer and Daniel Shanks for their assistance, and the Australian National University for the provision of computer time.

Note Added in Proof. A simpler proof of the primality of q_{8} is possible, using the factorization $r_{1}=31618624099079 \cdot r_{1}^{\prime}$, where r_{1}^{\prime} is a 43-digit prime. The factorization of r_{1} was obtained by the method of [1].

Department of Computer Science

Australian National University
Canberra, A. C. T. 2600, Australia
Plessey Telecommunications
Taplow Court, Maidenhead
Berkshire, England

[^1]
[^0]: Received September 18, 1980.
 1980 Mathematics Subject Classification. Primary 10-04, 10A25, 10A40; Secondary 10A05, 10A10, 10A35, 65C05, 68-04.

 Key words and phrases. Fermat numbers, factorization, Monte Carlo methods.

 * The epigram "I am now entirely persuaded to employ the method, a handy trick, on gigantic composite numbers" may appeal to readers who wish to memorize this factor.

[^1]: 1. R. P. Brent, "An improved Monte Carlo factorization algorithm," BIT, v. 20, 1980, pp. 176-184.
 2. J. C. Hallyburton \& J. Brillhart, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109-112.
 3. M. A. Morrison \& J. Brillhart, "A method of factoring and the factorization of \boldsymbol{F}_{7}," Math. Comp., v. 29, 1975, pp. 183-208.
 4. J. M. Pollard, "A Monte Carlo method for factorization," BIT, v. 15, 1975, pp. 331-334. MR 50 \#6992.
 5. J. M. Pollard, "Monte Carlo methods for index computation $(\bmod p)$)" Math. Comp., v. 32, 1978, pp. 918-924. MR 52 \# 13611.
 6. M. Rabin, "Probabilistic algorithms," Algorithms and Complexity (J. F. Traub, Ed.), Academic Press, New York, 1976, pp. 31-40.
 7. H. C. Wilums \& J. S. Judd, "Some algorithms for prime testing using generalized Lehmer functions," Math. Comp., v. 30, 1976, pp. 867-886.
