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SUMMARY

This paper proposes extended least-squares (ELS) for ARMAX model identification of continuous-time
and certain discrete-time systems. The schemes have a relaxed strictly positive real (SPR) condition for
global convergence. The relaxed SPR scheme is achieved by introducing overparametrization and
prefdtering but without introducing ill-conditioning. The schemes presented are the first such proposed
for continuous-time systems.

The concepts developed in continuous time carry through to fast-sampled continuous-time systems and
associated discrete-time ELS algorithms. For such situations, in comparison with previously proposed
discrete-time schemes, the degree of overparametrization required in the proposed scheme of this paper
is significantly lower. The reduction is achieved by using more suitable pretiltering and
overparametrization techniques than previously proposed.

We also establish the persistence of excitation (PE) of the regression vectors in the proposed ELS
schemes to assure strong consistency, obtain convergence rates and provide robustness to unmodelled
dynamics. To prove the PE of continuous-time regression vectors, we develop output reachability
characterization for MIMO linear continuous-time systems.

KEY WORDS Extended least squares Identification StrictIy positive real Persistent excitation

Overparametrization Coloured noise

1. INTRODUCTION

There are two widely used classes of recursive identification schemes for linear stochastic

systems. These are the recursive prediction error (RPE) and the extended least-squares (ELS)

methods including their stochastic approximation versions. The RPE schemes require

projection into a stability domain for convergence, and although attractive in open-loop stable

system identification, cannot be used confidently in adaptive control. The ELS schemes require

a strictly positive real (SPR) condition on a filtered coloured noise model for their convergence.

The construction of the filter to achieve the SPR condition is in general more difficult than
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projection into a stability domain for open-loop identification, and so perhaps renders the ELS

approach less attractive to use then RPE methods in this situation. However, for adaptive

control the ELS approach is the only approach known with guaranteed convergence results.

(See Reference 1 for discrete-time and Reference 2 and 3 for continuous-time results.)

An obstacle towards guaranteeing convergence of an ELS scheme is selecting a filter to

satisfy the SPR condition. In the usual discrete-time ARMAX model notation where the noise

model is characterized in terms of a polynomial C (of degree n), a filter with transfer function

W-1 must be chosen such that

~ – ~ is strictly positive real (SPR)

In discrete time, it is often the case the the prefilter Z-n W(Z) = 1 is chosen, and consequently

the SPR condition is satisfied only when the noise is ‘near’ white. When there are deterministic

disturbances such as constant biases, ramps and sinusoids, then inevitably .ZnC-1(z) – ~cannot

be SPR, even where noise disturbances are white.

In continuous time the SPR condition is even more restrictive than in the corresponding

discrete-time case. Taking s-n W’(s) = 1, to correspond to the discrete-time example above,

means that the SPR condition cannot be satisfied with any S-”C(S) other than a constant

greater than ~. Of course, in this case W(s) is not asymptotically stable and is a priori not a

reasonable prefilter to use, It turns out that selecting W is only straightforward if C is known,

and otherwise is a formidable task.

Several modifications of the ELS algorithm have been proposed to relax the SPR condition

(see References 4 and 5 and references therein for discrete-time results). In Reference 5 the SPR

condition is side-stepped by transforming the discrete-time ARMAX model into an equivalent

and unique overparametrized form. Then ~-1 (Z-’) ~ Z“C- 1(z) is expanded in the form

Z(z-1) + Z-D!9 (z-’ )C- 1(z- 1) for a suitably large delay D so that the relevant condition that
.;(z-’ )5-’ (Z-’) – ~ be SPR is satisfied. A problem with this approach is that if the zeros of

C(z) lie in a region offset from the centre of the unit circle in the z-plane, then D is a large

number and an unrealistically large number of parameters have to be estimated. The value of

D is inevitably large, for example, in fast-sampled continuous-time systemsb where the zeros

of C(z) lie close to z = 1 in the unit circle; likewise in systems with a deterministic’ disturbance

such as a constant or ramp bias or sinusoidal disturbance.

This paper proposes ELS schemes with a relaxed SPR condition for ARMAX model

identification of both cent inuous-time and discrete-time systems. The relaxed SPR scheme is

achieved by introducing overparametrization and prefiltering but without introducing ill-

conditioning. (Stochastic approximation versions can be treated similarly; however, details are

omitted.) For discrete-time systems where the zeros of C(z) lie in a region offset from the

centre of the unit z-circle, we show that instead of expanding C in the delay operator, which

is the existing approach, 5 using more suitable operators yields significantly lower-order

regression vectors with fewer parameters to be estimated. One motivation to develop results

for continuous-time schemes is their relevance for discrete-time schemes derived from fast-

sampled continuous-time schemes. It is important to establish that no insurmountable

problems arise should the sampling rate increase.

This paper is organized as follows. In Section 2 we first present the class of signal models

of interest and then propose novel expansions and factorization for C-1 for the continuous-

time and discrete-time cases. In Section 3 we describe the continuous-time transformed ELS

scheme and study its relaxed SPR property. In Section 4 we analyse the analogous discrete-time

algorithm. We establish the persistence of excitation of the associated regression vectors
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to assure strong consistency of the identification schemes and therefore the robustness

of the schemes to unmodelled dynamics. In Section 5 the convergence properties of the algor-

ithm and a scheme for recovering the parameters are discussed. Some conclusions are drawn

in Section 6.

2. SIGNAL MODELS AND FACTORIZATION

Signal models

OF C-l(S), C-’(q)

We first work with a continuous-time version of the ARMAX model:

A(p)y(t) = B(p)u(r) + C(p)e([)

A(p)= pn+alp”-’+... +an, B(p) =b,p”-’ + ...+~n (1)

C(p)= p”+clp”-l+. ”.+cn

Here p denotes the differentiation operator, u(f) and y(t) are the input and output signals

respectively and e(r) is a disturbance modelled here formally as ‘white’ noise, A more rigorous

signal model than one driven by ‘white’ noise can be formulated using Ito equations:

d@(t) = .>/’(f) dt + .%u(t) dt + ,x du(r)

dj([) = Y@(f) dt + du(~)

where v(t) is a Wiener process. The measurable physical output of (1) is

i

[
y(f) =+ :_A y(r) dT= ~

!
d~(r), A >0

A ,.A
(2)

Notice that using j(f) avoids problems associated with the fact that since the degree of C(p)

is equal to that of A (p), y([) in (1) includes a ‘white’ noise component. The actual structures

of .A/, A?, .X and ‘ii are not important at this stage.
We will also develop results for the following discrete-time ARMAX model:

A(q)y(k) = B(q)u(k) + C(q)e(k)

A(q) =q’+ alq’-’ +... + al, B(q) = blq’-’ + b2q’-2 + . . . + b~q’-’”, m <1 (3)

C(q) =q”+clq”-’ +... +C”

where q is the forward shift operator and e(k) is a discrete white noise process.

An important case where existing relaxed ELS schemes are inefficient is when (3) is obtained

by fast integrated sampling of the continuous-time process (1). It is proved in Reference 7 that

for small sampling intervals, all the zeros of resulting C(q), which without loss of generality

lie inside the unit circle, tend to z = 1 exponentially fast. An example of this is a deterministic

output error system A (q)z(k) = B(q)u(k) with measurements y(k) of z(k) contaminated by

added noise e(k), i.e. y(k) = z(k) + e(k). Then (3) holds with

A(q) = C(q), z(k) 42y(k) – e(k), A(q)z(k) = B(q)~(~) (4)

Proposed factorization for continuous-time models

Here we first develop factorization for continuous-time models. Then corresponding

discrete-time models are derived. The following key lemma proposes an expansion of C-’ (p)

which will be exploited subsequently.
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Lemma 1

With C(p) defined in (l), assume C-1 (p) to be asymptotically stable. Then in Laplace

transform notation, for some real converging sequence rk and any a >0,

Proof. Consider the bilinear transformation

s+az= —es.a~

s–a

(5)

(6)

Setting

()P(Z)= C-l ++

then P(z) is analytic outside the unit circle since (6) maps the left half-plane into the unit disc.

Furthermore, P(z) has precisely n zeros at z = 1. This is because then zeros of C- 1(.s) ats = co

map precisely to the n zeros of P(z) at z = 1. Hence for some real converging sequence Pk,

P(z) =(1 -z-’)” f Pkz-k, Izl >1 (7)
k.O

Substituting back z = (s+ a)/ (s – a) now proves the lemma. ❑

Remark. The expansion (5) is closely related to Laguerre function representations; see

Reference 6 for details.

Corollary 1

The transfer function C-1 (s) in Lemma 1

1 F(s) + G(s)H(s) *—. —
C(s) L(s) L(’)c(’)

where J-2(s)= (s– a)~-n+l, L.(s) =(s+ a)~,

n–l, i.e.

F(s) =fN_n+ . . . +Jjs’”-”,

Furthermore, given by c >0, there exists N

can be uniquely factorized as

L(s) = F(s)C(S) + G(s)EI(s) (8a)

F(s) is of degree IV– n and G(s) is of degree

G(s) =g. _l + . ..+ gos”-l (8b)

G(s)H(s) < ~

L-(s)c(s) co ‘

Proof. From Lemma 1

1 1
,N-n

—.

()

~ rk~’‘+J__ g

c(’) (~+ a)” k.o (’+ U)n k= A’_n+l

The first term on the right-hand side equals F’(s)L -1 (s).

(9)

()
s–ak

rk — Re(s) ~ O
s+a ‘

The second term can be made
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arbitrarily small by choosing N sufficiently large. It equals H(s)L - *(s) times a strictly proper

transfer function; this strictly proper transfer function has its poles at the zeros of C(S). El

Remark 1. The choice of a has a significant effect on the size of N that satisfies (8) and (9).

Let Zi, i= 1,..., n, denote the zeros of C(S). Then pk in (7) is of order

O(max; I(zi + a)/ (.zi– a) 1‘). Hence to obtain a fast convergence rate in the series expansion,

the value of – a should be chosen close to the zeros of C(S). Also note that choosing a too

large or small results in a slow convergence rate. We give a comprehensive design rule for

selecting N and a in Section 3.

Remark 2. From Remark 1 it follows that a large value of N must

of C(s) are scattered. This can be circumvented if C-1 (s) is expanded

use

be chosen if the zeros

around several as, i.e.

in

L(S)= fj (S+ C7i)’v’) i~Ni=N
i=]

H(S) = E (.S– (7i)&f’, ~Mi=N-n+l
;=[ i=l

in (8).

Remark 3. Since F(s) is in general non monic, we shall in the sequel work with the monic

polynomial

F(s) 42F’(s)/fo (lo)

Note that by equating the coefficients of the s“ terms in (8a), we have fO + go= 1.

Proposed factorization for discrete-time models

We now give the discrete-time versions of Lemma 1 and Corollary 1.

Lemma 2

With C(q) defined in (3), assume C-1 (q) to be asymptotically stable. Then for some real

converging sequence rk,

1 1

()

l–aqk—. jjrk—
C(q) (q– U)” k.O

Iql>l
q–a ‘

forlal <l.

Proof We use the transformation

~=q–a z+a

l–aq ‘q=l+az

Setting

(11)

(12)

()P(z) = c-’ R
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then P(z) is atkdybic outside the unit circle since (12) maps the unit disc to itself. Furthermore,

P(z) has precisely n zeros at z-1 = - a. Then for some real converging sequence Pk,

P(Z) = (2-’ + a)” j Pkz-k (13)
k=O

Substituting back z = (q - a)/ (1 – aq) now proves the lemma. ❑

Corollary 2

The transfer function C-* (q) in Lemma 2 can be uniquely factorized as

1—= ~ + ‘(q)H(q) @ L(q) = F’(q)C(q) + G(q)H(q)
c(q) L(q) f.(q)c(q)

(14a)

where H(q) = (1 – aq)~-”+l, L(q) = (q – a)~, F(q) is of degree N– n and G(q) is of degree

n–l, i.e.

F(q) = fN-~ + ‘-. + fOqN-n, G(q)= g.-l+ . ..+gOqn-l (14b)

Furthermore, given any c >0, there exists N > n such that

G(z)H(z)
<f

L (z)C(Z) m
(15)

where for any function f(z), IIj(z) II=9 SUPW[f(z) Iz=e’w. ❑

Proof, The proof is similar to that of Corollary 1.

Remark. The discrete-time versions of Remarks 1, 2 and 3 (following Corollary 1) hold. If

.Zi, i= 1, ..., n, denote the zeros of C(q), then pk in (13) is of order o(m~i [(zi – a)/

(1 – az~) 1‘). Hence to obtain a fast convergence rate the value of a should be chosen close

to the zeros of C(q). Also, if the zeros of C(q) are scattered within the unit disc, instead of

choosing N large, C-* (q) can be expanded around several as. We give a comprehensive design

rule for selecting N and a in Section 4.

In the sequel we shall find it convenient to work with the monic polynomial

~(q) = F(q)/fo (16)

Note that from (14a) we have fO + (-a) N-n+lgo = 1.

In the rest of this paper we shall implicitly assume [ a [ <1 in discrete-time results and a >0

in continuous-time results.

Rapprochement with the factorization in Reference 5

Here we seek relationships for our proposed factorization (8) and (14) with the unique

factorization in Reference 5:

1
~= #(z-l) +z-(N-n+l) ~(Z-’)

C(z-’)
(17a)

where C(Z- *) and 3(z - * ) are monic polynomials of degree n and N – n respectively and
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!g(z-’) is a polynomial of degree (n – 1), i.e.

.V–n n–l

.Y(Z-l) = 1 + ~ 6iZ-;, !9(Z- 1)= ~ ~jz-’ (17b)
ISI jso

We shall exploit these relationships in Sections 3 and 4 to propose rules for selecting a suitable

N and a in our ELS schemes.

1. Continuous time. The following lemma shows the equivalence of o r unique continuous-

time factorization (8) and the unique factorization (17a).
t

Lemma 3

The factorization (17) and (8) are equivalent under the bilinear transformation (6) and the

following definitions of ~, .9 and % in terms of C, F and G or vice versa:

()
~=(s+a)nes–a— —
C(a) (2a)n ()

G(s)= (s+ a)”-l% ‘~
s+a’

F(s) =&$ (s+ a)”-”~~~)
s+a

or equivalently,

()qz-l)=(l-z-’)nc UZ+J
C(a) z–l’

~(z-l)=(l–z-l)n-l
(2a)n-’

@(z-l) =(l-z-’)N_n
()

Z+l

(2a)N
C(a)F a —

z–1

Proof, We first show that (17) transforms to (8) under (6) and

(1 –Z-*)” we have

(18a)

()
Z+l

Ga—
z–l’

(18b)

(18). Multiplying (17) by

(l-z-l)n

C(z-’)
=(1 _z-’)”q(z-’)+(l -z-’) ”z-(~-”+’)::::;

Substituting (18b) and (6) leads to

()
N–n+l

c(a)–c(a) ~~~(~\N+= G(s) C(a)

c(s) s+a (s+ a)n-l c(s)

which yields (8). ❑
The converse holds likewise.

Remark. By its definition in (18), 5(z - 1) is a monic polynomial because C(s) is monic. Ako

from (18a), with yi and ~i defined in (17b), simple manipulations yield

~.= (2a)n
~ (1 +&+... +6n),), go=-fo+ l’l+”””+-yn-l (19)

2. Discrete time. Here we seek a relationship between the unique factorization (14a) and

(17). Note that our factorization (14a) specializes to (17) when a = O and our proposed ELS

scheme then specializes to that in Reference 5.
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Lemma 4

The factorization (14a) and (17) are equivalent under the transformation

following definitions of ~, .X and !9 in terms of C, F and G or vice versa:

p(~-’) = (1- ~’)n, c(q)
Z?=o Cif7’ (q– (7)’”

jg(z-l) = c(~)
(q- ~)fl-i

.Z(Z-l) = ‘7=0Ciai ‘(~)
(1 - a’)” (q- a)’’’-”’

Co=l

or

()

.Z+Q
c—

()

= (x?=, Cid;)C(Z-’) z+a
(z- I+a)~ , G

=(1 - ~’)~-1 !9(2-’)

l+az l+az
~z-l+a)n-l

()— =(1- a’)”Fz+a .7(Z - ‘)

l+az Z?=O Cia; (Z-* + a)~-n

(12) and the

(20a)

(20b)

Proof We first show that (17) transforms to (14a) under (20) and (12). Substituting (20a)

into (17) are dividing the resulting equation by (q – a)” directly yields (14a). The converse

holds likewise. ❑

Remark. By its definition in (20), E(z - 1) is a monic polynomial because C(q) is monic. AISO

from (20a), with Yi and ~i defined in (17b), simple manipulations yield

JO= (1 -a’)n .(l–aai+... +a)”)”
Z!=o Ci(7’

‘-”6,”-”), go=yo–a71+ ”””+ (–a)’’-1yn_1 (21)

3. CONTINUOUS-TIME ELS SCHEME WITH RELAXED SPR CONDITION

In this section we first derive a transformed ELS scheme and then interpret its associated SPR

condition. We then develop conditions for the PE of the regression vectors and determine the

convergence rates of the scheme. Finally we show that a companion least-squares scheme can

be used to recover the original parameters.

Time domain equations

Let us consider a filtering operation on (1) in terms of the exponentially stable filter

1 F(s)—. —
w(s) L(s)

(22)

According to Corollary 1, (22) is a good approximation of C-1 (s) provided N is large enough.

However, because F(s) is unknown, we do not use (22) in the actual implementation of the

estimation scheme. Applying the filter (22) with the normalized ~(.s) defined in (10) replacing

F(s), (1) becomes

A(p) ~ y(f) =ll(p) ~ u(t)+ C(p) * e(t)
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or equivalently, using (8),

P-”v~(P)Y~.v(~) = P-’vF(P)u~.v(f) + gOe(f) – p-(n-l)~(p)e~(t) + e(r) (23)

under the following definitions:

YL,v(f)= p“vL-’(p)y(f), UL,V([) = p’”L-*(p)u(f)

e~(t) = pn-’H(p)L. -’(p) e(l), A(p) = A(p)F(p), B(p) = 13(p)~(p) (24)

~(p)= G(p)/jio where ~(p)=gn.1 + .. . +@N-l

We now estimate the coefficients of ~(P), ~(p) and ~(p) as ~(P), ~(p) and ~(p) using

ELS. To formulate the ELS scheme, let us consider the more precisely defined stochastic Ito

form state equations. 2 With c(l) ~ e~(t) – e(t), consider (23) reformulated as

dx(t) = Ax(t) dt – el dy~!~(l) + e,v+ IuL,v(t) dt – ez,v+ I clc(l) – ez~+z du(f)

dj~,v(f) = 6,;X(/) dr + du(r),
(25a)

x(o) = o

where e: = (O . . . 0 1 0... O) with the 1 in the ith position, -PLN([) is defined similar to (2) and

x(l) = (–yf:’?(f) .. . –-YW(l)d!t@)...uW(t) c(f) – 4Y(f) ... – eti-l)(t))T
eN= (u*...&” b,... i),vgo...g*)T)T

(25b)

where y~,~ (f) = ~~y~.i *)(7) dT, y~!~(t) 2 ~6Y~AJ(~)dT and up~(f) and eti)(f) are defined
likewise. Also u(~) is defined in the Ito formulation of (1) and

A = block diag(E.N, EN, E. ), [1Ei= 0 0
Ij-1 O

(25c)

Note that the components of x(t) are measurable.

Transformed ELS scheme

Consider the ELS estimation of @hI(f):

M(r) = Ai(t) dt – el dy~!~([) + e,v+IuL.v(t) df – ez~+ I dt([) – e2N+2 dfi(~)

dfi([) ~ dy~.v(f) – ~~(r)l([) d(, old/v(t) = ~,i(t) dfi([)

dF’~* = ,f(r)i?T(t)dr,

(26)

d~, = – ~,i(t)f(t)T~[ dt, Po>o

suitably initialized with ,i?(0), @,v(0)and some P. >0. The state estimate i(t) above is defined

by (25b) with e(”)(r), e~(r) replaced by Z(”)(t), @#(t). Also .4F 2 p“-l~(p)L-’ (P)?(t),

2([) ~ ~~(t)–?([) and ~,-1 = j~,fT(~) d~+~~’.

It can be shown2 that a sufficient condition for the ELS scheme to converge is that

L(s)

F(s)c(s)
– j is SPR

or equivalently (easily shown by using (8) above and equation (4. 160) in Reference 8,

G(sy?(s) _

L(s) ‘go ~
< 1 (strictly bound real (SBR) condition) (27)
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Overparametrization selection to satisfy SPR condition

From Corollary 1 we know that

G(s)H(s)

L(s)c(s) m

AND J. B. MOORE

(28)

can be made arbitrarily small by choosing N large enough. By restricting the zeros of C(s) to

lie inside a given a priori compact set, it is possible to specify N and a such that (27) is satisfied
for all C(s) whose zeros lie inside the set. In this subsection we specify N, a and the compact

set. We seek to do so by achieving a continuous-time version of the discrete-time result in

Reference 5.

Lemma 5

Consider any polynomial (in z-1 )

C(Z-’)=i$o tiZ-i= fJ (1 ‘ZjZ-i) (29)
,=1

with co = 1 such that IZi I < R e 1 for all i. Consider also for any N, a pO]YnOr?Iial pair

( ,Z(z- 1), %(z-’ )) with degrees N – n and n – 1 respectively, defined uniquely by the

factorization (17). Then there exists NO(R) such that for all N z No(R), !g(z-’ ) is SBR.

Proof. See Reference 5.

Notice that under (6) and (18), z-(v-”+ 1) !9(2- 1) transforms

G(s)H(s)

L(s)
,=jw=l%(z-’)lld=l

El

to G(s)H(s)L-’(s). So

Moreover, since stability is preserved under the bilinear transformation,

@ 1 G(sW(S) SBR ~ go – ~9(Z-’)——

fo fo L(s) fo
SBR

(30a)

(30b)

-
L

We now present the continuous-time version of lemma 5.

Lemma 6

Consider a polynomial C(s) = II ~., (s – Si), si <0, such that its zeros lie in a circle with

centre xo = – a(l + R2)/(1 – R2) on the real axis and radius

2aRr=—
1–R2

(3 la)

or equivalently such that

lS1-XOl <r, R<l Vi (31b)

Consider also for any N, the polynomials F’(s), G(s) and H(s) are uniquely defined as in (8).

Then there exists No(r) such that for all N > No(r),

1 G(s)H(s) < ~

:+3 L(s) J=JW

(32)

and the SBR condition (27) is satisfied.
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Proof. Using (6) with r defined in (31) and zi defined in Lemma 5, straightforward

manipulations yield

lZi[<R <l= SI+U* <r

Since (27) is implied by (32), we shall look for upper bounds on I gol~o \ and

G(s)H(s) !9(2-’)

fOf-(~) s=jw = JO [:1=1

It is proved in Reference 5 that

n-l

I go[ < i~o l~il <RN-”+’ ‘~~,~)! (1 +R)”2 Y(N)

and thus I!9(z- 1) I ~I = I < f(N). Also, it is easily shown that ~(N) is monotonic decreasing if

~> R(l+n)–1)
/

1–R
(33a)

In addition, a minimum bound for [fO \ can be obtained as follows. If N is chosen sufficiently

large so that f(N) <1, then since fo + go = 1, \ f~ \ >1 – f(N). So

!g(z-’)& + . 2f(N)

fo fo 1:~=1<1 –f(N)

Hence for any N, if 2f(N)/(1 –f(N)) c 1, i.e.

3RN-. +1 (N+ n)!

N!
(l+ R)”<l (33b)

and (33a) holds, then the SBR condition (27) is satisfied. Note that No(r) can be defined as

the smallest value of N for which (33) holds.

On persistence of excitation using output controllability characterization

In Reference 9 the regression vectors of discrete-time ELS schemes are shown to be

persistently exciting, leading to consistent parameter estimation using output reachability

characterizations for MIMO systems. These characterizations translate excitation properties of

system inputs to excitation properties of regression vectors. Here we develop continuous-time
versions of the results of Reference 9 by first generalizing certain continuous-time results of

Reference 10 for single-input systems to multi-input systems. The notation used in this

subsection is independent of the rest of the paper.

Excitation and output controllability. Consider the MIMO continuous-time linear system

i(r) = Ax(t) + Bu(t), x(o) = Xo

y(r) = Cx(t) (34a)

A6c”xa, BcC” XB, cc 07’”, Z.4EL:(CP)

and associated proper transfer function

T(s)= C(SI– A)-’E? (34b)
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Nofe, L.~(Cn) is the space of functions j O?+~ C“ which are Lebesgue-integrable over any

finite interval. L.~(Cn) is the space of functions as above which are also square-Lebesgue-

integrable over any finite interval.

Definition. The system (34a) will be called output-controllable 1‘ (equivalently y is

controllable from u) at time fOif for any YI there exists a finite tl > (Oand an input u [(o, tl ]

that transfers the output from y(fo) = O to y(ti ) = yt.

Let OC(a, ~, ~) denote the class of output-controllable systems specified by (34). Let u be

the McMillan degree of the system (34a) and let A41,. . .. M“ be its Markov parameters. Define

the matrix M by

M= [Mo MI. . . M.] = [CB CAB... C.4’’-’B]

Recall 11that M has full rank iff the system is output-controllable.

Lemma 7

The following statements are equivalent.

(a) The system (34) is output-controllable,

(b) M has full rank.

(c) T(z) has full rank over O?.

i.e. y(t) is controllable from u(t).

Proof, The proof follows from straightforward continuous-time generalizations of results

in Reference 9. ~

We now find conditions on the system input under which the output is sufficiently rich for

adaptive identification purposes. We closely follow the notation and results in Reference 10

and generalize them for the MIMO case.

Definition 1. The function y E L?(CT) is said to be sufjcientl.v rich iff there exist positive

constants c1, T such that for all ~ 20,

J

T+ r

y(t)y*(l) dr > cl~y
T

T is termed the excitation period of y. (Y* is the Hermitian transpose of Y.)

Dejini/ion 2. The input u 6 Ll(IC@)is said to be persistently exciting for the class OC(ci, @,y)

iff for any system in OC(CY,(3,y) is produces a sufficiently rich output y uniformly in yO (i.e.

c1 and T in Definition 1 are independent of the initial condition YO).

We now proceed to define a richness property of the input that will characterize the class

of OC(CY,6, y) inputs. Let f,(f) = J(1 + ~) denote the translation of a function f along the real

axis. Using the notation

.(

~s

0,

J

0“-,
([”u,)(t) = dul di n... da. U(O. + T), (~U,)(t) = j’ j_(ul + T) do,

o 0 0 0

we define

v,([) 2 [Iu:, . ... laJ] ‘(f), W,(L//, f) 9 v,(r) + ,./ttl (f)
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where ..{i< Cadxa is some constant matrix and d(f) Q [1 f f2 . . . fm-’] ‘. Also define

i

T

JT(?M, T)= W,(JL, t) W:(J{, t) dt
o

Dejnition 3. The input u E L~(CB) is said to be rich of order u iff there exist positive

constants CJ, T such that for all 7 z O and VC 6 Cvxa

where J4, !? – (j: [V,(t)6r(t)dt)N61, NO ~ J: O(t)0‘(t ) dt. (See Reference 10 for the

motivation of this definition. )

Theorem 1

The input u 6 L1(C6) is persistently exciting for the class OC(CY,~, ~) iff it is rich of order a.

Proof. The proof is the same as that in Reference 10 except that the corresponding MIMO

terms defined above must be used. ❑

Excitation of regression vectors. Theorem 1 reduces the question of the transfer of excitation

from inputs to outputs to one of controllability of outputs from the inputs. In ELS estimation

we require the regression vectors to be exciting. Thus we develop conditions for these

regression vectors to be reachable. With Theorem 1 established, the results are straightforward

generalizations of the discrete-time results in Reference 9.

Let T(s) be a -yx @ proper rational matrix with Markov expansion T(s) = Z7.O A4is-’.

Define T;(s) as the ith row of T(s) and ~i(t) as the ith component of y(t).For arbitrary

integers fi z 1 we define the general regression vector

(“-’)(t)J#(t)...yj’’- l)(t)...y+l)(t) . . . y$’”- l)(f)]P/,.../,(t) = [Y P(f) . . . yl

where y(i)(t) = J: y(i)(T) dr and y(’)(t) = j~ y(~) dr. Define

TI,..J,(s)= [T1(s)T S-’ T’(S) T .. ..S-’I+l T1(S)T . .. ~(s) T .. ..s-’’s)T]Ts)T]T

P(l, . ../7)= (.Y(s)< P7, .?(s)= [.FI(s) . .. tFT(s)]T, deg .fi(.s) < ~i– 1]

[1

s /-/,Tl(s) (35)

.X’(s) = : I = min[fi]

s ‘-’”’r(s) ‘

Theorem 2

With the definitions (35), the foIlowing are equivalent.

(a) wl,,,.~,(t) is reachable from u(f).

(b) T/,,,,/,(s) is full row rank over C.
(c) P(1, .. . /7) fl N(X)= O, the zero polynomial, and N(Z) denotes the left null space of

.X’(s).

Proo~ The proof is a straightforward generalization of the discrete-time proof in Reference

9. El
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Persistence of excitation of x(t )

We require the regression vector x(t) and its estimate i?(t) in (25) and (26) to be suitably

exciting to assure strong consistency of the identification scheme and therefore its robustness

to unmodelled dynamics.’2

Lemma 8

A necessary and suflcient condition for x(t) in (25b) associated with signal model (25a) to

be controllable from inputs u(r), u(t) is that A (s)K(s), i3(s)K(s) and C(s) are coprime where

~(s) 2 H(s) – (s+ a)’’’-”+’. (A (s), B(s), C(s) are defined in (1) and H(s) in (8).)

Proof. Because of the similar nature of the continuous-time PE conditions in Theorem 2

and the discrete-time PE conditions, 9 we provide the discrete-time proof in Section 4, Lemma

10. With F’(s), G(s), n(s) and K(s) defined as above, replacing .Zby S, I and m by n in Lemma

10 yields the continuous-time proof. ❑

Convergence of modi~ed continuous-time ELS scheme

Standard techniques 13 apply to achieve convergence properties of the transformed ELS

scheme. We summarize as the following theorem.

Theorem 3

Consider the overparametrized signal (23), (24) with Ito form (25) and ELS estimation

scheme (26). If N is chosen sufficiently large so that the SBR condition (27) is satisfied, then

ast~w

(II 19N- ON(f)112=O 10~~m~,fl-’)as.
mtn

(36a)

IIu(f) 112=O(log k~,XPF1) as. (36b)

Moreover, with u(t), u(t) suitably exciting, i.e.

,im log ArnaxPf- ‘= o a s

h~inP~ ‘
. .

t-cc

then as t-+a

(37)

(36c)

l\ u(f) 112=O(log X“axPi’) as. (36d)

Furthermore let AK, BK, C be coprime (i.e. x(f) is reachable from u(t), u(t) (Lemma 8)) and

C(s) be strictly minimum phase. For stable signal models (i.e. no finite escape time for x(t)

and A~aXfJ,-’< 0(()) and with u(f), u(t) suitably exciting as in (37), then as ( ~ m

IIO,V - ON([) 112= 0((-’ log f) as.

Proof. The results (36a)–(36d) are implicitly established in Reference 13. Although the

signal model in Reference 13 has different interpretations for ON, x(t) than here (namely a
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specialization of the model used here when N = 2, a = O), the proofs are invariant of such

interpretations as long as the subsystem with input OVV(/)i(f) and output 19L-i(/) + ~07v(t)f(/)

is strictly passive. (i(t) 2 x(f) – i(t) and ~.v(l) Q r9,v– ~N(~).) -1d

Least-squares parameter recovery

The state space Ito representation of (1) prefdtered by the exponentially stable filter L-1 (s) is

alp(t)= rp(t) df – el dy~~(t)+ e~+lu~~(t) dt + ez~+l de}’)(t)

d~~,,(f) = pT(t)Odr+ dei*)(r),
(38a)

p(o) = o

where eir is as defined in (25). Also

q(t)= (–y.ii)(f) ... – yfi)(t) uU?(t)...uYn)(t) e} ’)(t)... el’’)(t))T

f3=(al... u~ bI... b~ CI... C~)T, ‘i)(t)eli)(t) = p“ ~
L(p)

where y~n(f) = pnL-’ (p)y([), etc. The superscripts in (38a, b) are defined in (25b) and

r = block diag(E., En, En),
[1

E.= 0 0
In_, o

(38b)

(38c)

So far we have proved that consistent estimates of parameters of the transformed signal

model (25) can be obtained under the relaxed SBR condition (27) and PE condition (37).

Identification of the original signal model parameters O can also be accomplished under the

same conditions if the following least-squares (LS) algorithm operating in parallel with the

ELS algorithm is utilized:

where

z(t)= (–yi!!(t) . . . – yL)(t) Uw(f)... uyn)(f) @i’)(r) . ..@i”)(t))T (39b)

and ~(t)are the parameter estimates of O.

Remark. Itmay be thought that dj~n(f) – pT(t)Odf in (38a) should be the differential of a

Wiener process for the LS scheme to converge. However, as shown in Reference 2, this is not

the case as long as L-1 (p) is exponentially stable and de(’)(t)( = du(t); see (l)) is the

differential of a Wiener process.

Note that the noise terms e~’)(t) are obtained from the ELS scheme. Thus the scheme (39),

despite its similarity to (26), has an almost standard least-squares form. The only non-standard

feature of the proposed scheme is that the regression vector (39b) differs from the true one

where ef)(t) would be present instead of i?~)(t).We no prove that as long as the ELS scheme

converges, this discrepancy is asymptotically negligible, i.e. it does not affect either the

consistency or the asymptotic rate of convergence of the LS scheme.
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Theorem 4

Consider the least-squares scheme (39) applied to the signal model (1) with Ito form (38)

under the relaxed SBR condition (27), where e~i)(t) is obtained from the ELS scheme (26).

Then as t ~ m

(40)

Moreover, under (37) with P, defined as in (26), as t + m

(II0- 6(f) [/2= O ‘O!J’~J~;’)as. (41)

Furthermore, for suitably rich bounded variance inputs uL(f), ell) (t), then as f + m,

Iim inf k~i”P~ ‘/[ and for stable models with bounded inputs

Proof. See Appendix.

4. ELS ALGORITHM

II/3- O(r)112= O(f-’ log t) as. (42)

❑

WITH RELAXED SPR CONDITION FOR DISCRETE-TIME

SYSTEMS

We present a transformed discrete-time ELS algorithm for discrete-time systems, interpret its

associated SPR condition and finally discuss PE and convergence.

Transformed ELS aIgorithm

Consider the filtering operation on (3) in terms of the filter

1 F(q)— G—
W(q) L(q)

(43)

According to Corollary 2, (43) is a good approximation of C-i (q) provided N is large enough.

Because F(q) is unknown, we do not use (43) in the actual implementation of the ELS

algorithm. Applying the filter (43) with the normalized ~(q) defined in (16) replacing F(q), (3)

becomes

m?) e(~)
F(q) ~(~)+ c(q) ~F(q) ~). B(q) ~

A (q)—

L(q) ‘(

or equivalently, using (14a),

~(q)~~(k) = ~(q)uL(k)+ ,ij)(-~)’v”’’+ ’f?(fk)– ~(q)(?fj(k) + t?(k) (44)

The subscript L. in (44) denotes filtering with L-’(q), i.e. YL(k) = L-l(q)Y(~),

uL(k) = l.-’ (q)u(k). Also e~(k) = f+(q) ~-’(q) e(k), ~(q) = A(q)~(q), E(q) = ll(q)~(q) and

G(q) =Eoq”-’+”””+gn_l

We then estimate the coefficients of ~ (q), ~(q) and ~(q) as Z (q), E(q) and 6(q) using

ELS. In ELS we use the a posterior estimate of e(k) defined as

.@(k)= i(q)~L(k)–~(q)uL(k)–,&)(-~)’v-’’@(k)k)+ d(q)i?ff(k) (45)

where @H(k) = H(q)f. -’ (q)@(k). Note that on the right-hand side of (45), d(k) cancels out in
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the expression – ~0( – a) ‘-n+ ‘@(/r)+ ~(q)p~(k). Thus (45) is causal. Now define

@(k) =(-yL(k - l)... –yL(k+n –/-N) uL(k–l) . ..uL(k+rnrN)N)
~(_a)’v-n+l_qn-l H(q)l L(q)] e(k+n–l– N) –e~(k+2n–~– N–2) . . .

–@(k~fl–[– N))T

O=(u, . . . - -ti/+.M-n bl... bm+n-n EO... g1)l)
T (46)

Define ~(k) similar to o(k) with .4(.), Z(.), 4H(.) replacing e(.), e~(.). The ELS estimate O(k)

k defined from

L?(k-l– N+n)=y~(k) –iT(k)O(k– 1)

O(k) =O(k– l)+~~~(k)e(k–~– IV+n)
(47)

.- ~k-l~(k)~~(k)~k-,
Po>oPk=pk-l – 1 +JT(k)~k-16(k)’

suitably initialized with 4(O) and 0(0). It can be showns that a sufficient condition for the ELS

scheme to converge is that

L(q)

F(q)c(q)
– ~ is SPR

or equivalently,

G(q)H(q)_go(_a),v_n+,
L(q)

< 1 (strictly bound real (SBR) condition)
w

Remark. For output error (OE) systems defined as in (4), setting A = C in (44),

equivalent of (45) is

(48)

the OE

@(k) =y(k)+gO(–a)’v-”+’ (Nk) - e(k)) - ~(q)(y~(k) - &(k)) - ~(q)u~(k)

where yH(k) = H(q)L -1 (q)y(k). So the OE regression vector (cf. (46)) is

@oE(k)= [{-( -a)v-~+’ (y(k- n)- w(k-n))+yH(k - 1)- eH(k - 1)]

(Y~(k -2)- eH(k-2)) . ..(Y~(n) n)- eH(~- n)) u~(k+ N-n- l)... u,(m) ]T]T

Also

60E = (go ...gn-[ bl .. . 5n+,v-n)T

and &OE(k) is defined similar to @oE(k) with @H(k), d(k) replacing e~(k), e(k). The ELS

estimate 6oE(k) k defined from

8oE(k) = eoE(k– 1)+ I%doE(k)(y(k– n) – ~&E(k)ooE(k– 1)

p,k=pk-~– Pk - I&E (k)d ToE (k)f% - I

1 + &(k)~k-,~oE(k) ‘
Po>o

The SPR condition (48) also holds for OE systems. 5

Overparametrization selection to satisfy SPR condition

From Corollary 2 we know that

G (q)H(q )

L (q)C(q) ~
(49)
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can be made arbitrarily small by choosing N large enough. BY restricting the zeros of C(q)

to lie inside a given u priori compact set, it is possible to specify N and a such that (27) is

satisfied for all C(q) whose zeros lie inside the set. In this subsection we specify N, a and the

compact set.
Notice that under (12) and (20), z-( ‘v-”+’):9 (z- 1) transforms to G(q)H(q)L -‘ (q) and vice

versa. So

G(q)H(q)

L(q)
=I!9(Z-’)I, Z,=,

~ql=l

Moreover, since stability is preserved under the transformation (12),

(-a)
,V-n+l

1 G(q)H(q) SBR ~ (–a)—— ~-n+lgO - ‘g(z-’) SBR

fo fo L(q) Jo

(50a)

(50b)

We now show how to select N and a to satisfy the SBR condition (48).

Lemma 9

Consider a polynomial C(z) = H 7=I (z – qi) such that its zeros lie in a circle with centre

1–R2
xo=a

1 –R2a2

and radius

(51a)

or equivalently,

lq; –xOISr, R<l Vi (51b)

Consider also for any N that the polynomials F(q), G(q) and H(q) are uniquely defined as

in (14). Then there exists No(r) such that for all N > No(r)

~o(_a)!v-n+l + ~ G(q)H(q) <1

fo fo L(q)

and the SBR condition (48) is satisfied.

(51C)

Proof. Using (12) with r defined as in (5 la) and .zjdefined as in Lemma 5, straightforward

manipulations yield

\zil<R<l~ qi+all_-Rq~2 <r

While a proof similar to that of Lemma 6, it follows that for any N if

N>R(I +n)– 1 and ~R,v-n+l (ZV+n)! (l+ R)fl< ~
/

1–R N!
(52)

then the SBR condition (48) is satisfied. Note that No(r) can be defined as the smallest value

of N for which (52) holds. Cl

Discussion. Unless N is chosen large (and so an unrealistically large number of parameters

are estimated), existing relaxed SPR algorithms such as in Reference 5 are not efficient when
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any of the zeros of C(z) lie in a region offset from the centre of the unit disc. Lemma 9 shows

the usefulness of our novel factorization (14a), when, for example, the zeros of C lie close to

z = 1 in the z-plane as a result of fast sampling of the continuous-time process (1). By choosing

O < a < 1 to satisfy (5 la), we can shift the SPR bounds (the circles with centre xo and radius

r in (51)) and the actual SPR regions (i.e. the location of the zeros of C(q) when (48) is

satisfied) along the real axis of the ~-plane to the region where the fast-sampled zeros lie

wi[houf increasing N. Figure 1 shows the SPR regions for second-order C-polynomials (n = 2)

for N=2,3.

In Figure 1, with a = O, the resulting SPR regions are those obtained in the relaxed SPR

algorithm of Reference 5 and are unsuitable for fast-sampled systems. Notice that selecting

a = 0“5, N = 2 in our scheme adequately covers the region close to z = 1. The algorithm

proposed in Reference 2 theoretically requires infinitely large N to be SPR at z = 1.

N=2, as0 ‘z

1
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Figure 1, SPR regions in z-plane
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Note that the SPR regions and bounds can also be shifted along the negative real ,z-axis of

the unit disc by selecting – 1 < a <0. The SPR regions and bounds are obtained by reflecting

the SPR regions and bounds for corresponding positive values of a through the imaginary

z-axis.

Persistence of excitation

We require the regression vector ~(k) and its estimate i(k) in (46) to be suitably exciting

for two reasons. 9 First, if ~(k) is not suitably exciting then the estimation algorithm and in

particular the calculation of Pk will suffer from numerical ill-conditioning. Secondly, the PE

of @(k) is needed to assure strong consistency of the identification scheme and therefore its

robustness to unmodelled dynamics. ‘2

It is known 14that there is almost sure parameter convergence in the ELS algorithm if in

addition to SPR condition (48) the following PE condition holds for d(k):

where P,-’ = Xl.l

d(k) to conditions

be reachable from

Lemma IO

A necessary and

,im log xmaxPr- ‘ = o a s

r-m hnli.P~’ “ “
(53)

@(k)r$(k)T + Pi’ for some PO >1. In order to translate this condition on

on the external signals u(k), w(k), it is necessary and sufficient that O(k)

u(k), w(k).

sufficient condition for @(k) in (46) associated with signal model (44) to be

reachable from inputs u(k), w(k) is that A (z)K(z), B(z)K(z) and C(z) are coprime where

K(Z) ~ H(.Z)-(.Z-(7)N-n+l(_a)~-n+l

Proof. See Appendix.

Remark. It is easily shown for

necessary and sufficient condition

BK are coprime.

G

output error systems from Lemma 10 that since A = C’, a

for @oE(k) to be reachable from input u(k) k that A and

Convergence of the transformed ELS aigori[hm

We summarize in the following theorem the convergence properties of our transformed ELS

algorithm.

Theorem 5

Consider the transformed ELS algorithm (45)–(47) associated with signal model (44). If N

is chosen sufficiently large such that the SBR condition (48) is satisfied, then as k ~ m

(II0- 0(k) 112= O *0~ ~mj~-’) as.
mln

(54)
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Moreover, under (53), as k + co

409

(II d - d(k) I\’= O ‘o;~m~~-’)-+O as.

mln

(55)

,: IIW - 2(01[2= O(log X~.XPi’) as.

Furthermore, if AK, BK and C are coprime (K is defined in Lemma 10), o(k) k reachable from

inputs u(k), w(k) and for suitably rich bounded variance inputs u(k), w(k), then as k + CO,

lim inf AP; ‘/k >0 and for stable signal models with bounded

116- O(k)ll =O(k-’ log k) as.

Proof. The proof of the convergence of our transformed ELS

in Reference 5.

Least-squares parameter recovery

inputs

(56)

algorithm is the same as that

❑

So far we have proved that consistent estimates of parameters of the transformed signal

model (44) can be obtained under the relaxed SBR condition (48) and PE condition (53).

Identification of the original signal model parameters ,4, B and C can also be accomplished

under the same conditions if the following least-squares (LS) algorithm operating in parallel

with the ELS algorithm is utilized:s

~(k) = ~(k - 1)+ l%j(k)Tti(k- 1)

(57)

where the regression vector ~(k) is given in terms of y(.), u(. ) and the noise estimate 2(. ) from

the transformed ELS scheme as

dk~ (y(k– 1)... Y()–/) u(k– 1)... u(m)m) @(k+ rr-1– l)... @()) T))T (58)

Also ~ contains the coefficients of A, B and C suitably arranged. Note that the noise terms

<(k) in the regression vector (58) are regarded as measurable. Thus the algorithm (57), despite

its similarity to (45)–(47), has an almost standard least-squares form. The only non-standard

feature of the proposed scheme is that the regression vector (58) differs from the true one

where e(. ) would be present instead of 2(.). It is proved in Reference 5 that as long as the ELS

algorithm converges, this discrepancy is asymptotically negligible, i.e. it does not affect either

the consistency or the asymptotic rate of convergence of the LS scheme.

Remark. In OE systems

doE(k)9 ((y(k - l)-d(k - 1))... (Y(O- @(k(1)))) u(~- l)... u(m) )T)T

~oE=(al...(?/ bl .. . b,n)~

would replace j(k) and ~(k).

5.

To give insights into the behaviour

simulations have been made. Here we

SIMULATIONS

of the transformed ELS algorithm, a number of

report a typical example.
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We consider a system with AR.MAX representation

y(k) +O”9y(k– l)+ O”95y(k–2)=u(k– 1)+ e(k)– 1.5e(k– 1)+0.75 e(k–2) (59)

The system fails to satisfy the SPR condition (48) when a = O, N = 2. This corresponds to the

standard ELS scheme and simulations (see Figure 2(b)) show a significant bias in the estimates.

Assume we know a priori that C(q) was obtained by fast sampling a continuous-time process

(1), i.e. its zeros lie near z = 1. We choose a =0“5, N = 2 (see Figure 1). This selection is

reasonable since the SPR region with a = 0“5, N = 2 covers a sizable amount of the right half

of the unit disc. Figure 2(a) shows the estimates of the system parameters using our proposed

scheme with N = 2, a = 005. It is clear that the parameter estimates converge to the ‘true’

values. Figure 2(c) shows that if the scheme in Reference 5 is used, even with N = 4, there is

still bias in the estimates. Simulations show that unless N >6 there is significant bias in the

parameter estimates if the algorithm in Reference 5 is used.

6. CONCLUSIONS

The strength of ELS schemes and their stochastic approximation versions is that they hold out

hope for global convergence in stochastic adaptive control, at least in the constant-parameter

case with no unmodelled dynamics. Also, under persistence of excitation, they hold out hope

of local stability in the presence of unmodelled dynamics. The Achilles heel of such schemes

is the SPR convergence condition. This paper has addressed this issue for continuous-time

schemes and certain fast-sampled continuous-time schemes, building on earlier work for

discrete-time schemes. We have achieved a realistic trade-off between increasing algorithmic

complexity and avoiding drift or bias and guaranteeing convergence. This has been illustrated

by simulation studies in the most common applications to low-order models.

Some of the generalizations developed here of known PE results to continuous time are of

independent interest. Also, the systematic application here of such results to the class of

overparametrized systems is illustrative of the power of such results. It could be claimed that

in adaptive control, parameter convergence and thus persistence of excitation is not strictly

necessary to guarantee convergence to the optimal control. However, as is now well known,

the spectre of the lack of robustness to unmodelled dynamics then looms large.
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APPENDIX

Proof of Theorem 4

Considering (38) and (39), define

P(t): e– o(f), ;(r)2 p(r)– ;(t)

Then

d~([) = -dj(() = –~,~(()(dj~.(t) - I!@)T@(t) do

= [-~,~(t)(z(f)d dt +def’)(f) - @(f)T@(r) df)] - ~,@(f) @(f)TOdt (60)
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The term enclosed in square brackets in (60) is the least-squares parameter error associated with the model

d}~n(t) = @(/)TO dr + de~’)(~), so that by known results’3 (in fact an appropriate specialization ot
Theorem 3),

II~,@(f)(@T(r)L9dt + dv~(() - ~T([)@(r) df)llz = O
(’”:::~p-’)

(61)

The second term in (60) is bounded as follows. Using the Schwartz inequality

(62)

It is established in Reference 13 (Lemma 3.1, Theorem 3.1) that for constants k, and kz,

J

,

0 IIZ(f) 112dt < kI
!

‘ 1[~(/)@([)112dt+ k, = O(log tr ~;’)
o

where ~, -‘ is defined as in (26). Thus

!‘ II19T+(f) 112dt= O(log tr P;’) (63)
o

Also

! J
‘ ll~,~(t)ll’dr= ‘ tr [~,@(t)@(I)T~~] dr = - tr ~, (64)
o 0

where the last equality follows from differentiating ~,~,-’ = 1 with respect to time and using (39a).
Therefore with (63) and (64) substituted in (62)

II[
7 2

~,@(t) @(t)Tf3 dt
o II‘o((’ogtrp’-’)(tr))=o(oo:::~:~:)’)(65)

But, recalling the definitions of i(t)in (25b) and ~(t)in (39),

because L -‘ (s) and H(s)L -‘ (.s) in x(t) are stable transfer functions. The desired result (40) then follows
from (61) and (65), Also, under (37) we have’3

thus establishing (41). The same arguments’3 used to prove Theorem 3 establish (42) r-

Proof of Lemma 10

The proof is along the lines in References 5 and 9. Taking z-transforms we rewrite (3) as

Y(z)= A-’(Z) B(Z)LI(Z)+ A-’(z) C(z)e(z) = TI(z)u(z) + T’2(z)e(z) = T(z)v(z)

where u(z) = (u(z) e(z))T and T(z) = (T! (z) T2(z)). observe that

(%)= C:)U(Z)

where e, = ( 1 O) and ez = (O 1). Consider the regression vector o(k) in (46) and note that
o(z) = TTEE(z)u(z) where

TTEE(z)=+(–-J+ V-TT(Z)... – TT(z) Z
I+ V-I– I T l–,tt T

el... z el

(-lf(z)zn-’ + L(z)(-a)’v-n+’).(~ -H(z)z’’-’e] . . . -H(.z)e~)T

We know9 that o(.) is reachable from u(.) iff TTEE (z) has full rank over R for all Z. Also, manipulations

show that if for any a = (a; a] a;)T, ~i=(al, I... al+,v_n)T,T, ~2=(a2,1... a2,,), +n-l)T, T,



(I3 = (a?

where
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. a3,fl_, )T, the reachability condition is equivalent to

r(z) ‘2(ZI

aT(z)fw(:) : (al(z) ~z(z) a3(z)) 1 0 =0

o K(z)

413

(66)

K(z)8 ~(Z)–(q–(7)v-”+l(_a)V-”+’

al(z) =cil,lz’+ v-”-’ + /+V-n-l l-m
... + a,,/+ .v-n, C12(Z) = ~2,1’z + ““” ~ a2,m+:V-nZ ,

Q’3(Z)=~3,1Z’’-2+ ““” +a3, n-1.

Note that K(z) is of degree N– n.
Let N(A4) denote the left null-space of &f(z), i.e. the set of all polynomial vectors a(z) obeying (66),

Define also

P(kl, kz, k3) = [polynomials (al(z) cY2(z)ci3(z))T,deg Cli(Z) < k,]

Then it follows from (66) that TTEE(z) will be full row rank iff

P(l+N-n,l+ N-n, n-l)n N(M)=O (67)

We now show that the condition A (z)K(z), B(z)K(z) and C(z) are coprime is necessary and sufficient
for (67) to hold.

Necessity. Straightforward calculation show that

(-A(z)K(z) B(z)K(z) C(Z)) Tkf(Z) = O

and so (A(z)JK(z) B(z)K(z) – C(z))Tc N(M). Also

(-A(z)K(z) B(z)JK(z) C(z))T< P(1+ N-n+ 1,/+ N-n, n+ 1)

Thus A (z)K(z), B(z)K(z) and C(Z) coprime is a necessary condition for (67) to hold.

Suficierrcy. Since for A(z)K(z), B(z)K(z) and c(z) coprime, the vector

( –,4 (z)K(z) B(z)K(z) – C(z))T forms a basis for N(A4), any other element of N(M) can be obtained as

(.J(Z).YJ(Z)W(Z))T= @(c)( -A(z)K(z) B(z)K(z) - C(z))

where deg j3(z) > 1. However, since deg ‘f’(:) > n + 1, coprimeness of AK, BK and C implies (67).
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