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FACTORIZATIONS IN EVALUATION MONOIDS OF

LAURENT SEMIRINGS

SOPHIE ZHU

Abstract. For α ∈ R>0, let N0[α, α
−1] be the semiring of real numbers f(α) with

all f(x) ∈ N0[x, x
−1], where N0 is the set of nonnegative integers and N0[x, x

−1] is the
semiring of Laurent polynomials with coefficients in N0. In this paper, we study var-
ious factorization properties of the additive structure of N0[α, α

−1]. We characterize
when N0[α, α

−1] is atomic. Then we characterize when N0[α, α
−1] satisfies the ascend-

ing chain condition on principal ideals in terms of certain well-studied factorization
properties. Finally, we characterize when N0[α, α

−1] satisfies the unique factorization
property and show that, when this is not the case, N0[α, α

−1] has infinite elasticity.

1. Introduction

The purpose of this paper is to understand the (additive) factorization properties
of the commutative semirings N0[α, α

−1] for any α ∈ R>0. To be more precise, let
N0[x, x

−1] denote the set of Laurent polynomials with coefficients in the set of nonneg-
ative integers N0. Since N0[x, x

−1] is closed under both addition and multiplication, it
is a commutative semiring. For each α ∈ R>0, we let Mα denote the additive monoid
of the semiring N0[α, α

−1], that is,

Mα = {f(α) | f(x) ∈ N0[x, x
−1]}.

It is a sub-semiring of the commutative semiring R≥0. For ease of notation, we shall use
Mα in this paper to denote the additive monoid of the semiring N0[α, α

−1] for α ∈ R>0.
Let M be a cancellative and commutative (additive) monoid. A non-invertible element
of M is called an atom if it is not the sum of two non-invertible elements, and M
is atomic if every non-invertible element is a sum of atoms. It is well-known that
every commutative (and cancellative) monoid satisfying the ascending chain condition
on principal ideals (ACCP) is atomic (see, for example, [11, Proposition 1.1]). As
for integral domains, M is called a unique factorization monoid (UFM) provided that
every non-invertible element can be written as a sum of atoms in an essentially unique
way (i.e., up to order and associates). Here, we study the properties of being atomic,
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2 S. ZHU

satisfying the ACCP, and being a UFM for the additive monoids Mα (with α ∈ R>0),
offering various characterizations for each of such properties in terms of atoms and
(additive) factorizations.

Most of the results we establish here are motivated by some of the results in the re-
cent paper [12] by Correa-Morris and Gotti, where the authors investigated the atomic
structure of the additive monoids of the evaluation semirings N0[α] for α ∈ R>0, gen-
eralizing some of the results already established by Chapman et al. in [9] when α is
taken in Q>0. The study of atomicity and factorizations in the setting of commutative
semirings has received a great deal of attention in the last few years. For instance,
Campanini and Facchini [6] studied the factorization structure of the multiplicative
monoid of the semiring N0[x]. In addition, Baeth et al. [4] recently studied the atomic
structure of both the additive and the multiplicative monoids of subsemirings of R≥0.
Finally, factorizations in certain subsemirings of Q≥0 have also been considered in [1]
by Albizu-Campos et al. and in [5] by Baeth and Gotti.

We begin by introducing the main terminology in Section 2.1 and outlining the
main known results we use later. Then, in Section 3, we discuss the atomicity of the
monoids Mα. We characterize the monoids Mα that are atomic as well those Mα that
are not atomic in Theorem 3.1 and Proposition 3.4, respectively. In contrast with [12,
Proposition 5.13], the monoid Mα is only finitely generated when α = 1. In particular,
if α 6= 1 and the monoid Mα is atomic, then Mα must contain infinitely many atoms;
indeed, we show in Theorem 3.1 that the atoms of Mα are precisely the integer powers
of α.

Let M be an atomic (additive) monoid. A factorization of a non-invertible element
x ∈ M is, up to order and associates, a sequence of finitely many atoms (allowing
repetitions) with sum x, and the number of atoms in such a sequence (counting rep-
etitions) is called the the length of the factorization. A non-invertible element in M
may have distinct factorizations (even infinitely many). For a non-invertible element
x ∈ M , we let Z(x) and L(x) denote the set of factorizations and factorization lengths
of x, respectively. Following Anderson et al. [2] and Halter-Koch [23], we say that
the monoid M is an FFM (resp., a BFM) provided that Z(x) (resp., L(x)) is finite
for all non-invertible x ∈ M . The property of being a BFM was first studied back in
1949 by Neumann [24] in connection to the ACCP. Note that every FFM is a BFM.
In Section 4, we prove that the conditions of satisfying the ACCP, being a BFM, and
being an FFM are equivalent for any monoid Mα (see Theorem 4.3). In addition, we
construct monoids Mα that are FFMs but not UFMs (see Subsection 4.2).

In Section 5, we identify the monoids Mα that are UFMs. Following Zaks [28], we
say that M is a half-factorial monoid (HFM) if L(x) is a singleton for every x ∈ M . The
property of being an HFM was first considered by Carlitz [7] in the context of algebraic
number theory to characterize rings of integers with class number two. Following
Chapman et al. [8], we say that M is called a length-factorial monoid (LFM) if for
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every x ∈ M , not two factorizations in Z(x) have the same length. Additionally, in
Section 5, we prove that the conditions of being a UFM, an HFM, and an LFM are
equivalent for any monoid Mα.

It is not hard to argue that classes satisfying the atomic properties we have just
defined are somehow nested, as indicated by the following chain of implications in
Diagram (1.1). In Section 5, we produce a diagram (Diagram (5.1)) specialized for the
class of all monoids Mα that refines Diagram (1.1).

(1.1) UFM ⇒ [FFM, HFM] ⇒ BFM ⇒ ACCP ⇒ atomicity

The elasticity of a monoid is an arithmetic statistic that measures how much a
monoid deviates from being an HFM. The elasticity was first considered by Steffan [25]
and Valenza [27] back in the eighties to understand how far from being a UFD is a
Dedekind domain or a ring of integers, respectively. Since then the elasticity has
become probably the most studied arithmetic invariant to measure non-uniqueness of
factorizations (see [29] by Zhong, and references therein). We conclude this paper with
showing that Mα has infinite elasticity when it is not an HFM (see Proposition 5.4),
which means that either Mα is an HFM or it is as far from being an HFM as a monoid
can possibly be.

2. Background

2.1. General Notation. We let P, N, and N0 denote the set of primes, positive in-
tegers, and nonnegative integers, respectively. If X is a subset of R and r is a real
number, we let X≥r denote the set {x ∈ X | x ≥ r}. Similarly, we use the notations
X>r, X≤r, and X<r. For a positive rational q, the positive integers a and b with q = a/b
and gcd(a, b) = 1 are denoted by n(q) and d(q), respectively.

Given a monic polynomial f(x) ∈ Q[x], let ℓ be the smallest positive integer such that
ℓ·f(x) ∈ Z[x]. Then there exist unique p(x), q(x) ∈ N0[x] such that ℓf(x) = p(x)−q(x)
and that p(x) and q(x) share no monomials of the same degree (that is, the greatest
common divisor of p(x) and q(x) in the free commutative monoid (N0[x],+) is 0).
We call the pair (p(x), q(x)) the minimal pair of f(x). In addition, if α is a real
algebraic number, the minimal pair of α is defined to be the minimal pair of its minimal
polynomial over Q.
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2.2. Monoids. A monoid is a cancellative and commutative semigroup with an iden-
tity element. Monoids here will be written additively, unless we say otherwise. Let M
be a monoid. An element x ∈ M is called invertible (or a unit) if there exists y ∈ M
such that x+ y = 0. We tacitly assume that M (and every monoid we deal with here)
is reduced ; that is, its only invertible element is 0. We set M• = M \ {0}. For a subset
S of M , we let 〈S〉 denote the submonoid of M generated by S, i.e., the intersection of
all submonoids of M containing S. We say that a monoid is finitely generated if it can
be generated by a finite set. A nonzero element a ∈ M is called an atom if whenever
a = x+y for some x, y ∈ M either x = 0 or y = 0. It is customary to let A (M) denote
the set consisting of all atoms of M , and we do so. If A (M) is empty, M is said to be
antimatter. The monoids we are mostly interested in this paper are atomic.

Definition 2.1. An (additive) monoid is atomic if every nonzero element can be writ-
ten as a sum of atoms.

If I is a subset of M , then I is called an ideal provided that I + M = I (or,
equivalently, I + M ⊆ I). Every subset of M of the form x + M , where x ∈ M , is
an ideal and is called a principal ideal. The monoid M satisfies the ascending chain

condition on principal ideals (ACCP) if every increasing sequence (under inclusion)
of principal ideals of M becomes stationary from one point on. It is well known that
every monoid satisfying the ACCP is atomic (see [15, Proposition 1.1.4]). The converse
does not hold: for instance, the additive submonoid 〈(2

3
)n | n ∈ N〉 of Q is an atomic

monoid that does not satisfy the ACCP [10, Corollary 4.4].

2.3. Factorizations. Assume now that M is atomic. Let Z(M) denote the free (com-
mutative) monoid on the set A (M). For each x ∈ M , we let Z(x) denote the set
of all formal sums z := a1 + · · · + aℓ ∈ Z(M) with a1, . . . , aℓ ∈ A (M) such that
a1 + · · ·+ aℓ = x in M . In this case, ℓ is called the length of z and is denoted by |z|.
For each x ∈ M , we set L(x) := {|z| | z ∈ Z(x)}. The sets Z(x) and L(x) play an
important role in factorization theory (see [14]). Note that M is atomic if and only if
Z(x) is nonempty for all x ∈ M•.

The monoid M is called a bounded factorization monoid (BFM) if L(x) is finite for
all x ∈ M . Every BFM satisfies the ACCP [15, Corollary 1.3.3], but the converse
does not hold: 〈1/p | p ∈ P〉 satisfies the ACCP but is not a BFM [10, Corollary 4.6].
The monoid M is called a half-factorial monoid (HFM) if |L(x)| = 1 for all x ∈ M•.
Observe that every HFM is a BFM. The monoid M is called a finite factorization

monoid) (FFM) if Z(x) is finite for all x ∈ M•. Every finitely generated monoid is
an FFM [3, Corollary 3.7]. Note that every FFM is a BFM; however, {0} ∪ Q≥1 is
a BFM that is not an FFM [10, Example 4.10]. In addition, one can see that 〈2, 3〉
is an FFM that is not an HFM. On the other hand, there are HFMs that are not
FFMs; this is the case of the additive monoid {(0, 0)}∪ (Z×N) (see [3, Example 3.9]).
Finally, M is called a unique factorization monoid (UFM) provided that |Z(x)| = 1 for
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all x ∈ M•. Every UFM is, by definition, both an HFM and an FFM. Then we see that
each implication in Diagram (1.1) holds and that such a diagram does not support, in
general, any additional implication.

3. Atomicity

In this section, we study the atomicity of the additive monoids Mα, where Mα =
N0[α, α

−1] for α ∈ R>0. We characterize the monoids Mα that are atomic, and then we
give examples of monoids Mα that are atomic but do not satisfy the ACCP. The next
theorem, which gives a simple characterization of the monoids Mα that are atomic, also
provides an explicit description of the set of atoms ofMα. Moreover, it gives a necessary
condition for the atomicity ofMα when α is algebraic. For any algebraic number α with
minimal polynomial m(x) ∈ Q[x], the polynomial ℓ ·m(x) is a primitive polynomial in
Z[x] for a unique ℓ ∈ N, so ℓ ·m(x) = p(x)− q(x) for unique p(x), q(x) ∈ N0[x] that do
not share monomials of equal degrees. We call (p(x), q(x)) the minimal pair of α (see
Section 2.1).

Theorem 3.1. For each α ∈ R>0, the following statements are equivalent.

(a) 1 ∈ A (Mα).

(b) A (Mα) = {αn | n ∈ Z}.

(c) Mα is atomic.

Suppose that α ∈ R>0 \ {1} is an algebraic number. If Mα is atomic, then neither of

the two components in the minimal pair of α is a monic monomial.

Proof. (a) ⇒ (b): Suppose that A (Mα) 6= {αn | n ∈ Z}. Then there exists n ∈ Z
such that αn 6∈ A (Mα) and, therefore, there exists a finite set S ⊂ Z such that
αn =

∑

i∈S ciα
i for some coefficients ci ∈ N for each i ∈ S such that

∑

i∈S ci ≥ 2.
Dividing by αn gives 1 =

∑

i∈S ciα
i−n. Thus, 1 6∈ A (Mα), as desired.

(b) ⇒ (c): This holds by the definition of Mα.

(c) ⇒ (a): Suppose 1 6∈ A (Mα). Then there exists a finite set S ⊂ Z and coefficients
ci ∈ N for each i ∈ S such that

∑

i∈S ci ≥ 2 and 1 =
∑

i∈S ciα
i. For each k ∈ Z, we can

multiplying both sides of 1 =
∑

i∈S ciα
i by αk to obtain the equality αk =

∑

i∈S ciα
i+k.

Thus, αk is not an atom for any k ∈ Z, which implies that Mα has no atoms and,
therefore, that it is not atomic.

Assume now that α is a positive algebraic real number such that α 6= 1. Let m(x)
and (p(x), q(x)) be the minimal polynomial and the minimal pair of α, respectively.
Suppose, by way of contradiction, that either p(x) or q(x) is a monic monomial. We
can say, without loss of generality, that q(x) = xn for some n ∈ N0. Thus, p(α)−αn =
p(α) − q(α) = ℓm(α) = 0 for some ℓ ∈ N, so p(α) = αn. Because α 6= 1, we
see that p(x) must be the sum of at least two nonzero monomials (not necessarily
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distinct). Consequently, αn /∈ A (Mα). Therefore, Mα is not atomic in light of the
characterizations established above, which yields the desired contradiction. �

It is worth mentioning that, as a direct consequence of Theorem 3.1, one obtains
that every monoid Mα satisfies |A (Mα)| ∈ {0,∞} and also that Mα is either atomic or
antimatter. In addition, when α is transcendental, Mα is atomic, as we now illustrate.

Corollary 3.2. If α ∈ R>0 is transcendental, then Mα is atomic.

Proof. Suppose that 1 =
∑

i∈S ciα
i for a finite set S ⊆ Z and coefficients ci ∈ N0 for

every i ∈ S. Then α would be a root of the polynomial f(x) := xm −
∑

i∈S cix
i+m ∈

Z[x], where m = −min({0}∪S). Since α is transcendental, f(x) is the zero polynomial
and, therefore, S = {0} and c0 = 1. Hence 1 ∈ A (Mα), and Mα is atomic by
Theorem 3.1. �

It is worth emphasizing that the necessary condition in Theorem 3.1 is not sufficient;
this is illustrated in the following example.

Example 3.3. Consider the monic polynomial m(x) = x3−2x2+3x−7. Because m(x)
has no integer roots, it follows from Gauss’s lemma that m(x) is irreducible in Q[x]. On
the other hand, m(2) = −1 and m(3) = 11, the polynomial m(x) has a positive root α
in the interval (2, 3). Consider the monoid Mα. As m(x)(x+2) = x4 −x2−x− 14, we
see that α is a root of the polynomial x4−x2−x−14, so α4 = α2+α+14. Hence α is
not an atom of Mα, and it follows from the characterization in Theorem 3.1 that Mα

is not atomic. However, none of the polynomials in the minimal pair (x3+3x, 2x2+7)
of α are monic monomials. Therefore we conclude that the necessary condition in
Theorem 3.1 is not sufficient.

If α = 1, then Mα = N0, which is atomic. On the other hand, if α ∈ N≥2 (or if
α = 1/n for some n ∈ N≥2), then 1 is the sum of α copies of α−1 (resp., α−1 copies of
α) and, therefore 1 /∈ A (Mα), and so Theorem 3.1 ensures that Mα is not atomic. In
addition, we have exhibited in Example 3.3 a monoid Mα that is not atomic for some
α ∈ R>0 \Q. We now characterize the monoids Mα that are not atomic.

Proposition 3.4. For α ∈ R>0 with α 6= 1, the following statements are equivalent.

(a) Mα is not atomic.

(b) (N0[α],+) is antimatter or finitely generated.

Proof. (a) ⇒ (b): Suppose that Mα is not atomic. Then α is algebraic as otherwise
Mα would be a free commutative monoid, which is atomic. We consider the following
two cases.

Case 1: α < 1. Since Mα is not atomic, 1 /∈ A (Mα) by Theorem 3.1, so we can write
1 =

∑n

i=1 ciα
i for some n ∈ N and c1, . . . , cn ∈ N0 (here, we use that α < 1). Then 1 is

not an atom of the additive monoid N0[α], and it follows from [12, Theorem 4.1] that
N0[α] is antimatter.
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Case 2: α > 1. Since 0 is not a limit point of N0[α]
• (because α > 1), it follows

from [21, Proposition 4.5] that N0[α] is atomic. As in the case already considered, the
fact that Mα is not atomic allows us to write 1 =

∑n

i=1 ciα
−i for some n ∈ N and

c1, . . . , cn ∈ N0 (here, we use that α > 1). Therefore αn =
∑n

i=1 ciα
n−i. As N0[α] is

an atomic monoid, the inclusion A (N0[α]) ⊆ {αk | k ∈ {0, . . . , n − 1}} holds by [12,
Theorem 4.1]. Thus, N0[α] is finitely generated.

(b) ⇒ (a): Note that α is algebraic, for otherwise, N0[α] would be a free commuta-
tive monoid on a countable basis, which is neither antimatter nor finitely generated.
Suppose first that the additive monoid N0[α] is antimatter. Since the set {αn | n ∈ N0}

generates N0[α], the equality 1 =
∑k

i=1 ciα
i holds for some k ∈ N and c1, . . . , ck ∈ N0.

Hence 1 /∈ A (Mα), and so Mα is not atomic by Theorem 3.1.

Finally, suppose that the additive monoid N0[α] is finitely generated. Then N0[α] is
atomic by [15, Proposition 2.7.8], and it follows from [12, Theorem 4.1] that

A (N0[α]) = {αk | k ∈ {0, . . . , n− 1}}

for some n ∈ N. Since α 6= 1, we see that n ≥ 2. Then αn =
∑n−1

k=0 ckα
k for some

c0, . . . , cn−1 ∈ N0, which means that 1 =
∑n−1

k=0 ckα
k−n. Hence 1 /∈ A (Mα), and it

follows from Theorem 3.1 that Mα is not atomic. �

We conclude this section with examples of monoids Mα that are atomic but do not
satisfy the ACCP.

Example 3.5. Take a, b ∈ N with gcd(a, b) = 1 such that 1 < a < b, and set α = a/b.
It follows from [20, Proposition 3.5] that the monoid Mα is atomic. On the other
hand, we claim that Mα does not satisfy the ACCP. By [10, Corollary 4.4], there is
an ascending chain (xn + N0[α])n∈N of principal ideals of the monoid (N0[α],+) that
does not stabilize. From the fact that Mα is a reduced monoid having (N0[α],+) as
a submonoid, we can deduce that the chain of principal ideals (xn + Mα)n∈N of Mα

cannot stabilize in Mα, showing that Mα does not satisfy the ACCP.

4. The Ascending Chain Condition on Principal Ideals

We have just seen in the previous section that satisfying the ACCP is a stronger
condition than being atomic when restricted to the class consisting of the monoids Mα.
In this section, we provide two necessary conditions for a monoid Mα to satisfy the
ACCP, and then we establish two factorization-theoretical characterizations: satisfying
the ACCP is equivalent to both the bounded factorization property and the finite
factorization property if one restricts attention to the class consisting of all monoids
Mα. We conclude this section by constructing monoids Mα satisfying the ACCP that
are not UFMs.
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Proposition 4.1. Let α ∈ (0, 1) be an algebraic number with minimal pair (p(x), q(x)).
If Mα satisfies the ACCP, then p(x)−Q(x)q(x) /∈ N0[x, x

−1] for any nonzero Laurent

polynomial Q(x) ∈ N0[x, x
−1].

Proof. Suppose, for the sake of contradiction, that there exists a nonzero Laurent
polynomial Q(x) ∈ N0[x, x

−1] such that r(x) := p(x) − Q(x)q(x) ∈ N0[x, x
−1]. Now

consider the sequences (an)n∈N and (bn)n∈N defined by

an = Q(α)nq(α) and bn := Q(α)nr(α),

respectively, for every n ∈ N. Observe that the terms of both (an)n∈N and (bn)n∈N are
nonzero elements in Mα. On the other hand,

an = Q(α)nq(α) = Q(α)np(α) = Q(α)n+1q(α) +Q(α)nr(α) = an+1 + bn

for every n ∈ N. Therefore (an + Mα)n∈N is an ascending chain of principal ideals of
Mα. Since an − an+1 = bn > 0 for every n ∈ N, the chain of ideals (an +Mα)n∈N does
not stabilize, contradicting that Mα satisfies the ACCP. �

In Example 3.5, we saw that Mα is an atomic monoid that does not satisfy the
ACCP for most choices of q ∈ Q>0. However, there are also some examples of irrational
algebraic real numbers α such that Mα is atomic but does not satisfy the ACCP, and
we can identify some of them using Proposition 4.1.

Example 4.2. Take a, b ∈ N such that gcd(a, b) = 1 and 1 < a < b. Assume,

in addition, that a and b are not perfect squares, and then set α :=
√

a/b. Then
α is a non-rational algebraic number with minimal polynomial m(x) := x2 − a/b.
Suppose, by way of contradiction, that Mα is not atomic. By Theorem 3.1, we can
take c1, . . . , cn ∈ N0 such that 1 = c1α+ · · ·+ cnα

n. Since α is a root of the polynomial
f(x) := cnx

n + · · · + c1x − 1 ∈ Z[x], there exists a polynomial g(x) ∈ Q[x] such
that f(x) = m(x)g(x). By Gauss’s lemma, there exists q ∈ Q>0 such that m′(x) :=
qm(x) ∈ Z[x] and g′(x) := q−1g(x) ∈ Z[x]. Since qm(x) has integer coefficients,
q ∈ bN. Therefore a | m′(0), so a | m′(0)g′(0) = f(0) = 1, a contradiction. Thus, Mα

is atomic. Let us argue now that Mα does not satisfy the ACCP. Since α has minimal
pair (p(x), q(x)) := (bx2, a), for Q(x) := x2 we see that p(x) − Q(x)q(x) = (b − a)x2,
which belongs to N0[x, x

−1]. Hence Mα does not satisfy the necessary condition in
Proposition 4.1, and so it does not satisfy the ACCP.

4.1. The Bounded and Finite Factorization Properties. In this subsection we
prove that in the context of the monoids Mα, satisfying the ACCP, being a BFM, and
being an FFM are equivalent properties. Recall that a monoid M is a BFM (resp., an
FFM) provided that L(x) (resp., Z(x)) is finite for all x ∈ M•. We proceed to establish
the main result of this section.

Theorem 4.3. For α ∈ R>0, the following statements are equivalent.
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(a) Mα is an FFM.

(b) Mα is a BFM.

(c) Mα satisfies the ACCP.

Proof. (a) ⇒ (b): This follows from the definitions of a BFM and an FFM.

(b) ⇒ (c): This is a special case of [15, Corollary 1.3.3].

(c) ⇒ (a): Suppose that the monoid Mα satisfies the ACCP. If α is transcendental,
then Mα is a free commutative monoid, and thus an FFM. We assume, therefore, that
α is algebraic.

Suppose, by way of contradiction, that Mα is not an FFM. Then α 6= 1 and, after
replacing α by α−1 if necessary, we can assume that α > 1. Since Mα is not an FFM, we
can choose β ∈ Mα such that |ZMα

(β)| = ∞. Because α > 1, there exists N ∈ N such
that αn ∤Mα

β for any n ∈ Z with n > N . As Mα is atomic, A (Mα) = {αn | n ∈ Z}
by Theorem 3.1. Consequently, there is a bijection ZMα

(β) → ZMα
(β/αN) given by

multiplication by α−N . In addition, β/αN is not divisible by any positive power of α in
Mα. Then after replacing β by β/αN , we can further assume that αk |Mα

β implies that
k ≤ 0. Since Mα−1 = Mα is atomic, it follows from Proposition 3.4 that the additive
monoid N0[α

−1] is neither antimatter nor finitely generated. Hence, [12, Theorem 4.1]
guarantees that A (N0[α

−1]) = {α−k | k ∈ N0}. As a result, the fact that αk ∤Mα
β for

any k ∈ N ensures that ZMα
(β) = ZN0[α−1](β) and, therefore, that |ZN0[α−1](β)| = ∞.

Thus, N0[α
−1] is not an FFM. Now it follows from [12, Theorem 4.11] that N0[α

−1]
does not satisfy the ACCP. However, this is a contradiction to the fact that N0[α

−1] is
a submonoid of the reduced monoid Mα, which satisfies the ACCP. Hence, Mα is an
FFM. �

4.2. A Class of FFMs that are not UFMs. We have exhibited in Examples 3.5
and 4.2 some atomic monoids Mα that do not satisfy the ACCP. However, the only
examples we have so far of monoids Mα satisfying the ACCP (or, equivalently, being
FFMs) are the trivial cases, namely, those corresponding to α = 1 and α transcendental.
Our purpose in this subsection is to produce monoids Mα that are FFMs for some
algebraic α different from 1. This will yield monoids Mα that are FFMs but not
UFMs.

To do so, let α1, α2 ∈ R be distinct roots of an irreducible quadratic polynomial in
Q[x], and set M := Mα1

and K := Q(α1). Then K is a real quadratic field extension
of Q that contains the monoid M . In addition, let T : Q(α1) → R2 be the Q-linear map
induced by the assignments 1 7→ (1, 1) and α1 7→ (α1, α2), and set M ′ = T (M). Let
TM : M → M ′ be the map obtained by restricting the domain and codomain of T to
M and M ′, respectively. We use the notation introduced in this paragraph throughout
the rest of this section.

Lemma 4.4. The following statements hold.
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(1) T is an injective Q-algebra homomorphism.

(2) TM is a monoid isomorphism.

(3) M ′ =
{
∑

i∈I ci(α
i
1, α

i
2) | ci ∈ N0, I ⊆ Z, |I| < ∞

}

.

Proof. (1) Since T is a Q-linear map, the equalities T (x + y) = T (x) + T (y) and
T (qx) = qT (x) hold for all x, y ∈ Q(α1) and q ∈ Q. For each i ∈ {1, 2}, we let σi

denote the Q-algebra homomorphism Q(α1) → R induced by the assignment α1 7→ αi.
Then for each x ∈ Q(α1), we can verify that T (x) = (σ1(x), σ2(x)). Therefore, for all
x, y ∈ Q(α1),

T (xy) = (σ1(xy), σ2(xy)) = (σ1(x)σ1(y), σ2(x)σ2(y)) = T (x)T (y).

Hence T is a Q-algebra homomorphism. Note that T (α−1
1 ) = T (α1)

−1 = (α−1
1 , α−1

2 ).
Now if x ∈ ker T for some x ∈ Q(α1), then (σ1(x), σ2(x)) = (0, 0), and so the fact
that σ1 is the inclusion map ensures that x = 0. Thus, T is an injective Q-algebra
homomorphism.

(2) Since T is injective, it is also injective when restricted to M ⊆ Q(α1). Moreover,
because M ′ is the image of M under T , the map TM : M → M ′ is a bijection. In addi-
tion, the linearity of T over Q immediately implies that TM is a monoid homomorphism,
making it a monoid isomorphism from M onto M ′.

(3) Finally, let x be an arbitrary element in M . Then x =
∑

i∈I ciα
i
1 for a finite

subset I of Z and coefficients ci ∈ N0. Because T is a Q-algebra homomorphism by
part (1), we see that

T (x) =
∑

i∈I

ciT (α1)
i =

∑

i∈I

ci(α1, α2)
i =

∑

i∈I

ci(α
i
1, α

i
2).

Therefore M ′ ⊆
{
∑

i∈I ci(α
i
1, α

i
2) | ci ∈ N0, I ⊆ Z, |I| < ∞

}

. The reverse implication
follows immediately as T is a Q-algebra homomorphism and M is a monoid containing
{αi

1 | i ∈ Z}. �

In order to establish the main result of this section, we need the following two
lemmas.

Lemma 4.5. Let M be an additive submonoid of R2
≥0. If v, w ∈ M with v = (v1, v2)

satisfy v +M ⊆ w +M , then w ∈ [0, v1]× [0, v2].

Proof. Since v + M ⊆ w + M , we see that w divides v in M and, therefore, we can
write v = w + d, where d = (d1, d2) ∈ M ⊆ R2

≥0. Then w = (v1 − d1, v2 − d2) belongs
to [0, v1]× [0, v2]. �

For the rest of this section, we further assume that 0 < α1 < 1 < α2. We observe
that, in light of part (3) of Lemma 4.4, the inclusion M ′ ⊆ {(0, 0)}∪R>0 ×R>0 holds.

Lemma 4.6. If (v1, v2) ∈ M ′, then the set M ′ ∩ ([0, v1]× [0, v2]) is finite.
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Proof. Set v := (v1, v2) and Sv := M ′ ∩ ([0, v1] × [0, v2]). If v = (0, 0), then Sv is a
singleton and thus finite. Now we assume that v 6= (0, 0). Note that since α−1

1 > 1
and α2 > 1, the sequences (α−n

1 )n∈N0
and (αn

2 )n∈N0
both increase to infinity and, as a

result, the nonempty set

N := {n ∈ Z | αn
1 ≤ v1 and αn

2 ≤ v2}

is bounded. Let m be the maximum of N . Take a nonzero s ∈ Sv. Since T is injective,
there exists a unique α ∈ M such that s = T (α). Write

(4.1) α =

m
∑

i=0

qiα
−i
1 +

m
∑

i=0

piα
i
1 ∈ M•,

where q0, . . . , qm and p0, . . . , pm are nonnegative integers. As a result, we see that

s =
m
∑

i=0

qiT (α
−i
1 ) +

m
∑

i=0

piT (α
i
1)

=
m
∑

i=0

qi(α
−i
1 , α−i

2 ) +
m
∑

i=0

pi(α
i
1, α

i
2)

=

( m
∑

i=0

(qiα
−i
1 + piα

i
1),

m
∑

i=0

(qiα
−i
2 + piα

i
2)

)

.

Because α2 > 1, after looking at the second coordinate of s, we infer that pi ≤ piα
i
2 ≤

v2 for every i ∈ {0, . . . , m}. Hence, there are at most (v2 + 1)m+1 many possible
(m + 1)-tuples (p0, p1, . . . , pm) to choose for the respective coefficients of α0

1, . . . , α
m
1

for a representation of α as in (4.1). Symmetrically, since α−1
1 > 1, there are finitely

many possible (m + 1)-tuples (q0, q1, . . . , qm) one can choose to express α as in (4.1).
Consequently, the set T−1

M (Sv) is finite, which implies that Sv is also finite. �

We are in a position to prove that M is an FFM.

Theorem 4.7. Suppose that α1 and α2 are the roots of an irreducible quadratic poly-

nomial in Q[x] such that 0 < α1 < 1 < α2. Then Mα1
is an FFM and, therefore,

satisfies the ACCP.

Proof. Define T : Q(α1) → R2 and M ′ as before. Let v = (v1, v2) be a nonzero element
in M ′. It follows from Lemma 4.6 that Sv := M ′ ∩ ([0, v1]× [0, v2]) is a finite set. On
the other hand, it follows from Lemma 4.5 that every divisor of v in M ′ belongs to Sv.
Therefore, v has only finitely many divisors in M ′ and, as a result, M ′ is an FFM
by virtue of [23, Theorem 2]. Since M is isomorphic to M ′ and being an FFM is an
algebraic property, we conclude that M is an FFM, whence it satisfies the ACCP. �

There are monoids Mα that are FFMs but not UFMs. The following example illus-
trates this observation.
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Example 4.8. Consider the polynomial p(x) := x2 − 2x + 1
2
∈ Q[x]. Since the roots

of p(x) are α := 1 −
√
2
2

and β := 1 +
√
2
2
, it is an irreducible polynomial. In light of

Theorem 4.7, the chain of inequalities 0 < α < 1 < β guarantees that the additive
monoid Mα is an FFM. However, Mα is not a UFM: indeed, since 1, α, α2 ∈ A (Mα)
by Theorem 3.1, the two sides of the equality 4α = 2α2+1 yield distinct factorizations
of the same element of Mα (see also Proposition 5.1 in the next section).

5. Factoriality and Elasticity

In this last section, we characterize the monoids Mα that are half-factorial, and we
briefly discuss the elasticity of Mα. The elasticity is a factorization invariant that
measures how far from being half-factorial a given monoid is.

5.1. Half-Factoriality. Recall that an atomic monoid M is an HFM if |L(x)| = 1 for
every x ∈ M . In the class consisting of evaluation monoids of Laurent semirings, being
an HFM and being a UFM are equivalent conditions. We determine such monoids in
the following proposition.

Proposition 5.1. For α ∈ R>0, the following statements are equivalent.

(a) Mα is an UFM.

(b) Mα is an HFM.

(c) α = 1 or α is transcendental.

Proof. (a) ⇒ (b): This follows by definition.

(b) ⇒ (c): Suppose for the sake of contradiction that α is an algebraic number not
equal to 1. Let (pα(x), qα(x)) be the minimal pair for mα(x) over Z. Because Mα is an
HFM, it is an atomic monoid; thus, A (Mα) = {αn | n ∈ Z} by Theorem 3.1. Hence,
zp = pα(α) and zq = qα(α) are factorizations for the same element of Mα. As Mα is an
HFM, pα(1) = |zp| = |zq| = qα(1), which implies that 1 is a root of mα(x). However,
this contradicts the irreducibility of mα(x).

(c) ⇒ (a): If α = 1, then Mα = N0; hence, it is a UFM. On the other hand,
suppose that α is transcendental. Then any equality of the form 1 =

∑

n∈Z cnα
n,

where all but finitely many cn are zero, implies that c0 = 1 and cn = 0 for every
n 6= 0. Therefore 1 ∈ A (Mα), and it follows from Theorem 3.1 that Mα is atomic.
Now suppose that p(α) and q(α) are two factorizations of the same element in Mα,
where p(x), q(x) ∈ N0[x, x

−1]. Take k ∈ N such that f(x) := xk(p(x) − q(x)) ∈ Z[x].
Since f(α) = 0, the fact that α is transcendental ensures that f(x) = 0 and, hence,
p(x) = q(x). Thus, the factorizations p(α) and q(α) are identical, concluding that Mα

is a UFM. �
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We proceed to discuss a dual notion of half-factoriality. A monoid M is called a
length-factorial monoid (LFM) provided that for all a ∈ M and z, z′ ∈ Z(a), the
equality |z| = |z′| implies that z = z′. Observe that every UFM is an LFM. The
notion of length-factoriality was first considered in [13] under the term “other-half-
factoriality,” and it has been recently investigated in [8, 16, 19]. On the other hand,
not every LFM is a UFM, as illustrated next.

Example 5.2. Let q ∈ Q>1 \ N and consider the additive submonoid M of Q≥0

generated by the set {1, q}. Since 1 = minM• and q /∈ N, we conclude that A (M) =
{1, q}. In addition, one can check that if z1 := m1 + n1q and z2 := m2 + n2q are two
factorizations of the same element ofM having the same lengths, thenm1+n1 = m2+n2

and, therefore, (m1, n1) = (m2, n2); that is, z1 = z2. Thus, M is an LFM. However, M
is not a UFM since, for instance, the two sides of the equality n(q) · 1 = d(q) · q yield
distinct factorizations of n(q) in M . Additive submonoids of Q≥0 that are LFMs have
been determined in [22, Proposition 2.2].

Proposition 5.3. For α ∈ R>0, Mα is an LFM if and only if it is a UFM.

Proof. If α is transcendental, then Mα is a UFM; hence, the statement of the propo-
sition immediately follows. Then we assume that α is algebraic. It suffices to ar-
gue the direct implication, for the reverse implication follows by definition. To do
this, suppose, by way of contradiction, that Mα is not a UFM. Then there exists
an element of Mα having two distinct factorizations, namely, p(α) and q(α), where
p(x), q(x) ∈ N0[x, x

−1]. After rearranging (α − 1)p(α) = (α − 1)q(α), we obtain that
z1 := αp(α) + q(α) and z2 := αq(α) + p(α) are factorizations of the same element
in Mα. Observe that z1 6= z2 as, otherwise, the Laurent polynomials p(x) and q(x)
would satisfy xp(x) + q(x) = xq(x) + p(x), which is not possible because p(x) 6= q(x).
However, the fact that |z1| = p(1) + q(1) = |z2| indicates that z1 and z2 are distinct
factorizations of the same element having the same length, which contradicts the fact
that Mα is an LFM and completes the proof. �

Now we can summarize the main results we have established in this paper via the
following diagram of implications, which is a specialization of Diagram (1.1) for the
class consisting of all the evaluation monoids of Laurent semirings. As illustrated in
Examples 3.5 and 4.8 the two (one-way) implications in the diagram are not reversible.

(5.1) [UFM ⇔ HFM ⇔ LFM] ⇒ [FFM ⇔ BFM ⇔ ACCP] ⇒ atomicity
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5.2. The Elasticity. We conclude this paper by saying a few words about the elas-
ticity of the monoids Mα. Let M be an atomic monoid. The elasticity of a nonzero
element x ∈ M , denoted by ρ(x), is defined as

ρ(x) :=
sup L(x)

min L(x)
.

In addition, we set ρ(M) := sup{ρ(x) | x ∈ M•} and call it the elasticity of M . Notice
that ρ(M) ≥ 1. Furthermore, observe that ρ(M) = 1 if and only if M is an HFM. As
a result, the elasticity provides a measure of how far is an atomic monoid from being
half-factorial.

As we proceed to argue, the elasticity of every monoid Mα is either 1 or infinity.

Proposition 5.4. If α ∈ R>0, then ρ(Mα) = 1 if either α = 1 or α is transcendental,

and ρ(Mα) = ∞ otherwise.

Proof. If α = 1 or α is transcendental, it follows from Proposition 5.1 that Mα is an
HFM and, therefore, ρ(Mα) = 1.

Now suppose that α is algebraic and α 6= 1. We construct a sequence (βn)n∈N with
terms in Mα such that sup{ρ(βn) | n ∈ N)} = ∞. Let (p(x), q(x)) be the minimal
pair of α. Then z1 := p(α) and z2 := q(α) are two distinct factorizations of the same
element, namely, β1 ∈ Mα. Since 1 is not a root of the minimal polynomial of α, we see
that p(1) 6= q(1), so z1 and z2 are factorizations of different lengths. Suppose, without
loss of generality, that |z1| < |z2|. For each n ∈ N, set βn = βn

1 . Then we see that, for
every n ∈ N, both zn1 and zn2 are factorizations of βn in Mα whose lengths are p(1)n

and q(1)n, respectively. Therefore

ρ(Mα) ≥ ρ(βn) =
sup L(βn)

min L(βn)
≥

q(1)n

p(1)n
=

(

|z2|

|z1|

)n

for every n ∈ N. Since |z2|/|z1| > 1, it follows that ρ(Mα) = ∞, which concludes the
proof. �
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