COLLOQUIUM MATHEMATICUM

FACTORIZATION PROPERTIES OF KRULL MONOIDS WITH INFINITE CLASS GROUP

By
WOLFGANG HASSLER (Graz)

$$
\begin{aligned}
& \text { Abstract. For a non-unit } a \text { of an atomic monoid } H \text { we call } \\
& \qquad L_{H}(a)=\left\{k \in \mathbb{N} \mid a=u_{1} \ldots u_{k} \text { with irreducible } u_{i} \in H\right\}
\end{aligned}
$$

the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.

1. Introduction. In this paper, a monoid H is a commutative and cancellative semigroup with unit element. We usually write H multiplicatively and we denote by H^{\times}the group of units of H.

A monoid H is said to be atomic if every $h \in H \backslash H^{\times}$has a factorization

$$
\begin{equation*}
h=u_{1} \ldots u_{k} \tag{1}
\end{equation*}
$$

into irreducible elements (atoms) u_{i} of H. We say that k is the length of the factorization (1) and we call

$$
L_{H}(h)=\{k \in \mathbb{N} \mid k \text { is the length of some factorization of } h\} \subset \mathbb{N}
$$

the set of lengths of h. We denote by

$$
\mathcal{L}(H)=\left\{L_{H}(h) \mid h \in H \backslash H^{\times}\right\}
$$

the set of all sets of lengths of H.
Clearly, H is factorial if and only if (1) is unique up to associates and up to order for each $h \in H$. If H is not factorial the problem arises to describe and classify the occurring phenomena of non-uniqueness of factorizations. A first coarse measure for this non-uniqueness is the elasticity

$$
\varrho(H)=\sup \left\{\left.\frac{\sup L_{H}(h)}{\min L_{H}(h)} \right\rvert\, h \in H \backslash H^{\times}\right\} \in \mathbb{R}_{\geq 1} \cup\{\infty\}
$$

This is a frequently investigated invariant and there is an extensive bibliography about it; for a survey see [3]. Unfortunately, the elasticity does not contain any information about the structure of $L_{H}(h)$ between $\min L_{H}(h)$

2000 Mathematics Subject Classification: 13F05, 13A05, 13C20, 20 M 14.
and $\sup L_{H}(h)$. In the following we consider an invariant which measures the size of the "gaps" between elements of $L_{H}(h)$.

Recall that an atomic monoid H is called a BF-monoid if $L_{H}(h)$ is a finite set for every $h \in H \backslash H^{\times}$. By [2], Proposition 2.2, every Krull monoid (see for example [4]) and the monoid $R \backslash\{0\}$ of nonzero elements of every noetherian domain R is a BF-monoid.

For an arbitrary set A we denote by $\mathbb{P}_{\text {fin }}(A)$ the set of finite subsets of A.
Let $L=\left\{l_{1}, \ldots, l_{r}\right\} \in \mathbb{P}_{\text {fin }}(\mathbb{Z})$ where $l_{1}<\ldots<l_{r}$. Then we call

$$
\Delta(L)=\left\{l_{i}-l_{i-1} \mid 2 \leq i \leq r\right\}
$$

the set of differences of L (note that $\Delta(L)$ is empty if and only if $|L| \leq 1$), and we call

$$
\Delta(H)=\bigcup_{h \in H \backslash H^{\times}} \Delta\left(L_{H}(h)\right)
$$

the set of differences of a BF-monoid H (see also [4]).
Let H be a Krull monoid. If the class group of H is finite, then all sets of lengths of H are, up to bounded initial and final segments, arithmetical multiprogressions with bounded sets of differences (see [4], Theorem 2.13). In particular this implies that $\Delta(H)$ is a finite set.

If on the other hand H is a Krull monoid with infinite class group and if each divisor class of H is a prime divisor class, then every non-empty finite set $L \subset \mathbb{N} \geq 2$ is contained in $\mathcal{L}(H)$ (see [7]).

In this paper we study sets of lengths of Krull monoids H with infinite class group such that every class is the sum of a bounded number of prime divisor classes. Such Krull monoids occur in a natural way in the study of finitely generated algebras over perfect fields (see Section 2).

Let G be an abelian group and $G_{0} \subset G$ a subset. We set

$$
G_{0}(m)=\left\{g_{1}+\ldots+g_{r} \mid r \leq m, g_{i} \in G_{0}\right\} .
$$

Our main result where we prove the existence of "thin" sets of lengths (which in particular implies that $\Delta(H)$ is infinite) reads as follows:

Theorem 1.1. Let H be a Krull monoid with infinite class group G and let $G_{0} \subset G$ denote the set of prime divisor classes. If $G=G_{0}(m)$ for some $m \in \mathbb{N}$ then there exists some constant $K \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ there exists some $L \in \mathcal{L}(H)$ with $\min L \leq K,|L| \leq K$ and $\max L>N$. In particular, $\Delta(H)$ is an infinite set.

The organization of the paper is as follows: In Section 2 we apply Theorem 1.1 to finitely generated algebras over perfect fields. Section 3 is entirely devoted to the proof of Theorem 1.1.
2. Finitely generated domains. Let H be a monoid. We denote by $\mathcal{Q}(H)$ the quotient group of H. A monoid homomorphism $\varphi: H \rightarrow D$ is
called a divisor homomorphism if $\varphi(a) \mid \varphi(b)$ implies $a \mid b$ for all $a, b \in H$. In this case φ induces a monomorphism $\mathcal{Q}(H) / H^{\times} \rightarrow \mathcal{Q}(D) / D^{\times}$whose cokernel $\mathcal{C}(\varphi)$ is called the (divisor) class group of φ. It is always written additively. For each $d \in \mathcal{Q}(D)$ we denote by $[d]_{\varphi}$ its image under the canonical map $\mathcal{Q}(D) \rightarrow \mathcal{C}(\varphi)$. We call the elements of $\left\{[p]_{\varphi} \mid p \in D\right.$ is prime $\}$ the prime divisor classes of φ.

For an integral domain R we set $R^{\bullet}=R \backslash\{0\}, R^{\#}=R^{\bullet} / R^{\times}$and $\Delta(R)=\Delta\left(R^{\bullet}\right)$.

Let R be a noetherian integral domain whose integral closure \bar{R} is a finitely generated R-module. Let

$$
S=R^{\bullet} \backslash \bigcup_{\mathfrak{p} \in A} \mathfrak{p}
$$

where $A=\operatorname{Ass}_{R}(\bar{R} / R)$, denote the set of non-zero divisors of \bar{R} / R. Set

$$
P(R)=\{\mathfrak{p} \in \operatorname{spec}(R) \mid \operatorname{ht}(\mathfrak{p})=1, \mathfrak{p} \cap S \neq \emptyset\}
$$

Then $R_{\mathfrak{p}}$ is a discrete valuation domain for every $\mathfrak{p} \in P(R)$ (see [5], Lemma 2). Thus $\prod_{\mathfrak{p} \in P(R)} R_{\mathfrak{p}}^{\#}$ can be canonically identified with the free abelian monoid $\mathcal{F}(P(R)$) with basis $P(R)$ (see also formula (2) in Section 3). The natural $\operatorname{maps} R^{\bullet} \rightarrow R_{\mathfrak{p}}^{\#}$ and $R^{\bullet} \rightarrow R_{S}^{\#}$ induce a divisor homomorphism (see [5], Theorem 1) $\partial_{R}: R^{\bullet} \rightarrow \mathcal{F}(P(R)) \times R_{S}^{\#}$ whose class group $\mathcal{C}(R)$ is called the divisor class group of R.

By restricting ∂_{R} to S we obtain a divisor homomorphism $\left.\partial_{R}\right|_{S}: S \rightarrow$ $\mathcal{F}(P(R))$ whose class group and set of prime divisor classes naturally coincide with those of R (see [5], Remark 4 to Theorem 1). In fact, S is a Krull monoid with divisor theory $\left.\partial_{R}\right|_{S}$ and thus the set of prime divisor classes generates the class group of R as a monoid.

Theorem 2.1. Let R be a domain which is a finitely generated algebra over some perfect field. If R has infinite divisor class group then there exists some $K \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ there exists some $L \in \mathcal{L}(R)$ with $\min L \leq K,|L| \leq K$ and $\max L>N$. In particular, $\Delta(R)$ is an infinite set.

Proof. Let G denote the class group of R and let G_{0} be the set of prime divisor classes. If R is finitely generated over some infinite perfect field then $G=G_{0}(m)$ for some $m \in \mathbb{N}$ by [6], Proposition 4.2. If R is a finitely generated algebra over a finite field we again have $G=G_{0}(m)$ for some $m \in \mathbb{N}$ by the remark after Corollary 4.1 in [6].

Since the set S of non-zero divisors of \bar{R} / R is a divisor closed submonoid of R^{\bullet}, the assertion follows immediately from Theorem 1.1 and the above considerations.

It is well known from [8], Theorem 3 , that if a domain R is a finitely generated algebra over an infinite perfect field with $\operatorname{dim}(R) \geq 2$, then each
divisor class of R is a prime divisor class. It is conjectured that the same is true if R is finitely generated over \mathbb{Z}.

The example $R=k\left[X^{3}, X^{4}, X^{5}\right] \subset k[X]$ in [8], where k is an algebraically closed field, shows that the assumption $\operatorname{dim}(R) \geq 2$ for algebras over infinite perfect fields is necessary.
3. Krull monoids. In the following we need the concept of block monoids. Let P be a set. We denote by

$$
\begin{equation*}
\mathcal{F}(P)=\left\{\prod_{p \in P} p^{n_{p}} \mid n_{p} \in \mathbb{N}_{0}, n_{p}=0 \text { for almost all } p \in P\right\} \tag{2}
\end{equation*}
$$

the free abelian monoid with basis P. For an element $h=\prod_{p \in P} p^{n_{p}} \in \mathcal{F}(P)$ we set

$$
\sigma(h)=\sigma_{\mathcal{F}(P)}(h)=\sum_{p \in P} n_{p} \in \mathbb{N}_{0} .
$$

For an abelian group G and an arbitrary subset $G_{0} \subset G$ the block monoid of G_{0} is defined by

$$
\mathcal{B}\left(G_{0}\right)=\left\{\prod_{g \in G_{0}} g^{n_{g}} \in \mathcal{F}\left(G_{0}\right) \mid \sum_{g \in G_{0}} n_{g} g=0\right\}
$$

Let H be a Krull monoid with class group G and let G_{0} denote the set of divisor classes containing a prime divisor. Then

$$
\mathcal{L}(H)=\mathcal{L}\left(\mathcal{B}\left(G_{0}\right)\right)
$$

(see [4], Section 3).
In order to prove Theorem 1.1 it is thus sufficient to show the following purely group-theoretical theorem.

Theorem 3.1. Let G be an infinite abelian group, $m \in \mathbb{N}$ and $G_{0} \subset G$ a subset such that $G=G_{0}(m)$. Then there exists some constant $K \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ there exists some $L \in \mathcal{L}\left(\mathcal{B}\left(G_{0}\right)\right)$ with $\min L \leq K$, $|L| \leq K$ and $\max L>N$. In particular, $\Delta(H)$ is an infinite set.

The rest of the paper is devoted to the proof of this theorem.
Lemma 3.2. Let G be an abelian group and let $G_{0} \subset G$ be a subset. Let $V, W \in \mathcal{F}\left(G_{0}\right)$ be elements such that $V W$ is a block. Suppose that for all divisors $\left.D\right|_{\mathcal{F}\left(G_{0}\right)} W,\left.E\right|_{\mathcal{F}\left(G_{0}\right)} V$ and $\left.E^{\prime}\right|_{\mathcal{F}\left(G_{0}\right)} V$ the following holds true: $\sigma(E)=\sigma\left(E^{\prime}\right)$ whenever $E D$ and $E^{\prime} D$ are irreducible elements of $\mathcal{B}\left(G_{0}\right)$. Then

$$
\left|L_{\mathcal{B}\left(G_{0}\right)}(V W)\right| \leq \sigma(W)!
$$

Proof. Let

$$
V W=q_{1} \ldots q_{s}
$$

be a factorization of $V W$ into irreducible elements q_{i} of $\mathcal{B}\left(G_{0}\right)$. Then we can decompose each q_{i} in the form

$$
q_{i}=v_{i} w_{i}
$$

where $v_{i}, w_{i} \in \mathcal{F}\left(G_{0}\right), v_{i}\left|V, w_{i}\right| W$ and $w_{1} \ldots w_{s}=W$. We assume that $w_{i} \neq 1$ for $1 \leq i \leq t$ and $w_{i}=1$ for $t+1 \leq i \leq s$.

If we consider a second decomposition

$$
V W=q_{1}^{\prime} \ldots q_{s^{\prime}}^{\prime}
$$

into irreducible elements q_{i}^{\prime} of $\mathcal{B}\left(G_{0}\right)$ such that $q_{i}^{\prime}=v_{i}^{\prime} w_{i}$ for all $1 \leq i \leq t$, we see that $s=s^{\prime}$, i.e. $\left|L_{\mathcal{B}\left(G_{0}\right)}(V W)\right|$ is bounded by the number of different (up to order) decompositions $w_{1} \ldots w_{s}$ of W into non-trivial elements $w_{i} \in$ $\mathcal{F}\left(G_{0}\right)$.

Let $W=x_{1} \ldots x_{n}$, where the x_{i} are prime elements of $\mathcal{F}\left(G_{0}\right)$. Without restriction we assume that the x_{i} are pairwise distinct (since this just enlarges the number of possible decompositions of W). If we write permutations $\tau \in \mathfrak{S}_{n}$ as products of disjoint cycles $\tau=\sigma_{1} \ldots \sigma_{k}$ we see that τ determines a decomposition of $\{1, \ldots, n\}$ into non-empty disjoint sets. Hence we get a surjective map from \mathfrak{S}_{n} to the set of decompositions of W. This implies that the number of decompositions of W is bounded by $\sigma(W)$!.

Lemma 3.3. Let G be an abelian group which contains an element of infinite order and let $G_{0} \subset G$ be a subset which generates G as a monoid. Then there exists a non-trivial block

$$
B=g_{1}^{t_{1}} \ldots g_{k}^{t_{k}} \in \mathcal{B}\left(G_{0}\right)
$$

with pairwise distinct elements $g_{i} \in G_{0}$ of infinite order and $t_{i}>0$ such that the kernel of the homomorphism

$$
\varphi: \mathbb{Z}^{k} \rightarrow G, \quad\left(\alpha_{1}, \ldots, \alpha_{k}\right) \mapsto \sum_{i=1}^{k} \alpha_{i} g_{i}
$$

is generated by $\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{N}^{k}$. In particular, $\mathcal{B}\left(\left\{g_{1}, \ldots, g_{k}\right\}\right) \cong\left(\mathbb{N}_{0},+\right)$.
Proof. Since G_{0} generates G as a monoid, there exists an element $\widetilde{g}_{1} \in G_{0}$ with infinite order. Let $\widetilde{B}=\widetilde{g}_{1} \ldots \widetilde{g}_{n} \in \mathcal{B}\left(G_{0}\right)$. For large $l \in \mathbb{N}, \widetilde{B}^{l}$ has a non-trivial divisor $\widetilde{B}^{\prime}=\widetilde{g}_{1}^{\prime} \ldots \widetilde{g}_{n^{\prime}}^{\prime}$ in $\mathcal{B}\left(G_{0}\right)$ such that each $\widetilde{g}_{i}^{\prime}$ has infinite order. We thus assume that all \widetilde{g}_{i} have infinite order.

Let T be a minimal subset of $\left\{\widetilde{g}_{1}, \ldots, \widetilde{g}_{n}\right\}$ with respect to inclusion such that $\mathcal{B}(T) \neq\{1\}$. We write $T=\left\{g_{1}, \ldots, g_{k}\right\}$ with pairwise distinct elements g_{i}.

Next we show that the kernel of φ is cyclic.
Since g_{1}, \ldots, g_{k} are not linearly independent over \mathbb{Z}, it suffices to show that every proper subset $T^{\prime} \subsetneq T$ is linearly independent over \mathbb{Z}. Assume the contrary and let $g_{1}^{r_{1}} \ldots g_{k}^{r_{k}}$ with $r_{i}>0$ be a non-trivial block.

Then there exists some $\left(\beta_{1}, \ldots, \beta_{k}\right) \in \mathbb{Z}^{k} \backslash\{\mathbf{0}\}$ such that $\beta_{1} g_{1}+\ldots+$ $\beta_{k} g_{k}=0$ and $\beta_{i}=0$ for at least one $i \in\{1, \ldots, k\}$ (note that $k \geq 2$ since all g_{i} have infinite order). By the minimal choice of T, we have $\beta_{j}<0$ for at least one j, and we choose ($\beta_{1}, \ldots, \beta_{k}$) with a minimal number of negative components. We may assume that $\beta_{k}=0$ and $\beta_{k-1}<0$. Then we obtain

$$
0=\sum_{i=0}^{k-2}\left(r_{k-1} \beta_{i}-\beta_{k-1} r_{i}\right) g_{i}+\beta_{k-1} r_{k} g_{k},
$$

a relation with fewer negative coefficients, which is a contradiction.
Let $\left(t_{1}, \ldots, t_{k}\right)=\boldsymbol{t} \in \mathbb{Z}^{k}$ be a generator of $\operatorname{ker}(\varphi)$. Since there exists a non-trivial block in $\mathcal{B}(T)$ we can choose $\boldsymbol{t} \in \mathbb{N}^{k}$. We set

$$
B=g_{1}^{t_{1}} \ldots g_{k}^{t_{k}}
$$

Since t generates $\operatorname{ker}(\varphi)$, we see that B is the only irreducible element of $\mathcal{B}(T)$ and hence $\mathcal{B}(T) \cong\left(\mathbb{N}_{0},+\right)$.

From now on let G be always an infinite abelian group, $m \in \mathbb{N}$ and $G_{0} \subset G$ a subset such that

$$
G=G_{0}(m) .
$$

The proof of Theorem 3.1 is divided into three parts:

1. G contains an element of infinite order.
2. G is a torsion group with $\{\operatorname{ord}(g) \mid g \in G\}$ bounded.
3. G is a torsion group with $\{\operatorname{ord}(g) \mid g \in G\}$ unbounded.
3.1. Case 1: G contains an element of infinite order. Let

$$
B=g_{1}^{t_{1}} \ldots g_{k}^{t_{k}} \in \mathcal{B}\left(G_{0}\right)
$$

be a block as in Lemma 3.3. We set $B_{1}=g_{1}^{t_{1}} \ldots g_{k-1}^{t_{k-1}}$ and $B_{2}=g_{k}^{t_{k}}$ (since all g_{i} are of infinite order, we have $k \geq 2$).

Let $N \in \mathbb{N}$ be arbitrary and let $\phi_{1}, \ldots, \phi_{v}, \psi_{1}, \ldots, \psi_{w}$ be elements of G_{0} such that $v \leq m, w \leq m$,

$$
-N \sum_{i=1}^{k-1} t_{i} g_{i}=\phi_{1}+\ldots+\phi_{v}
$$

and $-N t_{k} g_{k}=\psi_{1}+\ldots+\psi_{w}$. Set $V=B^{N}$ and $W=\phi_{1} \ldots \phi_{v} \psi_{1} \ldots \psi_{w}$. We assert that V and W satisfy the assumptions of Lemma 3.2.

Let D be a divisor of W in $\mathcal{F}\left(G_{0}\right)$. We assume that there are u_{1}, \ldots, u_{k}, $u_{1}^{\prime}, \ldots, u_{k}^{\prime} \in \mathbb{N}_{0}$ such that $Q=g_{1}^{u_{1}} \ldots g_{k}^{u_{k}} D$ and $Q^{\prime}=g_{1}^{u_{1}^{\prime}} \ldots g_{k}^{u_{k}^{\prime}} D$ are irreducible blocks. Then

$$
\sum_{i=1}^{k} u_{i} g_{i}=\sum_{i=1}^{k} u_{i}^{\prime} g_{i}
$$

and thus $\left(u_{1}-u_{1}^{\prime}, \ldots, u_{k}-u_{k}^{\prime}\right) \in \operatorname{ker}(\varphi)$ (where φ is as in Lemma 3.3). Hence $g_{1}^{u_{1}-u_{1}^{\prime}} \ldots g_{k}^{u_{k}-u_{k}^{\prime}}=B^{l}$ for some $l \in \mathbb{Z}$ and $Q=B^{l} Q^{\prime}$. This implies $l=0$, since Q and Q^{\prime} are both irreducible.

If we set $C=V W$, then Lemma 3.2 implies

$$
\left|L_{\mathcal{B}\left(G_{0}\right)}(C)\right| \leq(2 m)!.
$$

We immediately see that

$$
\max L_{\mathcal{B}\left(G_{0}\right)}(C) \geq N+1
$$

On the other hand we have

$$
\begin{aligned}
\max L_{\mathcal{B}\left(G_{0}\right)}\left(B_{1} \phi_{1} \ldots \phi_{v}\right) & \leq v \leq m, \\
\left.\max L_{\mathcal{B}\left(G_{0}\right)}\right)\left(B_{2} \psi_{1} \ldots \psi_{w}\right) & \leq w \leq m,
\end{aligned}
$$

since every non-trivial divisor (in $\mathcal{B}\left(G_{0}\right)$) of $B_{1} \phi_{1} \ldots \phi_{v}$ (resp. $B_{2} \psi_{1} \ldots \psi_{w}$) must contain some ϕ_{i} (resp. ψ_{i}). Hence we get

$$
\min L_{\mathcal{B}\left(G_{0}\right)}(C) \leq 2 m
$$

3.2. Case 2: G is a bounded torsion group. We now assume that G is a torsion group with $\{\operatorname{ord}(g) \mid g \in G\}$ bounded.

By [9], Theorem 6, we know that G is a direct sum of cyclic groups:

$$
G=\bigoplus_{i \in I} \mathbb{Z} / n_{i} \mathbb{Z}
$$

for some bounded family $n_{i} \geq 2$ of integers. For a subset $T \subset I$ we denote by

$$
P_{T}: \bigoplus_{i \in I} \mathbb{Z} / n_{i} \mathbb{Z} \rightarrow \bigoplus_{i \in T} \mathbb{Z} / n_{i} \mathbb{Z} \subset G
$$

the projection. For any $g \in G$ and $T \subset I$ we set $\operatorname{ord}_{T}(g)=\operatorname{ord}\left(P_{T}(g)\right)$ and we define the support of g by

$$
\operatorname{supp}(g)=\left\{i \in I \mid P_{i}(g) \neq 0\right\}
$$

We now construct a sequence $\left(h_{i}\right)_{i \in \mathbb{N}}$ in G_{0} with the following properties: There exist $t \geq 2, a \in G$ and a finite set $\mathcal{E} \subset I$ such that the following assertions hold for all $i \geq 1$:
(i) $P_{\mathcal{E}}\left(h_{i}\right)=a$.
(ii) $\operatorname{ord}_{I \backslash \mathcal{E}}\left(h_{i}\right)=t$.
(iii) If $M=I \backslash\left(\mathcal{E} \cup \operatorname{supp}\left(h_{1}\right) \cup \ldots \cup \operatorname{supp}\left(h_{i-1}\right)\right)$ then $\operatorname{ord}_{M}\left(h_{i}\right)=t$.

To begin with, let $t \in \mathbb{N}$ be minimal such that there exists a finite subset $\mathcal{E} \subset I$ for which the set

$$
T=\left\{g \in G_{0} \mid \operatorname{ord}_{I \backslash \mathcal{E}}(g)=t\right\}
$$

is infinite (since G_{0} is infinite and since $\{\operatorname{ord}(g) \mid g \in G\}$ is bounded, such a t exists and $t \geq 2$). Then for every finite set $J \subset I$, the set $\{g \in T \mid$
 for all $g \in T$.

Let $\widetilde{T} \subset T$ be an infinite subset with the property

$$
\begin{equation*}
P_{\mathcal{E}}(g)=P_{\mathcal{E}}(h)=a \in G \tag{3}
\end{equation*}
$$

for all $g, h \in \widetilde{T}$ and for some $a \in G$ (such a set exists since \mathcal{E} is finite).
Now we construct the sequence h_{i}. Let $h_{1} \in \widetilde{T}$ be arbitrary and assume that h_{1}, \ldots, h_{n-1} are already constructed. Since the set

$$
F=\left\{g \in \widetilde{T} \mid \operatorname{ord}_{I \backslash\left(\mathcal{E} \cup \operatorname{supp}\left(h_{1}\right) \cup \ldots \cup \operatorname{supp}\left(h_{n-1}\right)\right)}(g) \neq t\right\}
$$

is finite by the above considerations, $\widetilde{T} \backslash F$ is non-empty and we choose $h_{n} \in \widetilde{T} \backslash F$. We see easily that the sequence h_{i} satisfies our requirements (i)-(iii). We set

$$
r=\operatorname{ord}(t a)
$$

Next we show the following
Claim. Set $H=\left\{h_{i} \mid i \in \mathbb{N}\right\}$. Then:
(i) Let $\left(\alpha_{i}\right)_{i \in \mathbb{N}} \in \mathbb{Z}^{(\mathbb{N})}$ be a sequence such that

$$
\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}=0
$$

Then $t \mid \alpha_{i}$ for all $i \in \mathbb{N}$ and rt $\mid \sum_{i \in \mathbb{N}} \alpha_{i}$.
(ii) Let $A=\prod_{i \in \mathbb{N}} h_{i}^{\alpha_{i}} \in \mathcal{F}(H)$ and $B=\prod_{i \in \mathbb{N}} h_{i}^{\beta_{i}} \in \mathcal{F}(H)$ be such that

$$
\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}=\sum_{i \in \mathbb{N}} \beta_{i} h_{i}
$$

If $\sum_{i \in \mathbb{N}} \alpha_{i}>\sum_{i \in \mathbb{N}} \beta_{i}$ then there exists some $\widetilde{A} \in \mathcal{F}(H)$ and some nontrivial block $C \in \mathcal{B}(H)$ of the form

$$
C=c_{1}^{t} \ldots c_{r}^{t}
$$

with $c_{i} \in H$ such that $A=\widetilde{A} C$.
(iii) $\left\{c_{1}^{t} \ldots c_{r}^{t} \mid c_{1}, \ldots, c_{r} \in H\right\}$ is the set of all irreducible blocks of H. In particular, $\mathcal{B}(H)$ is half-factorial.

Proof. (i) We show more generally that if

$$
p a+\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}=0
$$

(for the definition of a see (3)) where $p \in \mathbb{Z}$ and $\left(\alpha_{i}\right)_{i \in \mathbb{N}} \in \mathbb{Z}^{(\mathbb{N})}$ then $t \mid \alpha_{i}$ for all i. Set

$$
i_{0}=\max \left\{i \mid \alpha_{i} \neq 0\right\}
$$

and define

$$
M=\mathcal{E} \cup \operatorname{supp}\left(h_{1}\right) \cup \ldots \cup \operatorname{supp}\left(h_{i_{0}-1}\right) \subset I
$$

Then

$$
0=P_{I \backslash M}\left(p a+\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}\right)=P_{I \backslash M}\left(\alpha_{i_{0}} h_{i_{0}}\right)=\alpha_{i_{0}} P_{I \backslash M}\left(h_{i_{0}}\right)
$$

Since the order of $P_{I \backslash M}\left(h_{i_{0}}\right)$ equals t, we get $t \mid \alpha_{i_{0}}$. Thus we have

$$
\alpha_{i_{0}} h_{i_{0}}=\frac{\alpha_{i_{0}}}{t} t h_{i_{0}}=\frac{\alpha_{i_{0}}}{t} t a=\alpha_{i_{0}} a
$$

since $t h=P_{\mathcal{E}}(t h)+P_{I \backslash \mathcal{E}}(t h)=P_{\mathcal{E}}(t h)=t a$ for all $h \in H$. By induction we now infer that $t \mid \alpha_{i}$ for all $i \in \mathbb{N}$.

Now let $\left(\alpha_{i}\right)_{i \in \mathbb{N}} \in \mathbb{Z}^{(\mathbb{N})}$ be a sequence such that $\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}=0$. From the above we get

$$
\sum_{i \in \mathbb{N}} \alpha_{i} h_{i}=\sum_{i \in \mathbb{N}} \frac{\alpha_{i}}{t} t h_{i}=\frac{\sum_{i \in \mathbb{N}} \alpha_{i}}{t} t a
$$

Hence $r t \mid \sum_{i \in \mathbb{N}} \alpha_{i}$.
(ii) Without loss of generality we may assume that A and B are coprime in $\mathcal{F}(H)$. Then we see from (i) that $t \mid \alpha_{i}$ and $t \mid \beta_{i}$ for all $i \in \mathbb{N}$. Moreover, we have

$$
\sum_{i \in \mathbb{N}} \alpha_{i}=\sum_{i \in \mathbb{N}} \beta_{i}+\gamma r t
$$

for some $\gamma \in \mathbb{N}$. Since t divides each α_{i} there exist $c_{1}, \ldots, c_{r} \in H$ such that the block $C=c_{1}^{t} \ldots c_{r}^{t}$ divides A.
(iii) Let $B \in \mathcal{B}(H)$ be non-trivial. Then $B=\widetilde{B} c_{1}^{t} \ldots c_{r}^{t}$ where $c_{i} \in H$ by (ii). If B is irreducible, \widetilde{B} is equal to 1. ${ }^{\text {Claim }}$

For $n \in \mathbb{N}$ we set

$$
A_{n}=h_{(n-1) r+1} \ldots h_{n r} \in \mathcal{F}\left(G_{0}\right)
$$

Then A_{n}^{t} is a block.
Let $N \in \mathbb{N}$ be arbitrary. Set $B=A_{1} \ldots A_{N}$ and let $\phi_{1}, \ldots, \phi_{v} \in G_{0}$ be such that

$$
\phi_{1}+\ldots+\phi_{v}=-\sum_{i=1}^{N r} h_{i}
$$

and $v \leq m$. We set $\Phi=\phi_{1} \ldots \phi_{v} \in \mathcal{F}\left(G_{0}\right), V=B^{t}$ and $W=\Phi^{t}$.
From (iii) of the Claim we see that every non-trivial divisor of $B \Phi$ in $\mathcal{B}\left(G_{0}\right)$ must contain at least one ϕ_{i} (note that $t \geq 2$) and we get $\max L_{\mathcal{B}\left(G_{0}\right)}(B \Phi) \leq v$. Let $C=V W$. Then

$$
\min L_{\mathcal{B}\left(G_{0}\right)}(C) \leq t v \leq t m \leq \exp (G) m
$$

On the other hand,

$$
\max L_{\mathcal{B}\left(G_{0}\right)}(C) \geq N+1
$$

Let D be a divisor of W in $\mathcal{F}\left(G_{0}\right)$. If $Q=h_{1}^{\beta_{1}} \ldots h_{s}^{\beta_{s}} D$ and $Q^{\prime}=$ $h_{1}^{\beta_{1}^{\prime}} \ldots h_{s}^{\beta_{s}^{\prime}} D$ where $\beta_{i}, \beta_{i}^{\prime} \in \mathbb{N}_{0}$ are irreducible blocks then $\sum_{i=1}^{s} \beta_{i}=\sum_{i=1}^{s} \beta_{i}^{\prime}$ by (ii) of the Claim. Thus Lemma 3.2 yields

$$
\left|L_{\mathcal{B}\left(G_{0}\right)}(C)\right| \leq(t v)!\leq(\exp (G) m)!.
$$

3.3. Case 3: G is an unbounded torsion group. We now consider the case when G is a torsion group such that $\{\operatorname{ord}(g) \mid g \in G\} \subset \mathbb{N}$ is unbounded.

Let $N \in \mathbb{N}$ be arbitrary. The goal is to construct a block

$$
\begin{equation*}
B=g_{1}^{\gamma_{1}} \ldots g_{u}^{\gamma_{u}} \in \mathcal{B}\left(G_{0}\right) \tag{4}
\end{equation*}
$$

with pairwise distinct elements $g_{i} \in G_{0}$ such that $2 \leq u \leq 2 m$ and such that there is no relation

$$
\sum_{i=0}^{u} \alpha_{i} g_{i}=0
$$

(where $\alpha_{i} \in \mathbb{Z}$) with the following properties:
(i) $\left|\alpha_{i}\right| \leq \max \left\{\gamma_{1}, \ldots, \gamma_{u}\right\} N$ for all $1 \leq i \leq u$.
(ii) $\left(\alpha_{1}, \ldots, \alpha_{u}\right)$ and $\left(\gamma_{1}, \ldots, \gamma_{u}\right)$ are linearly independent over \mathbb{Z}.

We set $d=2 m+1$ and define a sequence $\left(l_{i}\right)_{i \in \mathbb{N}_{0}}$ of integers as follows:

$$
l_{0}=1, \quad l_{1}=2^{d^{d}} d^{d^{d}} N^{d^{d}} \quad \text { and } \quad l_{i+1}=l_{1} l_{i}^{d^{d^{d}}} \quad \text { for all } i \geq 1 .
$$

In order to construct the block we start with a sequence $\left(g_{1}, \ldots, g_{r}\right)$ of (not necessarily pairwise distinct) non-zero elements of G_{0} such that
(i) $r \leq 2 m$.
(ii) $g_{1}+\ldots+g_{r}=0$.
(iii) There exists some $g \in\left\{g_{1}, \ldots, g_{r}\right\}$ such that $\operatorname{ord}(g) \geq l_{d+1}$.
(Such a sequence exists since $G_{0}(m)=G$ and $\{\operatorname{ord}(g) \mid g \in G\} \subset \mathbb{N}$ is unbounded.) Set $I=\left\{g_{1}, \ldots, g_{r}\right\}$.

Our first aim is to get rid of those elements g_{i} which have "too small" order: We construct a block

$$
B_{0}=g_{1}^{\beta_{1}} \ldots g_{k}^{\beta_{k}} \in \mathcal{B}(I)
$$

of distinct elements g_{i} and $k \leq r$ (after renumbering the g_{i} if necessary) such that $1 \leq \beta_{i} \leq 2 m l_{t-1}^{2 m}$ and $\operatorname{ord}\left(g_{i}\right)>l_{t}$ for some $1 \leq t \leq d$ and all $1 \leq i \leq k$.

For $i \geq 1$ set

$$
K_{i}=\left\{g \in I \mid l_{i-1}<\operatorname{ord}(g) \leq l_{i}\right\} .
$$

Then $K_{i} \cap K_{j}=\emptyset$ if $i \neq j$. This implies that there exists some $1 \leq t \leq d$ such that $K_{t}=\emptyset$, since I contains at most $2 m$ elements. Since there exists some $g \in I$ such that $\operatorname{ord}(g) \geq l_{d+1}$, the set

$$
M_{t}=\left\{g \in I \mid \operatorname{ord}(g)>l_{t}\right\}
$$

is non-empty. Without restriction let $M_{t}=\left\{g_{1}, \ldots, g_{k}\right\}$ with pairwise distinct elements g_{i}. Since for all $g \in I$ we have either $\operatorname{ord}(g)>l_{t}$ or $\operatorname{ord}(g) \leq$ l_{t-1}, we see that there exists some $1 \leq \kappa \leq l_{t-1}^{2 m}$ such that $\kappa g=0$ for all $g \in I \backslash M_{t}=\left\{g \in I \mid \operatorname{ord}(g) \leq l_{t-1}\right\}$.

From these considerations we see that there is a block

$$
B_{0}=g_{1}^{\beta_{1}} \ldots g_{k}^{\beta_{k}}
$$

where $1 \leq \beta_{i} \leq 2 m \kappa$. (The factor $2 m$ arises because the g_{i} of our original sequence $\left(g_{1}, \ldots, g_{r}\right)$ are not necessarily pairwise distinct.)

We now define a sequence κ_{i} by

$$
\kappa_{0}=2 m \kappa \quad \text { and } \quad \kappa_{i+1}=2^{2 m} \kappa_{i}^{d} N .
$$

The next step is to use relations $\sum_{i=1}^{k} \alpha_{i} g_{i}=0$ with "small" coefficients α_{i}, where ($\alpha_{1}, \ldots, \alpha_{k}$) and ($\beta_{1}, \ldots, \beta_{k}$) are linearly independent (if such relations exist) to obtain blocks

$$
B_{i}=g_{1}^{\beta_{1}^{(i)}} \ldots g_{k_{i}}^{\beta_{k_{i}}^{(i)}}
$$

which contain fewer g_{i} than B_{0} does and where the $\beta_{j}^{(i)}$ are still "small" (compared with the order of the g_{i}). We repeat this till there are no such relations and finally obtain the block B in (4).

Hence assume that there is a relation

$$
\sum_{i=1}^{k} \alpha_{i} g_{i}=0
$$

(where $\alpha_{i} \in \mathbb{Z}$) such that $\left|\alpha_{i}\right| \leq \kappa_{0} N$ for all $1 \leq i \leq k$ and such that $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$ are linearly independent over \mathbb{Z}. Without loss of generality we assume that there exists some j with $\alpha_{j}<0$ (otherwise we pass to $\left.\sum_{i=1}^{k}\left(-\alpha_{i}\right) g_{i}=0\right)$. The formula

$$
\beta_{j} \boldsymbol{\alpha}+\left(-\alpha_{j}\right) \boldsymbol{\beta}=: \boldsymbol{\alpha}^{(1)}=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{k}^{(1)}\right)
$$

defines a new vector $\boldsymbol{\alpha}^{(1)}$ such that $\alpha_{j}^{(1)}=0$. If we repeat this procedure with $\boldsymbol{\alpha}^{(1)}$ instead of $\boldsymbol{\alpha}$ (provided there exists some $\alpha_{j}^{(1)}<0$), we obtain a vector $\boldsymbol{\alpha}^{(2)}$. After n steps (where $n \leq k$) we get a vector $\boldsymbol{\alpha}^{(n)}$ such that all $\alpha_{j}^{(n)}$ are non-negative and $\alpha_{j}^{(n)}=0$ for at least one j. Without restriction let $\alpha_{1}^{(n)}, \ldots, \alpha_{k_{1}}^{(n)}>0$ and $\alpha_{k_{1}+1}^{(n)}=\ldots=\alpha_{k}^{(n)}=0$. We set

$$
\beta_{i}^{(1)}=\alpha_{i}^{(n)} \quad \text { for all } 1 \leq i \leq k_{1}
$$

and obtain a block

$$
B_{1}=g_{1}^{\beta_{1}^{(1)}} \ldots g_{k_{1}}^{\beta_{k_{1}}^{(1)}} \in \mathcal{B}\left(G_{0}\right)
$$

where $k_{1}<k$.

In order to estimate the size of the $\beta_{i}^{(1)}$ we consider the equalities

$$
\beta_{j} \alpha_{i}^{(l)}-\alpha_{j}^{(l)} \beta_{i}=\alpha_{j}^{(l+1)}
$$

which yield

$$
\begin{aligned}
\max \left\{\left|\alpha_{j}^{(l+1)}\right| \mid 1 \leq j \leq k\right\} & \leq 2 \max \left\{\beta_{j} \mid 1 \leq j \leq k\right\} \max \left\{\left|\alpha_{j}^{(l)}\right| \mid 1 \leq j \leq k\right\} \\
& \leq 2 \kappa_{0} \max \left\{\left|\alpha_{j}^{(l)}\right| \mid 1 \leq j \leq k\right\}
\end{aligned}
$$

Since $\max \left\{\left|\alpha_{j}\right| \mid 1 \leq j \leq k\right\} \leq \kappa_{0} N$ we obtain, by induction on l,

$$
\max \left\{\left|\alpha_{j}^{(l)}\right| \mid 1 \leq j \leq k\right\} \leq 2^{l} \kappa_{0}^{l+1} N \leq 2^{2 m} \kappa_{0}^{2 m+1} N=\kappa_{1}
$$

Thus we have $\beta_{i}^{(1)} \leq \kappa_{1}$ for all $1 \leq i \leq k_{1}$.
If we repeat the whole procedure with B_{1} (provided there exists some relation

$$
\sum_{i=1}^{k_{1}} \alpha_{i} g_{i}=0
$$

such that $\left|\alpha_{i}\right| \leq \kappa_{1} N$ for all $1 \leq i \leq k_{1}$ and such that $\left(\alpha_{1}, \ldots, \alpha_{k_{1}}\right)$ and $\left(\beta_{1}^{(1)}, \ldots, \beta_{k_{1}}^{(1)}\right)$ are linearly independent over $\left.\mathbb{Z}\right)$, we obtain a block

$$
B_{2}=g_{1}^{\beta_{1}^{(2)}} \ldots g_{k_{2}}^{\beta_{k_{2}}^{(2)}}
$$

such that $\beta_{i}^{(2)} \leq \kappa_{2}$ for all $1 \leq i \leq k_{2}$. After s steps (where $0 \leq s \leq k \leq 2 m$) we finally obtain a block

$$
B_{s}=g_{1}^{\beta_{1}^{(s)}} \ldots g_{k_{s}}^{\beta_{k_{s}}^{(s)}}
$$

such that there is no equality

$$
\sum_{i=1}^{k_{s}} \alpha_{i} g_{i}=0
$$

with the property $\left|\alpha_{i}\right| \leq \kappa_{s} N$ for all $1 \leq i \leq k_{s}$ and such that $\left(\alpha_{1}, \ldots, \alpha_{k_{s}}\right)$ and $\left(\beta_{1}^{(s)}, \ldots, \beta_{k_{s}}^{(s)}\right)$ are linearly independent over \mathbb{Z}.

It is clear by construction that B_{s} is non-trivial and that $\beta_{i}^{(s)}>0$ for all $1 \leq i \leq k_{s}$. For the following argument it is crucial to see that even $k_{s} \geq 2$.

One can easily verify that

$$
\kappa_{i}=2^{d^{i}-1} \kappa_{0}^{d^{i}} N^{\sum_{j=0}^{i-1} d^{j}}
$$

for every $i \geq 0$. We thus have

$$
\kappa_{2 m}=2^{d^{2 m}-1} \kappa_{0}^{d^{2 m}} N^{\sum_{j=0}^{2 m-1} d^{j}}=2^{2 d^{2 m}-1} m^{d^{2 m}} \kappa^{d^{2 m}} N^{\sum_{j=0}^{2 m-1} d^{j}} \leq 2^{d^{d}} d^{d^{d}} \kappa^{d^{d}} N^{d^{d}} .
$$

Assume that k_{s} is equal to one. Then

$$
\operatorname{ord}\left(g_{1}\right) \leq \beta_{1}^{(s)} \leq \kappa_{s} \leq \kappa_{2 m} \leq 2^{d^{d}} d^{d^{d}} \kappa^{d^{d}} N^{d^{d}}
$$

since B_{s} is a block. On the other hand, $\operatorname{ord}\left(g_{1}\right)>l_{t}$. Hence

$$
l_{t}<\operatorname{ord}\left(g_{1}\right) \leq 2^{d^{d}} d^{d^{d}} \kappa^{d^{d}} N^{d^{d}} \leq 2^{d^{d}} d^{d^{d}} l_{t-1}^{2 d^{d^{d}}} N^{d^{d}} \leq l_{t},
$$

which is a contradiction.
Thus we have constructed a block as required at the beginning of the subsection if we set $u=k_{s}, \gamma_{i}=\beta_{i}^{(s)}$ and $B=B_{s}$.

We now set $B_{1}=g_{1}^{\gamma_{1}} \ldots g_{u-1}^{\gamma_{u-1}}$ and $B_{2}=g_{u}^{\gamma_{u}}$ (note that $u \geq 2$).
Let $\phi_{1}, \ldots, \phi_{v}, \psi_{1}, \ldots, \psi_{w} \in G_{0}$ be such that $v \leq m, w \leq m$,

$$
-N \sum_{i=1}^{u-1} \gamma_{i} g_{i}=\phi_{1}+\ldots+\phi_{v}
$$

and $-N \gamma_{u} g_{u}=\psi_{1}+\ldots+\psi_{w}$. Set $V=B^{N}, W=\phi_{1} \ldots \phi_{v} \psi_{1} \ldots \psi_{w}$ and consider the block $C=V W$. We obviously have

$$
\max L_{\mathcal{B}\left(G_{0}\right)}(C) \geq N+1
$$

On the other hand, $\max L\left(B_{1} \phi_{1} \ldots \phi_{v}\right) \leq v \leq m$ and $\max L\left(B_{2} \psi_{1} \ldots \psi_{w}\right) \leq$ $w \leq m$ because there does not exist a non-trivial block which divides B_{1} (resp. B_{2}). Hence we obtain

$$
\min L_{\mathcal{B}\left(G_{0}\right)}(C) \leq 2 m
$$

Next we check that V and W satisfy the assumptions of Lemma 3.2. Let D be a divisor of W in $\mathcal{F}\left(G_{0}\right)$ and let $E=g_{1}^{\delta_{1}} \ldots g_{u}^{\delta_{u}}$ and $E^{\prime}=g_{1}^{\delta_{1}^{\prime}} \ldots g_{u}^{\delta_{u}^{\prime}}$ be divisors of V in $\mathcal{F}\left(G_{0}\right)$. If $Q=E D$ and $Q^{\prime}=E^{\prime} D$ are irreducible blocks we have

$$
\sum_{i=1}^{u}\left(\delta_{i}-\delta_{i}^{\prime}\right) g_{i}=0
$$

and thus $\left(\delta_{1}-\delta_{1}^{\prime}, \ldots, \delta_{u}-\delta_{u}^{\prime}\right)=x\left(\gamma_{1}, \ldots, \gamma_{u}\right)$ for some $x \in \mathbb{Q}$ because of the properties of B.

Assume that $x \neq 0$. Without loss of generality let $x>0$. This implies that $\delta_{i}-\delta_{i}^{\prime}>0$ for all $1 \leq i \leq u$ and hence

$$
Q=Q^{\prime} g_{1}^{\delta_{1}-\delta_{1}^{\prime}} \ldots g_{u}^{\delta_{u}-\delta_{u}^{\prime}}
$$

is a non-trivial decomposition, which is a contradiction.
Hence Lemma 3.2 implies

$$
\left|L_{\mathcal{B}\left(G_{0}\right)}(C)\right| \leq(2 m)!.
$$

REFERENCES

[1] D. D. Anderson (ed.), Factorization in Integral Domains, Lecture Notes in Pure and Appl. Math. 189, Marcel Dekker, 1997.
[2] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
[3] D. F. Anderson, Elasticity of factorizations in integral domains: A survey, in [1], 1-29.
[4] A. Geroldinger and S. Chapman, Krull domains and monoids, their sets of lengths and associated combinatorial problems, in [1], 73-112.
[5] F. Kainrath, A divisor-theoretic approach towards the arithmetic of Noetherian domains, Arch. Math. (Basel) 73 (1999), 347-354.
[6] -, Elasticity of finitely generated domains, preprint.
[7] -, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999), 23-30.
[8] -, The distribution of prime divisors in finitely generated domains, Manuscripta Math. 100 (1999), 203-212.
[9] I. Kaplansky, Infinite Abelian Groups, third printing, Univ. of Michigan Press, 1960.
Institut für Mathematik
Karl-Franzens-Universität Graz
Heinrichstraße 36/4
A-8010 Graz, Austria
E-mail: wolfgang.hassler@uni-graz.at

