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Abstract

This is a survey on factorization theory. We discuss finitely generated monoids 
(including affine monoids), primary monoids (including numerical monoids), power 
sets with set addition, Krull monoids and their various generalizations, and the mul-
tiplicative monoids of domains (including Krull domains, rings of integer-valued 
polynomials, orders in algebraic number fields) and of their ideals. We offer exam-
ples for all these classes of monoids and discuss their main arithmetical finiteness 
properties. These describe the structure of their sets of lengths, of the unions of sets 
of lengths, and their catenary degrees. We also provide examples where these finite-
ness properties do not hold.

Keywords Commutative monoids · Krull monoids · Transfer Krull monoids · 
Factorizations · Sets of lengths · Catenary degrees

1 Introduction

Factorization theory emerged from algebraic number theory. The ring of integers of 
an algebraic number field is factorial if and only if it has class number one, and the 
class group was always considered as a measure for the non-uniqueness of factoriza-
tions. Factorization theory has turned this idea into concrete results. In 1960 Carlitz 
proved (and this is a starting point of the area) that the ring of integers is half-factorial 
(i.e., all sets of lengths are singletons) if and only if the class number is at most two. In 
the 1960s Narkiewicz started a systematic study of counting functions associated with 
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arithmetical properties in rings of integers. Starting in the late 1980s, theoretical prop-
erties of factorizations were studied in commutative semigroups and in commutative 
integral domains, with a focus on Noetherian and Krull domains (see [40, 45, 62]; [3] is 
the first in a series of papers by Anderson, Anderson, Zafrullah, and [1] is a conference 
volume from the 1990s).

From these beginnings factorization theory branched out, step by step, into various 
subfields of algebra including commutative and non-commutative ring theory, module 
theory, and abstract semigroup theory and today is considered as a structure theory of 
the arithmetic of a broad variety of objects. In this survey, we discuss finitely generated 
monoids (including affine monoids), Krull monoids (including Krull and Dedekind 
domains), power monoids (including the set of finite nonempty subsets of the nonnega-
tive integers with set addition as its operation), strongly primary monoids (including 
numerical monoids and local one-dimensional Noetherian domains), and weakly Krull 
monoids (including orders in algebraic number fields). The main aim of factoriza-
tion theory is to describe the various phenomena of non-uniqueness of factorizations 
by arithmetical invariants and to study the interdependence of these invariants and the 
classical algebraic invariants of the underlying algebraic structures. We discuss three 
long-term goals (Problem A, Problem B, and Problem C) of this area.

It turns out that abstract semigroup theory provides a most suitable frame for the for-
mulation of arithmetic concepts, even for studying factorizations in domains. A reason 
for this lies in the use of one of its main conceptual tools, transfer homomorphisms. 
Objects of interest H are oftentimes studied via simpler objects B and associated trans-
fer homomorphisms � ∶ H → B , which allow one to pull back arithmetical properties 
from B to H (see Definition 4.4 and Proposition 4.5).

In Sect.  2 we present semigroups from ring theory (semigroups of ideals and of 
modules) and power monoids (stemming from additive combinatorics), and we intro-
duce the arithmetical concepts discussed later in the paper (including sets of lengths 
and their unions, sets of distances, and catenary degrees). Theorem  3.1 in Sect.  3 
gathers the main arithmetical finiteness results for finitely generated monoids. In the 
next sections, we present Krull monoids, transfer Krull monoids, and weakly Krull 
monoids. We offer examples of such monoids, discuss their arithmetical properties, 
show how some of them can be pulled back from finitely generated monoids (Theo-
rem 5.5), and show that none of these arithmetical finiteness properties need to hold in 
general (Remark 5.7).

Various aspects of factorization theory could not be covered in this survey. These 
include factorizations in non-commutative rings and semigroups [87], factorizations in 
commutative rings with zero-divisors [5], the arithmetic of non-atomic, non-BF, and 
non-Mori domains [8, 24, 25], and factorizations into distinguished elements that are 
not irreducible (e.g., factorizations into radical ideals and others [20, 33, 76, 77, 82]).

2  Background on monoids and their arithmetic

We denote by ℕ the set of positive integers. For rational numbers a, b ∈ ℚ , 
[a, b] = {x ∈ ℤ ∶ a ≤ x ≤ b} means the discrete interval between a and b. For sub-
sets A, B ⊂ ℤ , A + B = {a + b ∶ a ∈ A, b ∈ B} denotes their sumset and, for every 
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k ∈ ℕ , kA = A +…+ A is the k-fold sumset of A. The set of distances Δ(A) is the 
set of all d ∈ ℕ for which there is a ∈ A such that A ∩ [a, a + d] = {a, a + d} . If 
A ⊂ ℕ

0
 , then �(A) = sup(A ∩ ℕ)∕min(A ∩ ℕ) ∈ ℚ

≥1 ∪ {∞} denotes the elasticity of 
A with the convention that �(A) = 1 if A ∩ ℕ = � . If d ∈ ℕ and M ∈ ℕ

0
 , then a sub-

set L ⊂ ℤ is called an almost arithmetical progression (AAP) with difference d and 
bound M if

where y ∈ ℤ is a shift parameter, L∗ is a nonempty arithmetical progression with dif-
ference d such that min L

∗
= 0 , L�

⊂ [−M,−1] , and L��
⊂ sup L

∗ + [1, M] (with the 
convention that L�� = � if L∗ is infinite).

2.1  Monoids

Let H be a multiplicatively written commutative semigroup. We denote by H× the 
group of invertible elements of H. We say that H is reduced if H

× = {1} and we 
denote by H

red
= {aH

× ∣ a ∈ H} the associated reduced semigroup of H. The semi-
group H is said to be

• cancellative if a, b, u ∈ H and au = bu implies that a = b;
• unit-cancellative if a, u ∈ H and a = au implies that u ∈ H

×.

By definition, every cancellative semigroup is unit-cancellative. If H is a unit-can-
cellative semigroup, then we define, for two elements a, b ∈ H , that a ∼ b if there 
is c ∈ H such that ac = bc . This is a congruence relation on H and the monoid 
H

canc
= H∕∼ is the associated cancellative monoid of H. If H is cancellative, then 

�(H) denotes the quotient group of H,

• Ĥ = {x ∈ �(H) ∶ there is c ∈ H such that cx
n ∈ H for all n ∈ ℕ} is the complete 

integral closure of H, and
• H̃ = {x ∈ �(H) ∶ x

n ∈ H for some n ∈ ℕ} is the root closure (also called the 
normalization) of H.

We say that H is completely integrally closed if H = Ĥ and that it is root closed (or 
normal) if H = H̃ . For a set P, let F(P) denote the free abelian monoid with basis P. 
Every a ∈ F(P) has a unique representation in the form

where 𝗏p ∶ H → ℕ
0
 is the p-adic valuation of a. We call �a� =

∑
p∈P �p(a) ∈ ℕ

0
 the 

length of a and supp (a) = {p ∈ P ∶ �p(a) > 0} ⊂ P the support of a.

Throughout this paper, a monoid means a

commutative unit-cancellative semigroup with identity element.

L = y + (L� ∪ L∗ ∪ L��) ⊂ y + dℤ ,

a =
∏

p∈P

p�p(a)
,
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Let H be a monoid. For two elements a, b ∈ H we say that a divides b (we write 
a | b ) if b ∈ aH and if aH = bH (equivalently, aH

×
= bH

× ), then a and b are called 
associated (we write a ≃ b ). The element a is called irreducible (or an atom) if 
a = bc with b, c ∈ H implies that b ∈ H

× or c ∈ H
× . We denote by A(H) the set of 

atoms of H. A submonoid S ⊂ H is said to be divisor-closed if every divisor a ∈ H 
of some element b ∈ S lies in S. A monoid homomorphism � ∶ H → D is a divi-

sor homomorphism if a, b ∈ H and �(a) |�(b) (in S) implies that a | b (in H). If the 
inclusion H ↪ D is a divisor homomorphism, then H is called a saturated submo-
noid of D. For a subset E ⊂ H we denote by

• [E] ⊂ H the smallest submonoid of H containing E, and by
• [[E]] ⊂ H the smallest divisor-closed submonoid of H containing E.

Clearly, [[E]] is the set of all a ∈ H dividing some element b ∈ [E] . If 
E = {a1,… , a

m
} , then we write [a1,… , a

m
] = [E] and [[a1,… , a

m
]] = [[E]].

A subset � ⊂ H is an s-ideal if �H = � and H is s-Noetherian if H satisfies the 
ACC (ascending chain condition) on s-ideals. We denote by s-spec (H) the set of 
prime s-ideals and by �(H) ⊂ s-spec (H) the set of minimal nonempty prime s-ideals. 
Suppose that H is cancellative. For subsets A, B ⊂ H , (A∶B) = {c ∈ �(H) ∶ cB ⊂ A} 
and A

v
=
(

H ∶ (H ∶A)
)

 is the v-ideal (or divisorial ideal) generated by A. If A
v
= A , 

then A is a divisorial ideal. The monoid H is a Mori monoid (or v-Noetherian) if 
it satisfies the ACC for divisorial ideals. If A, B ⊂ H are divisorial ideals, then 
A ⋅

v
B = (AB)

v
 is the v-product of A and B. We denote by I

v
(H) the semigroup of 

divisorial ideals of H (equipped with v-multiplication) and by I∗

v
(H) the subsemi-

group of v-invertible divisorial ideals. Clearly, I∗

v
(H) is cancellative and if H is a 

Mori monoid, then I
v
(H) is a monoid and I∗

v
(H) is a Mori monoid. For any unde-

fined concepts in ideal theory we refer to [64].
The monoid H is said to be finitely generated if there is a finite set E ⊂ H such 

that H = [E] . Every finitely generated monoid is s-Noetherian and the converse 
holds if H is cancellative [64, Theorem 3.6]. A monoid is called affine if it is finitely 
generated and isomorphic to a submonoid of a finitely generated free abelian group 
(equivalently, a commutative semigroup is affine if it is reduced, cancellative, 
finitely generated, and its quotient group is torsion-free).

If not stated otherwise, then a ring means a commutative ring with identity ele-
ment. Let R be a ring. Then R∙ denotes the semigroup of regular elements, and R∙ 
is a cancellative monoid. Rings with the property that au = a implies that u ∈ R

× 
or a = 0 are called présimplifiable in [2]. Ring theory gives rise to the following 
classes of monoids that are of central interest in factorization theory.

Example 2.1 (Monoids from ring theory) 1. (Semigroups of ideals) Let R be a com-
mutative integral domain. We denote by R its integral closure and by R̂ its complete 
integral closure. Further, let H(R) be the semigroup of nonzero principal ideals, 
I
∗(R) be the semigroup of invertible ideals, I(R) be the semigroup of all nonzero 

ideals, and F(R) be the semigroup of nonzero fractional ideals, all equipped with 
usual ideal multiplication. Then F(R)× , the group of units of F(R) , is the group of 
invertible fractional ideals and this is the quotient group of I∗(R) . Furthermore, 
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H(R) ≅ (R∙)
red

 , the inclusion H(R) ↪ I
∗(R) is a cofinal divisor homomorphism, 

I
∗(R) ⊂ I(R) is a divisor-closed submonoid, the prime elements of I∗(R) are pre-

cisely the invertible prime ideals, and Pic (R) = F(R)×∕�(H(R)) is the Picard group 
of R. Suppose that R is Noetherian. If I, J ∈ I(R) with IJ = I , then IJn

= I whence 
{0} ≠ I ⊂ ∩

n≥0
J

n . Since R satisfies Krull’s Intersection Theorem, it follows that 
J = R . Thus I(R) is unit-cancellative whence a monoid in the present sense.

The above constructions generalize to monoids of r-ideals for general ideal sys-
tems r (the interested reader may want to consult [64, 65, 80]). In the present paper 
we restrict ourselves to usual ring ideals, to usual semigroup ideals (s-ideals), and 
to divisorial ideals of monoids and domains. We use that the semigroup I

v
(R) of 

divisorial ideals of R (respectively the monoid I∗

v
(R) of v-invertible divisorial ideals 

of R) are isomorphic to the semigroup I
v
(R∙) of divisorial ideals of R∙ (respectively 

to the monoid I∗

v
(R∙) of v-invertible divisorial ideals of R∙ ). In particular, R is a Mori 

domain if and only if its monoid R∙ is a Mori monoid.
Atomic domains R having only finitely many non-associated atoms are called 

Cohen-Kaplansky domains and they are characterized by each of the following 
equivalent properties [7, Theorem 4.3]:

(a) H(R) is finitely generated.
(b) I(R) is finitely generated.
(c) I

∗(R) is finitely generated.
(d) R is a semilocal principal ideal domain, R∕(R∶R) is finite, and 

|max(R)| = |max(R)|.

2. (Semigroups of modules) Let R be a not necessarily commutative ring and let 
C be a class of right R-modules that is closed under finite direct sums, direct sum-
mands, and isomorphisms. This means, whenever M, M1, M2 are R-modules with 
M ≅ M

1
⊕ M

2
 , then M lies in C if and only if M

1
 and M

2
 lies in C . Let V(C) be the set 

of isomorphism classes of C (we tacitly assume that this is indeed a set) where the 
operation is induced by forming direct sums. Then (V(C),+) is a reduced commuta-
tive semigroup. By a result of Bergman-Dicks [14, Theorems 6.2 and 6.4] and [15, 
page 315], every commutative reduced semigroup S with S = [[a]] for some a ∈ S 
is isomorphic to a semigroup of modules (indeed, one may take the class of finitely 
generated projective right R-modules over a hereditary k-algebra).

If each module M in C is Noetherian (or artinian), then it is a finite direct sum 
of indecomposable modules and hence V(C) is atomic. If the endomorphism rings 
End

R
(M) are local for all indecomposable modules in C , then direct sum decom-

position is unique whence V(C) is free abelian (in other words, the Krull-Remak-
Schmidt-Azumaya Theorem holds). A module is said to be directly finite (or Dede-
kind finite) if it is not isomorphic to a proper direct summand of itself [58, 72]. 
Thus the semigroup V(C) is unit-cancellative (whence a monoid in the present sense) 
if and only if all modules in C are directly finite. The idea, to look at direct-sum 
decomposition of modules, from the viewpoint of factorization theory was pushed 
forward by Facchini, Wiegand, et al (for a survey see [12]). We meet semigroups of 
modules again in Example 4.2(4).



27

1 3

Factorization theory in commutative monoids  

We end this subsection with a class of monoids stemming from additive 
combinatorics.

Example 2.2 (Power monoids)   Let H be an additively written torsion-free 
monoid. The power monoid P

fin
(H) of H is the set of all finite nonempty sub-

sets of H, endowed with set addition as operation (thus, if A, B ∈ P fin(H) , then 
A + B = {a + b ∶ a ∈ A, b ∈ B} is the sumset of A and B). Clearly, P

fin
(H) is a com-

mutative semigroup and if 0
H
∈ H is the identity element of H, then {0

H
} is the 

identity element of P
fin
(H) . The subset P fin,×(H) ⊂ P fin(H) , which consists of those 

finite nonempty subsets A ⊂ H with A ∩ H
× ≠ � , is a divisor-closed submonoid of 

P
fin
(H) , called the restricted power monoid of H. Power monoids of monoids were 

introduced by Tringali et al. and studied in an abstract framework [9, 32, 90]. For 
simplicity of presentation, we restrict ourselves to P

fin
(ℕ

0
) and to P fin,0(ℕ0) consist-

ing of all finite nonempty subsets of ℕ
0
 containing 0. Finite nonempty subsets of the 

(nonnegative) integers and their sumsets are the primary objects of study in arithme-
tic combinatorics [48, 61, 89].

2.2  Arithmetical concepts

Let H be a monoid. The free abelian monoid �(H) = F(A(H
red
)) is the factoriza-

tion monoid of H and � ∶ 𝖹(H) → H
red

 , defined by �(u) = u for all u ∈ A(H
red
) , 

is the factorization homomorphism of H. For an element a ∈ H,

• �
H
(a) = �(a) = 𝜋

−1(aH
×) ⊂ �(H) is the set of factorizations of a, and

• �H(a) = �(a) = {|z| ∶ z ∈ �(a)} ⊂ ℕ
0 is the set of lengths of a.

Thus, �(a) = {0} if and only if a ∈ H
× and �(a) = {1} if and only if a ∈ A(H) . 

Then

is the system of sets of lengths of H. The monoid H is said to be

• atomic if �(a) ≠ � for all a ∈ H (equivalently, every non-invertible element of H 
can be written as a finite product of atoms of H);

• factorial if |�(a)| = 1 for all a ∈ H;
• half-factorial if |�(a)| = 1 for all a ∈ H;
• a BF-monoid (bounded factorization monoid) if �(a) is finite and nonempty for 

all a ∈ H.

A monoid H is factorial if and only if H
red

 is free abelian. Every Mori monoid is 
a BF-monoid, every BF-monoid satisfies the ACC on principal ideals, and every 
monoid satisfying the ACC on principal ideals is atomic. The main focus of factori-
zation theory is on BF-monoids and this will also be the case in the present paper. 
For any undefined notion we refer to [43].

L(H) = {�(a) ∶ a ∈ H}
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Suppose that H is a BF-monoid. Then L(H) ⊂ P
fin
(ℕ

0
) and for any subset 

L ⊂ P
fin
(ℕ

0
) we define the following invariants describing the structure of L . We 

denote by

and by

Then �(L) = sup R(L) is called the elasticity of L and we say that the elasticity is 
accepted if there is an L ∈ L with �(L) = �(L) . For every k ∈ ℕ

0
,

and �
k
(L) = sup U

k
(L) is the k-th elasticity of L . If L = L(H) , then we briefly set 

Δ(H) = Δ
(

L(H)
)

 and similarly for the other invariants. Thus, by definition, H is 
half-factorial if and only if Δ(H) = � if and only if R(H) = {1} . Furthermore, if 
H ≠ H

× , then U
0
(H) = {0} and U

1
(H) = {1}.

In many settings unions of sets of lengths as well as sets of lengths have a well-
defined structure. For their description we need the concept of an AAMP (almost 
arithmetical multiprogression). Let d ∈ ℕ , M ∈ ℕ

0
 and {0, d} ⊂ D ⊂ [0, d] . A subset 

L ⊂ ℤ is called an AAMP with differenced, period D , and bound M , if

 

• L
∗ is finite nonempty with min L

∗
= 0 and L∗ = (D + dℤ) ∩ [0, max L

∗] , and
• L

�
⊂ [−M,−1] , L��

⊂ max L
∗ + [1, M] , and y ∈ ℤ.

Next we define a distance function on the set of factorizations �(H) . Two factorizations 
z, z� ∈ �(H) can be written in the form

where �, m, n ∈ ℕ0 and u1,… , u
�
, v1,… , v

m
, w1,… , w

n
∈ A(H red) are such that 

{v1,… , v
m
} ∩ {w1,… , w

n
} = � . Then �(z, z

�) = max{m, n} ∈ ℕ0 is the distance 
between z and z′ . If z ≠ z

′ with �(z) = �(z�) , then

if H is cancellative. Let a ∈ H and N ∈ ℕ
0
 . A finite sequence z0,… , zk ∈ �(a) 

is called an N-chain of factorizations if �(zi−1, zi) ≤ N for all i ∈ [1, k] . Then 
�

H
(a) = �(a) is the smallest N ∈ ℕ

0
∪ {∞} such that any two factorizations 

z, z
� ∈ �(a) can be concatenated by an N-chain. The set

Δ(L) =
⋃

L∈L

Δ(L) ⊂ ℕ the set of distances of L ,

R(L) = {𝜌(L) ∶ L ∈ L} ⊂ ℚ
≥1

the set of elasticities of L .

Uk(L) =
⋃

k∈L∈L

L ⊂ ℕ is the union of sets of L containing k ,

L = y + (L� ∪ L∗ ∪ L��) ⊂ y + D + dℤ , where

z = u1 ⋅… ⋅ u
𝓁
v1 ⋅… ⋅ v

m
and z

�
= u1 ⋅… ⋅ u

𝓁
w1 ⋅… ⋅ w

n
,

(2.1)1 + |
||z| − |z�||| ≤ �(z, z

�) respectively 2 + |
||z| − |z�||| ≤ �(z, z

�)
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is the set of (positive) catenary degrees of H and �(H) = sup��(H) ∈ ℕ0 ∪ {∞} is 
the catenary degree of H. If H is not half-factorial, then the inequalities of (2.1) 
imply that

if H is cancellative.

3  Finitely generated monoids

By Redei’s Theorem, every finitely generated commutative semigroup is finitely 
presented. The idea to describe arithmetical invariants in terms of relations was 
pushed forward by Chapman and García-Sánchez ([21, 22] are the first papers in 
this direction). This point of view laid the foundation for the development of algo-
rithms computing arithmetical invariants in finitely generated monoids (we refer 
to [38] for a survey, and to [37, 79] for a sample of further work in this direction). 
In particular, for numerical monoids there is a wealth of papers providing algo-
rithms for determining arithmetical invariants and in some cases there are even 
precise values (formulas) for arithmetical invariants (in terms of the atoms or of 
other algebraic invariants; [26, 39]). A further class of objects, for which precise 
formulas for arithmetical invariants are available, will be discussed in Sect. 6.

Our first result summarizes the main arithmetical finiteness properties of 
finitely generated monoids. Its proof is (implicitly) based on Dickson’s Lemma 
stating that a subset of ℕs

0
 has only finitely minimal points.

Theorem  3.1 (Arithmetic of finitely generated monoids) Let H be a monoid such 

that H
red

 is finitely generated.

1. The set of catenary degrees and the set of distances are finite and �(H) ∈ ℚ . If H 

is cancellative, then the elasticity is accepted and there is some r ∈ ℝ
≥1

 such that 

{q ∈ ℚ ∶ r ≤ q ≤ 𝜌(H)} ⊂ R(H); moreover, r is the only possible limit point of 

{𝜌(L) ∶ L ∈ L(H) with 𝜌(L) < r}.
2. There is M ∈ ℕ

0
 such that, for all k ∈ ℕ, the unions U

k
(H) are finite AAPs with 

difference minΔ(H) and bound M.
3. If H is cancellative, then there is M ∈ ℕ

0
 such that every L ∈ L(H) is an AAMP 

with difference d ∈ Δ(H) and bound M.

Proof 1. Suppose that the set of catenary degrees is finite. Then (2.2) implies that 
the set of distances is finite. The elasticity �(H) is rational by  [31, Proposition 3.4]. 
Now suppose in addition that H is cancellative. Then the elasticity �(H) is accepted 
by [43, Theorem 3.1.4] (this does not hold true in general if H is not cancellative). 
The claim on the structure of R(H) was proved in [95].

��(H) = {�(a) ∶ a ∈ H with �(a) > 0} ⊂ ℕ
0

(2.2)1 + supΔ(H) ≤ �(H) resp. 2 + supΔ(H) ≤ �(H)
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Now we show that the catenary degree �(H) is finite. We may assume that H is 
reduced and we denote by � ∶ 𝖹(H) → H the factorization homomorphism. We con-
sider the submonoid

and start with the following assertion. 

A.   The set 

 is finite.

Proof of A Assume to the contrary that S
∗
⊂ �(H) × �(H) is infinite. Then there 

exists a sequence (xi, yi)i≥1 with terms from S
∗ such that (xi, yi) ≠ (xj, yj) and 

(xi, yi) ∣�(H)×�(H) (xj, yj) for distinct i, j ∈ ℕ with i < j . Since S ⊂ �(H) × �(H) is satu-
rated, we have (xi, yi) ∣S (xj, yj) for distinct i, j ∈ ℕ with i < j . For every i ∈ ℕ , we 
define

Then (�
i
)
i≥1

 is an ascending chain of s-ideals of �(H) . Since �(H) is finitely gener-
ated, every ascending chain of s-ideals of �(H) is stationary (this proof uses Dick-
son’s Lemma). Thus there exists N ∈ ℕ such that �

N
= �

N+1
 . Therefore for every 

z ∈ �(H) with �(xN+1
z) = �(yN+1

z) we have z ∈ �N+1
= �N . By definition of �

N
 , 

there is (x�, y�) ∈ S ⧵ {(1, 1)} with (x�, y�) ∣S (xN , yN) such that �(x�z) = �(y�z) , a con-
tradiction to (xN+1, yN+1) ∈ S∗ .   ◻

We assert that

It suffices to prove that for all (x, y) ∈ S and for all z ∈ �(H) with �(xz) = �(yz) , 
there exists an M-chain concatenating xz and yz. Assume to the contrary that this 
does not hold and let (x, y) ∈ S be a counter example for which |x| + |y| is mini-
mal. Let z ∈ �(H) with �(xz) = �(yz) . If (x, y) ∈ S∗ , then �(xz, yz) = �(x, y) ≤ M , 
a contradiction. Thus (x, y) ∉ S∗ and hence there exists (x�, y�) ∈ S ⧵ {(1, 1), (x, y)} 
with (x�, y�) ∣S (x, y) such that �(x�z) = �(y�z) . Then |x�| + |y�| < |x| + |y| and 
|xx

�−1| + |yy
�−1| < |x| + |y| imply that there exist an M-chain concatenat-

ing xz = x
�(xx

�−1)z and y
�(xx

�−1)z and an M-chain concatenating y
�(xx

�−1)z and 
y
�(yy

�−1)z = yz , a contradiction.
2. We refer to  [31, Theorem 3.6], and for 3. see [43, Theorem 4.4.11].   ◻
These finiteness results for finitely generated monoids give rise to a core ques-

tion in the area.

S = {(x, y) ∈ �(H) × �(H) ∶ there exists z ∈ �(H) such that 𝜋(xz) = 𝜋(yz)} ⊂ �(H) × �(H)

S∗ = {(x, y) ∈ S ∶ there exists z ∈ �(H) such that �(xz) = �(yz), but for all

(x1, y1) ∈ S ⧵ {(1, 1), (x, y)} with (x1, y1) ∣S (x, y), we have �(x1z) ≠ �(y1z)}

𝔞i = {z ∈ �(H) ∶ there exists (x�, y�) ∈ S ⧵ {(1, 1)} with

(x�, y�) ∣S (xi, yi) such that �(x�z) = �(y�z)} .

�(H) ≤ M ∶= max{�(x, y) ∶ (x, y) ∈ S∗} .
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Problem A Take a class C of distinguished objects (e.g., the class of Noetherian 

domains or the class of Krull monoids). Provide an algebraic characterization of the 

objects in C satisfying all resp. some of arithmetical finiteness properties of finitely 

generated monoids.

There are such algebraic characterizations of arithmetical finiteness properties in 
the literature (e.g., the finiteness of the elasticity is characterized within the class of 
finitely generated domains in [70]; see also [71]). But Problem A addresses a field of 
problems, many of which are wide open. In this survey, we show that transfer Krull 
monoids of finite type satisfy the same arithmetical finiteness properties as given 
in Theorem 3.1 (Theorem 5.5) and we characterize the finiteness of unions of sets 
of lengths in the setting of weakly Krull monoids (Theorems 7.2 and 7.4). It is no 
surprise that none of the statements of Theorem 3.1 needs to hold true for general 
BF-monoids and Remark 5.7 gathers some most striking examples.

4  Krull monoids

Definition 4.1 A monoid H is a Krull monoid if it is cancellative and satisfies one of 
the following equivalent conditions .

(a) H is a completely integrally closed Mori monoid.
(b) H has a divisor theory � ∶ H → F(P) ; this means that � is a divisor homo-

morphism such that for every � ∈ F(P) there are a1,… , a
m
∈ H  with 

� = gcd
(

�(a1),… , �(a
m
)
)

.
(c) H has a divisor homomorphism into a free abelian monoid.

Let H be a Krull monoid. Then the monoid I∗

v
(H) is free abelian, and there is a free 

abelian monoid F = F(P) such that the inclusion H
red

↪ F is a divisor theory. Since 
divisor theories of a monoid are unique up to isomorphisms, the group

depends only on H and it is called the (divisor) class group of H. Every 
g ∈ C(H) is a subset of �(F) , P ∩ g is the set of prime divisors lying in g, and 
G

0
= {[p] = q�(H

red
) ∶ p ∈ P} ⊂ C(H) is the set of classes containing prime 

divisors.

Example 4.2 (Examples of Krull monoids)   1. Domains. A Noetherian domain is 
Krull if and only if it is integrally closed and the integral closure of any Noetherian 
domain is Krull (Theorem of Mori-Nagata). The property of being a Krull domain 
is a purely multiplicative one. Indeed, a domain R is a Krull domain if and only 
if its multiplicative monoid of nonzero elements is a Krull monoid (this charac-
terization generalizes to rings with zero-divisors, see [46, Theorem 3.5]). If R is a 
Krull domain, then C(R∙) ≅ C

v
(R) , where C

v
(R) is the usual v-class group of a Krull 

domain. If R is a Dedekind domain, then C(R∙) ≅ Pic (R).

C(H) = �(F)∕�(H
red
)
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2. Submonoids of domains. Since the composition of divisor homomorphisms is 
a divisor homomorphism, every saturated submonoid H ⊂ R

∙ of a Krull domain R is 
a Krull monoid. But also non-Krull domains may have submonoids that are Krull. 
We mention two classes of examples.

Let O be an order in an algebraic number field K with conductor � = (O∶Ô) . 
Then Ô = O

K
 is the ring of integers of K and H = {a ∈ O ∶ aO + � = O

K
} ⊂ O

∙ 
is a submonoid. Moreover, H is Krull and it is an example of a regular congruence 
monoid [43, Section 2.11].

Let R be an integral domain with quotient field K. Then 
Int (R) = {f ∈ K[X] ∶ f (R) ⊂ R} ⊂ K[X] is the ring of integer-valued polynomials. 
If R is factorial, then the divisor-closed submonoid [[f ]] ⊂ Int (R) is a Krull monoid 
for every nonzero polynomial f ∈ Int (R) [81].

3. Normal affine monoids. Let H be a reduced monoid. Then H is normal and 
affine if and only if H is a finitely generated Krull monoid, which holds if and only 
if it is isomorphic to the monoid of non-negative solutions of a system of linear dio-
phantine equations [43, Theorem 2.7.14]. Normal affine monoids and the associated 
monoid algebras play a crucial role in combinatorial commutative algebra [17].

4. Monoids of modules. Let R be a not necessarily commutative ring, C a class 
of R-modules, and V(C) the semigroup of modules as introduced in Example 2.1.2. 
By a path breaking result of Facchini [27, Theorem 3.4], V(C) is a Krull monoid if 
the endomorphism rings End

R
(M) are semilocal for all modules M of C (for mod-

ules having semilocal endomorphism rings see [28]). This result paved the way for 
studying direct-sum decomposition of modules with methods from the factorization 
theory of Krull monoids.

5. Monoids of zero-sum sequences. Let G be an abelian group, G
0
⊂ G a sub-

set, and F(G
0
) the free abelian monoid with basis G

0
 . According to the tradition 

of additive combinatorics, elements of F(G
0
) are called sequences over G

0
 . If 

S = g
1
⋅… ⋅ g

𝓁
∈ F(G

0
) , then �(S) = g

1
+…+ g

�
∈ G is the sum of S and S is called 

a zero-sum sequence if �(S) = 0 . The set B(G
0
) = {S ∈ F(G

0
) ∶ 𝜎(S) = 0} ⊂ F(G

0
) 

is a submonoid (called the monoid of zero-sum sequences over G
0
 ) and since the 

inclusion B(G
0
) ↪ F(G

0
) is a divisor homomorphism, B(G

0
) is a Krull monoid. 

Suppose that G
0
 is finite. Then B(G

0
) is finitely generated and the converse holds if 

G = [G
0
] . Moreover, since B(G

0
) is reduced and its quotient group is torsion-free, it 

is a normal affine monoid.
6. Analytic monoids. These are Krull monoids with finite class group and a 

suitable norm function that allows to establish a theory of L-functions. Analytic 
monoids serve as a general frame for a quantitative theory of factorizations. Let 
� ∶ H → F(P) be a divisor theory of H and let 𝖭 ∶ F(P) → ℕ be a norm. The goal of 
quantitative factorization theory is to study, for a given arithmetical property � , the 
asymptotic behavior, for x → ∞ , of the associated counting function

A systematic study of counting functions (in the setting of algebraic number 
fields) was initiated by Narkiewicz in the 1960s (we refer to the presentations in 
the monographs  [73, Chapter  9],  [43, Chapter  9]), and for recent work to [68]). 

�(x) = #{a ∈ H ∶ �(a) ≤ x, a satisfies Property �} .
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Among others, the property that ” max�(a) ≤ k ” was studied for every k ∈ ℕ . Note 
that max�(a) = 1 if and only if a is irreducible whence �

1
(x) counts the number of 

irreducibles with norm �(a) ≤ x . The property that ” �(a) is an interval” deserves 
special attention. It turned out that almost all sets of lengths are intervals. More 
precisely, for the ring of integers O

K
 in an algebraic number field K we have [43, 

Theorem 9.4.11]

This result is in contrast to Theorem  5.6.3 demonstrating the variety of sets of 
lengths in Krull monoids with class group G and should also be compared with 
Problem C in Sect. 6.

Let H be a Krull monoid, H
red

↪ F = F(P) a divisor theory, G an abe-
lian group, and (mg)g∈G a family of cardinal numbers. We say that H has char-

acteristic (G, (mg)g∈G) if there is a group isomorphism � ∶ G → C(H) such that 
card (P ∩ �(g)) = mg for all g ∈ G.

Theorem 4.3 (Structure and Realization Results for Krull monoids)  

1. If G is an abelian group, (mg)g∈G a family of cardinal numbers, 

G
0
= {g ∈ G ∶ mg ≠ 0} , and G

1
= {g ∈ G ∶ mg = 1} , then the following state-

ments are equivalent.

(a) There exists a Krull monoid with characteristic (G, (mg)g∈G).
(b) G = [G

0
] and G = [G

0
⧵ {g}]for every g ∈ G

1
.

Moreover, two reduced Krull monoids are isomorphic if and only if they have the 

same characteristic.

2. For every Krull monoid H there is a reduced Krull monoid H
0
 with H

0
≅ H

red
 

such that H = H
×
×H

0
.

3. For every reduced Krull monoid H there is an abelian group G and a subset 

G
0
⊂ G such that H ≅ B(G

0
).

4. For every reduced Krull monoid H there is a ring R and a class of R-modules C 

such that H ≅ V(C).

Proof For 1. - 3. see [43, Sections 2.4 and 2.5] and for 4. see [29, Theorem 2.1].   ◻

Next we introduce transfer homomorphisms, a key tool in factorization theory 
(for transfer homomorphisms in more general settings see [11, 32]).

Definition 4.4 A monoid homomorphism � ∶ H → B between atomic monoids is 
said to be a transfer homomorphism if the following two properties are satisfied. 

(4.1)lim
x→∞

#{aO
K
∶ 𝖭(a) ≤ x, 𝖫(a) is an interval}

#{aO
K
∶ 𝖭(a) ≤ x}

= 1 .
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(T 1)   B = �(H)B× and �−1(B×) = H
×.

(T 2)   If u ∈ H , b, c ∈ B and �(u) = bc , then there exist v, w ∈ H such that 
u = vw , �(v) ≃ b and �(w) ≃ c.

Thus transfer homomorphisms are surjective up to units and they allow to lift 
factorizations. The next proposition shows that they allow one to pull back arith-
metical information to the source monoid.

Proposition 4.5 Let � ∶ H → B be a transfer homomorphism between atomic 

monoids.

1. For every a ∈ H we have �
H
(a) = �

B

(

�(a)
)

 . In particular, we have L(H) = L(B) , 
Δ(H) = Δ(B) , R(H) = R(B) , and U

k
(H) = U

k
(B) for all k ∈ ℕ.

2. �(B) ≤ �(H) ≤ max{�(B), �(H, �)} , where �(H, �) is the catenary degree in the 

fibres.

Proof 1. It follows easily from the definition that �
H
(a) = �

B

(

�(a)
)

 for every a ∈ H 
(for a proof in the cancellative setting see  [43, Proposition 3.2.3]). The remaining 
statements are an immediate consequence.

2. The proof runs along the same lines as in the cancellative setting [43, Theo-
rem 3.2.5].   ◻

Proposition 4.6 Let H be a reduced Krull monoid, F = F(P) be a free abelian 

monoid such that the inclusion H ↪ F is a cofinal divisor homomorphism. Let 

G = �(F)∕�(H) be the class group, G
0
= {[p] = p�(H) ∶ p ∈ P} ⊂ G denote the set 

of classes containing prime divisors, and let �̃ ∶ F → F(G
0
) be the unique homo-

morphism such that �̃(p) = [p] for all p ∈ P.

1. For every a ∈ F , we have a ∈ H if and only if �̃(a) ∈ B(G
0
).

2. The restriction � = �̃|H ∶ H → B(G
0
) is a transfer homomorphism with 

�(H, �) ≤ 2.

Proof 1. Let a = p
1
⋅… ⋅ p

𝓁
∈ F , where � ∈ ℕ

0
 and p1,… , p

�
∈ P . Since the inclu-

sion H ↪ F is a divisor homomorphism, we have H = �(H) ∩ F , whence a ∈ H if 
and only if 0 = [a] = [p

1
] +… + [p

�
] = �(�̃(a)).

2. By 1., we have �(H) = B(G
0
) whence � ∶ H → B(G

0
) is surjective and 

�−1(1) = {1} . To verify (T2), let a = p
1
⋅… ⋅ p

𝓁
∈ H be given with � ∈ ℕ

0
 and 

p1,… , p
�
∈ P . Suppose that �(a) = BC with B, C ∈ B(G0) , say B = [p

1
] ⋅… ⋅ [pk] 

and C = [pk+1
] ⋅… ⋅ [p

𝓁
] with k ∈ [0,�] . Then 1. implies that b = p

1
⋅… ⋅ pk ∈ H , 

c = pk+1
⋅… ⋅ p

𝓁
∈ H , and clearly a = bc . Thus � is a transfer homomorphism. The 

inequality �(H, �) ≤ 2 follows from [43, Proposition 3.4.8].   ◻
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5  Transfer Krull monoids

Within the class of Mori monoids, Krull monoids are the ones whose arithmetic is 
best understood. Transfer Krull monoids need not be Krull but they have the same 
arithmetic as Krull monoids. They include all commutative Krull monoids, but also 
classes of not integrally closed Noetherian domains and of non-commutative Dede-
kind domains (see Example 5.4). We start with the definition, discuss some basic 
properties, and as a main structural result we show that for every cancellative trans-
fer Krull monoid there is an overmonoid that is Krull such that the inclusion is a 
transfer homomorphism (Proposition 5.3(2)).

Definition 5.1 A monoid H is said to be a transfer Krull monoid if one of the follow-
ing two equivalent properties is satisfied .

(a) There exist a Krull monoid B and a transfer homomorphism � ∶ H → B.
(b) There exist an abelian group G, a subset G

0
⊂ G , and a transfer homomorphism 

� ∶ H → B(G
0
).

Since B(G
0
) is a Krull monoid by Example 4.2(5), Property (b) implies Prop-

erty (a). Conversely, since every Krull monoid has a transfer homomorphism to a 
monoid of zero-sum sequences by Proposition 4.6 and since the composition of 
transfer homomorphisms is a transfer homomorphism, Property (a) implies Prop-
erty (b). Thus Property (a) and Property (b) are equivalent. If H satisfies Property 
(b) with a finite set G

0
 , then H is said to be transfer Krull of finite type. Since Krull 

monoids are BF-monoids, transfer Krull monoids are BF-monoids by Proposition 
4.5(1), but they need neither be Mori nor be completely integrally closed.

Lemma 5.2   

1. Coproducts of transfer Krull monoids are transfer Krull.

2. Divisor-closed submonoids of transfer Krull monoids are transfer Krull.

3. Let H be a cancellative monoid, � ∶ H → B be a transfer homomorphism 

to a reduced Krull monoid B, T ⊂ B be a submonoid, and S = �
−1(T). Then 

Θ = 𝗊(�)|S−1
H ∶ S

−1
H → T

−1
B is a transfer homomorphism and S−1

H is trans-

fer Krull.

Proof 1. Let (H
i
)
i∈I

 be a family of transfer Krull monoids and

their coproduct. If (�
i
∶ H

i
→ B

i
)
i∈I

 is a family of transfer homomorphisms into the 
Krull monoids B

i
 , then the homomorphism � = (�

i
)
i∈I

∶ H →

∐

i∈I
B

i
 is a transfer 

homomorphism. Since the coproduct of Krull monoids is a Krull monoid, H is a 
transfer Krull monoid.

H =
∐

i∈I

H
i
=

{

(a
i
)
i∈I

∈
∏

i∈I

H
i
∶ a

i
= 1 for almost all i ∈ I

}



36 A. Geroldinger, Q. Zhong 

1 3

2. Let � ∶ H → B be a transfer homomorphism to a reduced Krull monoid B and 
let S ⊂ H be a divisor-closed submonoid. Then the restriction �|S ∶ S → �(S) is a 
transfer homomorphism, 𝜃(S) ⊂ B is a divisor-closed submonoid, and since divisor-
closed submonoids of Krull monoids are Krull, the divisor-closed submonoid S ⊂ H 
is a transfer Krull monoid.

3. Since localizations of Krull monoids are Krull, T−1
B is a Krull monoid and 

hence it suffices to verify that Θ ∶ S
−1

H → T
−1

B is a transfer homomorphism. Since 
� is surjective, we infer that Θ is surjective. An elementary calculation shows that 
Θ−1

(

(T−1
B)×

)

= (S−1
H)× . Thus (T1) holds. In order to verify (T2), let 

u =
h

s
∈ S−1H , b =

b1

t1

, c =
b2

t2

∈ T
−1

B be such that Θ(u) = bc , where h ∈ H , s ∈ S , 

b1, b2 ∈ B , and t1, t2 ∈ T  . Let s1, s2 ∈ S be such that �(s
1
) = t

1
 and �(s

2
) = t

2
 . Then

Since � ∶ H → B is a transfer homomorphism, there are x, y ∈ H such that �(x) = b
1
 , 

�(y) = b
2
�(s) , and hs

1
s

2
= xy . Thus we obtain that

and hence (T2) holds.   ◻

Proposition 5.3 Let H be a monoid and  H
canc

 be the associated cancellative 

monoid.

1. H is a transfer Krull monoid if and only if there is a Krull monoid D with 

H
canc

⊂ D ⊂ �(H
canc

) such that the canonical map Θ ∶ H ↠ H
canc

↪ D is a 

transfer homomorphism. If this holds, then �(H
canc

) = �(D) , D = H
canc

D
× , and 

H
×

canc
= D

×
∩ H

canc
.

2. Suppose that H is cancellative. Then H is a transfer Krull monoid if and only if 

there is a Krull monoid D with H ⊂ D ⊂ �(H) such that the inclusion H ↪ D 

is a transfer homomorphism. If this holds, then �(H) = �(D) , D = HD
× , and 

H
×
= D

×
∩ H.

3. If R ⊂ S are integral domains with �(R) = �(S) , S = RS
× , R

×
= S

×
∩ R , and 

(R ∶ S) ∈ max(R) , then the inclusion R∙

↪ S
∙ is a transfer homomorphism. If, in 

addition,  S is a Krull domain, then R is a transfer Krull domain.

Proof 1. Clearly, if D is a Krull monoid and Θ ∶ H ↠ H
canc

↪ D is a transfer 
homomorphism, then H is a transfer Krull monoid. Conversely, suppose that H is a 
transfer Krull monoid and let � ∶ H → B be a transfer homomorphism, where B is 
a reduced Krull monoid. For an element a ∈ H , we denote by [a] ∈ H

canc
 the con-

gruence class of a. If a1, a2, c ∈ H such that a
1
c = a

2
c , then �(a

1
)�(c) = �(a

2
)�(c) 

whence �(a
1
) = �(a

2
) . Thus � induces a homomorphism �∗ ∶ H

canc
→ B , defined by 

�(h)

�(s)
=

b
1

�(s
1
)

b
2

�(s
2
)

whence �(hs
1
s

2
) = b

1

(

b
2
�(s)

)

.

u =
h

s
=

x

s1

y

s2s
, Θ

(

x

s1

)

=
b1

t1
, and Θ

( y

s2s

)

=
b2

t2
,
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�
∗([a]) = �(a) for all a ∈ H . Since � is a transfer homomorphism, it is easy to see �∗ 

is a transfer homomorphism.
If D = {[a]−1[b] ∶ a, b ∈ H, 𝜃(a) ∣

B
𝜃(b)} ⊂ �(H canc) , then the homomorphism 

𝗊(�∗)|D ∶ D → B is a divisor homomorphism, whence D is a Krull monoid. By con-
struction, we have H

canc
⊂ D ⊂ �(H

canc
) and thus �(H

canc
) = �(D).

To verify that Θ ∶ H ↠ H
canc

↪ D is a transfer homomorphism, we 
first note that D

× = {[a]−1[b] ∶ a, b ∈ H with �(a) = �(b)} . Now let 
[a]−1[b] ∈ D where a, b ∈ H with �(a) ∣

B
�(b) . Then there exists c ∈ B such 

that �(b) = �(a)c . Since � is a transfer homomorphism, there exist b1, b2 ∈ H 
such that b = b

1
b

2
 and �(b

1
) = �(a) , �(b

2
) = c . It follows that [a]−1[b

1
] ∈ D

× 
and [a]−1[b] = ([b

1
]−1[b

1
b

2
])([a]−1[b

1
]) = [b

2
]([a]−1[b

1
]) ∈ H

canc
D

× , whence 
D = H

canc
D

× = Θ(H)D× . Similarly, we get H×

canc
= D

×
∩ H

canc
 whence (T1) holds.

To verify (T2), let a ∈ H and d1, d2 ∈ D be given such that [a] = d
1
d

2
 . Then 

�(a) = �
∗(d

1
)�∗(d

2
) and hence there exist a1, a2 ∈ H such that a = a

1
a

2
 and 

�
∗([a

1
]) = �

∗(d
1
) , �∗([a

2
]) = �

∗(d
2
) . It follows that [a

1
] = d

1
(d−1

1
[a

1
]) ∈ d

1
D

× and 
[a

2
] = d

2
(d−1

2
[a

2
]) ∈ d

2
D

× . Therefore Θ is a transfer homomorphism.
2. is a special case of 1. and for 3. we refer to [43, Proposition 3.7.5].   ◻

Example 5.4 (Examples of transfer Krull monoids)   1. Since the identity map is a 
transfer homomorphism, every Krull monoid is a transfer Krull monoid. This gener-
alizes to not necessarily commutative, but normalizing Krull monoids as studied in 
the theory of Noetherian semigroup algebras [41, 67, 75].

2. Every half-factorial monoid is transfer Krull. Indeed, let H be half-factorial 
and let G = {0} be the trivial group. Then � ∶ H → B(G) , defined by �(u) = 0 for 
every u ∈ A(H) and �(�) = 1 for every � ∈ H

× , is a transfer homomorphism.
3. Main examples of transfer Krull monoids stem from non-commutative ring 

theory whence they are beyond the scope of this article. Nevertheless, we mention 
one example and refer the interested reader to [10, 11, 87, 88] for more. Let O

K
 be 

the ring of integers in an algebraic number field K, A a central simple K-algebra, and 
R a classical maximal O

K
-order of A. Then R∙ is transfer Krull if and only if every 

stably free left R-ideal is free, and if this holds then there is a transfer homomor-
phism � ∶ R

∙
→ B(G) for some finite abelian group G [86].

4. The assumptions made in Proposition 5.3.3 hold true for (K +�)-domains [43, 
Proposition 3.7.4]. Further applications in the setting of seminormal weakly Krull 
monoids and domains are given in [44, Proposition 4.6 and Theorem 5.8].

5. Module theory offers a wealth of non-cancellative finitely generated transfer 
Krull monoids. We discuss a simple example. Let B be an additive Krull monoid 
with A(B) = {u1, u2, v} such that u

1
+ u

2
= v + v + v is the only relation among the 

atoms. Let H be the free abelian monoid with basis {M1, M2, M�
2
, Q} modulo the rela-

tion generated by M
1
+ M

2
= M

1
+ M�

2
= Q + Q + Q . By the Theorem of Bergman-

Dicks (see Example 2.1.1), H is isomorphic to a monoid of modules V(C) , where 
{M1, M2, M�

2
, Q} is a set of representatives of indecomposable modules in C . Clearly, 

� ∶ H → B , defined by �(M
1
) = u

1
 , �(M

2
) = �(M�

2
) = u

2
 , and �(Q) = v , is a transfer 

homomorphism.
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Theorem  5.5 (Arithmetic of transfer Krull monoids) Let H be a transfer Krull 

monoid of finite type. Then R(H) = {q ∈ ℚ ∶ 1 ≤ q ≤ �(H)} and all arithmetical 

finiteness results of Theorem 3.1 hold.

Proof Let � ∶ H → B(G
0
) be a transfer homomorphism where G

0
 is a finite subset 

of an abelian group. Since G
0
 is finite, B(G

0
) is finitely generated, whence the finite-

ness results of Theorem  3.1 hold for B(G
0
) and they can be pulled back to H by 

Proposition 4.5. The claim on R(H) follows from [55, Theorem 3.1].   ◻

Our next theorem shows that, for the class of finitely generated Krull monoids, the 
finiteness result for the set of distances and for the set of catenary degrees, as well as the 
structural result for sets of lengths (given in Theorems 3.1 and 5.5), are best possible.

Theorem 5.6 (Realization Results)  

1. For every finite nonempty subset C ⊂ ℕ
≥2

 there is a finitely generated Krull 

monoid H with finite class group such that ��(H) = C.
2. For every finite nonempty set Δ ⊂ ℕ  with minΔ = gcdΔ there is a finitely gener-

ated Krull monoid H such that Δ(H) = Δ.
3. For every M ∈ ℕ

0
 and every finite nonempty set Δ there is a finitely generated 

Krull monoid H with finite class group such that the following holds: for every 

AAMP L with difference d ∈ Δ and bound M there is some y
L
∈ ℕ such that 

y + L ∈ L(H) for all y ≥ y
L
.

Proof For 1. we refer to [30, Proposition 3.2], for 2. to [52], and for 3. see [83].   ◻

Remark 5.7   Each of the following monoids respectively domains has the property 
that every finite nonempty subset of ℕ

≥2
 occurs as a set of lengths.

• (Frisch) The ring Int (ℤ) of integer-valued polynomials over ℤ [34, 35].
• (Kainrath) Krull monoids with infinite class group and prime divisors in all classes 

[69] and [43, Theorem 7.4.1].

The assumption, that every class contains a prime divisor, is crucial in Kainrath’s Theo-
rem. Indeed, on the other side of the spectrum, there is the conjecture that every abelian 
group is the class group of a half-factorial Krull monoid (even of a half-factorial Dede-
kind domain; [56]). According to a conjecture of Tringali, the power monoid P fin,0(ℕ0) 
(and hence the monoid P

fin
(ℕ

0
) ) has the property that every finite nonempty subset of 

ℕ
≥2

 occurs as a set of lengths. This conjecture is supported by a variety of results such 
as ��

(

P fin,0(ℕ0)
)

= Δ
(

P fin,0(ℕ0)
)

= ℕ [32, Theorem 4.11].
Thus both extremal families,

{

{k} ∶ k ∈ ℕ0

}

⊂ P fin(ℕ0) and
{

{0}, {1}
}

∪ P fin(ℕ≥2) ⊂ P fin(ℕ0) ,
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are systems of sets of lengths of BF-monoids. Clearly, every subset L ⊂ P
fin
(ℕ

0
) , 

that is the system of sets of lengths of a BF-monoid H (i.e., L = L(H) ) with H ≠ H
× , 

has the following properties.

(a) {0}, {1} ∈ L and all other sets of L lie in ℕ
≥2

.
(b) For every k ∈ ℕ

0
 there is L ∈ L with k ∈ L.

(c) If L1, L2 ∈ L , then there is L ∈ L with L
1
+ L

2
⊂ L.

This gives rise to the following realization problem.

Problem B Which subsets L ⊂ P
fin
(ℕ

0
) satisfying Properties (a) - (c) can be real-

ized as systems of sets of lengths of a BF-monoid?

Note that every system L with (a) - (c) and with Δ(L) ≠ � satisfies the property 
minΔ(L) = gcdΔ(L) [31, Proposition 2.9], which holds for all systems stemming 
from BF-monoids.

We end this section with a list of monoids and domains that are not transfer Krull 
and we will discuss such monoids in Sect. 7.

Example 5.8 (Monoids and domains that are not transfer Krull)  

1. According to Remark 5.7 a Krull monoid with infinite class group having prime 
divisors in all classes and Int (ℤ) have the same system of sets of lengths. Nev-
ertheless, Int (ℤ) is not transfer Krull [35]. Similarly, the monoid of polynomials 
having nonnegative integer coefficients is not transfer Krull [18, Remark 5.4].

2. P
fin
(ℕ

0
) and P fin,0(ℕ0) are reduced BF-monoids that have no transfer homomor-

phism to any cancellative monoid [32, Proposition 4.12].
3. Let G be a finite group and let B(G) be the monoid of product-one sequences 

over G. If G is abelian, then B(G) is Krull by Example 4.2(5) and hence transfer 
Krull. Jun Seok Oh showed that B(G) is transfer Krull if and only if it is Krull if 
and only if G is abelian [74, Proposition 3.4].

4. An additive submonoid of the nonnegative rational numbers (distinct from {0} ) 
is transfer Krull if and only if it is isomorphic to (ℕ0,+) [59, Theorem 6.6].

5. In Sect. 7 we show that strongly primary monoids and monoids of ideals of 
weakly Krull monoids are transfer Krull if and only if they are half-factorial 
(Lemma 7.1 and Proposition 7.3).

6  Transfer Krull monoids over finite abelian groups

In this section we discuss transfer Krull monoids H having a transfer homomor-
phism � ∶ H → B(G) , where G is a finite abelian group. By Proposition 4.6, this 
setting includes Krull monoids with finite class groups having prime divisors in 
all classes. Rings of integers of algebraic number fields [66, Corollary 4.4.3], 
monoid algebras that are Krull [19], and many other Krull domains have finite 
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class group and prime divisors in all classes. This is the reason why this setting 
has received the closest attention in factorization theory.

Let H be a transfer Krull monoid over a finite abelian group G, say 
G ≅ C

n
1

⊕…⊕ C
n

r
 with 1 ≤ n

1
| … | n

r
 . It is usual to write ∗ (G) instead of 

∗ (B(G)) for all invariants we had. In particular, we set

By Propositions 4.5 and 4.6, the arithmetical invariants of H and of B(G) coincide 
(apart from some trivial exceptions), whence L(H) = L(G) and so on. The long term 
goal is to determine the precise value of these invariants in terms of the group invar-
iants (n1,… , n

r
) , which is done with methods from additive combinatorics. We refer 

to [48, Chapter 1] for a detailed discussion of the interplay of factorization theory in 
B(G) and additive combinatorics and to the survey [85] for the state of the art. We 
have a quick glance at this interplay, introduce a key combinatorial invariant, and 
present a main problem.

Since the group G is finite, B(G) is finitely generated whence A(G) is finite, 
and the Davenport constant �(G) , defined as

is a positive integer. The Davenport constant and the structure of atoms U ∈ A(G) 
with |U| = �(G) play an important role in all arithmetical investigations. So we 
have, for example, �(G) = �(G)∕2 and �(G) ≤ �(G) . It needs just a few lines to ver-
ify that 1 +

∑r

i=1
(n

i
− 1) ≤ �(G) ≤ �G� , whence �(G) = |G| if G is cyclic. If G is a 

p-group or has rank r ≤ 2 , then �(G) = 1 +
∑r

i=1
(n

i
− 1) but this equality does not 

hold in general. The precise value of �(G) is unknown even for rank three groups 
and for groups of the form G = C

r

n
 , where r, n ∈ ℕ (see [57]).

What do we know about L(H) = L(G) ? It is easy to verify that

The above four groups are precisely the groups G having Davenport constant 
�(G) ≤ 3 . Apart from them, the systems L(G) are also written down explicitly for 
all groups G with �(G) ∈ [4, 5] (see [53]). Full descriptions of systems L(G) are 
hard to get, whence the focus of research is to get a good understanding for param-
eters controlling sets of lengths. We cite one result and this is in sharp contrast to 
Theorem 5.6.

Theorem 6.1 Let G be a finite abelian group.

1. (Carlitz 1960) |L| = 1 for every L ∈ L(G) if and only if |G| ≤ 2.
2. The unions U

k
(G) are finite intervals for every k ∈ ℕ.

L(G) ∶= L
(

B(G)
)

,Δ(G) ∶= Δ
(

B(G)
)

, A(G) ∶= A
(

B(G)
)

, and so on.

�(G) = max{|U| ∶ U ∈ A(G)}

(6.1)L(C
1
) =L(C

2
) =

{

{k} ∶ k ∈ ℕ
0

}

and that

(6.2)L(C3) =L(C2 ⊕ C2) =
{

y + 2k + [0, k] ∶ y, k ∈ ℕ0

}

.
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3. The set of distances Δ(G) and the set of catenary degrees ��(G) are finite inter-

vals.

Proof 1. If |G| ≤ 2 , then B(G) is factorial whence half-factorial. Conversely, sup-
pose that |G| ≥ 3 . If g ∈ G with ord (g) = n ≥ 3 , then U = gn , −U = (−g)n , and 
V = (−g)g are atoms of B(G) . Then U(−U) = V

n and �(Vn) = {2, n} . If e1, e2 ∈ G 
with ord (e

1
) = ord (e

2
) = 2 , then e

0
= e

1
+ e

2
∈ G , V = e

0
e

1
e

2
∈ A(G) , and 

U
i
= e

2

i
∈ A(G) for i ∈ [0, 2] . Then U

0
U

1
U

2
= V

2 and �(V2) = [2, 3].
2. and 3. The unions U

k
(G) are intervals by [48, page 36] and 3. follows from [55, 

Theorem 4.1].   ◻

Suppose that �(G) ≥ 4 . The minima of the sets U
k
(G) can be expressed in terms 

of their maxima, and for the maxima �
k
(G) = max U

k
(G) we have the following. For 

every k ∈ ℕ , �
2k
(G) = k�(G) , and k�(G) + 1 ≤ �

2k+1
(G) ≤ k�(G) + �(G)∕2 (for all 

this and for more on �
2k+1

(G) see [85]). It is easy to see that minΔ(G) = 1 and that 
min��(G) = 2 . The maxima of Δ(G) and of ��(G) are known only for very special 
classes of groups which includes cyclic groups [85].

To sum up our discussion so far, given a transfer Krull monoid H over G, arith-
metical invariants of H depend only on G (in particular, L(H) = L(G) ) and the goal 
is to describe them in terms of the group invariants. The associated inverse problem 
(known as the Characterization Problem) asks whether the system L(G) is character-
istic for the group. More precisely, it reads as follows.

Problem C Let G be a finite abelian group with Davenport constant �(G) ≥ 4, and 

let G′ be an abelian group with L(G) = L(G�) . Are G and G′ isomorphic?

In spite of results stating that the typical set of lengths in L(G) is an interval (e.g., 
see (4.1)), the standing conjecture is that the exceptional sets of lengths in L(G) are 
characteristic for the group. In other words, the conjecture is that the above question 
has an affirmative answer and we refer to [49, 54, 93, 94] and to [84, Theorem 5.3] 
for recent progress. Clearly, all such studies require a detailed understanding of sets 
of lengths in terms of the group invariants (n1,… , n

r
) of G. We address one sub-

problem. For any BF-monoid H and two elements a, b ∈ H the sumset �(a) + �(b) is 
contained in �(ab) but, in general, we do not have equality. This is the reason why, 
in general, the system L(H) , considered as a subset of P

fin
(ℕ

0
) , is not a submo-

noid. On the other hand, the explicit descriptions given in (6.1) and (6.2) show that 
L(C1), L(C2), L(C3) , and L(C

2
⊕ C

2
) are submonoids of P

fin
(ℕ

0
) . There is a char-

acterization of all finite abelian groups G for which L(G) is a submonoid, and in the 
following result we show that all of them are finitely generated.

Theorem  6.2 Let G be a finite abelian group. Then the following statements are 

equivalent :

(a) L(G) is a submonoid of P
fin
(ℕ

0
).
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(b) All sets of lengths in L(G) are arithmetical progressions.

(c) G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3

2
 or isomorphic to 

a subgroup of C2

3
.

If these statements hold, then  L(G) is a finitely generated submonoid of P
fin
(ℕ

0
) . 

More precisely, we have

1. L(C1) = L(C2) ≅ (ℕ0,+) and {1} is the unique prime element of L(C
1
) = L(C

2
).

2. L(C3) = L(C2 ⊕ C2) ≅ (ℕ2

0
,+) and {1}, [2, 3] are the two prime elements of 

L(C
3
) = L(C

2
⊕ C

2
).

3. L(C
4
) i s  a  non-cancel lat ive non-transfer  Krul l  monoid with 

A(L(C4)) =
{

{1}, [2, 3], [3, 5], {2, 4}
}

.
4. L(C3

2
) is a non-cancellative non-transfer Krull monoid containing L(C

4
) and with 

A(L(C3

2
)) = {{1}, [2, 3], [3, 5], [3, 6], [4, 8], {2, 4}}.

5. L(C2

3
)  i s  a  cance l l a t i ve  non - t rans fe r  Kr u l l  mono id  w i th 

A(L(C2

3
)) = {{1}, [2, 3], [2, 4], [2, 5], [3, 7]}.

Proof The equivalence of (a), (b), and (c) is proved in  [50, Theorem 1.1], and we 
prove the Claims 1–5.

Claim 1 follows immediately from (6.1). To verify Claim 2, we observe that for 
y, k ∈ ℕ0 we have y + 2k + [0, k] = y{1} + k[2, 3] whence (6.2) shows that {1} and 
[2, 3] generate L(C

3
) and clearly both elements are atoms. To verify that they are 

primes, let y, y�, k, k� ∈ ℕ0 such that y{1} + k[2, 3] = y�{1} + k�[2, 3] . This implies 
that y = y

� and k = k
� whence L(C

3
) is factorial and {1} and [2, 3] are primes.

In order to prove Claim 3 and Claim 4, we use the explicit description of L(C
4
) 

and L(C3

2
) [43, Theorem 7.3.2]. We have

• 
L(C4) =

{

y + k + 1 + [0, k] ∶ y, k ∈ ℕ0

}

∪
{

y + 2k + {2� ∶ � ∈ [0, k]} ∶ y, k ∈ ℕ0

}.

• 

L(C3

2
) ={y + (k + 1) + [0, k] ∶ y ∈ ℕ0, k ∈ [0, 2]} ∪

{y + k + [0, k] ∶ y ∈ ℕ0, k ≥ 3} ∪

{y + 2k + {2� ∶ � ∈ [0, k]} ∶ y, k ∈ ℕ0} .

These descriptions show that L(C
4
) ⊂ L(C3

2
) . Let y, k, t ∈ ℕ0 . 

Then y + 2k + {2� ∶ � ∈ [0, k]} = y{1} + k{2, 4} . If k = 2t + 1 is 
odd, then y + k + 1 + [0, k] = y{1} + [2, 3] + t{2, 4} . If k = 2t + 2 
is even, then y + k + 1 + [0, k] = y{1} + [3, 5] + t{2, 4} . If k = 0 , 
then y + k + 1 + [0, k] = {y + 1} = (y + 1){1} . Thus L(C

4
) is gener-

ated by {1}, [2, 3], [3, 5], {2, 4} and all these elements are atoms. Since 
[3, 5] + [2, 3] = {1} + {2, 4} + [2, 3] = [5, 8] , we obtain that L(C

4
) is not cancel-

lative. Since {y + k + [0, k] ∣ y ∈ ℕ0, k ≥ 3} is generated by {1}, [3, 6], [4, 8], {2, 4} , 
we obtain L(C3

2
) is generated by {1}, [2, 3], [3, 5], [3, 6], [4, 8], {2, 4} . It is easy to 

see that all these elements are atoms and as before we infer that L(C3

2
) is not 

cancellative.
Assume to the contrary that there is a transfer homomorphism � ∶ L(C

4
) → H , 

where H is a Krull monoid. Then �([3, 5]), �({1}), �({2, 4}) are atoms, 
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�([5, 8]) = �([3, 5]) + �([2, 3]) = �({1}) + �({2, 4}) + �([2, 3]) whence 
�([3, 5]) = �({1}) + �({2, 4}) , a contradiction. The same argument shows that L(C3

2
) 

is not transfer Krull.
It remains to prove Claim 5. By [51, Proposition 3.12], we have

Let y, k ∈ ℕ0 . Then

and if k ≥ 1, then

Thus L(C2

3
) is generated by {1}, [2, 3], [2, 4], [2, 5], [3, 7] and all these ele-

ments are atoms. To verify cancellativity, we use that all sets of lengths are 
intervals. Let a, a

�, b, b
�, c, c

�
∈ ℕ0 such that [a, a�], [b, b�], [c, c�] ∈ L(C2

3
) and 

[a, a
�] + [c, c

�] = [b, b
�] + [c, c

�] . Then a + c = b + c and a
�
+ c

�
= b

�
+ c

� which 
imply that a = b and a�

= b
� . Therefore [a, a

�] = [b, b
�] whence L(C2

3
) is cancellative.

Assume to the contrary that there is a transfer homomorphism � ∶ L(C2

3
) → B(G

0
) , 

where G
0
 is a subset of any abelian group. Since 3[3, 7] = {1} + 4[2, 5] , we have that 

supp (𝜃([2, 5])) ⊂ supp (𝜃([3, 7])) and �
g
(𝜃([3, 7])) ≥

4

3
�

g
(𝜃([2, 5])) > �

g
(𝜃([2, 5])) 

for all g ∈ supp (�([2, 5])) . Therefore �([2, 5]) ∣B(G0)
�([3, 7]) , a contradiction as 

�([3, 7]) and �([2, 5]) are distinct atoms.   ◻

7  Weakly Krull monoids

In this section we study weakly Krull monoids and we start with primary monoids. 
Primary monoids are weakly Krull and localizations of weakly Krull monoids at 
minimal nonzero prime ideals are primary.

A monoid H is primary if it is cancellative with H ≠ H
× and for every 

a, b ∈ H ⧵ H
× there is n ∈ ℕ such that bn

∈ aH . The multiplicative monoid R
∙ of 

a domain R is primary if and only if R is one-dimensional and local [43, Proposi-
tion 2.10.7]. Additive submonoids of (ℚ

≥0,+) , called Puiseux monoids, have found 
a well-deserved attention in recent literature and are primary (provided that they are 
different from {0}) . Since primary monoids need not be atomic, we restrict to a class 
of primary monoids (called strongly primary) which are BF-monoids. A monoid H 
is strongly primary if it is cancellative with H ≠ H

× and for every a ∈ H ⧵ H
× there 

L(C2

3
) =

{

{1}
}

∪
{

[2k, �] ∶ k ∈ ℕ0, � ∈ [2k, 5k]
}

∪
{

[2k + 1, �] ∶ k ∈ ℕ, � ∈ [2k + 1, 5k + 2]
}

={0} ∪ {y + 2k + [0, 3k], y + 2k + 1 + [0, 3k + 1],

y + 2k + 2 + [0, 3k + 2] ∶ y, k ∈ ℕ0 with y + k ≠ 0}.

y + 2k + [0, 3k] = y{1} + k[2, 5],

y + 2k + 2 + [0, 3k + 2] = y{1} + [2, 4] + k[2, 5],

y + 2k + 1 + [0, 3k + 1] = y{1} + [3, 7] + (k − 1)[2, 5].
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is n ∈ ℕ such that (H ⧵ H
×)n ⊂ aH . We denote by M(a) the smallest n ∈ ℕ hav-

ing this property. Every primary Mori monoid is strongly primary. Thus numerical 
monoids are strongly primary and the multiplicative monoids R∙ of one-dimensional 
local Mori domains R are strongly primary. An additive submonoid H ⊂ (ℕs

0
,+) , 

with s ∈ ℕ , is a BF-monoid and it is primary if and only if H = (H ∩ ℕ
s) ∪ {0}.

Our first lemma unveils that primary monoids and Krull monoids are very differ-
ent, both from the algebraic as well as from the arithmetic point of view.

Lemma 7.1 Let H be a primary monoid.

1. H is a Krull monoid if and only if H = H
×
× H

0
 with H0 ≅ (ℕ0,+).

2. If H is strongly primary, then H is a BF-monoid.

3. Let H be strongly primary. If H is not half-factorial, then there is a 𝛽 ∈ ℚ>1
 such 

that �(L) ≥ � for all L ∈ L(H) with �(L) ≠ 1 . In particular, H is transfer Krull if 

and only if it is half-factorial.

Proof 1. Suppose that H is a Krull monoid. Then there is a free abelian monoid 
F(P) such that the inclusion H

red
↪ F(P) is a divisor theory. Since H is primary, 

it follows that supp (aH) = supp (bH) for all a, b ∈ H ⧵ H
× . Since every p ∈ P is a 

greatest common divisor of elements from H
red

 , it follows that |P| = 1 . Since H
red

 is 
completely integrally closed, it is equal to F(P) . Thus Theorem 4.3(2) implies that H 
has the asserted form, and the converse implication is obvious.

2. We assert that every a ∈ H ⧵ H
× has a factorization into atoms and that 

sup�(a) ≤ M(a) . Let a ∈ H ⧵ H
× be given. If a is not an atom, then there are 

a1, a2 ∈ H ⧵ H
× such that a = a

1
a

2
 . Proceeding by induction, we obtain a prod-

uct decomposition of a into n non-units, say a = a
1
⋅… ⋅ a

n
 . If n > M(a) , then 

a
1
⋅… ⋅ a

n−1
⊂ (H ⧵ H

×)M(a)
⊂ aH and hence a divides a proper subproduct of 

a
1
⋅… ⋅ a

n
= a , a contradiction. Thus a has a product decomposition into atoms and 

the number of factors is bounded by M(a).
3. The first claim follows from [53, Theorem 5.5]. Thus Theorem 5.5 and Exam-

ple 5.4.2 imply the second statement.   ◻

The arithmetic of various classes of strongly primary monoids, especially of 
numerical monoids, has found wide attention in the literature. We mention some 
striking recent results. O’Neill and Pelayo showed that for every finite nonempty 
subset C ⊂ ℕ

≥2
 there is a numerical monoid H such that ��(H) = C [78]. It is 

an open problem whether there is a numerical monoid H with prescribed sets of 
distances (see [23]). F. Gotti proved that there is a primary BF-submonoid H of 
(ℚ

≥0,+) such that every finite nonempty set L ⊂ ℕ
≥2

 occurs as a set of lengths of H 
(see [60, Theorem 3.6], and compare with Remark 5.7). Such an extreme phenom-
enon cannot happen if we impose a further finiteness condition, namely local tame-
ness. Let H be a cancellative atomic monoid. For an atom u ∈ A(H

red
) , the local 

tame degree �(H, u) is the smallest N ∈ ℕ
0
∪ {∞} with the following property:
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If a ∈ H with �(a) ∩ u�(H) ≠ � , and z ∈ �(a) , then there exists 
z� ∈ �(a) ∩ u�(H) such that �(z, z�) ≤ N.

The monoid H is locally tame if �(H, u) < ∞ for all u ∈ A(H
red
) . If H is finitely 

generated or a Krull monoid with finite class group, then H is locally tame. 
Strongly primary monoids with nonempty conductor and all strongly primary 
domains are locally tame [47].

Our next result should be compared with Theorem 3.1, which gathered arith-
metical finiteness properties of finitely generated monoids. The main difference 
is that unions of sets of lengths can be infinite. To give a simple example for this 
phenomenon, consider the additive monoid H = ℕ

2 ∪ {(0, 0)} ⊂ (ℕ2

0
,+) . Then 

H is a locally tame strongly primary monoid, that is not finitely generated and 
U

k
(H) = ℕ

≥2
 for all k ≥ 2.

Theorem  7.2 (Arithmetic of strongly primary monoids) Let H be a locally tame 

strongly primary monoid.

1. The set of catenary degrees and the set of distances are finite.

2. There is M ∈ ℕ
0
  such that, for all k ∈ ℕ , the unions U

k
(H)  are AAPs with differ-

ence minΔ(H) and bound M. If (H ∶ Ĥ) ≠ � , then all sets U
k
(H) are finite if and 

only if Ĥ is a valuation monoid.

3. There is M ∈ ℕ
0
 such that every L ∈ L(H) is a finite  AAP with difference 

minΔ(H) and bound M.

Proof 1. and 3. follow from [43, Theorems 3.1.1 and 4.3.6] and for 2. see [42].   ◻

Now we consider the global case. Weakly Krull domains were introduced by 
Anderson, Anderson, Mott, and Zafrullah [4, 6]. A pure multiplicative descrip-
tion and a divisor theoretic characterization are due to Halter-Koch [63, 64]. A 
monoid H is weakly Krull if it is cancellative,

Note that H� is a primary monoid for all � ∈ �(H) and a weakly Krull monoid is 
Krull if and only if H� is a discrete valuation monoid for all � ∈ �(H) . A domain R 
is weakly Krull if and only if R∙ is a weakly Krull monoid. The arithmetic of weakly 
Krull monoids is studied via transfer homomorphisms to T-block monoids (see [43, 
Sections  3.4 and 4.5] for T-block monoids and the structure of sets of lengths 
and  [91, 92] for the structure of their unions). We cannot develop these concepts 
here whence we restrict to the monoid of their divisorial ideals whose arithmetic can 
be deduced easily from the local case.

For the remainder of this section we study the monoid I
v
(H) of divisorial ide-

als of weakly Krull Mori monoids H and the submonoid I∗

v
(H) of v-invertible 

divisorial ideals. Clearly, I
∗

v
(H) ⊂ I

v
(H) is a divisor-closed submonoid. Every 

H =
⋂

�∈�(H)

H� , and {� ∈ �(H) ∶ a ∈ �} is finite for all a ∈ H .
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one-dimensional Noetherian domain R (in particular, every Cohen-Kaplansky 
domain) is a weakly Krull Mori domain and in that case we have I∗

v
(R) = I

∗(R) . 
A domain R is called divisorial (see  [13]) if each nonzero ideal is divisorial 
(i.e., I

v
(R) = I(R) ). Note that one-dimensional Noetherian domains need not be 

divisorial.

Proposition 7.3 Let H be a weakly Krull Mori monoid.

1. I
∗

v
(H) is a Mori monoid and it is transfer Krull if and only if it is half-factorial.

2. If I
v
(H) is transfer Krull, then I∗

v
(H) is half-factorial.

3. If R is an order in a quadratic number field, then I(R) is transfer Krull if and only 

if it is half-factorial.

Proof 1. By [44, Proposition 5.3], I∗

v
(H) is a Mori monoid and

Suppose that I∗

v
(H) is transfer Krull. By Lemma 5.2, the divisor-closed submo-

noids (H�) red
 , for all � ∈ �(H) , are transfer Krull and hence they are half-factorial 

by Lemma 7.1(3). This implies that I∗

v
(H) is half-factorial. Since all half-factorial 

monoids are transfer Krull, the reverse implication is obvious.
2. Since I∗

v
(H) is a divisor-closed submonoid of I

v
(H) , this follows from 1.

3. Let R be an order in a quadratic number field. Then H = R
∙ is weakly Krull 

Mori, R is divisorial whence I
v
(H) ≅ I

v
(R) = I(R) , and I(R) is half-factorial if and 

only if I∗(R) is half-factorial [16, Theorem 1.1]. Thus the claim follows from 2.   ◻

Proposition 7.3(1) shows that I∗

v
(H) is transfer Krull only in the trivial case 

when it is half-factorial. This need not be true for the monoid H itself. Indeed, 
there are weakly Krull Mori monoids H (including orders in number fields) that 
are transfer Krull but not half-factorial [44, Theorem 5.8].

Theorem 7.4 Let H be a weakly Krull Mori monoid with � ≠ � = (H ∶ �H) ⊊ H . We 

set P∗ = {� ∈ �(H) ∶ � ⊃ �} and P = 𝔛(H) ⧵ P
∗.

1. The set of catenary degrees and the set of distances of I∗

v
(H) are finite.

2. If there is M�
∈ ℕ such that �

k+1
(H�) − �

k
(H�) ≤ M

� for all k ∈ ℕ
0
 and all � ∈ P

∗

,then there are M, k
∗
∈ ℕ0 such that, for all k ≥ k

∗, the unions U
k

(

I
∗

v
(H)

)

 are AAPs 

with difference minΔ
(

I
∗

v
(H)

)

 and bound M. The sets U
k

(

I
∗

v
(H)

)

 are finite for all 

k ∈ ℕ if and only if the map v-spec (Ĥ) → v-spec (H) , defined by � ↦ � ∩ H , is 

bijective.

3. There is M ∈ ℕ
0
 such that every L ∈ L

(

I
∗

v
(H)

)

 is an AAMP with difference 

d ∈ Δ
(

I
∗

v
(H)

)

 and bound M.

(7.1)I
∗

v
(H) ≅

∐

�∈�(H)

(H�) red
.
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Proof Since the global conductor (H ∶ Ĥ) ≠ � , the local conductors (H� ∶ Ĥ�) ≠ � 
whence H� is a primary Mori monoid (whence strongly primary) with nonempty 
conductor (whence locally tame) for all � ∈ �(H) . Since H is a Mori monoid, the 
set P∗ is finite and H� is a discrete valuation monoid for all � ∈ P . Thus, by (7.1), 
we infer that

1. This follows from Theorem 7.2(1) and from the structure of I∗

v
(H) as given in 

(7.2).
2. We first note that if H

1
 and H

2
 are BF-monoids but not groups and k ∈ ℕ

0
 , then

Let M�
∈ ℕ such that �

k+1
(H

i
) − �

k
(H

i
) ≤ M

� for all k ≥ k
∗ and all i ∈ [1, 2] . We assert 

that �
k+1

(H
1
× H

2
) − �

k
(H

1
× H

2
) ≤ M

� for all k ≥ k
∗ . If �

k+1
(H

1
× H

2
) = �

k+1
(H

2
) , 

then �
k+1

(H
1
× H

2
) − �

k
(H

1
× H

2
) ≤ �

k+1
(H

2
) − �

k
(H

2
) ≤ M

� . Otherwise, there is 
� ∈ [0, k] such that �

k+1
(H

1
× H

2
) = �

k+1−�(H1
) + �

�
(H

2
) whence

By assumption, by (7.2), and by the argument above, we infer that 
�

k+1

(

I
∗

v
(H)

)

− �
k

(

I
∗

v
(H)

)

≤ M� for all k ≥ k
∗ . This property and the finiteness of 

the set of distances imply that the set U
k

(

I
∗

v
(H)

)

 have the asserted structure by [36, 
Theorem 4.2].

Equation (7.3) shows that the sets U
k

(

I
∗

v
(H)

)

 are finite for all k ∈ ℕ if and only if 
the sets U

k

(

H�

)

 are finite for all k ∈ ℕ and all � ∈ P
∗ . Let � ∈ P

∗ . Then Ĥ� is Krull 
and it is a valuation monoid if and only if it is a discrete valuation monoid. Thus, by 
Theorem 7.2.2, all sets U

k

(

H�

)

 are finite if and only if all Ĥ� are discrete valuation 
monoids if and only if the map v-spec (Ĥ) → v-spec (H) is bijective.

3. By (7.2),

Thus sets of lengths of I∗

v
(H) are finite sumsets of sets of lengths of a free abelian 

monoid and of finitely many locally tame strongly primary monoids. Therefore, by 
Theorem 7.2.3, they are sumsets of AAPs and the claim follows by application of 
an addition theorem given in  [43, Theorem 4.2.16]. The fact that the difference d 
lies in Δ

(

I
∗

v
(H)

)

 can be seen either from a direct argument or one uses [43, Theo-
rem 4.5.4].   ◻

(7.2)I
∗

v
(H) ≅ F(P) ×

∏

�∈P
∗

(H�) red
.

(7.3)U
k
(H1 × H2) = ∪

�∈[0,k]

(

U
k−�(H1) + U

�
(H2)

)

and

(7.4)�
k
(H1 × H2) =max{�

k−�(H1) + �
�
(H2) ∶ � ∈ [0, k]} .

�
k+1

(H
1
× H

2
) − �

k
(H

1
× H

2
) ≤

(

�
k+1−�(H1

) + �
�
(H

2
)
)

−
(

�
k−�(H1

) + �
�
(H

2
)
)

= �
k+1−�(H1

) − �
k−�(H1

) ≤ M
�
.

L
(

I
∗

v
(H)

)

=
{

{k} +
∑

�∈P
∗

�(a�) ∶ k ∈ ℕ0, a� ∈ (H�) red

}

.
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